mmu_oea64.c revision 233434
1/*-
2 * Copyright (c) 2001 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 *    must display the following acknowledgement:
18 *        This product includes software developed by the NetBSD
19 *        Foundation, Inc. and its contributors.
20 * 4. Neither the name of The NetBSD Foundation nor the names of its
21 *    contributors may be used to endorse or promote products derived
22 *    from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36/*-
37 * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38 * Copyright (C) 1995, 1996 TooLs GmbH.
39 * All rights reserved.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 *    notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 *    notice, this list of conditions and the following disclaimer in the
48 *    documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 *    must display the following acknowledgement:
51 *	This product includes software developed by TooLs GmbH.
52 * 4. The name of TooLs GmbH may not be used to endorse or promote products
53 *    derived from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67 */
68/*-
69 * Copyright (C) 2001 Benno Rice.
70 * All rights reserved.
71 *
72 * Redistribution and use in source and binary forms, with or without
73 * modification, are permitted provided that the following conditions
74 * are met:
75 * 1. Redistributions of source code must retain the above copyright
76 *    notice, this list of conditions and the following disclaimer.
77 * 2. Redistributions in binary form must reproduce the above copyright
78 *    notice, this list of conditions and the following disclaimer in the
79 *    documentation and/or other materials provided with the distribution.
80 *
81 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91 */
92
93#include <sys/cdefs.h>
94__FBSDID("$FreeBSD: head/sys/powerpc/aim/mmu_oea64.c 233434 2012-03-24 19:59:14Z nwhitehorn $");
95
96/*
97 * Manages physical address maps.
98 *
99 * In addition to hardware address maps, this module is called upon to
100 * provide software-use-only maps which may or may not be stored in the
101 * same form as hardware maps.  These pseudo-maps are used to store
102 * intermediate results from copy operations to and from address spaces.
103 *
104 * Since the information managed by this module is also stored by the
105 * logical address mapping module, this module may throw away valid virtual
106 * to physical mappings at almost any time.  However, invalidations of
107 * mappings must be done as requested.
108 *
109 * In order to cope with hardware architectures which make virtual to
110 * physical map invalidates expensive, this module may delay invalidate
111 * reduced protection operations until such time as they are actually
112 * necessary.  This module is given full information as to which processors
113 * are currently using which maps, and to when physical maps must be made
114 * correct.
115 */
116
117#include "opt_compat.h"
118#include "opt_kstack_pages.h"
119
120#include <sys/param.h>
121#include <sys/kernel.h>
122#include <sys/queue.h>
123#include <sys/cpuset.h>
124#include <sys/ktr.h>
125#include <sys/lock.h>
126#include <sys/msgbuf.h>
127#include <sys/mutex.h>
128#include <sys/proc.h>
129#include <sys/sched.h>
130#include <sys/sysctl.h>
131#include <sys/systm.h>
132#include <sys/vmmeter.h>
133
134#include <sys/kdb.h>
135
136#include <dev/ofw/openfirm.h>
137
138#include <vm/vm.h>
139#include <vm/vm_param.h>
140#include <vm/vm_kern.h>
141#include <vm/vm_page.h>
142#include <vm/vm_map.h>
143#include <vm/vm_object.h>
144#include <vm/vm_extern.h>
145#include <vm/vm_pageout.h>
146#include <vm/vm_pager.h>
147#include <vm/uma.h>
148
149#include <machine/_inttypes.h>
150#include <machine/cpu.h>
151#include <machine/platform.h>
152#include <machine/frame.h>
153#include <machine/md_var.h>
154#include <machine/psl.h>
155#include <machine/bat.h>
156#include <machine/hid.h>
157#include <machine/pte.h>
158#include <machine/sr.h>
159#include <machine/trap.h>
160#include <machine/mmuvar.h>
161
162#include "mmu_oea64.h"
163#include "mmu_if.h"
164#include "moea64_if.h"
165
166void moea64_release_vsid(uint64_t vsid);
167uintptr_t moea64_get_unique_vsid(void);
168
169#define DISABLE_TRANS(msr)	msr = mfmsr(); mtmsr(msr & ~PSL_DR)
170#define ENABLE_TRANS(msr)	mtmsr(msr)
171
172#define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
173#define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
174#define	VSID_HASH_MASK		0x0000007fffffffffULL
175
176#define LOCK_TABLE() mtx_lock(&moea64_table_mutex)
177#define UNLOCK_TABLE() mtx_unlock(&moea64_table_mutex);
178#define ASSERT_TABLE_LOCK() mtx_assert(&moea64_table_mutex, MA_OWNED)
179
180struct ofw_map {
181	cell_t	om_va;
182	cell_t	om_len;
183	cell_t	om_pa_hi;
184	cell_t	om_pa_lo;
185	cell_t	om_mode;
186};
187
188/*
189 * Map of physical memory regions.
190 */
191static struct	mem_region *regions;
192static struct	mem_region *pregions;
193static u_int	phys_avail_count;
194static int	regions_sz, pregions_sz;
195
196extern void bs_remap_earlyboot(void);
197
198/*
199 * Lock for the pteg and pvo tables.
200 */
201struct mtx	moea64_table_mutex;
202struct mtx	moea64_slb_mutex;
203
204/*
205 * PTEG data.
206 */
207u_int		moea64_pteg_count;
208u_int		moea64_pteg_mask;
209
210/*
211 * PVO data.
212 */
213struct	pvo_head *moea64_pvo_table;		/* pvo entries by pteg index */
214struct	pvo_head moea64_pvo_kunmanaged =	/* list of unmanaged pages */
215    LIST_HEAD_INITIALIZER(moea64_pvo_kunmanaged);
216
217uma_zone_t	moea64_upvo_zone; /* zone for pvo entries for unmanaged pages */
218uma_zone_t	moea64_mpvo_zone; /* zone for pvo entries for managed pages */
219
220#define	BPVO_POOL_SIZE	327680
221static struct	pvo_entry *moea64_bpvo_pool;
222static int	moea64_bpvo_pool_index = 0;
223
224#define	VSID_NBPW	(sizeof(u_int32_t) * 8)
225#ifdef __powerpc64__
226#define	NVSIDS		(NPMAPS * 16)
227#define VSID_HASHMASK	0xffffffffUL
228#else
229#define NVSIDS		NPMAPS
230#define VSID_HASHMASK	0xfffffUL
231#endif
232static u_int	moea64_vsid_bitmap[NVSIDS / VSID_NBPW];
233
234static boolean_t moea64_initialized = FALSE;
235
236/*
237 * Statistics.
238 */
239u_int	moea64_pte_valid = 0;
240u_int	moea64_pte_overflow = 0;
241u_int	moea64_pvo_entries = 0;
242u_int	moea64_pvo_enter_calls = 0;
243u_int	moea64_pvo_remove_calls = 0;
244SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_valid, CTLFLAG_RD,
245    &moea64_pte_valid, 0, "");
246SYSCTL_INT(_machdep, OID_AUTO, moea64_pte_overflow, CTLFLAG_RD,
247    &moea64_pte_overflow, 0, "");
248SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_entries, CTLFLAG_RD,
249    &moea64_pvo_entries, 0, "");
250SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_enter_calls, CTLFLAG_RD,
251    &moea64_pvo_enter_calls, 0, "");
252SYSCTL_INT(_machdep, OID_AUTO, moea64_pvo_remove_calls, CTLFLAG_RD,
253    &moea64_pvo_remove_calls, 0, "");
254
255vm_offset_t	moea64_scratchpage_va[2];
256struct pvo_entry *moea64_scratchpage_pvo[2];
257uintptr_t	moea64_scratchpage_pte[2];
258struct	mtx	moea64_scratchpage_mtx;
259
260uint64_t 	moea64_large_page_mask = 0;
261int		moea64_large_page_size = 0;
262int		moea64_large_page_shift = 0;
263
264/*
265 * PVO calls.
266 */
267static int	moea64_pvo_enter(mmu_t, pmap_t, uma_zone_t, struct pvo_head *,
268		    vm_offset_t, vm_offset_t, uint64_t, int);
269static void	moea64_pvo_remove(mmu_t, struct pvo_entry *);
270static struct	pvo_entry *moea64_pvo_find_va(pmap_t, vm_offset_t);
271
272/*
273 * Utility routines.
