mmu_oea64.c revision 269388
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29/*-
30 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31 * Copyright (C) 1995, 1996 TooLs GmbH.
32 * All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 *    notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 *    notice, this list of conditions and the following disclaimer in the
41 *    documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 *    must display the following acknowledgement:
44 *	This product includes software developed by TooLs GmbH.
45 * 4. The name of TooLs GmbH may not be used to endorse or promote products
46 *    derived from this software without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58 *
59 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60 */
61/*-
62 * Copyright (C) 2001 Benno Rice.
63 * All rights reserved.
64 *
65 * Redistribution and use in source and binary forms, with or without
66 * modification, are permitted provided that the following conditions
67 * are met:
68 * 1. Redistributions of source code must retain the above copyright
69 *    notice, this list of conditions and the following disclaimer.
70 * 2. Redistributions in binary form must reproduce the above copyright
71 *    notice, this list of conditions and the following disclaimer in the
72 *    documentation and/or other materials provided with the distribution.
73 *
74 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84 */
85
86#include <sys/cdefs.h>
87__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 269388 2014-08-01 17:09:50Z alc $");
88
89/*
90 * Manages physical address maps.
91 *
92 * Since the information managed by this module is also stored by the
93 * logical address mapping module, this module may throw away valid virtual
94 * to physical mappings at almost any time.  However, invalidations of
95 * mappings must be done as requested.
96 *
97 * In order to cope with hardware architectures which make virtual to
98 * physical map invalidates expensive, this module may delay invalidate
99 * reduced protection operations until such time as they are actually
100 * necessary.  This module is given full information as to which processors
101 * are currently using which maps, and to when physical maps must be made
102 * correct.
103 */
104
105#include "opt_compat.h"
106#include "opt_kstack_pages.h"
107
108#include <sys/param.h>
109#include <sys/kernel.h>
110#include <sys/queue.h>
111#include <sys/cpuset.h>
112#include <sys/ktr.h>
113#include <sys/lock.h>
114#include <sys/msgbuf.h>
115#include <sys/malloc.h>
116#include <sys/mutex.h>
117#include <sys/proc.h>
118#include <sys/rwlock.h>
119#include <sys/sched.h>
120#include <sys/sysctl.h>
121#include <sys/systm.h>
122#include <sys/vmmeter.h>
123
124#include <sys/kdb.h>
125
126#include <dev/ofw/openfirm.h>
127
128#include <vm/vm.h>
129#include <vm/vm_param.h>
130#include <vm/vm_kern.h>
131#include <vm/vm_page.h>
132#include <vm/vm_map.h>
133#include <vm/vm_object.h>
134#include <vm/vm_extern.h>
135#include <vm/vm_pageout.h>
136#include <vm/uma.h>
137
138#include <machine/_inttypes.h>
139#include <machine/cpu.h>
140#include <machine/platform.h>
141#include <machine/frame.h>
142#include <machine/md_var.h>
143#include <machine/psl.h>
144#include <machine/bat.h>
145#include <machine/hid.h>
146#include <machine/pte.h>
147#include <machine/sr.h>
148#include <machine/trap.h>
149#include <machine/mmuvar.h>
150
151#include "mmu_oea64.h"
152#include "mmu_if.h"
153#include "moea64_if.h"
154
155void moea64_release_vsid(uint64_t vsid);
156uintptr_t moea64_get_unique_vsid(void);
157
158#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
159#define ENABLE_TRANS(msr)	mtmsr(msr)
160
161#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
162#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
163#define	VSID_HASH_MASK		0x0000007fffffffffULL
164
165/*
166 * Locking semantics:
167 * -- Read lock: if no modifications are being made to either the PVO lists
168 *    or page table or if any modifications being made result in internal
169 *    changes (e.g. wiring, protection) such that the existence of the PVOs
170 *    is unchanged and they remain associated with the same pmap (in which
171 *    case the changes should be protected by the pmap lock)
172 * -- Write lock: required if PTEs/PVOs are being inserted or removed.
173 */
174
175#define LOCK_TABLE_RD() rw_rlock(&moea64_table_lock)
176#define UNLOCK_TABLE_RD() rw_runlock(&moea64_table_lock)
177#define LOCK_TABLE_WR() rw_wlock(&moea64_table_lock)
178#define UNLOCK_TABLE_WR() rw_wunlock(&moea64_table_lock)
179
180struct ofw_map {
181	cell_t	om_va;
182	cell_t	om_len;
183	uint64_t om_pa;
184	cell_t	om_mode;
185};
186
187extern unsigned char _etext[];
188extern unsigned char _end[];
189
190extern int dumpsys_minidump;
191
192/*
193 * Map of physical memory regions.
194 */
195static struct	mem_region *regions;
196static struct	mem_region *pregions;
197static u_int	phys_avail_count;
198static int	regions_sz, pregions_sz;
199
200extern void bs_remap_earlyboot(void);
201
202/*
203 * Lock for the pteg and pvo tables.
204 */
205struct rwlock	moea64_table_lock;
206struct mtx	moea64_slb_mutex;
207
208/*
209 * PTEG data.
210 */
211u_int		moea64_pteg_count;
212u_int		moea64_pteg_mask;
213
214/*
215 * PVO data.
216 */
217struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
218
219uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
220uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
221
222#define	BPVO_POOL_SIZE	327680
223static struct	pvo_entry *moea64_bpvo_pool;
224static int	moea64_bpvo_pool_index = 0;
225
226#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
227#ifdef __powerpc64__
228#define	NVSIDS		(NPMAPS * 16)
229#define VSID_HASHMASK	0xffffffffUL
230#else
231#define NVSIDS		NPMAPS
232#define VSID_HASHMASK	0xfffffUL
233#endif
234static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
235
236static boolean_t moea64_initialized = FALSE;
237
238/*
239 * Statistics.
240 */
241u_int	moea64_pte_valid = 0;
242u_int	moea64_pte_overflow = 0;
243u_int	moea64_pvo_entries = 0;
244u_int	moea64_pvo_enter_calls = 0;
245u_int	moea64_pvo_remove_calls = 0;
246SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
247    &moea64_pte_valid, 0, "");
248SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
249    &moea64_pte_overflow, 0, "");
250SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
251    &moea64_pvo_entries, 0, "");
252SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
253    &moea64_pvo_enter_calls, 0, "");
254SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
255    &moea64_pvo_remove_calls, 0, "");
256
257vm_offset_t	moea64_scratchpage_va[2];
258struct pvo_entry *moea64_scratchpage_pvo[2];
259uintptr_t	moea64_scratchpage_pte[2];
260struct	mtx	moea64_scratchpage_mtx;
261
262uint64_t 	moea64_large_page_mask = 0;
263uint64_t	moea64_large_page_size = 0;
264int		moea64_large_page_shift = 0;
265
266/*
267 * PVO calls.
268 */
269static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
270		    vm_offset_t, vm_offset_t, uint64_t, int);
271static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
272static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
273
274/*
275 * Utility routines.
276 */
277static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
278static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
279static void		moea64_kremove(mmu_t, vm_offset_t);
280static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
281			    vm_offset_t pa, vm_size_t sz);
282
283/*
284 * Kernel MMU interface
285 */
286void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
287void moea64_clear_modify(mmu_t, vm_page_t);
288void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
289void moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
290    vm_page_t *mb, vm_offset_t b_offset, int xfersize);
291void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
292void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
293    vm_prot_t);
294void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
295vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
296vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
297void moea64_init(mmu_t);
298boolean_t moea64_is_modified(mmu_t, vm_page_t);
299boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
300boolean_t moea64_is_referenced(mmu_t, vm_page_t);
301int moea64_ts_referenced(mmu_t, vm_page_t);
302vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
303boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
304int moea64_page_wired_mappings(mmu_t, vm_page_t);
305void moea64_pinit(mmu_t, pmap_t);
306void moea64_pinit0(mmu_t, pmap_t);
307void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
308void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
309void moea64_qremove(mmu_t, vm_offset_t, int);
310void moea64_release(mmu_t, pmap_t);
311void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
312void moea64_remove_pages(mmu_t, pmap_t);
313void moea64_remove_all(mmu_t, vm_page_t);
314void moea64_remove_write(mmu_t, vm_page_t);
315void moea64_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
316void moea64_zero_page(mmu_t, vm_page_t);
317void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
318void moea64_zero_page_idle(mmu_t, vm_page_t);
319void moea64_activate(mmu_t, struct thread *);
320void moea64_deactivate(mmu_t, struct thread *);
321void *moea64_mapdev(mmu_t, vm_paddr_t, vm_size_t);
322void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
323void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
324vm_paddr_t moea64_kextract(mmu_t, vm_offset_t);
325void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
326void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
327void moea64_kenter(mmu_t, vm_offset_t, vm_paddr_t);
328boolean_t moea64_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
329static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
330vm_offset_t moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
331    vm_size_t *sz);
332struct pmap_md * moea64_scan_md(mmu_t mmu, struct pmap_md *prev);
333
334static mmu_method_t moea64_methods[] = {
335	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
336	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
337	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
338	MMUMETHOD(mmu_copy_pages,	moea64_copy_pages),
339	MMUMETHOD(mmu_enter,		moea64_enter),
340	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
341	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
342	MMUMETHOD(mmu_extract,		moea64_extract),
343	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
344	MMUMETHOD(mmu_init,		moea64_init),
345	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
346	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
347	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
348	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
349	MMUMETHOD(mmu_map,     		moea64_map),
350	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
351	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
352	MMUMETHOD(mmu_pinit,		moea64_pinit),
353	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
354	MMUMETHOD(mmu_protect,		moea64_protect),
355	MMUMETHOD(mmu_qenter,		moea64_qenter),
356	MMUMETHOD(mmu_qremove,		moea64_qremove),
357	MMUMETHOD(mmu_release,		moea64_release),
358	MMUMETHOD(mmu_remove,		moea64_remove),
359	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
360	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
361	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
362	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
363	MMUMETHOD(mmu_unwire,		moea64_unwire),
364	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
365	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
366	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
367	MMUMETHOD(mmu_activate,		moea64_activate),
368	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
369	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
370
371	/* Internal interfaces */
372	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
373	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
374	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
375	MMUMETHOD(mmu_kextract,		moea64_kextract),
376	MMUMETHOD(mmu_kenter,		moea64_kenter),
377	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
378	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
379	MMUMETHOD(mmu_scan_md,		moea64_scan_md),
380	MMUMETHOD(mmu_dumpsys_map,	moea64_dumpsys_map),
381
382	{ 0, 0 }
383};
384
385MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
386
387static __inline u_int
388va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
389{
390	uint64_t hash;
391	int shift;
392
393	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
394	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
395	    shift);
396	return (hash & moea64_pteg_mask);
397}
398
399static __inline struct pvo_head *
400vm_page_to_pvoh(vm_page_t m)
401{
402
403	return (&m->md.mdpg_pvoh);
404}
405
406static __inline void
407moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
408    uint64_t pte_lo, int flags)
409{
410
411	/*
412	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
413	 * set when the real pte is set in memory.