274 */
275static void		moea64_enter_locked(mmu_t, pmap_t, vm_offset_t,
276			    vm_page_t, vm_prot_t, boolean_t);
277static boolean_t	moea64_query_bit(mmu_t, vm_page_t, u_int64_t);
278static u_int		moea64_clear_bit(mmu_t, vm_page_t, u_int64_t);
279static void		moea64_kremove(mmu_t, vm_offset_t);
280static void		moea64_syncicache(mmu_t, pmap_t pmap, vm_offset_t va,
281			    vm_offset_t pa, vm_size_t sz);
282
283/*
284 * Kernel MMU interface
285 */
286void moea64_change_wiring(mmu_t, pmap_t, vm_offset_t, boolean_t);
287void moea64_clear_modify(mmu_t, vm_page_t);
288void moea64_clear_reference(mmu_t, vm_page_t);
289void moea64_copy_page(mmu_t, vm_page_t, vm_page_t);
290void moea64_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, boolean_t);
291void moea64_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
292    vm_prot_t);
293void moea64_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
294vm_paddr_t moea64_extract(mmu_t, pmap_t, vm_offset_t);
295vm_page_t moea64_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
296void moea64_init(mmu_t);
297boolean_t moea64_is_modified(mmu_t, vm_page_t);
298boolean_t moea64_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
299boolean_t moea64_is_referenced(mmu_t, vm_page_t);
300boolean_t moea64_ts_referenced(mmu_t, vm_page_t);
301vm_offset_t moea64_map(mmu_t, vm_offset_t *, vm_offset_t, vm_offset_t, int);
302boolean_t moea64_page_exists_quick(mmu_t, pmap_t, vm_page_t);
303int moea64_page_wired_mappings(mmu_t, vm_page_t);
304void moea64_pinit(mmu_t, pmap_t);
305void moea64_pinit0(mmu_t, pmap_t);
306void moea64_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
307void moea64_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
308void moea64_qremove(mmu_t, vm_offset_t, int);
309void moea64_release(mmu_t, pmap_t);
310void moea64_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
311void moea64_remove_pages(mmu_t, pmap_t);
312void moea64_remove_all(mmu_t, vm_page_t);
313void moea64_remove_write(mmu_t, vm_page_t);
314void moea64_zero_page(mmu_t, vm_page_t);
315void moea64_zero_page_area(mmu_t, vm_page_t, int, int);
316void moea64_zero_page_idle(mmu_t, vm_page_t);
317void moea64_activate(mmu_t, struct thread *);
318void moea64_deactivate(mmu_t, struct thread *);
319void *moea64_mapdev(mmu_t, vm_offset_t, vm_size_t);
320void *moea64_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
321void moea64_unmapdev(mmu_t, vm_offset_t, vm_size_t);
322vm_offset_t moea64_kextract(mmu_t, vm_offset_t);
323void moea64_page_set_memattr(mmu_t, vm_page_t m, vm_memattr_t ma);
324void moea64_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t ma);
325void moea64_kenter(mmu_t, vm_offset_t, vm_offset_t);
326boolean_t moea64_dev_direct_mapped(mmu_t, vm_offset_t, vm_size_t);
327static void moea64_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
328
329static mmu_method_t moea64_methods[] = {
330	MMUMETHOD(mmu_change_wiring,	moea64_change_wiring),
331	MMUMETHOD(mmu_clear_modify,	moea64_clear_modify),
332	MMUMETHOD(mmu_clear_reference,	moea64_clear_reference),
333	MMUMETHOD(mmu_copy_page,	moea64_copy_page),
334	MMUMETHOD(mmu_enter,		moea64_enter),
335	MMUMETHOD(mmu_enter_object,	moea64_enter_object),
336	MMUMETHOD(mmu_enter_quick,	moea64_enter_quick),
337	MMUMETHOD(mmu_extract,		moea64_extract),
338	MMUMETHOD(mmu_extract_and_hold,	moea64_extract_and_hold),
339	MMUMETHOD(mmu_init,		moea64_init),
340	MMUMETHOD(mmu_is_modified,	moea64_is_modified),
341	MMUMETHOD(mmu_is_prefaultable,	moea64_is_prefaultable),
342	MMUMETHOD(mmu_is_referenced,	moea64_is_referenced),
343	MMUMETHOD(mmu_ts_referenced,	moea64_ts_referenced),
344	MMUMETHOD(mmu_map,     		moea64_map),
345	MMUMETHOD(mmu_page_exists_quick,moea64_page_exists_quick),
346	MMUMETHOD(mmu_page_wired_mappings,moea64_page_wired_mappings),
347	MMUMETHOD(mmu_pinit,		moea64_pinit),
348	MMUMETHOD(mmu_pinit0,		moea64_pinit0),
349	MMUMETHOD(mmu_protect,		moea64_protect),
350	MMUMETHOD(mmu_qenter,		moea64_qenter),
351	MMUMETHOD(mmu_qremove,		moea64_qremove),
352	MMUMETHOD(mmu_release,		moea64_release),
353	MMUMETHOD(mmu_remove,		moea64_remove),
354	MMUMETHOD(mmu_remove_pages,	moea64_remove_pages),
355	MMUMETHOD(mmu_remove_all,      	moea64_remove_all),
356	MMUMETHOD(mmu_remove_write,	moea64_remove_write),
357	MMUMETHOD(mmu_sync_icache,	moea64_sync_icache),
358	MMUMETHOD(mmu_zero_page,       	moea64_zero_page),
359	MMUMETHOD(mmu_zero_page_area,	moea64_zero_page_area),
360	MMUMETHOD(mmu_zero_page_idle,	moea64_zero_page_idle),
361	MMUMETHOD(mmu_activate,		moea64_activate),
362	MMUMETHOD(mmu_deactivate,      	moea64_deactivate),
363	MMUMETHOD(mmu_page_set_memattr,	moea64_page_set_memattr),
364
365	/* Internal interfaces */
366	MMUMETHOD(mmu_mapdev,		moea64_mapdev),
367	MMUMETHOD(mmu_mapdev_attr,	moea64_mapdev_attr),
368	MMUMETHOD(mmu_unmapdev,		moea64_unmapdev),
369	MMUMETHOD(mmu_kextract,		moea64_kextract),
370	MMUMETHOD(mmu_kenter,		moea64_kenter),
371	MMUMETHOD(mmu_kenter_attr,	moea64_kenter_attr),
372	MMUMETHOD(mmu_dev_direct_mapped,moea64_dev_direct_mapped),
373
374	{ 0, 0 }
375};
376
377MMU_DEF(oea64_mmu, "mmu_oea64_base", moea64_methods, 0);
378
379static __inline u_int
380va_to_pteg(uint64_t vsid, vm_offset_t addr, int large)
381{
382	uint64_t hash;
383	int shift;
384
385	shift = large ? moea64_large_page_shift : ADDR_PIDX_SHFT;
386	hash = (vsid & VSID_HASH_MASK) ^ (((uint64_t)addr & ADDR_PIDX) >>
387	    shift);
388	return (hash & moea64_pteg_mask);
389}
390
391static __inline struct pvo_head *
392vm_page_to_pvoh(vm_page_t m)
393{
394
395	return (&m->md.mdpg_pvoh);
396}
397
398static __inline void
399moea64_pte_create(struct lpte *pt, uint64_t vsid, vm_offset_t va,
400    uint64_t pte_lo, int flags)
401{
402
403	ASSERT_TABLE_LOCK();
404
405	/*
406	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
407	 * set when the real pte is set in memory.
408	 *
409	 * Note: Don't set the valid bit for correct operation of tlb update.
410	 */
411	pt->pte_hi = (vsid << LPTE_VSID_SHIFT) |
412	    (((uint64_t)(va & ADDR_PIDX) >> ADDR_API_SHFT64) & LPTE_API);
413
414	if (flags & PVO_LARGE)
415		pt->pte_hi |= LPTE_BIG;
416
417	pt->pte_lo = pte_lo;
418}
419
420static __inline uint64_t
421moea64_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
422{
423	uint64_t pte_lo;
424	int i;
425
426	if (ma != VM_MEMATTR_DEFAULT) {
427		switch (ma) {
428		case VM_MEMATTR_UNCACHEABLE:
429			return (LPTE_I | LPTE_G);
430		case VM_MEMATTR_WRITE_COMBINING:
431		case VM_MEMATTR_WRITE_BACK:
432		case VM_MEMATTR_PREFETCHABLE:
433			return (LPTE_I);
434		case VM_MEMATTR_WRITE_THROUGH:
435			return (LPTE_W | LPTE_M);
436		}
437	}
438
439	/*
440	 * Assume the page is cache inhibited and access is guarded unless
441	 * it's in our available memory array.