414	 *
415	 * Note: Don't set the valid bit for correct operation of tlb update.
416	 */
417	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
418	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
419
420	if (flags & PVO_LARGE)
421		pt->pte_hi |= LPTE_BIG;
422
423	pt->pte_lo = pte_lo;
424}
425
426static __inline uint64_t
427moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
428{
429	uint64_t pte_lo;
430	int i;
431
432	if (ma != VM_MEMATTR_DEFAULT) {
433		switch (ma) {
434		case VM_MEMATTR_UNCACHEABLE:
435			return (LPTE_I | LPTE_G);
436		case VM_MEMATTR_WRITE_COMBINING:
437		case VM_MEMATTR_WRITE_BACK:
438		case VM_MEMATTR_PREFETCHABLE:
439			return (LPTE_I);
440		case VM_MEMATTR_WRITE_THROUGH:
441			return (LPTE_W | LPTE_M);
442		}
443	}
444
445	/*
446	 * Assume the page is cache inhibited and access is guarded unless
447	 * it's in our available memory array.
448	 */
449	pte_lo = LPTE_I | LPTE_G;
450	for (i = 0; i < pregions_sz; i++) {
451		if ((pa >= pregions[i].mr_start) &&
452		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
453			pte_lo &= ~(LPTE_I | LPTE_G);
454			pte_lo |= LPTE_M;
455			break;
456		}
457	}
458
459	return pte_lo;
460}
461
462/*
463 * Quick sort callout for comparing memory regions.
464 */
465static int	om_cmp(const void *a, const void *b);
466
467static int
468om_cmp(const void *a, const void *b)
469{
470	const struct	ofw_map *mapa;
471	const struct	ofw_map *mapb;
472
473	mapa = a;
474	mapb = b;
475	if (mapa->om_pa < mapb->om_pa)
476		return (-1);
477	else if (mapa->om_pa > mapb->om_pa)
478		return (1);
479	else
480		return (0);
481}
482
483static void
484moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
485{
486	struct ofw_map	translations[sz/(4*sizeof(cell_t))]; /*>= 4 cells per */
487	pcell_t		acells, trans_cells[sz/sizeof(cell_t)];
488	register_t	msr;
489	vm_offset_t	off;
490	vm_paddr_t	pa_base;
491	int		i, j;
492
493	bzero(translations, sz);
494	OF_getprop(OF_finddevice("/"), "#address-cells", &acells,
495	    sizeof(acells));
496	if (OF_getprop(mmu, "translations", trans_cells, sz) == -1)
497		panic("moea64_bootstrap: can't get ofw translations");
498
499	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
500	sz /= sizeof(cell_t);
501	for (i = 0, j = 0; i < sz; j++) {
502		translations[j].om_va = trans_cells[i++];
503		translations[j].om_len = trans_cells[i++];
504		translations[j].om_pa = trans_cells[i++];
505		if (acells == 2) {
506			translations[j].om_pa <<= 32;
507			translations[j].om_pa |= trans_cells[i++];
508		}
509		translations[j].om_mode = trans_cells[i++];
510	}
511	KASSERT(i == sz, ("Translations map has incorrect cell count (%d/%zd)",
512	    i, sz));
513
514	sz = j;
515	qsort(translations, sz, sizeof (*translations), om_cmp);
516
517	for (i = 0; i < sz; i++) {
518		pa_base = translations[i].om_pa;
519	      #ifndef __powerpc64__
520		if ((translations[i].om_pa >> 32) != 0)
521			panic("OFW translations above 32-bit boundary!");
522	      #endif
523
524		if (pa_base % PAGE_SIZE)
525			panic("OFW translation not page-aligned (phys)!");
526		if (translations[i].om_va % PAGE_SIZE)
527			panic("OFW translation not page-aligned (virt)!");
528
529		CTR3(KTR_PMAP, "translation: pa=%#zx va=%#x len=%#x",
530		    pa_base, translations[i].om_va, translations[i].om_len);
531
532		/* Now enter the pages for this mapping */
533
534		DISABLE_TRANS(msr);
535		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
536			if (moea64_pvo_find_va(kernel_pmap,
537			    translations[i].om_va + off) != NULL)
538				continue;
539
540			moea64_kenter(mmup, translations[i].om_va + off,
541			    pa_base + off);
542		}
543		ENABLE_TRANS(msr);
544	}
545}
546
547#ifdef __powerpc64__
548static void
549moea64_probe_large_page(void)
550{
551	uint16_t pvr = mfpvr() >> 16;
552
553	switch (pvr) {
554	case IBM970:
555	case IBM970FX:
556	case IBM970MP:
557		powerpc_sync(); isync();
558		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
559		powerpc_sync(); isync();
560
561		/* FALLTHROUGH */
562	default:
563		moea64_large_page_size = 0x1000000; /* 16 MB */
564		moea64_large_page_shift = 24;
565	}
566
567	moea64_large_page_mask = moea64_large_page_size - 1;
568}
569
570static void
571moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
572{
573	struct slb *cache;
574	struct slb entry;
575	uint64_t esid, slbe;
576	uint64_t i;
577
578	cache = PCPU_GET(slb);
579	esid = va >> ADDR_SR_SHFT;
580	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
581
582	for (i = 0; i < 64; i++) {
583		if (cache[i].slbe == (slbe | i))
584			return;
585	}
586
587	entry.slbe = slbe;
588	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
589	if (large)
590		entry.slbv |= SLBV_L;
591
592	slb_insert_kernel(entry.slbe, entry.slbv);
593}
594#endif
595
596static void
597moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
598    vm_offset_t kernelend)
599{
600	register_t msr;
601	vm_paddr_t pa;
602	vm_offset_t size, off;
603	uint64_t pte_lo;
604	int i;
605
606	if (moea64_large_page_size == 0)
607		hw_direct_map = 0;
608
609	DISABLE_TRANS(msr);
610	if (hw_direct_map) {
611		LOCK_TABLE_WR();
612		PMAP_LOCK(kernel_pmap);
613		for (i = 0; i < pregions_sz; i++) {
614		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
615		     pregions[i].mr_size; pa += moea64_large_page_size) {
616			pte_lo = LPTE_M;
617
618			/*
619			 * Set memory access as guarded if prefetch within
620			 * the page could exit the available physmem area.
621			 */
622			if (pa & moea64_large_page_mask) {
623				pa &= moea64_large_page_mask;
624				pte_lo |= LPTE_G;
625			}
626			if (pa + moea64_large_page_size >
627			    pregions[i].mr_start + pregions[i].mr_size)
628				pte_lo |= LPTE_G;
629
630			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
631				    NULL, pa, pa, pte_lo,
632				    PVO_WIRED | PVO_LARGE);
633		  }
634		}
635		PMAP_UNLOCK(kernel_pmap);
636		UNLOCK_TABLE_WR();
637	} else {
638		size = sizeof(struct pvo_head) * moea64_pteg_count;
639		off = (vm_offset_t)(moea64_pvo_table);
640		for (pa = off; pa < off + size; pa += PAGE_SIZE)
641			moea64_kenter(mmup, pa, pa);
642		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
643		off = (vm_offset_t)(moea64_bpvo_pool);
644		for (pa = off; pa < off + size; pa += PAGE_SIZE)
645		moea64_kenter(mmup, pa, pa);
646
647		/*
648		 * Map certain important things, like ourselves.
649		 *
650		 * NOTE: We do not map the exception vector space. That code is
651		 * used only in real mode, and leaving it unmapped allows us to
652		 * catch NULL pointer deferences, instead of making NULL a valid
653		 * address.
654		 */
655
656		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
657		    pa += PAGE_SIZE)
658			moea64_kenter(mmup, pa, pa);
659	}
660	ENABLE_TRANS(msr);
661
662	/*
663	 * Allow user to override unmapped_buf_allowed for testing.
664	 * XXXKIB Only direct map implementation was tested.
665	 */
666	if (!TUNABLE_INT_FETCH("vfs.unmapped_buf_allowed",
667	    &unmapped_buf_allowed))
668		unmapped_buf_allowed = hw_direct_map;
669}
670
671void
672moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
673{
674	int		i, j;
675	vm_size_t	physsz, hwphyssz;
676
677#ifndef __powerpc64__
678	/* We don't have a direct map since there is no BAT */
679	hw_direct_map = 0;
680
681	/* Make sure battable is zero, since we have no BAT */
682	for (i = 0; i < 16; i++) {
683		battable[i].batu = 0;
684		battable[i].batl = 0;
685	}
686#else
687	moea64_probe_large_page();
688
689	/* Use a direct map if we have large page support */
690	if (moea64_large_page_size > 0)
691		hw_direct_map = 1;
692	else
693		hw_direct_map = 0;
694#endif
695
696	/* Get physical memory regions from firmware */
697	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
698	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
699
700	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
701		panic("moea64_bootstrap: phys_avail too small");
702
703	phys_avail_count = 0;
704	physsz = 0;
705	hwphyssz = 0;
706	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
707	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
708		CTR3(KTR_PMAP, "region: %#zx - %#zx (%#zx)",
709		    regions[i].mr_start, regions[i].mr_start +
710		    regions[i].mr_size, regions[i].mr_size);
711		if (hwphyssz != 0 &&
712		    (physsz + regions[i].mr_size) >= hwphyssz) {
713			if (physsz < hwphyssz) {
714				phys_avail[j] = regions[i].mr_start;
715				phys_avail[j + 1] = regions[i].mr_start +
716				    hwphyssz - physsz;
717				physsz = hwphyssz;
718				phys_avail_count++;
719			}
720			break;
721		}
722		phys_avail[j] = regions[i].mr_start;
723		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
724		phys_avail_count++;
725		physsz += regions[i].mr_size;
726	}
727
728	/* Check for overlap with the kernel and exception vectors */
729	for (j = 0; j < 2*phys_avail_count; j+=2) {
730		if (phys_avail[j] < EXC_LAST)
731			phys_avail[j] += EXC_LAST;
732
733		if (kernelstart >= phys_avail[j] &&
734		    kernelstart < phys_avail[j+1]) {
735			if (kernelend < phys_avail[j+1]) {
736				phys_avail[2*phys_avail_count] =
737				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
738				phys_avail[2*phys_avail_count + 1] =
739				    phys_avail[j+1];
740				phys_avail_count++;
741			}
742
743			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
744		}
745
746		if (kernelend >= phys_avail[j] &&
747		    kernelend < phys_avail[j+1]) {
748			if (kernelstart > phys_avail[j]) {
749				phys_avail[2*phys_avail_count] = phys_avail[j];
750				phys_avail[2*phys_avail_count + 1] =
751				    kernelstart & ~PAGE_MASK;
752				phys_avail_count++;
753			}
754
755			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
756		}
757	}
758
759	physmem = btoc(physsz);
760
761#ifdef PTEGCOUNT
762	moea64_pteg_count = PTEGCOUNT;
763#else
764	moea64_pteg_count = 0x1000;
765
766	while (moea64_pteg_count < physmem)
767		moea64_pteg_count <<= 1;
768
769	moea64_pteg_count >>= 1;
770#endif /* PTEGCOUNT */
771}
772
773void
774moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
775{
776	vm_size_t	size;
777	register_t	msr;
778	int		i;
779
780	/*
781	 * Set PTEG mask
782	 */
783	moea64_pteg_mask = moea64_pteg_count - 1;
784
785	/*
786	 * Allocate pv/overflow lists.
787	 */
788	size = sizeof(struct pvo_head) * moea64_pteg_count;
789
790	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
791	    PAGE_SIZE);
792	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
793
794	DISABLE_TRANS(msr);
795	for (i = 0; i < moea64_pteg_count; i++)
796		LIST_INIT(&moea64_pvo_table[i]);
797	ENABLE_TRANS(msr);
798
799	/*
800	 * Initialize the lock that synchronizes access to the pteg and pvo
801	 * tables.
802	 */
803	rw_init_flags(&moea64_table_lock, "pmap tables", RW_RECURSE);
804	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
805
806	/*
807	 * Initialise the unmanaged pvo pool.
808	 */
809	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
810		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
811	moea64_bpvo_pool_index = 0;
812
813	/*
814	 * Make sure kernel vsid is allocated as well as VSID 0.
815	 */
816	#ifndef __powerpc64__
817	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
818		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
819	moea64_vsid_bitmap[0] |= 1;
820	#endif
821
822	/*
823	 * Initialize the kernel pmap (which is statically allocated).
824	 */
825	#ifdef __powerpc64__
826	for (i = 0; i < 64; i++) {
827		pcpup->pc_slb[i].slbv = 0;
828		pcpup->pc_slb[i].slbe = 0;
829	}
830	#else
831	for (i = 0; i < 16; i++)
832		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
833	#endif
834
835	kernel_pmap->pmap_phys = kernel_pmap;
836	CPU_FILL(&kernel_pmap->pm_active);
837	RB_INIT(&kernel_pmap->pmap_pvo);
838
839	PMAP_LOCK_INIT(kernel_pmap);
840
841	/*
842	 * Now map in all the other buffers we allocated earlier
843	 */
844
845	moea64_setup_direct_map(mmup, kernelstart, kernelend);
846}
847
848void
849moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
850{
851	ihandle_t	mmui;
852	phandle_t	chosen;
853	phandle_t	mmu;
854	size_t		sz;
855	int		i;
856	vm_offset_t	pa, va;
857	void		*dpcpu;
858
859	/*
860	 * Set up the Open Firmware pmap and add its mappings if not in real
861	 * mode.
862	 */
863
864	chosen = OF_finddevice("/chosen");
865	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
866	    mmu = OF_instance_to_package(mmui);
867	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
868		sz = 0;
869	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
870		panic("moea64_bootstrap: too many ofw translations");
871
872	    if (sz > 0)
873		moea64_add_ofw_mappings(mmup, mmu, sz);
874	}
875
876	/*
877	 * Calculate the last available physical address.
878	 */
879	for (i = 0; phys_avail[i + 2] != 0; i += 2)
880		;
881	Maxmem = powerpc_btop(phys_avail[i + 1]);
882
883	/*
884	 * Initialize MMU and remap early physical mappings
885	 */
886	MMU_CPU_BOOTSTRAP(mmup,0);
887	mtmsr(mfmsr() | PSL_DR | PSL_IR);
888	pmap_bootstrapped++;
889	bs_remap_earlyboot();
890
891	/*
892	 * Set the start and end of kva.
893	 */
894	virtual_avail = VM_MIN_KERNEL_ADDRESS;
895	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
896
897	/*
898	 * Map the entire KVA range into the SLB. We must not fault there.
899	 */
900	#ifdef __powerpc64__
901	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
902		moea64_bootstrap_slb_prefault(va, 0);
903	#endif
904
905	/*
906	 * Figure out how far we can extend virtual_end into segment 16
907	 * without running into existing mappings. Segment 16 is guaranteed
908	 * to contain neither RAM nor devices (at least on Apple hardware),
909	 * but will generally contain some OFW mappings we should not
910	 * step on.
911	 */
912
913	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
914	PMAP_LOCK(kernel_pmap);
915	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
916	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
917		virtual_end += PAGE_SIZE;
918	PMAP_UNLOCK(kernel_pmap);
919	#endif
920
921	/*
922	 * Allocate a kernel stack with a guard page for thread0 and map it
923	 * into the kernel page map.
924	 */
925	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
926	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
927	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
928	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
929	thread0.td_kstack = va;
930	thread0.td_kstack_pages = KSTACK_PAGES;
931	for (i = 0; i < KSTACK_PAGES; i++) {
932		moea64_kenter(mmup, va, pa);
933		pa += PAGE_SIZE;
934		va += PAGE_SIZE;
935	}
936
937	/*
938	 * Allocate virtual address space for the message buffer.
939	 */
940	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
941	msgbufp = (struct msgbuf *)virtual_avail;
942	va = virtual_avail;
943	virtual_avail += round_page(msgbufsize);
944	while (va < virtual_avail) {
945		moea64_kenter(mmup, va, pa);
946		pa += PAGE_SIZE;
947		va += PAGE_SIZE;
948	}
949
950	/*
951	 * Allocate virtual address space for the dynamic percpu area.
952	 */
953	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
954	dpcpu = (void *)virtual_avail;
955	va = virtual_avail;
956	virtual_avail += DPCPU_SIZE;
957	while (va < virtual_avail) {
958		moea64_kenter(mmup, va, pa);
959		pa += PAGE_SIZE;
960		va += PAGE_SIZE;
961	}
962	dpcpu_init(dpcpu, 0);
963
964	/*
965	 * Allocate some things for page zeroing. We put this directly
966	 * in the page table, marked with LPTE_LOCKED, to avoid any
967	 * of the PVO book-keeping or other parts of the VM system
968	 * from even knowing that this hack exists.
969	 */
970
971	if (!hw_direct_map) {
972		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
973		    MTX_DEF);
974		for (i = 0; i < 2; i++) {
975			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
976			virtual_end -= PAGE_SIZE;
977
978			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
979
980			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
981			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
982			LOCK_TABLE_RD();
983			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
984			    mmup, moea64_scratchpage_pvo[i]);
985			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
986			    |= LPTE_LOCKED;
987			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
988			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
989			    moea64_scratchpage_pvo[i]->pvo_vpn);
990			UNLOCK_TABLE_RD();
991		}
992	}
993}
994
995/*
996 * Activate a user pmap.  The pmap must be activated before its address
997 * space can be accessed in any way.
998 */
999void
1000moea64_activate(mmu_t mmu, struct thread *td)
1001{
1002	pmap_t	pm;
1003
1004	pm = &td->td_proc->p_vmspace->vm_pmap;
1005	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
1006
1007	#ifdef __powerpc64__
1008	PCPU_SET(userslb, pm->pm_slb);
1009	#else
1010	PCPU_SET(curpmap, pm->pmap_phys);
1011	#endif
1012}
1013
1014void
1015moea64_deactivate(mmu_t mmu, struct thread *td)
1016{
1017	pmap_t	pm;
1018
1019	pm = &td->td_proc->p_vmspace->vm_pmap;
1020	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
1021	#ifdef __powerpc64__
1022	PCPU_SET(userslb, NULL);
1023	#else
1024	PCPU_SET(curpmap, NULL);
1025	#endif
1026}
1027
1028void
1029moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1030{
1031	struct	pvo_entry *pvo;
1032	uintptr_t pt;
1033	uint64_t vsid;
1034	int	i, ptegidx;
1035
1036	LOCK_TABLE_WR();
1037	PMAP_LOCK(pm);
1038	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1039
1040	if (pvo != NULL) {
1041		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1042
1043		if (wired) {
1044			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1045				pm->pm_stats.wired_count++;
1046			pvo->pvo_vaddr |= PVO_WIRED;
1047			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1048		} else {
1049			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1050				pm->pm_stats.wired_count--;
1051			pvo->pvo_vaddr &= ~PVO_WIRED;
1052			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1053		}
1054
1055		if (pt != -1) {
1056			/* Update wiring flag in page table. */
1057			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1058			    pvo->pvo_vpn);
1059		} else if (wired) {
1060			/*
1061			 * If we are wiring the page, and it wasn't in the
1062			 * page table before, add it.