442	 */
443	pte_lo = LPTE_I | LPTE_G;
444	for (i = 0; i < pregions_sz; i++) {
445		if ((pa >= pregions[i].mr_start) &&
446		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
447			pte_lo &= ~(LPTE_I | LPTE_G);
448			pte_lo |= LPTE_M;
449			break;
450		}
451	}
452
453	return pte_lo;
454}
455
456/*
457 * Quick sort callout for comparing memory regions.
458 */
459static int	om_cmp(const void *a, const void *b);
460
461static int
462om_cmp(const void *a, const void *b)
463{
464	const struct	ofw_map *mapa;
465	const struct	ofw_map *mapb;
466
467	mapa = a;
468	mapb = b;
469	if (mapa->om_pa_hi < mapb->om_pa_hi)
470		return (-1);
471	else if (mapa->om_pa_hi > mapb->om_pa_hi)
472		return (1);
473	else if (mapa->om_pa_lo < mapb->om_pa_lo)
474		return (-1);
475	else if (mapa->om_pa_lo > mapb->om_pa_lo)
476		return (1);
477	else
478		return (0);
479}
480
481static void
482moea64_add_ofw_mappings(mmu_t mmup, phandle_t mmu, size_t sz)
483{
484	struct ofw_map	translations[sz/sizeof(struct ofw_map)];
485	register_t	msr;
486	vm_offset_t	off;
487	vm_paddr_t	pa_base;
488	int		i;
489
490	bzero(translations, sz);
491	if (OF_getprop(mmu, "translations", translations, sz) == -1)
492		panic("moea64_bootstrap: can't get ofw translations");
493
494	CTR0(KTR_PMAP, "moea64_add_ofw_mappings: translations");
495	sz /= sizeof(*translations);
496	qsort(translations, sz, sizeof (*translations), om_cmp);
497
498	for (i = 0; i < sz; i++) {
499		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
500		    (uint32_t)(translations[i].om_pa_lo), translations[i].om_va,
501		    translations[i].om_len);
502
503		if (translations[i].om_pa_lo % PAGE_SIZE)
504			panic("OFW translation not page-aligned!");
505
506		pa_base = translations[i].om_pa_lo;
507
508	      #ifdef __powerpc64__
509		pa_base += (vm_offset_t)translations[i].om_pa_hi << 32;
510	      #else
511		if (translations[i].om_pa_hi)
512			panic("OFW translations above 32-bit boundary!");
513	      #endif
514
515		/* Now enter the pages for this mapping */
516
517		DISABLE_TRANS(msr);
518		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
519			if (moea64_pvo_find_va(kernel_pmap,
520			    translations[i].om_va + off) != NULL)
521				continue;
522
523			moea64_kenter(mmup, translations[i].om_va + off,
524			    pa_base + off);
525		}
526		ENABLE_TRANS(msr);
527	}
528}
529
530#ifdef __powerpc64__
531static void
532moea64_probe_large_page(void)
533{
534	uint16_t pvr = mfpvr() >> 16;
535
536	switch (pvr) {
537	case IBM970:
538	case IBM970FX:
539	case IBM970MP:
540		powerpc_sync(); isync();
541		mtspr(SPR_HID4, mfspr(SPR_HID4) & ~HID4_970_DISABLE_LG_PG);
542		powerpc_sync(); isync();
543
544		/* FALLTHROUGH */
545	case IBMCELLBE:
546		moea64_large_page_size = 0x1000000; /* 16 MB */
547		moea64_large_page_shift = 24;
548		break;
549	default:
550		moea64_large_page_size = 0;
551	}
552
553	moea64_large_page_mask = moea64_large_page_size - 1;
554}
555
556static void
557moea64_bootstrap_slb_prefault(vm_offset_t va, int large)
558{
559	struct slb *cache;
560	struct slb entry;
561	uint64_t esid, slbe;
562	uint64_t i;
563
564	cache = PCPU_GET(slb);
565	esid = va >> ADDR_SR_SHFT;
566	slbe = (esid << SLBE_ESID_SHIFT) | SLBE_VALID;
567
568	for (i = 0; i < 64; i++) {
569		if (cache[i].slbe == (slbe | i))
570			return;
571	}
572
573	entry.slbe = slbe;
574	entry.slbv = KERNEL_VSID(esid) << SLBV_VSID_SHIFT;
575	if (large)
576		entry.slbv |= SLBV_L;
577
578	slb_insert_kernel(entry.slbe, entry.slbv);
579}
580#endif
581
582static void
583moea64_setup_direct_map(mmu_t mmup, vm_offset_t kernelstart,
584    vm_offset_t kernelend)
585{
586	register_t msr;
587	vm_paddr_t pa;
588	vm_offset_t size, off;
589	uint64_t pte_lo;
590	int i;
591
592	if (moea64_large_page_size == 0)
593		hw_direct_map = 0;
594
595	DISABLE_TRANS(msr);
596	if (hw_direct_map) {
597		PMAP_LOCK(kernel_pmap);
598		for (i = 0; i < pregions_sz; i++) {
599		  for (pa = pregions[i].mr_start; pa < pregions[i].mr_start +
600		     pregions[i].mr_size; pa += moea64_large_page_size) {
601			pte_lo = LPTE_M;
602
603			/*
604			 * Set memory access as guarded if prefetch within
605			 * the page could exit the available physmem area.
606			 */
607			if (pa & moea64_large_page_mask) {
608				pa &= moea64_large_page_mask;
609				pte_lo |= LPTE_G;
610			}
611			if (pa + moea64_large_page_size >
612			    pregions[i].mr_start + pregions[i].mr_size)
613				pte_lo |= LPTE_G;
614
615			moea64_pvo_enter(mmup, kernel_pmap, moea64_upvo_zone,
616				    &moea64_pvo_kunmanaged, pa, pa,
617				    pte_lo, PVO_WIRED | PVO_LARGE);
618		  }
619		}
620		PMAP_UNLOCK(kernel_pmap);
621	} else {
622		size = sizeof(struct pvo_head) * moea64_pteg_count;
623		off = (vm_offset_t)(moea64_pvo_table);
624		for (pa = off; pa < off + size; pa += PAGE_SIZE)
625			moea64_kenter(mmup, pa, pa);
626		size = BPVO_POOL_SIZE*sizeof(struct pvo_entry);
627		off = (vm_offset_t)(moea64_bpvo_pool);
628		for (pa = off; pa < off + size; pa += PAGE_SIZE)
629		moea64_kenter(mmup, pa, pa);
630
631		/*
632		 * Map certain important things, like ourselves.
633		 *
634		 * NOTE: We do not map the exception vector space. That code is
635		 * used only in real mode, and leaving it unmapped allows us to
636		 * catch NULL pointer deferences, instead of making NULL a valid
637		 * address.
638		 */
639
640		for (pa = kernelstart & ~PAGE_MASK; pa < kernelend;
641		    pa += PAGE_SIZE)
642			moea64_kenter(mmup, pa, pa);
643	}
644	ENABLE_TRANS(msr);
645}
646
647void
648moea64_early_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
649{
650	int		i, j;
651	vm_size_t	physsz, hwphyssz;
652
653#ifndef __powerpc64__
654	/* We don't have a direct map since there is no BAT */
655	hw_direct_map = 0;
656
657	/* Make sure battable is zero, since we have no BAT */
658	for (i = 0; i < 16; i++) {
659		battable[i].batu = 0;
660		battable[i].batl = 0;
661	}
662#else
663	moea64_probe_large_page();
664
665	/* Use a direct map if we have large page support */
666	if (moea64_large_page_size > 0)
667		hw_direct_map = 1;
668	else
669		hw_direct_map = 0;
670#endif
671
672	/* Get physical memory regions from firmware */
673	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
674	CTR0(KTR_PMAP, "moea64_bootstrap: physical memory");
675
676	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
677		panic("moea64_bootstrap: phys_avail too small");
678
679	phys_avail_count = 0;
680	physsz = 0;
681	hwphyssz = 0;
682	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
683	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
684		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
685		    regions[i].mr_start + regions[i].mr_size,
686		    regions[i].mr_size);
687		if (hwphyssz != 0 &&
688		    (physsz + regions[i].mr_size) >= hwphyssz) {
689			if (physsz < hwphyssz) {
690				phys_avail[j] = regions[i].mr_start;
691				phys_avail[j + 1] = regions[i].mr_start +
692				    hwphyssz - physsz;
693				physsz = hwphyssz;
694				phys_avail_count++;
695			}
696			break;
697		}
698		phys_avail[j] = regions[i].mr_start;
699		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
700		phys_avail_count++;
701		physsz += regions[i].mr_size;
702	}
703
704	/* Check for overlap with the kernel and exception vectors */
705	for (j = 0; j < 2*phys_avail_count; j+=2) {
706		if (phys_avail[j] < EXC_LAST)
707			phys_avail[j] += EXC_LAST;
708
709		if (kernelstart >= phys_avail[j] &&
710		    kernelstart < phys_avail[j+1]) {
711			if (kernelend < phys_avail[j+1]) {
712				phys_avail[2*phys_avail_count] =
713				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
714				phys_avail[2*phys_avail_count + 1] =
715				    phys_avail[j+1];
716				phys_avail_count++;
717			}
718
719			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
720		}
721
722		if (kernelend >= phys_avail[j] &&
723		    kernelend < phys_avail[j+1]) {
724			if (kernelstart > phys_avail[j]) {
725				phys_avail[2*phys_avail_count] = phys_avail[j];
726				phys_avail[2*phys_avail_count + 1] =
727				    kernelstart & ~PAGE_MASK;
728				phys_avail_count++;
729			}
730
731			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
732		}
733	}
734
735	physmem = btoc(physsz);
736
737#ifdef PTEGCOUNT
738	moea64_pteg_count = PTEGCOUNT;
739#else
740	moea64_pteg_count = 0x1000;
741
742	while (moea64_pteg_count < physmem)
743		moea64_pteg_count <<= 1;
744
745	moea64_pteg_count >>= 1;
746#endif /* PTEGCOUNT */
747}
748
749void
750moea64_mid_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
751{
752	vm_size_t	size;
753	register_t	msr;
754	int		i;
755
756	/*
757	 * Set PTEG mask
758	 */
759	moea64_pteg_mask = moea64_pteg_count - 1;
760
761	/*
762	 * Allocate pv/overflow lists.
763	 */
764	size = sizeof(struct pvo_head) * moea64_pteg_count;
765
766	moea64_pvo_table = (struct pvo_head *)moea64_bootstrap_alloc(size,
767	    PAGE_SIZE);
768	CTR1(KTR_PMAP, "moea64_bootstrap: PVO table at %p", moea64_pvo_table);
769
770	DISABLE_TRANS(msr);
771	for (i = 0; i < moea64_pteg_count; i++)
772		LIST_INIT(&moea64_pvo_table[i]);
773	ENABLE_TRANS(msr);
774
775	/*
776	 * Initialize the lock that synchronizes access to the pteg and pvo
777	 * tables.
778	 */
779	mtx_init(&moea64_table_mutex, "pmap table", NULL, MTX_DEF |
780	    MTX_RECURSE);
781	mtx_init(&moea64_slb_mutex, "SLB table", NULL, MTX_DEF);
782
783	/*
784	 * Initialise the unmanaged pvo pool.
785	 */
786	moea64_bpvo_pool = (struct pvo_entry *)moea64_bootstrap_alloc(
787		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
788	moea64_bpvo_pool_index = 0;
789
790	/*
791	 * Make sure kernel vsid is allocated as well as VSID 0.
792	 */
793	#ifndef __powerpc64__
794	moea64_vsid_bitmap[(KERNEL_VSIDBITS & (NVSIDS - 1)) / VSID_NBPW]
795		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
796	moea64_vsid_bitmap[0] |= 1;
797	#endif
798
799	/*
800	 * Initialize the kernel pmap (which is statically allocated).
801	 */
802	#ifdef __powerpc64__
803	for (i = 0; i < 64; i++) {
804		pcpup->pc_slb[i].slbv = 0;
805		pcpup->pc_slb[i].slbe = 0;
806	}
807	#else
808	for (i = 0; i < 16; i++)
809		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
810	#endif
811
812	kernel_pmap->pmap_phys = kernel_pmap;
813	CPU_FILL(&kernel_pmap->pm_active);
814	LIST_INIT(&kernel_pmap->pmap_pvo);
815
816	PMAP_LOCK_INIT(kernel_pmap);
817
818	/*
819	 * Now map in all the other buffers we allocated earlier
820	 */
821
822	moea64_setup_direct_map(mmup, kernelstart, kernelend);
823}
824
825void
826moea64_late_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
827{
828	ihandle_t	mmui;
829	phandle_t	chosen;
830	phandle_t	mmu;
831	size_t		sz;
832	int		i;
833	vm_offset_t	pa, va;
834	void		*dpcpu;
835
836	/*
837	 * Set up the Open Firmware pmap and add its mappings if not in real
838	 * mode.
839	 */
840
841	chosen = OF_finddevice("/chosen");
842	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1) {
843	    mmu = OF_instance_to_package(mmui);
844	    if (mmu == -1 || (sz = OF_getproplen(mmu, "translations")) == -1)
845		sz = 0;
846	    if (sz > 6144 /* tmpstksz - 2 KB headroom */)
847		panic("moea64_bootstrap: too many ofw translations");
848
849	    if (sz > 0)
850		moea64_add_ofw_mappings(mmup, mmu, sz);
851	}
852
853	/*
854	 * Calculate the last available physical address.
855	 */
856	for (i = 0; phys_avail[i + 2] != 0; i += 2)
857		;
858	Maxmem = powerpc_btop(phys_avail[i + 1]);
859
860	/*
861	 * Initialize MMU and remap early physical mappings
862	 */
863	MMU_CPU_BOOTSTRAP(mmup,0);
864	mtmsr(mfmsr() | PSL_DR | PSL_IR);
865	pmap_bootstrapped++;
866	bs_remap_earlyboot();
867
868	/*
869	 * Set the start and end of kva.
870	 */
871	virtual_avail = VM_MIN_KERNEL_ADDRESS;
872	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
873
874	/*
875	 * Map the entire KVA range into the SLB. We must not fault there.
876	 */
877	#ifdef __powerpc64__
878	for (va = virtual_avail; va < virtual_end; va += SEGMENT_LENGTH)
879		moea64_bootstrap_slb_prefault(va, 0);
880	#endif
881
882	/*
883	 * Figure out how far we can extend virtual_end into segment 16
884	 * without running into existing mappings. Segment 16 is guaranteed
885	 * to contain neither RAM nor devices (at least on Apple hardware),
886	 * but will generally contain some OFW mappings we should not
887	 * step on.
888	 */
889
890	#ifndef __powerpc64__	/* KVA is in high memory on PPC64 */
891	PMAP_LOCK(kernel_pmap);
892	while (virtual_end < VM_MAX_KERNEL_ADDRESS &&
893	    moea64_pvo_find_va(kernel_pmap, virtual_end+1) == NULL)
894		virtual_end += PAGE_SIZE;
895	PMAP_UNLOCK(kernel_pmap);
896	#endif
897
898	/*
899	 * Allocate a kernel stack with a guard page for thread0 and map it
900	 * into the kernel page map.
901	 */
902	pa = moea64_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
903	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
904	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
905	CTR2(KTR_PMAP, "moea64_bootstrap: kstack0 at %#x (%#x)", pa, va);
906	thread0.td_kstack = va;
907	thread0.td_kstack_pages = KSTACK_PAGES;
908	for (i = 0; i < KSTACK_PAGES; i++) {
909		moea64_kenter(mmup, va, pa);
910		pa += PAGE_SIZE;
911		va += PAGE_SIZE;
912	}
913
914	/*
915	 * Allocate virtual address space for the message buffer.
916	 */
917	pa = msgbuf_phys = moea64_bootstrap_alloc(msgbufsize, PAGE_SIZE);
918	msgbufp = (struct msgbuf *)virtual_avail;
919	va = virtual_avail;
920	virtual_avail += round_page(msgbufsize);
921	while (va < virtual_avail) {
922		moea64_kenter(mmup, va, pa);
923		pa += PAGE_SIZE;
924		va += PAGE_SIZE;
925	}
926
927	/*
928	 * Allocate virtual address space for the dynamic percpu area.