1063			 */
1064			vsid = PVO_VSID(pvo);
1065			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1066			    pvo->pvo_vaddr & PVO_LARGE);
1067
1068			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1069
1070			if (i >= 0) {
1071				PVO_PTEGIDX_CLR(pvo);
1072				PVO_PTEGIDX_SET(pvo, i);
1073			}
1074		}
1075
1076	}
1077	UNLOCK_TABLE_WR();
1078	PMAP_UNLOCK(pm);
1079}
1080
1081void
1082moea64_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1083{
1084	struct	pvo_entry key, *pvo;
1085	uintptr_t pt;
1086
1087	LOCK_TABLE_RD();
1088	PMAP_LOCK(pm);
1089	key.pvo_vaddr = sva;
1090	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1091	    pvo != NULL && PVO_VADDR(pvo) < eva;
1092	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1093		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1094		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1095			panic("moea64_unwire: pvo %p is missing PVO_WIRED",
1096			    pvo);
1097		pvo->pvo_vaddr &= ~PVO_WIRED;
1098		if ((pvo->pvo_pte.lpte.pte_hi & LPTE_WIRED) == 0)
1099			panic("moea64_unwire: pte %p is missing LPTE_WIRED",
1100			    &pvo->pvo_pte.lpte);
1101		pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1102		if (pt != -1) {
1103			/*
1104			 * The PTE's wired attribute is not a hardware
1105			 * feature, so there is no need to invalidate any TLB
1106			 * entries.
1107			 */
1108			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1109			    pvo->pvo_vpn);
1110		}
1111		pm->pm_stats.wired_count--;
1112	}
1113	UNLOCK_TABLE_RD();
1114	PMAP_UNLOCK(pm);
1115}
1116
1117/*
1118 * This goes through and sets the physical address of our
1119 * special scratch PTE to the PA we want to zero or copy. Because
1120 * of locking issues (this can get called in pvo_enter() by
1121 * the UMA allocator), we can't use most other utility functions here
1122 */
1123
1124static __inline
1125void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1126
1127	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1128	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1129
1130	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1131	    ~(LPTE_WIMG | LPTE_RPGN);
1132	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1133	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1134	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1135	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1136	    moea64_scratchpage_pvo[which]->pvo_vpn);
1137	isync();
1138}
1139
1140void
1141moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1142{
1143	vm_offset_t	dst;
1144	vm_offset_t	src;
1145
1146	dst = VM_PAGE_TO_PHYS(mdst);
1147	src = VM_PAGE_TO_PHYS(msrc);
1148
1149	if (hw_direct_map) {
1150		bcopy((void *)src, (void *)dst, PAGE_SIZE);
1151	} else {
1152		mtx_lock(&moea64_scratchpage_mtx);
1153
1154		moea64_set_scratchpage_pa(mmu, 0, src);
1155		moea64_set_scratchpage_pa(mmu, 1, dst);
1156
1157		bcopy((void *)moea64_scratchpage_va[0],
1158		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1159
1160		mtx_unlock(&moea64_scratchpage_mtx);
1161	}
1162}
1163
1164static inline void
1165moea64_copy_pages_dmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1166    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1167{
1168	void *a_cp, *b_cp;
1169	vm_offset_t a_pg_offset, b_pg_offset;
1170	int cnt;
1171
1172	while (xfersize > 0) {
1173		a_pg_offset = a_offset & PAGE_MASK;
1174		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1175		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1176		    a_pg_offset;
1177		b_pg_offset = b_offset & PAGE_MASK;
1178		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1179		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1180		    b_pg_offset;
1181		bcopy(a_cp, b_cp, cnt);
1182		a_offset += cnt;
1183		b_offset += cnt;
1184		xfersize -= cnt;
1185	}
1186}
1187
1188static inline void
1189moea64_copy_pages_nodmap(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1190    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1191{
1192	void *a_cp, *b_cp;
1193	vm_offset_t a_pg_offset, b_pg_offset;
1194	int cnt;
1195
1196	mtx_lock(&moea64_scratchpage_mtx);
1197	while (xfersize > 0) {
1198		a_pg_offset = a_offset & PAGE_MASK;
1199		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1200		moea64_set_scratchpage_pa(mmu, 0,
1201		    VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]));
1202		a_cp = (char *)moea64_scratchpage_va[0] + a_pg_offset;
1203		b_pg_offset = b_offset & PAGE_MASK;
1204		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1205		moea64_set_scratchpage_pa(mmu, 1,
1206		    VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]));
1207		b_cp = (char *)moea64_scratchpage_va[1] + b_pg_offset;
1208		bcopy(a_cp, b_cp, cnt);
1209		a_offset += cnt;
1210		b_offset += cnt;
1211		xfersize -= cnt;
1212	}
1213	mtx_unlock(&moea64_scratchpage_mtx);
1214}
1215
1216void
1217moea64_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1218    vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1219{
1220
1221	if (hw_direct_map) {
1222		moea64_copy_pages_dmap(mmu, ma, a_offset, mb, b_offset,
1223		    xfersize);
1224	} else {
1225		moea64_copy_pages_nodmap(mmu, ma, a_offset, mb, b_offset,
1226		    xfersize);
1227	}
1228}
1229
1230void
1231moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1232{
1233	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1234
1235	if (size + off > PAGE_SIZE)
1236		panic("moea64_zero_page: size + off > PAGE_SIZE");
1237
1238	if (hw_direct_map) {
1239		bzero((caddr_t)pa + off, size);
1240	} else {
1241		mtx_lock(&moea64_scratchpage_mtx);
1242		moea64_set_scratchpage_pa(mmu, 0, pa);
1243		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1244		mtx_unlock(&moea64_scratchpage_mtx);
1245	}
1246}
1247
1248/*
1249 * Zero a page of physical memory by temporarily mapping it
1250 */
1251void
1252moea64_zero_page(mmu_t mmu, vm_page_t m)
1253{
1254	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1255	vm_offset_t va, off;
1256
1257	if (!hw_direct_map) {
1258		mtx_lock(&moea64_scratchpage_mtx);
1259
1260		moea64_set_scratchpage_pa(mmu, 0, pa);
1261		va = moea64_scratchpage_va[0];
1262	} else {
1263		va = pa;
1264	}
1265
1266	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1267		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1268
1269	if (!hw_direct_map)
1270		mtx_unlock(&moea64_scratchpage_mtx);
1271}
1272
1273void
1274moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1275{
1276
1277	moea64_zero_page(mmu, m);
1278}
1279
1280/*
1281 * Map the given physical page at the specified virtual address in the
1282 * target pmap with the protection requested.  If specified the page
1283 * will be wired down.
1284 */
1285
1286void
1287moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1288    vm_prot_t prot, boolean_t wired)
1289{
1290	struct		pvo_head *pvo_head;
1291	uma_zone_t	zone;
1292	uint64_t	pte_lo;
1293	u_int		pvo_flags;
1294	int		error;
1295
1296	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1297		VM_OBJECT_ASSERT_LOCKED(m->object);
1298
1299	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea64_initialized) {
1300		pvo_head = NULL;
1301		zone = moea64_upvo_zone;
1302		pvo_flags = 0;
1303	} else {
1304		pvo_head = vm_page_to_pvoh(m);
1305		zone = moea64_mpvo_zone;
1306		pvo_flags = PVO_MANAGED;
1307	}
1308
1309	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1310
1311	if (prot & VM_PROT_WRITE) {
1312		pte_lo |= LPTE_BW;
1313		if (pmap_bootstrapped &&
1314		    (m->oflags & VPO_UNMANAGED) == 0)
1315			vm_page_aflag_set(m, PGA_WRITEABLE);
1316	} else
1317		pte_lo |= LPTE_BR;
1318
1319	if ((prot & VM_PROT_EXECUTE) == 0)
1320		pte_lo |= LPTE_NOEXEC;
1321
1322	if (wired)
1323		pvo_flags |= PVO_WIRED;
1324
1325	LOCK_TABLE_WR();
1326	PMAP_LOCK(pmap);
1327	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1328	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1329	PMAP_UNLOCK(pmap);
1330	UNLOCK_TABLE_WR();
1331
1332	/*
1333	 * Flush the page from the instruction cache if this page is
1334	 * mapped executable and cacheable.
1335	 */
1336	if (pmap != kernel_pmap && !(m->aflags & PGA_EXECUTABLE) &&
1337	    (pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1338		vm_page_aflag_set(m, PGA_EXECUTABLE);
1339		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1340	}
1341}
1342
1343static void
1344moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1345    vm_size_t sz)
1346{
1347
1348	/*
1349	 * This is much trickier than on older systems because
1350	 * we can't sync the icache on physical addresses directly
1351	 * without a direct map. Instead we check a couple of cases
1352	 * where the memory is already mapped in and, failing that,
1353	 * use the same trick we use for page zeroing to create
1354	 * a temporary mapping for this physical address.
1355	 */
1356
1357	if (!pmap_bootstrapped) {
1358		/*
1359		 * If PMAP is not bootstrapped, we are likely to be
1360		 * in real mode.
1361		 */
1362		__syncicache((void *)pa, sz);
1363	} else if (pmap == kernel_pmap) {
1364		__syncicache((void *)va, sz);
1365	} else if (hw_direct_map) {
1366		__syncicache((void *)pa, sz);
1367	} else {
1368		/* Use the scratch page to set up a temp mapping */
1369
1370		mtx_lock(&moea64_scratchpage_mtx);
1371
1372		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1373		__syncicache((void *)(moea64_scratchpage_va[1] +
1374		    (va & ADDR_POFF)), sz);
1375
1376		mtx_unlock(&moea64_scratchpage_mtx);
1377	}
1378}
1379
1380/*
1381 * Maps a sequence of resident pages belonging to the same object.