929	 */
930	pa = moea64_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
931	dpcpu = (void *)virtual_avail;
932	va = virtual_avail;
933	virtual_avail += DPCPU_SIZE;
934	while (va < virtual_avail) {
935		moea64_kenter(mmup, va, pa);
936		pa += PAGE_SIZE;
937		va += PAGE_SIZE;
938	}
939	dpcpu_init(dpcpu, 0);
940
941	/*
942	 * Allocate some things for page zeroing. We put this directly
943	 * in the page table, marked with LPTE_LOCKED, to avoid any
944	 * of the PVO book-keeping or other parts of the VM system
945	 * from even knowing that this hack exists.
946	 */
947
948	if (!hw_direct_map) {
949		mtx_init(&moea64_scratchpage_mtx, "pvo zero page", NULL,
950		    MTX_DEF);
951		for (i = 0; i < 2; i++) {
952			moea64_scratchpage_va[i] = (virtual_end+1) - PAGE_SIZE;
953			virtual_end -= PAGE_SIZE;
954
955			moea64_kenter(mmup, moea64_scratchpage_va[i], 0);
956
957			moea64_scratchpage_pvo[i] = moea64_pvo_find_va(
958			    kernel_pmap, (vm_offset_t)moea64_scratchpage_va[i]);
959			LOCK_TABLE();
960			moea64_scratchpage_pte[i] = MOEA64_PVO_TO_PTE(
961			    mmup, moea64_scratchpage_pvo[i]);
962			moea64_scratchpage_pvo[i]->pvo_pte.lpte.pte_hi
963			    |= LPTE_LOCKED;
964			MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[i],
965			    &moea64_scratchpage_pvo[i]->pvo_pte.lpte,
966			    moea64_scratchpage_pvo[i]->pvo_vpn);
967			UNLOCK_TABLE();
968		}
969	}
970}
971
972/*
973 * Activate a user pmap.  The pmap must be activated before its address
974 * space can be accessed in any way.
975 */
976void
977moea64_activate(mmu_t mmu, struct thread *td)
978{
979	pmap_t	pm;
980
981	pm = &td->td_proc->p_vmspace->vm_pmap;
982	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
983
984	#ifdef __powerpc64__
985	PCPU_SET(userslb, pm->pm_slb);
986	#else
987	PCPU_SET(curpmap, pm->pmap_phys);
988	#endif
989}
990
991void
992moea64_deactivate(mmu_t mmu, struct thread *td)
993{
994	pmap_t	pm;
995
996	pm = &td->td_proc->p_vmspace->vm_pmap;
997	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
998	#ifdef __powerpc64__
999	PCPU_SET(userslb, NULL);
1000	#else
1001	PCPU_SET(curpmap, NULL);
1002	#endif
1003}
1004
1005void
1006moea64_change_wiring(mmu_t mmu, pmap_t pm, vm_offset_t va, boolean_t wired)
1007{
1008	struct	pvo_entry *pvo;
1009	uintptr_t pt;
1010	uint64_t vsid;
1011	int	i, ptegidx;
1012
1013	PMAP_LOCK(pm);
1014	pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
1015
1016	if (pvo != NULL) {
1017		LOCK_TABLE();
1018		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1019
1020		if (wired) {
1021			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1022				pm->pm_stats.wired_count++;
1023			pvo->pvo_vaddr |= PVO_WIRED;
1024			pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
1025		} else {
1026			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1027				pm->pm_stats.wired_count--;
1028			pvo->pvo_vaddr &= ~PVO_WIRED;
1029			pvo->pvo_pte.lpte.pte_hi &= ~LPTE_WIRED;
1030		}
1031
1032		if (pt != -1) {
1033			/* Update wiring flag in page table. */
1034			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1035			    pvo->pvo_vpn);
1036		} else if (wired) {
1037			/*
1038			 * If we are wiring the page, and it wasn't in the
1039			 * page table before, add it.
1040			 */
1041			vsid = PVO_VSID(pvo);
1042			ptegidx = va_to_pteg(vsid, PVO_VADDR(pvo),
1043			    pvo->pvo_vaddr & PVO_LARGE);
1044
1045			i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
1046
1047			if (i >= 0) {
1048				PVO_PTEGIDX_CLR(pvo);
1049				PVO_PTEGIDX_SET(pvo, i);
1050			}
1051		}
1052
1053		UNLOCK_TABLE();
1054	}
1055	PMAP_UNLOCK(pm);
1056}
1057
1058/*
1059 * This goes through and sets the physical address of our
1060 * special scratch PTE to the PA we want to zero or copy. Because
1061 * of locking issues (this can get called in pvo_enter() by
1062 * the UMA allocator), we can't use most other utility functions here
1063 */
1064
1065static __inline
1066void moea64_set_scratchpage_pa(mmu_t mmup, int which, vm_offset_t pa) {
1067
1068	KASSERT(!hw_direct_map, ("Using OEA64 scratchpage with a direct map!"));
1069	mtx_assert(&moea64_scratchpage_mtx, MA_OWNED);
1070
1071	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo &=
1072	    ~(LPTE_WIMG | LPTE_RPGN);
1073	moea64_scratchpage_pvo[which]->pvo_pte.lpte.pte_lo |=
1074	    moea64_calc_wimg(pa, VM_MEMATTR_DEFAULT) | (uint64_t)pa;
1075	MOEA64_PTE_CHANGE(mmup, moea64_scratchpage_pte[which],
1076	    &moea64_scratchpage_pvo[which]->pvo_pte.lpte,
1077	    moea64_scratchpage_pvo[which]->pvo_vpn);
1078	isync();
1079}
1080
1081void
1082moea64_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1083{
1084	vm_offset_t	dst;
1085	vm_offset_t	src;
1086
1087	dst = VM_PAGE_TO_PHYS(mdst);
1088	src = VM_PAGE_TO_PHYS(msrc);
1089
1090	if (hw_direct_map) {
1091		kcopy((void *)src, (void *)dst, PAGE_SIZE);
1092	} else {
1093		mtx_lock(&moea64_scratchpage_mtx);
1094
1095		moea64_set_scratchpage_pa(mmu, 0, src);
1096		moea64_set_scratchpage_pa(mmu, 1, dst);
1097
1098		kcopy((void *)moea64_scratchpage_va[0],
1099		    (void *)moea64_scratchpage_va[1], PAGE_SIZE);
1100
1101		mtx_unlock(&moea64_scratchpage_mtx);
1102	}
1103}
1104
1105void
1106moea64_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1107{
1108	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1109
1110	if (size + off > PAGE_SIZE)
1111		panic("moea64_zero_page: size + off > PAGE_SIZE");
1112
1113	if (hw_direct_map) {
1114		bzero((caddr_t)pa + off, size);
1115	} else {
1116		mtx_lock(&moea64_scratchpage_mtx);
1117		moea64_set_scratchpage_pa(mmu, 0, pa);
1118		bzero((caddr_t)moea64_scratchpage_va[0] + off, size);
1119		mtx_unlock(&moea64_scratchpage_mtx);
1120	}
1121}
1122
1123/*
1124 * Zero a page of physical memory by temporarily mapping it
1125 */
1126void
1127moea64_zero_page(mmu_t mmu, vm_page_t m)
1128{
1129	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1130	vm_offset_t va, off;
1131
1132	if (!hw_direct_map) {
1133		mtx_lock(&moea64_scratchpage_mtx);
1134
1135		moea64_set_scratchpage_pa(mmu, 0, pa);
1136		va = moea64_scratchpage_va[0];
1137	} else {
1138		va = pa;
1139	}
1140
1141	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1142		__asm __volatile("dcbz 0,%0" :: "r"(va + off));
1143
1144	if (!hw_direct_map)
1145		mtx_unlock(&moea64_scratchpage_mtx);
1146}
1147
1148void
1149moea64_zero_page_idle(mmu_t mmu, vm_page_t m)
1150{
1151
1152	moea64_zero_page(mmu, m);
1153}
1154
1155/*
1156 * Map the given physical page at the specified virtual address in the
1157 * target pmap with the protection requested.  If specified the page
1158 * will be wired down.
1159 */
1160void
1161moea64_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1162    vm_prot_t prot, boolean_t wired)
1163{
1164
1165	vm_page_lock_queues();
1166	PMAP_LOCK(pmap);
1167	moea64_enter_locked(mmu, pmap, va, m, prot, wired);
1168	vm_page_unlock_queues();
1169	PMAP_UNLOCK(pmap);
1170}
1171
1172/*
1173 * Map the given physical page at the specified virtual address in the
1174 * target pmap with the protection requested.  If specified the page
1175 * will be wired down.
1176 *
1177 * The page queues and pmap must be locked.
1178 */
1179
1180static void
1181moea64_enter_locked(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m,
1182    vm_prot_t prot, boolean_t wired)
1183{
1184	struct		pvo_head *pvo_head;
1185	uma_zone_t	zone;
1186	vm_page_t	pg;
1187	uint64_t	pte_lo;
1188	u_int		pvo_flags;
1189	int		error;
1190
1191	if (!moea64_initialized) {
1192		pvo_head = &moea64_pvo_kunmanaged;
1193		pg = NULL;
1194		zone = moea64_upvo_zone;
1195		pvo_flags = 0;
1196	} else {
1197		pvo_head = vm_page_to_pvoh(m);
1198		pg = m;
1199		zone = moea64_mpvo_zone;
1200		pvo_flags = PVO_MANAGED;
1201	}
1202
1203	if (pmap_bootstrapped)
1204		mtx_assert(&vm_page_queue_mtx, MA_OWNED);
1205	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1206	KASSERT((m->oflags & (VPO_UNMANAGED | VPO_BUSY)) != 0 ||
1207	    VM_OBJECT_LOCKED(m->object),
1208	    ("moea64_enter_locked: page %p is not busy", m));
1209
1210	/* XXX change the pvo head for fake pages */
1211	if ((m->oflags & VPO_UNMANAGED) != 0) {
1212		pvo_flags &= ~PVO_MANAGED;
1213		pvo_head = &moea64_pvo_kunmanaged;
1214		zone = moea64_upvo_zone;
1215	}
1216
1217	pte_lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1218
1219	if (prot & VM_PROT_WRITE) {
1220		pte_lo |= LPTE_BW;
1221		if (pmap_bootstrapped &&
1222		    (m->oflags & VPO_UNMANAGED) == 0)
1223			vm_page_aflag_set(m, PGA_WRITEABLE);
1224	} else
1225		pte_lo |= LPTE_BR;
1226
1227	if ((prot & VM_PROT_EXECUTE) == 0)
1228		pte_lo |= LPTE_NOEXEC;
1229
1230	if (wired)
1231		pvo_flags |= PVO_WIRED;
1232
1233	error = moea64_pvo_enter(mmu, pmap, zone, pvo_head, va,
1234	    VM_PAGE_TO_PHYS(m), pte_lo, pvo_flags);
1235
1236	/*
1237	 * Flush the page from the instruction cache if this page is
1238	 * mapped executable and cacheable.
1239	 */
1240	if ((pte_lo & (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0)
1241		moea64_syncicache(mmu, pmap, va, VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1242}
1243
1244static void
1245moea64_syncicache(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_offset_t pa,
1246    vm_size_t sz)
1247{
1248
1249	/*
1250	 * This is much trickier than on older systems because
1251	 * we can't sync the icache on physical addresses directly
1252	 * without a direct map. Instead we check a couple of cases
1253	 * where the memory is already mapped in and, failing that,
1254	 * use the same trick we use for page zeroing to create
1255	 * a temporary mapping for this physical address.
1256	 */
1257
1258	if (!pmap_bootstrapped) {
1259		/*
1260		 * If PMAP is not bootstrapped, we are likely to be
1261		 * in real mode.
1262		 */
1263		__syncicache((void *)pa, sz);
1264	} else if (pmap == kernel_pmap) {
1265		__syncicache((void *)va, sz);
1266	} else if (hw_direct_map) {
1267		__syncicache((void *)pa, sz);
1268	} else {
1269		/* Use the scratch page to set up a temp mapping */
1270
1271		mtx_lock(&moea64_scratchpage_mtx);
1272
1273		moea64_set_scratchpage_pa(mmu, 1, pa & ~ADDR_POFF);
1274		__syncicache((void *)(moea64_scratchpage_va[1] +
1275		    (va & ADDR_POFF)), sz);
1276
1277		mtx_unlock(&moea64_scratchpage_mtx);
1278	}
1279}
1280
1281/*
1282 * Maps a sequence of resident pages belonging to the same object.
1283 * The sequence begins with the given page m_start.  This page is
1284 * mapped at the given virtual address start.  Each subsequent page is
1285 * mapped at a virtual address that is offset from start by the same
1286 * amount as the page is offset from m_start within the object.  The
1287 * last page in the sequence is the page with the largest offset from
1288 * m_start that can be mapped at a virtual address less than the given
1289 * virtual address end.  Not every virtual page between start and end
1290 * is mapped; only those for which a resident page exists with the
1291 * corresponding offset from m_start are mapped.
1292 */
1293void
1294moea64_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1295    vm_page_t m_start, vm_prot_t prot)
1296{
1297	vm_page_t m;
1298	vm_pindex_t diff, psize;
1299
1300	psize = atop(end - start);
1301	m = m_start;
1302	vm_page_lock_queues();
1303	PMAP_LOCK(pm);
1304	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1305		moea64_enter_locked(mmu, pm, start + ptoa(diff), m, prot &
1306		    (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1307		m = TAILQ_NEXT(m, listq);
1308	}
1309	vm_page_unlock_queues();
1310	PMAP_UNLOCK(pm);
1311}
1312
1313void
1314moea64_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1315    vm_prot_t prot)
1316{
1317
1318	vm_page_lock_queues();
1319	PMAP_LOCK(pm);
1320	moea64_enter_locked(mmu, pm, va, m,
1321	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), FALSE);
1322	vm_page_unlock_queues();
1323	PMAP_UNLOCK(pm);
1324}
1325
1326vm_paddr_t
1327moea64_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1328{
1329	struct	pvo_entry *pvo;
1330	vm_paddr_t pa;
1331
1332	PMAP_LOCK(pm);
1333	pvo = moea64_pvo_find_va(pm, va);
1334	if (pvo == NULL)
1335		pa = 0;
1336	else
1337		pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
1338		    (va - PVO_VADDR(pvo));
1339	PMAP_UNLOCK(pm);
1340	return (pa);
1341}
1342
1343/*
1344 * Atomically extract and hold the physical page with the given
1345 * pmap and virtual address pair if that mapping permits the given
1346 * protection.
1347 */
1348vm_page_t
1349moea64_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1350{
1351	struct	pvo_entry *pvo;
1352	vm_page_t m;
1353        vm_paddr_t pa;
1354
1355	m = NULL;
1356	pa = 0;
1357	PMAP_LOCK(pmap);
1358retry:
1359	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1360	if (pvo != NULL && (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) &&
1361	    ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) == LPTE_RW ||
1362	     (prot & VM_PROT_WRITE) == 0)) {
1363		if (vm_page_pa_tryrelock(pmap,
1364			pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN, &pa))
1365			goto retry;
1366		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1367		vm_page_hold(m);
1368	}
1369	PA_UNLOCK_COND(pa);
1370	PMAP_UNLOCK(pmap);
1371	return (m);
1372}
1373
1374static mmu_t installed_mmu;
1375
1376static void *
1377moea64_uma_page_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1378{
1379	/*
1380	 * This entire routine is a horrible hack to avoid bothering kmem
1381	 * for new KVA addresses. Because this can get called from inside
1382	 * kmem allocation routines, calling kmem for a new address here
1383	 * can lead to multiply locking non-recursive mutexes.