1382 * The sequence begins with the given page m_start.  This page is
1383 * mapped at the given virtual address start.  Each subsequent page is
1384 * mapped at a virtual address that is offset from start by the same
1385 * amount as the page is offset from m_start within the object.  The
1386 * last page in the sequence is the page with the largest offset from
1387 * m_start that can be mapped at a virtual address less than the given
1388 * virtual address end.  Not every virtual page between start and end
1389 * is mapped; only those for which a resident page exists with the
1390 * corresponding offset from m_start are mapped.
1391 */
1392void
1393moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1394    vm_page_t m_start, vm_prot_t prot)
1395{
1396	vm_page_t m;
1397	vm_pindex_t diff, psize;
1398
1399	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1400
1401	psize = atop(end - start);
1402	m = m_start;
1403	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1404		moea64_enter(mmu, pm, start + ptoa(diff), m, prot &
1405		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1406		m = TAILQ_NEXT(m, listq);
1407	}
1408}
1409
1410void
1411moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1412    vm_prot_t prot)
1413{
1414
1415	moea64_enter(mmu, pm, va, m,
1416	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1417}
1418
1419vm_paddr_t
1420moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1421{
1422	struct	pvo_entry *pvo;
1423	vm_paddr_t pa;
1424
1425	PMAP_LOCK(pm);
1426	pvo = moea64_pvo_find_va(pm, va);
1427	if (pvo == NULL)
1428		pa = 0;
1429	else
1430		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1431		    (va - PVO_VADDR(pvo));
1432	PMAP_UNLOCK(pm);
1433	return (pa);
1434}
1435
1436/*
1437 * Atomically extract and hold the physical page with the given
1438 * pmap and virtual address pair if that mapping permits the given
1439 * protection.
1440 */
1441vm_page_t
1442moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1443{
1444	struct	pvo_entry *pvo;
1445	vm_page_t m;
1446        vm_paddr_t pa;
1447
1448	m = NULL;
1449	pa = 0;
1450	PMAP_LOCK(pmap);
1451retry:
1452	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1453	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1454	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1455	     (prot & VM_PROT_WRITE) == 0)) {
1456		if (vm_page_pa_tryrelock(pmap,
1457			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1458			goto retry;
1459		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1460		vm_page_hold(m);
1461	}
1462	PA_UNLOCK_COND(pa);
1463	PMAP_UNLOCK(pmap);
1464	return (m);
1465}
1466
1467static mmu_t installed_mmu;
1468
1469static void *
1470moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1471{
1472	/*
1473	 * This entire routine is a horrible hack to avoid bothering kmem
1474	 * for new KVA addresses. Because this can get called from inside
1475	 * kmem allocation routines, calling kmem for a new address here
1476	 * can lead to multiply locking non-recursive mutexes.
1477	 */
1478        vm_offset_t va;
1479
1480        vm_page_t m;
1481        int pflags, needed_lock;
1482
1483	*flags = UMA_SLAB_PRIV;
1484	needed_lock = !PMAP_LOCKED(kernel_pmap);
1485	pflags = malloc2vm_flags(wait) | VM_ALLOC_WIRED;
1486
1487        for (;;) {
1488                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1489                if (m == NULL) {
1490                        if (wait & M_NOWAIT)
1491                                return (NULL);
1492                        VM_WAIT;
1493                } else
1494                        break;
1495        }
1496
1497	va = VM_PAGE_TO_PHYS(m);
1498
1499	LOCK_TABLE_WR();
1500	if (needed_lock)
1501		PMAP_LOCK(kernel_pmap);
1502
1503	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1504	    NULL, va, VM_PAGE_TO_PHYS(m), LPTE_M, PVO_WIRED | PVO_BOOTSTRAP);
1505
1506	if (needed_lock)
1507		PMAP_UNLOCK(kernel_pmap);
1508	UNLOCK_TABLE_WR();
1509
1510	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1511                bzero((void *)va, PAGE_SIZE);
1512
1513	return (void *)va;
1514}
1515
1516extern int elf32_nxstack;
1517
1518void
1519moea64_init(mmu_t mmu)
1520{
1521
1522	CTR0(KTR_PMAP, "moea64_init");
1523
1524	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1525	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1526	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1527	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1528	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1529	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1530
1531	if (!hw_direct_map) {
1532		installed_mmu = mmu;
1533		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1534		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1535	}
1536
1537#ifdef COMPAT_FREEBSD32
1538	elf32_nxstack = 1;
1539#endif
1540
1541	moea64_initialized = TRUE;
1542}
1543
1544boolean_t
1545moea64_is_referenced(mmu_t mmu, vm_page_t m)
1546{
1547
1548	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1549	    ("moea64_is_referenced: page %p is not managed", m));
1550	return (moea64_query_bit(mmu, m, PTE_REF));
1551}
1552
1553boolean_t
1554moea64_is_modified(mmu_t mmu, vm_page_t m)
1555{
1556
1557	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1558	    ("moea64_is_modified: page %p is not managed", m));
1559
1560	/*
1561	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1562	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1563	 * is clear, no PTEs can have LPTE_CHG set.
1564	 */
1565	VM_OBJECT_ASSERT_LOCKED(m->object);
1566	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1567		return (FALSE);
1568	return (moea64_query_bit(mmu, m, LPTE_CHG));
1569}
1570
1571boolean_t
1572moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1573{
1574	struct pvo_entry *pvo;
1575	boolean_t rv;
1576
1577	PMAP_LOCK(pmap);
1578	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1579	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1580	PMAP_UNLOCK(pmap);
1581	return (rv);
1582}
1583
1584void
1585moea64_clear_modify(mmu_t mmu, vm_page_t m)
1586{
1587
1588	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1589	    ("moea64_clear_modify: page %p is not managed", m));
1590	VM_OBJECT_ASSERT_WLOCKED(m->object);
1591	KASSERT(!vm_page_xbusied(m),
1592	    ("moea64_clear_modify: page %p is exclusive busied", m));
1593
1594	/*
1595	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1596	 * set.  If the object containing the page is locked and the page is
1597	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1598	 */
1599	if ((m->aflags & PGA_WRITEABLE) == 0)
1600		return;
1601	moea64_clear_bit(mmu, m, LPTE_CHG);
1602}
1603
1604/*
1605 * Clear the write and modified bits in each of the given page's mappings.
1606 */
1607void
1608moea64_remove_write(mmu_t mmu, vm_page_t m)
1609{
1610	struct	pvo_entry *pvo;
1611	uintptr_t pt;
1612	pmap_t	pmap;
1613	uint64_t lo = 0;
1614
1615	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1616	    ("moea64_remove_write: page %p is not managed", m));
1617
1618	/*
1619	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1620	 * set by another thread while the object is locked.  Thus,
1621	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1622	 */
1623	VM_OBJECT_ASSERT_WLOCKED(m->object);
1624	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1625		return;
1626	powerpc_sync();
1627	LOCK_TABLE_RD();
1628	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1629		pmap = pvo->pvo_pmap;
1630		PMAP_LOCK(pmap);
1631		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1632			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1633			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1634			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1635			if (pt != -1) {
1636				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1637				lo |= pvo->pvo_pte.lpte.pte_lo;
1638				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1639				MOEA64_PTE_CHANGE(mmu, pt,
1640				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1641				if (pvo->pvo_pmap == kernel_pmap)
1642					isync();
1643			}
1644		}
1645		if ((lo & LPTE_CHG) != 0)
1646			vm_page_dirty(m);
1647		PMAP_UNLOCK(pmap);
1648	}
1649	UNLOCK_TABLE_RD();
1650	vm_page_aflag_clear(m, PGA_WRITEABLE);
1651}
1652
1653/*
1654 *	moea64_ts_referenced:
1655 *
1656 *	Return a count of reference bits for a page, clearing those bits.
1657 *	It is not necessary for every reference bit to be cleared, but it
1658 *	is necessary that 0 only be returned when there are truly no
1659 *	reference bits set.
1660 *
1661 *	XXX: The exact number of bits to check and clear is a matter that
1662 *	should be tested and standardized at some point in the future for
1663 *	optimal aging of shared pages.
1664 */
1665int
1666moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1667{
1668
1669	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1670	    ("moea64_ts_referenced: page %p is not managed", m));
1671	return (moea64_clear_bit(mmu, m, LPTE_REF));
1672}
1673
1674/*
1675 * Modify the WIMG settings of all mappings for a page.
1676 */
1677void
1678moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1679{
1680	struct	pvo_entry *pvo;
1681	struct  pvo_head *pvo_head;
1682	uintptr_t pt;
1683	pmap_t	pmap;
1684	uint64_t lo;
1685
1686	if ((m->oflags & VPO_UNMANAGED) != 0) {
1687		m->md.mdpg_cache_attrs = ma;
1688		return;
1689	}
1690
1691	pvo_head = vm_page_to_pvoh(m);
1692	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1693	LOCK_TABLE_RD();
1694	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1695		pmap = pvo->pvo_pmap;
1696		PMAP_LOCK(pmap);
1697		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1698		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1699		pvo->pvo_pte.lpte.pte_lo |= lo;
1700		if (pt != -1) {
1701			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1702			    pvo->pvo_vpn);
1703			if (pvo->pvo_pmap == kernel_pmap)
1704				isync();
1705		}
1706		PMAP_UNLOCK(pmap);
1707	}
1708	UNLOCK_TABLE_RD();
1709	m->md.mdpg_cache_attrs = ma;
1710}
1711
1712/*
1713 * Map a wired page into kernel virtual address space.
1714 */
1715void
1716moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1717{
1718	uint64_t	pte_lo;
1719	int		error;
1720
1721	pte_lo = moea64_calc_wimg(pa, ma);
1722
1723	LOCK_TABLE_WR();
1724	PMAP_LOCK(kernel_pmap);
1725	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1726	    NULL, va, pa, pte_lo, PVO_WIRED);
1727	PMAP_UNLOCK(kernel_pmap);
1728	UNLOCK_TABLE_WR();
1729
1730	if (error != 0 && error != ENOENT)
1731		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1732		    pa, error);
1733}
1734
1735void
1736moea64_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1737{
1738
1739	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1740}
1741
1742/*
1743 * Extract the physical page address associated with the given kernel virtual
1744 * address.
1745 */
1746vm_paddr_t
1747moea64_kextract(mmu_t mmu, vm_offset_t va)
1748{
1749	struct		pvo_entry *pvo;
1750	vm_paddr_t pa;
1751
1752	/*
1753	 * Shortcut the direct-mapped case when applicable.  We never put
1754	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1755	 */
1756	if (va < VM_MIN_KERNEL_ADDRESS)
1757		return (va);
1758
1759	PMAP_LOCK(kernel_pmap);
1760	pvo = moea64_pvo_find_va(kernel_pmap, va);
1761	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1762	    va));
1763	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1764	PMAP_UNLOCK(kernel_pmap);
1765	return (pa);
1766}
1767
1768/*
1769 * Remove a wired page from kernel virtual address space.
1770 */
1771void
1772moea64_kremove(mmu_t mmu, vm_offset_t va)
1773{
1774	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1775}
1776
1777/*
1778 * Map a range of physical addresses into kernel virtual address space.
1779 *
1780 * The value passed in *virt is a suggested virtual address for the mapping.
1781 * Architectures which can support a direct-mapped physical to virtual region
1782 * can return the appropriate address within that region, leaving '*virt'
1783 * unchanged.  We cannot and therefore do not; *virt is updated with the
1784 * first usable address after the mapped region.
1785 */
1786vm_offset_t
1787moea64_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1788    vm_paddr_t pa_end, int prot)
1789{
1790	vm_offset_t	sva, va;
1791
1792	sva = *virt;
1793	va = sva;
1794	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1795		moea64_kenter(mmu, va, pa_start);
1796	*virt = va;
1797
1798	return (sva);
1799}
1800
1801/*
1802 * Returns true if the pmap's pv is one of the first
1803 * 16 pvs linked to from this page.  This count may
1804 * be changed upwards or downwards in the future; it
1805 * is only necessary that true be returned for a small
1806 * subset of pmaps for proper page aging.
1807 */
1808boolean_t
1809moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1810{
1811        int loops;
1812	struct pvo_entry *pvo;
1813	boolean_t rv;
1814
1815	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1816	    ("moea64_page_exists_quick: page %p is not managed", m));
1817	loops = 0;
1818	rv = FALSE;
1819	LOCK_TABLE_RD();
1820	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1821		if (pvo->pvo_pmap == pmap) {
1822			rv = TRUE;
1823			break;
1824		}
1825		if (++loops >= 16)
1826			break;
1827	}
1828	UNLOCK_TABLE_RD();
1829	return (rv);
1830}
1831
1832/*
1833 * Return the number of managed mappings to the given physical page
1834 * that are wired.
1835 */
1836int
1837moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1838{
1839	struct pvo_entry *pvo;
1840	int count;
1841
1842	count = 0;
1843	if ((m->oflags & VPO_UNMANAGED) != 0)
1844		return (count);
1845	LOCK_TABLE_RD();
1846	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1847		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1848			count++;
1849	UNLOCK_TABLE_RD();
1850	return (count);
1851}
1852
1853static uintptr_t	moea64_vsidcontext;
1854
1855uintptr_t
1856moea64_get_unique_vsid(void) {
1857	u_int entropy;
1858	register_t hash;
1859	uint32_t mask;
1860	int i;
1861
1862	entropy = 0;
1863	__asm __volatile("mftb %0" : "=r"(entropy));
1864
1865	mtx_lock(&moea64_slb_mutex);
1866	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1867		u_int	n;
1868
1869		/*
1870		 * Create a new value by mutiplying by a prime and adding in
1871		 * entropy from the timebase register.  This is to make the
1872		 * VSID more random so that the PT hash function collides
1873		 * less often.  (Note that the prime casues gcc to do shifts
1874		 * instead of a multiply.)
1875		 */
1876		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1877		hash = moea64_vsidcontext & (NVSIDS - 1);
1878		if (hash == 0)		/* 0 is special, avoid it */
1879			continue;
1880		n = hash >> 5;
1881		mask = 1 << (hash & (VSID_NBPW - 1));
1882		hash = (moea64_vsidcontext & VSID_HASHMASK);
1883		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1884			/* anything free in this bucket? */
1885			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1886				entropy = (moea64_vsidcontext >> 20);
1887				continue;
1888			}
1889			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1890			mask = 1 << i;
1891			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1892			hash |= i;
1893		}
1894		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1895		    ("Allocating in-use VSID %#zx\n", hash));
1896		moea64_vsid_bitmap[n] |= mask;
1897		mtx_unlock(&moea64_slb_mutex);
1898		return (hash);
1899	}
1900
1901	mtx_unlock(&moea64_slb_mutex);
1902	panic("%s: out of segments",__func__);
1903}
1904
1905#ifdef __powerpc64__
1906void
1907moea64_pinit(mmu_t mmu, pmap_t pmap)
1908{
1909
1910	RB_INIT(&pmap->pmap_pvo);
1911
1912	pmap->pm_slb_tree_root = slb_alloc_tree();
1913	pmap->pm_slb = slb_alloc_user_cache();
1914	pmap->pm_slb_len = 0;
1915}
1916#else
1917void
1918moea64_pinit(mmu_t mmu, pmap_t pmap)
1919{
1920	int	i;
1921	uint32_t hash;
1922
1923	RB_INIT(&pmap->pmap_pvo);
1924
1925	if (pmap_bootstrapped)
1926		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1927		    (vm_offset_t)pmap);
1928	else
1929		pmap->pmap_phys = pmap;
1930
1931	/*
1932	 * Allocate some segment registers for this pmap.
1933	 */
1934	hash = moea64_get_unique_vsid();
1935
1936	for (i = 0; i < 16; i++)
1937		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1938
1939	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1940}
1941#endif
1942
1943/*
1944 * Initialize the pmap associated with process 0.
1945 */
1946void
1947moea64_pinit0(mmu_t mmu, pmap_t pm)
1948{
1949
1950	PMAP_LOCK_INIT(pm);
1951	moea64_pinit(mmu, pm);
1952	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1953}
1954
1955/*
1956 * Set the physical protection on the specified range of this map as requested.
1957 */
1958static void
1959moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1960{
1961	uintptr_t pt;
1962	struct	vm_page *pg;
1963	uint64_t oldlo;
1964
1965	PMAP_LOCK_ASSERT(pm, MA_OWNED);
1966
1967	/*
1968	 * Grab the PTE pointer before we diddle with the cached PTE
1969	 * copy.
1970	 */
1971	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1972
1973	/*
1974	 * Change the protection of the page.
1975	 */
1976	oldlo = pvo->pvo_pte.lpte.pte_lo;
1977	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1978	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1979	if ((prot & VM_PROT_EXECUTE) == 0)
1980		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1981	if (prot & VM_PROT_WRITE)
1982		pvo->pvo_pte.lpte.pte_lo |= LPTE_BW;
1983	else
1984		pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1985
1986	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1987
1988	/*
1989	 * If the PVO is in the page table, update that pte as well.
1990	 */
1991	if (pt != -1)
1992		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1993		    pvo->pvo_vpn);
1994	if (pm != kernel_pmap && pg != NULL && !(pg->aflags & PGA_EXECUTABLE) &&
1995	    (pvo->pvo_pte.lpte.pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1996		if ((pg->oflags & VPO_UNMANAGED) == 0)
1997			vm_page_aflag_set(pg, PGA_EXECUTABLE);
1998		moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1999		    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, PAGE_SIZE);
2000	}
2001
2002	/*
2003	 * Update vm about the REF/CHG bits if the page is managed and we have
2004	 * removed write access.
2005	 */
2006	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED &&
2007	    (oldlo & LPTE_PP) != LPTE_BR && !(prot & VM_PROT_WRITE)) {
2008		if (pg != NULL) {
2009			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2010				vm_page_dirty(pg);
2011			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2012				vm_page_aflag_set(pg, PGA_REFERENCED);
2013		}
2014	}
2015}
2016
2017void
2018moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
2019    vm_prot_t prot)
2020{
2021	struct	pvo_entry *pvo, *tpvo, key;
2022
2023	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
2024	    sva, eva, prot);
2025
2026	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
2027	    ("moea64_protect: non current pmap"));
2028
2029	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
2030		moea64_remove(mmu, pm, sva, eva);
2031		return;
2032	}
2033
2034	LOCK_TABLE_RD();
2035	PMAP_LOCK(pm);
2036	key.pvo_vaddr = sva;
2037	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2038	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2039		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2040		moea64_pvo_protect(mmu, pm, pvo, prot);
2041	}
2042	UNLOCK_TABLE_RD();
2043	PMAP_UNLOCK(pm);
2044}
2045
2046/*
2047 * Map a list of wired pages into kernel virtual address space.  This is
2048 * intended for temporary mappings which do not need page modification or
2049 * references recorded.  Existing mappings in the region are overwritten.
2050 */
2051void
2052moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
2053{
2054	while (count-- > 0) {
2055		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
2056		va += PAGE_SIZE;
2057		m++;
2058	}
2059}
2060
2061/*
2062 * Remove page mappings from kernel virtual address space.  Intended for
2063 * temporary mappings entered by moea64_qenter.