1384	 */
1385        vm_offset_t va;
1386
1387        vm_page_t m;
1388        int pflags, needed_lock;
1389
1390	*flags = UMA_SLAB_PRIV;
1391	needed_lock = !PMAP_LOCKED(kernel_pmap);
1392
1393	if (needed_lock)
1394		PMAP_LOCK(kernel_pmap);
1395
1396        if ((wait & (M_NOWAIT|M_USE_RESERVE)) == M_NOWAIT)
1397                pflags = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED;
1398        else
1399                pflags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED;
1400        if (wait & M_ZERO)
1401                pflags |= VM_ALLOC_ZERO;
1402
1403        for (;;) {
1404                m = vm_page_alloc(NULL, 0, pflags | VM_ALLOC_NOOBJ);
1405                if (m == NULL) {
1406                        if (wait & M_NOWAIT)
1407                                return (NULL);
1408                        VM_WAIT;
1409                } else
1410                        break;
1411        }
1412
1413	va = VM_PAGE_TO_PHYS(m);
1414
1415	moea64_pvo_enter(installed_mmu, kernel_pmap, moea64_upvo_zone,
1416	    &moea64_pvo_kunmanaged, va, VM_PAGE_TO_PHYS(m), LPTE_M,
1417	    PVO_WIRED | PVO_BOOTSTRAP);
1418
1419	if (needed_lock)
1420		PMAP_UNLOCK(kernel_pmap);
1421
1422	if ((wait & M_ZERO) && (m->flags & PG_ZERO) == 0)
1423                bzero((void *)va, PAGE_SIZE);
1424
1425	return (void *)va;
1426}
1427
1428extern int elf32_nxstack;
1429
1430void
1431moea64_init(mmu_t mmu)
1432{
1433
1434	CTR0(KTR_PMAP, "moea64_init");
1435
1436	moea64_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1437	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1438	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1439	moea64_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1440	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1441	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1442
1443	if (!hw_direct_map) {
1444		installed_mmu = mmu;
1445		uma_zone_set_allocf(moea64_upvo_zone,moea64_uma_page_alloc);
1446		uma_zone_set_allocf(moea64_mpvo_zone,moea64_uma_page_alloc);
1447	}
1448
1449#ifdef COMPAT_FREEBSD32
1450	elf32_nxstack = 1;
1451#endif
1452
1453	moea64_initialized = TRUE;
1454}
1455
1456boolean_t
1457moea64_is_referenced(mmu_t mmu, vm_page_t m)
1458{
1459
1460	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1461	    ("moea64_is_referenced: page %p is not managed", m));
1462	return (moea64_query_bit(mmu, m, PTE_REF));
1463}
1464
1465boolean_t
1466moea64_is_modified(mmu_t mmu, vm_page_t m)
1467{
1468
1469	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1470	    ("moea64_is_modified: page %p is not managed", m));
1471
1472	/*
1473	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be
1474	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1475	 * is clear, no PTEs can have LPTE_CHG set.
1476	 */
1477	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1478	if ((m->oflags & VPO_BUSY) == 0 &&
1479	    (m->aflags & PGA_WRITEABLE) == 0)
1480		return (FALSE);
1481	return (moea64_query_bit(mmu, m, LPTE_CHG));
1482}
1483
1484boolean_t
1485moea64_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1486{
1487	struct pvo_entry *pvo;
1488	boolean_t rv;
1489
1490	PMAP_LOCK(pmap);
1491	pvo = moea64_pvo_find_va(pmap, va & ~ADDR_POFF);
1492	rv = pvo == NULL || (pvo->pvo_pte.lpte.pte_hi & LPTE_VALID) == 0;
1493	PMAP_UNLOCK(pmap);
1494	return (rv);
1495}
1496
1497void
1498moea64_clear_reference(mmu_t mmu, vm_page_t m)
1499{
1500
1501	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1502	    ("moea64_clear_reference: page %p is not managed", m));
1503	moea64_clear_bit(mmu, m, LPTE_REF);
1504}
1505
1506void
1507moea64_clear_modify(mmu_t mmu, vm_page_t m)
1508{
1509
1510	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1511	    ("moea64_clear_modify: page %p is not managed", m));
1512	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1513	KASSERT((m->oflags & VPO_BUSY) == 0,
1514	    ("moea64_clear_modify: page %p is busy", m));
1515
1516	/*
1517	 * If the page is not PGA_WRITEABLE, then no PTEs can have LPTE_CHG
1518	 * set.  If the object containing the page is locked and the page is
1519	 * not VPO_BUSY, then PGA_WRITEABLE cannot be concurrently set.
1520	 */
1521	if ((m->aflags & PGA_WRITEABLE) == 0)
1522		return;
1523	moea64_clear_bit(mmu, m, LPTE_CHG);
1524}
1525
1526/*
1527 * Clear the write and modified bits in each of the given page's mappings.
1528 */
1529void
1530moea64_remove_write(mmu_t mmu, vm_page_t m)
1531{
1532	struct	pvo_entry *pvo;
1533	uintptr_t pt;
1534	pmap_t	pmap;
1535	uint64_t lo = 0;
1536
1537	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1538	    ("moea64_remove_write: page %p is not managed", m));
1539
1540	/*
1541	 * If the page is not VPO_BUSY, then PGA_WRITEABLE cannot be set by
1542	 * another thread while the object is locked.  Thus, if PGA_WRITEABLE
1543	 * is clear, no page table entries need updating.
1544	 */
1545	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
1546	if ((m->oflags & VPO_BUSY) == 0 &&
1547	    (m->aflags & PGA_WRITEABLE) == 0)
1548		return;
1549	vm_page_lock_queues();
1550	powerpc_sync();
1551	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1552		pmap = pvo->pvo_pmap;
1553		PMAP_LOCK(pmap);
1554		LOCK_TABLE();
1555		if ((pvo->pvo_pte.lpte.pte_lo & LPTE_PP) != LPTE_BR) {
1556			pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1557			pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1558			pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1559			if (pt != -1) {
1560				MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
1561				lo |= pvo->pvo_pte.lpte.pte_lo;
1562				pvo->pvo_pte.lpte.pte_lo &= ~LPTE_CHG;
1563				MOEA64_PTE_CHANGE(mmu, pt,
1564				    &pvo->pvo_pte.lpte, pvo->pvo_vpn);
1565				if (pvo->pvo_pmap == kernel_pmap)
1566					isync();
1567			}
1568		}
1569		UNLOCK_TABLE();
1570		PMAP_UNLOCK(pmap);
1571	}
1572	if ((lo & LPTE_CHG) != 0)
1573		vm_page_dirty(m);
1574	vm_page_aflag_clear(m, PGA_WRITEABLE);
1575	vm_page_unlock_queues();
1576}
1577
1578/*
1579 *	moea64_ts_referenced:
1580 *
1581 *	Return a count of reference bits for a page, clearing those bits.
1582 *	It is not necessary for every reference bit to be cleared, but it
1583 *	is necessary that 0 only be returned when there are truly no
1584 *	reference bits set.
1585 *
1586 *	XXX: The exact number of bits to check and clear is a matter that
1587 *	should be tested and standardized at some point in the future for
1588 *	optimal aging of shared pages.
1589 */
1590boolean_t
1591moea64_ts_referenced(mmu_t mmu, vm_page_t m)
1592{
1593
1594	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1595	    ("moea64_ts_referenced: page %p is not managed", m));
1596	return (moea64_clear_bit(mmu, m, LPTE_REF));
1597}
1598
1599/*
1600 * Modify the WIMG settings of all mappings for a page.
1601 */
1602void
1603moea64_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1604{
1605	struct	pvo_entry *pvo;
1606	struct  pvo_head *pvo_head;
1607	uintptr_t pt;
1608	pmap_t	pmap;
1609	uint64_t lo;
1610
1611	if ((m->oflags & VPO_UNMANAGED) != 0) {
1612		m->md.mdpg_cache_attrs = ma;
1613		return;
1614	}
1615
1616	vm_page_lock_queues();
1617	pvo_head = vm_page_to_pvoh(m);
1618	lo = moea64_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1619	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1620		pmap = pvo->pvo_pmap;
1621		PMAP_LOCK(pmap);
1622		LOCK_TABLE();
1623		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1624		pvo->pvo_pte.lpte.pte_lo &= ~LPTE_WIMG;
1625		pvo->pvo_pte.lpte.pte_lo |= lo;
1626		if (pt != -1) {
1627			MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1628			    pvo->pvo_vpn);
1629			if (pvo->pvo_pmap == kernel_pmap)
1630				isync();
1631		}
1632		UNLOCK_TABLE();
1633		PMAP_UNLOCK(pmap);
1634	}
1635	m->md.mdpg_cache_attrs = ma;
1636	vm_page_unlock_queues();
1637}
1638
1639/*
1640 * Map a wired page into kernel virtual address space.
1641 */
1642void
1643moea64_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1644{
1645	uint64_t	pte_lo;
1646	int		error;
1647
1648	pte_lo = moea64_calc_wimg(pa, ma);
1649
1650	PMAP_LOCK(kernel_pmap);
1651	error = moea64_pvo_enter(mmu, kernel_pmap, moea64_upvo_zone,
1652	    &moea64_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1653
1654	if (error != 0 && error != ENOENT)
1655		panic("moea64_kenter: failed to enter va %#zx pa %#zx: %d", va,
1656		    pa, error);
1657
1658	/*
1659	 * Flush the memory from the instruction cache.