2064 */
2065void
2066moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
2067{
2068	while (count-- > 0) {
2069		moea64_kremove(mmu, va);
2070		va += PAGE_SIZE;
2071	}
2072}
2073
2074void
2075moea64_release_vsid(uint64_t vsid)
2076{
2077	int idx, mask;
2078
2079	mtx_lock(&moea64_slb_mutex);
2080	idx = vsid & (NVSIDS-1);
2081	mask = 1 << (idx % VSID_NBPW);
2082	idx /= VSID_NBPW;
2083	KASSERT(moea64_vsid_bitmap[idx] & mask,
2084	    ("Freeing unallocated VSID %#jx", vsid));
2085	moea64_vsid_bitmap[idx] &= ~mask;
2086	mtx_unlock(&moea64_slb_mutex);
2087}
2088
2089
2090void
2091moea64_release(mmu_t mmu, pmap_t pmap)
2092{
2093
2094	/*
2095	 * Free segment registers' VSIDs
2096	 */
2097    #ifdef __powerpc64__
2098	slb_free_tree(pmap);
2099	slb_free_user_cache(pmap->pm_slb);
2100    #else
2101	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2102
2103	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2104    #endif
2105}
2106
2107/*
2108 * Remove all pages mapped by the specified pmap
2109 */
2110void
2111moea64_remove_pages(mmu_t mmu, pmap_t pm)
2112{
2113	struct	pvo_entry *pvo, *tpvo;
2114
2115	LOCK_TABLE_WR();
2116	PMAP_LOCK(pm);
2117	RB_FOREACH_SAFE(pvo, pvo_tree, &pm->pmap_pvo, tpvo) {
2118		if (!(pvo->pvo_vaddr & PVO_WIRED))
2119			moea64_pvo_remove(mmu, pvo);
2120	}
2121	UNLOCK_TABLE_WR();
2122	PMAP_UNLOCK(pm);
2123}
2124
2125/*
2126 * Remove the given range of addresses from the specified map.
2127 */
2128void
2129moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2130{
2131	struct	pvo_entry *pvo, *tpvo, key;
2132
2133	/*
2134	 * Perform an unsynchronized read.  This is, however, safe.
2135	 */
2136	if (pm->pm_stats.resident_count == 0)
2137		return;
2138
2139	LOCK_TABLE_WR();
2140	PMAP_LOCK(pm);
2141	key.pvo_vaddr = sva;
2142	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
2143	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
2144		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
2145		moea64_pvo_remove(mmu, pvo);
2146	}
2147	UNLOCK_TABLE_WR();
2148	PMAP_UNLOCK(pm);
2149}
2150
2151/*
2152 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2153 * will reflect changes in pte's back to the vm_page.
2154 */
2155void
2156moea64_remove_all(mmu_t mmu, vm_page_t m)
2157{
2158	struct	pvo_entry *pvo, *next_pvo;
2159	pmap_t	pmap;
2160
2161	LOCK_TABLE_WR();
2162	LIST_FOREACH_SAFE(pvo, vm_page_to_pvoh(m), pvo_vlink, next_pvo) {
2163		pmap = pvo->pvo_pmap;
2164		PMAP_LOCK(pmap);
2165		moea64_pvo_remove(mmu, pvo);
2166		PMAP_UNLOCK(pmap);
2167	}
2168	UNLOCK_TABLE_WR();
2169	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2170		vm_page_dirty(m);
2171	vm_page_aflag_clear(m, PGA_WRITEABLE);
2172	vm_page_aflag_clear(m, PGA_EXECUTABLE);
2173}
2174
2175/*
2176 * Allocate a physical page of memory directly from the phys_avail map.
2177 * Can only be called from moea64_bootstrap before avail start and end are
2178 * calculated.
2179 */
2180vm_offset_t
2181moea64_bootstrap_alloc(vm_size_t size, u_int align)
2182{
2183	vm_offset_t	s, e;
2184	int		i, j;
2185
2186	size = round_page(size);
2187	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2188		if (align != 0)
2189			s = (phys_avail[i] + align - 1) & ~(align - 1);
2190		else
2191			s = phys_avail[i];
2192		e = s + size;
2193
2194		if (s < phys_avail[i] || e > phys_avail[i + 1])
2195			continue;
2196
2197		if (s + size > platform_real_maxaddr())
2198			continue;
2199
2200		if (s == phys_avail[i]) {
2201			phys_avail[i] += size;
2202		} else if (e == phys_avail[i + 1]) {
2203			phys_avail[i + 1] -= size;
2204		} else {
2205			for (j = phys_avail_count * 2; j > i; j -= 2) {
2206				phys_avail[j] = phys_avail[j - 2];
2207				phys_avail[j + 1] = phys_avail[j - 1];
2208			}
2209
2210			phys_avail[i + 3] = phys_avail[i + 1];
2211			phys_avail[i + 1] = s;
2212			phys_avail[i + 2] = e;
2213			phys_avail_count++;
2214		}
2215
2216		return (s);
2217	}
2218	panic("moea64_bootstrap_alloc: could not allocate memory");
2219}
2220
2221static int
2222moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2223    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2224    uint64_t pte_lo, int flags)
2225{
2226	struct	 pvo_entry *pvo;
2227	uintptr_t pt;
2228	uint64_t vsid;
2229	int	 first;
2230	u_int	 ptegidx;
2231	int	 i;
2232	int      bootstrap;
2233
2234	/*
2235	 * One nasty thing that can happen here is that the UMA calls to
2236	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2237	 * which calls UMA...
2238	 *
2239	 * We break the loop by detecting recursion and allocating out of
2240	 * the bootstrap pool.
2241	 */
2242
2243	first = 0;
2244	bootstrap = (flags & PVO_BOOTSTRAP);
2245
2246	if (!moea64_initialized)
2247		bootstrap = 1;
2248
2249	PMAP_LOCK_ASSERT(pm, MA_OWNED);
2250	rw_assert(&moea64_table_lock, RA_WLOCKED);
2251
2252	/*
2253	 * Compute the PTE Group index.
2254	 */
2255	va &= ~ADDR_POFF;
2256	vsid = va_to_vsid(pm, va);
2257	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2258
2259	/*
2260	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2261	 * there is a mapping.
2262	 */
2263	moea64_pvo_enter_calls++;
2264
2265	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2266		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2267			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2268			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2269			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2270				/*
2271				 * The physical page and protection are not
2272				 * changing.  Instead, this may be a request
2273				 * to change the mapping's wired attribute.
2274				 */
2275				pt = -1;
2276				if ((flags & PVO_WIRED) != 0 &&
2277				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
2278					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2279					pvo->pvo_vaddr |= PVO_WIRED;
2280					pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2281					pm->pm_stats.wired_count++;
2282				} else if ((flags & PVO_WIRED) == 0 &&
2283				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
2284					pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2285					pvo->pvo_vaddr &= ~PVO_WIRED;
2286					pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
2287					pm->pm_stats.wired_count--;
2288				}
2289			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2290					KASSERT(pt == -1,
2291					    ("moea64_pvo_enter: valid pt"));
2292					/* Re-insert if spilled */
2293					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2294					    &pvo->pvo_pte.lpte);
2295					if (i >= 0)
2296						PVO_PTEGIDX_SET(pvo, i);
2297					moea64_pte_overflow--;
2298				} else if (pt != -1) {
2299					/*
2300					 * The PTE's wired attribute is not a
2301					 * hardware feature, so there is no
2302					 * need to invalidate any TLB entries.
2303					 */
2304					MOEA64_PTE_CHANGE(mmu, pt,
2305					    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2306				}
2307				return (0);
2308			}
2309			moea64_pvo_remove(mmu, pvo);
2310			break;
2311		}
2312	}
2313
2314	/*
2315	 * If we aren't overwriting a mapping, try to allocate.
2316	 */
2317	if (bootstrap) {
2318		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2319			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2320			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2321			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2322		}
2323		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2324		moea64_bpvo_pool_index++;
2325		bootstrap = 1;
2326	} else {
2327		pvo = uma_zalloc(zone, M_NOWAIT);
2328	}
2329
2330	if (pvo == NULL)
2331		return (ENOMEM);
2332
2333	moea64_pvo_entries++;
2334	pvo->pvo_vaddr = va;
2335	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2336	    | (vsid << 16);
2337	pvo->pvo_pmap = pm;
2338	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2339	pvo->pvo_vaddr &= ~ADDR_POFF;
2340
2341	if (flags & PVO_WIRED)
2342		pvo->pvo_vaddr |= PVO_WIRED;
2343	if (pvo_head != NULL)
2344		pvo->pvo_vaddr |= PVO_MANAGED;
2345	if (bootstrap)
2346		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2347	if (flags & PVO_LARGE)
2348		pvo->pvo_vaddr |= PVO_LARGE;
2349
2350	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2351	    (uint64_t)(pa) | pte_lo, flags);
2352
2353	/*
2354	 * Add to pmap list
2355	 */
2356	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
2357
2358	/*
2359	 * Remember if the list was empty and therefore will be the first
2360	 * item.
2361	 */
2362	if (pvo_head != NULL) {
2363		if (LIST_FIRST(pvo_head) == NULL)
2364			first = 1;
2365		LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2366	}
2367
2368	if (pvo->pvo_vaddr & PVO_WIRED) {
2369		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2370		pm->pm_stats.wired_count++;
2371	}
2372	pm->pm_stats.resident_count++;
2373
2374	/*
2375	 * We hope this succeeds but it isn't required.
2376	 */
2377	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2378	if (i >= 0) {
2379		PVO_PTEGIDX_SET(pvo, i);
2380	} else {
2381		panic("moea64_pvo_enter: overflow");
2382		moea64_pte_overflow++;
2383	}
2384
2385	if (pm == kernel_pmap)
2386		isync();
2387
2388#ifdef __powerpc64__
2389	/*
2390	 * Make sure all our bootstrap mappings are in the SLB as soon
2391	 * as virtual memory is switched on.
2392	 */
2393	if (!pmap_bootstrapped)
2394		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2395#endif
2396
2397	return (first ? ENOENT : 0);
2398}
2399
2400static void
2401moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2402{
2403	struct	vm_page *pg;
2404	uintptr_t pt;
2405
2406	PMAP_LOCK_ASSERT(pvo->pvo_pmap, MA_OWNED);
2407	rw_assert(&moea64_table_lock, RA_WLOCKED);
2408
2409	/*
2410	 * If there is an active pte entry, we need to deactivate it (and
2411	 * save the ref & cfg bits).
2412	 */
2413	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2414	if (pt != -1) {
2415		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2416		PVO_PTEGIDX_CLR(pvo);
2417	} else {
2418		moea64_pte_overflow--;
2419	}
2420
2421	/*
2422	 * Update our statistics.
2423	 */
2424	pvo->pvo_pmap->pm_stats.resident_count--;
2425	if (pvo->pvo_vaddr & PVO_WIRED)
2426		pvo->pvo_pmap->pm_stats.wired_count--;
2427
2428	/*
2429	 * Remove this PVO from the pmap list.
2430	 */
2431	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2432
2433	/*
2434	 * Remove this from the overflow list and return it to the pool
2435	 * if we aren't going to reuse it.
2436	 */
2437	LIST_REMOVE(pvo, pvo_olink);
2438
2439	/*
2440	 * Update vm about the REF/CHG bits if the page is managed.
2441	 */
2442	pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2443
2444	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED && pg != NULL) {
2445		LIST_REMOVE(pvo, pvo_vlink);
2446		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
2447			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2448				vm_page_dirty(pg);
2449			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2450				vm_page_aflag_set(pg, PGA_REFERENCED);
2451			if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2452				vm_page_aflag_clear(pg, PGA_WRITEABLE);
2453		}
2454		if (LIST_EMPTY(vm_page_to_pvoh(pg)))
2455			vm_page_aflag_clear(pg, PGA_EXECUTABLE);
2456	}
2457
2458	moea64_pvo_entries--;
2459	moea64_pvo_remove_calls++;
2460
2461	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2462		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2463		    moea64_upvo_zone, pvo);
2464}
2465
2466static struct pvo_entry *
2467moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2468{
2469	struct pvo_entry key;
2470
2471	key.pvo_vaddr = va & ~ADDR_POFF;
2472	return (RB_FIND(pvo_tree, &pm->pmap_pvo, &key));
2473}
2474
2475static boolean_t
2476moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2477{
2478	struct	pvo_entry *pvo;
2479	uintptr_t pt;
2480
2481	LOCK_TABLE_RD();
2482	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2483		/*
2484		 * See if we saved the bit off.  If so, return success.
2485		 */
2486		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2487			UNLOCK_TABLE_RD();
2488			return (TRUE);
2489		}
2490	}
2491
2492	/*
2493	 * No luck, now go through the hard part of looking at the PTEs
2494	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2495	 * the PTEs.
2496	 */
2497	powerpc_sync();
2498	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2499
2500		/*
2501		 * See if this pvo has a valid PTE.  if so, fetch the
2502		 * REF/CHG bits from the valid PTE.  If the appropriate
2503		 * ptebit is set, return success.
2504		 */
2505		PMAP_LOCK(pvo->pvo_pmap);
2506		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2507		if (pt != -1) {
2508			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2509			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2510				PMAP_UNLOCK(pvo->pvo_pmap);
2511				UNLOCK_TABLE_RD();
2512				return (TRUE);
2513			}
2514		}
2515		PMAP_UNLOCK(pvo->pvo_pmap);
2516	}
2517
2518	UNLOCK_TABLE_RD();
2519	return (FALSE);
2520}
2521
2522static u_int
2523moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2524{
2525	u_int	count;
2526	struct	pvo_entry *pvo;
2527	uintptr_t pt;
2528
2529	/*
2530	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2531	 * we can reset the right ones).  note that since the pvo entries and
2532	 * list heads are accessed via BAT0 and are never placed in the page
2533	 * table, we don't have to worry about further accesses setting the
2534	 * REF/CHG bits.
2535	 */
2536	powerpc_sync();
2537
2538	/*
2539	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2540	 * valid pte clear the ptebit from the valid pte.
2541	 */
2542	count = 0;
2543	LOCK_TABLE_RD();
2544	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2545		PMAP_LOCK(pvo->pvo_pmap);
2546		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2547		if (pt != -1) {
2548			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2549			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2550				count++;
2551				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2552				    pvo->pvo_vpn, ptebit);
2553			}
2554		}
2555		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2556		PMAP_UNLOCK(pvo->pvo_pmap);
2557	}
2558
2559	UNLOCK_TABLE_RD();
2560	return (count);
2561}
2562
2563boolean_t
2564moea64_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2565{
2566	struct pvo_entry *pvo, key;
2567	vm_offset_t ppa;
2568	int error = 0;
2569
2570	PMAP_LOCK(kernel_pmap);
2571	key.pvo_vaddr = ppa = pa & ~ADDR_POFF;
2572	for (pvo = RB_FIND(pvo_tree, &kernel_pmap->pmap_pvo, &key);
2573	    ppa < pa + size; ppa += PAGE_SIZE,
2574	    pvo = RB_NEXT(pvo_tree, &kernel_pmap->pmap_pvo, pvo)) {
2575		if (pvo == NULL ||
2576		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2577			error = EFAULT;
2578			break;
2579		}
2580	}
2581	PMAP_UNLOCK(kernel_pmap);
2582
2583	return (error);
2584}
2585
2586/*
2587 * Map a set of physical memory pages into the kernel virtual
2588 * address space. Return a pointer to where it is mapped. This
2589 * routine is intended to be used for mapping device memory,
2590 * NOT real memory.
2591 */
2592void *
2593moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2594{
2595	vm_offset_t va, tmpva, ppa, offset;
2596
2597	ppa = trunc_page(pa);
2598	offset = pa & PAGE_MASK;
2599	size = roundup2(offset + size, PAGE_SIZE);
2600
2601	va = kva_alloc(size);
2602
2603	if (!va)
2604		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2605
2606	for (tmpva = va; size > 0;) {
2607		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2608		size -= PAGE_SIZE;
2609		tmpva += PAGE_SIZE;
2610		ppa += PAGE_SIZE;
2611	}
2612
2613	return ((void *)(va + offset));
2614}
2615
2616void *
2617moea64_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2618{
2619
2620	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2621}
2622
2623void
2624moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2625{
2626	vm_offset_t base, offset;
2627
2628	base = trunc_page(va);
2629	offset = va & PAGE_MASK;
2630	size = roundup2(offset + size, PAGE_SIZE);
2631
2632	kva_free(base, size);
2633}
2634
2635void
2636moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2637{
2638	struct pvo_entry *pvo;
2639	vm_offset_t lim;
2640	vm_paddr_t pa;
2641	vm_size_t len;
2642
2643	PMAP_LOCK(pm);
2644	while (sz > 0) {
2645		lim = round_page(va);
2646		len = MIN(lim - va, sz);
2647		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2648		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2649			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2650			    (va & ADDR_POFF);
2651			moea64_syncicache(mmu, pm, va, pa, len);
2652		}
2653		va += len;
2654		sz -= len;
2655	}
2656	PMAP_UNLOCK(pm);
2657}
2658
2659vm_offset_t
2660moea64_dumpsys_map(mmu_t mmu, struct pmap_md *md, vm_size_t ofs,
2661    vm_size_t *sz)
2662{
2663	if (md->md_vaddr == ~0UL)
2664	    return (md->md_paddr + ofs);
2665	else
2666	    return (md->md_vaddr + ofs);
2667}
2668
2669struct pmap_md *
2670moea64_scan_md(mmu_t mmu, struct pmap_md *prev)
2671{
2672	static struct pmap_md md;
2673	struct pvo_entry *pvo;
2674	vm_offset_t va;
2675
2676	if (dumpsys_minidump) {
2677		md.md_paddr = ~0UL;	/* Minidumps use virtual addresses. */
2678		if (prev == NULL) {
2679			/* 1st: kernel .data and .bss. */
2680			md.md_index = 1;
2681			md.md_vaddr = trunc_page((uintptr_t)_etext);
2682			md.md_size = round_page((uintptr_t)_end) - md.md_vaddr;
2683			return (&md);
2684		}
2685		switch (prev->md_index) {
2686		case 1:
2687			/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2688			md.md_index = 2;
2689			md.md_vaddr = (vm_offset_t)msgbufp->msg_ptr;
2690			md.md_size = round_page(msgbufp->msg_size);
2691			break;
2692		case 2:
2693			/* 3rd: kernel VM. */
2694			va = prev->md_vaddr + prev->md_size;
2695			/* Find start of next chunk (from va). */
2696			while (va < virtual_end) {
2697				/* Don't dump the buffer cache. */
2698				if (va >= kmi.buffer_sva &&
2699				    va < kmi.buffer_eva) {
2700					va = kmi.buffer_eva;
2701					continue;
2702				}
2703				pvo = moea64_pvo_find_va(kernel_pmap,
2704				    va & ~ADDR_POFF);
2705				if (pvo != NULL &&
2706				    (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2707					break;
2708				va += PAGE_SIZE;
2709			}
2710			if (va < virtual_end) {
2711				md.md_vaddr = va;
2712				va += PAGE_SIZE;
2713				/* Find last page in chunk. */
2714				while (va < virtual_end) {
2715					/* Don't run into the buffer cache. */
2716					if (va == kmi.buffer_sva)
2717						break;
2718					pvo = moea64_pvo_find_va(kernel_pmap,
2719					    va & ~ADDR_POFF);
2720					if (pvo == NULL ||
2721					    !(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID))
2722						break;
2723					va += PAGE_SIZE;
2724				}
2725				md.md_size = va - md.md_vaddr;
2726				break;
2727			}
2728			md.md_index = 3;
2729			/* FALLTHROUGH */
2730		default:
2731			return (NULL);
2732		}
2733	} else { /* minidumps */
2734		if (prev == NULL) {
2735			/* first physical chunk. */
2736			md.md_paddr = pregions[0].mr_start;
2737			md.md_size = pregions[0].mr_size;
2738			md.md_vaddr = ~0UL;
2739			md.md_index = 1;
2740		} else if (md.md_index < pregions_sz) {
2741			md.md_paddr = pregions[md.md_index].mr_start;
2742			md.md_size = pregions[md.md_index].mr_size;
2743			md.md_vaddr = ~0UL;
2744			md.md_index++;
2745		} else {
2746			/* There's no next physical chunk. */
2747			return (NULL);
2748		}
2749	}
2750
2751	return (&md);
2752}
2753