1660	 */
1661	if ((pte_lo & (LPTE_I | LPTE_G)) == 0)
1662		__syncicache((void *)va, PAGE_SIZE);
1663	PMAP_UNLOCK(kernel_pmap);
1664}
1665
1666void
1667moea64_kenter(mmu_t mmu, vm_offset_t va, vm_offset_t pa)
1668{
1669
1670	moea64_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1671}
1672
1673/*
1674 * Extract the physical page address associated with the given kernel virtual
1675 * address.
1676 */
1677vm_offset_t
1678moea64_kextract(mmu_t mmu, vm_offset_t va)
1679{
1680	struct		pvo_entry *pvo;
1681	vm_paddr_t pa;
1682
1683	/*
1684	 * Shortcut the direct-mapped case when applicable.  We never put
1685	 * anything but 1:1 mappings below VM_MIN_KERNEL_ADDRESS.
1686	 */
1687	if (va < VM_MIN_KERNEL_ADDRESS)
1688		return (va);
1689
1690	PMAP_LOCK(kernel_pmap);
1691	pvo = moea64_pvo_find_va(kernel_pmap, va);
1692	KASSERT(pvo != NULL, ("moea64_kextract: no addr found for %#" PRIxPTR,
1693	    va));
1694	pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) | (va - PVO_VADDR(pvo));
1695	PMAP_UNLOCK(kernel_pmap);
1696	return (pa);
1697}
1698
1699/*
1700 * Remove a wired page from kernel virtual address space.
1701 */
1702void
1703moea64_kremove(mmu_t mmu, vm_offset_t va)
1704{
1705	moea64_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1706}
1707
1708/*
1709 * Map a range of physical addresses into kernel virtual address space.
1710 *
1711 * The value passed in *virt is a suggested virtual address for the mapping.
1712 * Architectures which can support a direct-mapped physical to virtual region
1713 * can return the appropriate address within that region, leaving '*virt'
1714 * unchanged.  We cannot and therefore do not; *virt is updated with the
1715 * first usable address after the mapped region.
1716 */
1717vm_offset_t
1718moea64_map(mmu_t mmu, vm_offset_t *virt, vm_offset_t pa_start,
1719    vm_offset_t pa_end, int prot)
1720{
1721	vm_offset_t	sva, va;
1722
1723	sva = *virt;
1724	va = sva;
1725	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1726		moea64_kenter(mmu, va, pa_start);
1727	*virt = va;
1728
1729	return (sva);
1730}
1731
1732/*
1733 * Returns true if the pmap's pv is one of the first
1734 * 16 pvs linked to from this page.  This count may
1735 * be changed upwards or downwards in the future; it
1736 * is only necessary that true be returned for a small
1737 * subset of pmaps for proper page aging.
1738 */
1739boolean_t
1740moea64_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1741{
1742        int loops;
1743	struct pvo_entry *pvo;
1744	boolean_t rv;
1745
1746	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1747	    ("moea64_page_exists_quick: page %p is not managed", m));
1748	loops = 0;
1749	rv = FALSE;
1750	vm_page_lock_queues();
1751	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1752		if (pvo->pvo_pmap == pmap) {
1753			rv = TRUE;
1754			break;
1755		}
1756		if (++loops >= 16)
1757			break;
1758	}
1759	vm_page_unlock_queues();
1760	return (rv);
1761}
1762
1763/*
1764 * Return the number of managed mappings to the given physical page
1765 * that are wired.
1766 */
1767int
1768moea64_page_wired_mappings(mmu_t mmu, vm_page_t m)
1769{
1770	struct pvo_entry *pvo;
1771	int count;
1772
1773	count = 0;
1774	if ((m->oflags & VPO_UNMANAGED) != 0)
1775		return (count);
1776	vm_page_lock_queues();
1777	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1778		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1779			count++;
1780	vm_page_unlock_queues();
1781	return (count);
1782}
1783
1784static uintptr_t	moea64_vsidcontext;
1785
1786uintptr_t
1787moea64_get_unique_vsid(void) {
1788	u_int entropy;
1789	register_t hash;
1790	uint32_t mask;
1791	int i;
1792
1793	entropy = 0;
1794	__asm __volatile("mftb %0" : "=r"(entropy));
1795
1796	mtx_lock(&moea64_slb_mutex);
1797	for (i = 0; i < NVSIDS; i += VSID_NBPW) {
1798		u_int	n;
1799
1800		/*
1801		 * Create a new value by mutiplying by a prime and adding in
1802		 * entropy from the timebase register.  This is to make the
1803		 * VSID more random so that the PT hash function collides
1804		 * less often.  (Note that the prime casues gcc to do shifts
1805		 * instead of a multiply.)
1806		 */
1807		moea64_vsidcontext = (moea64_vsidcontext * 0x1105) + entropy;
1808		hash = moea64_vsidcontext & (NVSIDS - 1);
1809		if (hash == 0)		/* 0 is special, avoid it */
1810			continue;
1811		n = hash >> 5;
1812		mask = 1 << (hash & (VSID_NBPW - 1));
1813		hash = (moea64_vsidcontext & VSID_HASHMASK);
1814		if (moea64_vsid_bitmap[n] & mask) {	/* collision? */
1815			/* anything free in this bucket? */
1816			if (moea64_vsid_bitmap[n] == 0xffffffff) {
1817				entropy = (moea64_vsidcontext >> 20);
1818				continue;
1819			}
1820			i = ffs(~moea64_vsid_bitmap[n]) - 1;
1821			mask = 1 << i;
1822			hash &= VSID_HASHMASK & ~(VSID_NBPW - 1);
1823			hash |= i;
1824		}
1825		KASSERT(!(moea64_vsid_bitmap[n] & mask),
1826		    ("Allocating in-use VSID %#zx\n", hash));
1827		moea64_vsid_bitmap[n] |= mask;
1828		mtx_unlock(&moea64_slb_mutex);
1829		return (hash);
1830	}
1831
1832	mtx_unlock(&moea64_slb_mutex);
1833	panic("%s: out of segments",__func__);
1834}
1835
1836#ifdef __powerpc64__
1837void
1838moea64_pinit(mmu_t mmu, pmap_t pmap)
1839{
1840	PMAP_LOCK_INIT(pmap);
1841	LIST_INIT(&pmap->pmap_pvo);
1842
1843	pmap->pm_slb_tree_root = slb_alloc_tree();
1844	pmap->pm_slb = slb_alloc_user_cache();
1845	pmap->pm_slb_len = 0;
1846}
1847#else
1848void
1849moea64_pinit(mmu_t mmu, pmap_t pmap)
1850{
1851	int	i;
1852	uint32_t hash;
1853
1854	PMAP_LOCK_INIT(pmap);
1855	LIST_INIT(&pmap->pmap_pvo);
1856
1857	if (pmap_bootstrapped)
1858		pmap->pmap_phys = (pmap_t)moea64_kextract(mmu,
1859		    (vm_offset_t)pmap);
1860	else
1861		pmap->pmap_phys = pmap;
1862
1863	/*
1864	 * Allocate some segment registers for this pmap.
1865	 */
1866	hash = moea64_get_unique_vsid();
1867
1868	for (i = 0; i < 16; i++)
1869		pmap->pm_sr[i] = VSID_MAKE(i, hash);
1870
1871	KASSERT(pmap->pm_sr[0] != 0, ("moea64_pinit: pm_sr[0] = 0"));
1872}
1873#endif
1874
1875/*
1876 * Initialize the pmap associated with process 0.
1877 */
1878void
1879moea64_pinit0(mmu_t mmu, pmap_t pm)
1880{
1881	moea64_pinit(mmu, pm);
1882	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1883}
1884
1885/*
1886 * Set the physical protection on the specified range of this map as requested.
1887 */
1888static void
1889moea64_pvo_protect(mmu_t mmu,  pmap_t pm, struct pvo_entry *pvo, vm_prot_t prot)
1890{
1891	uintptr_t pt;
1892
1893	/*
1894	 * Grab the PTE pointer before we diddle with the cached PTE
1895	 * copy.
1896	 */
1897	LOCK_TABLE();
1898	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
1899
1900	/*
1901	 * Change the protection of the page.
1902	 */
1903	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_PP;
1904	pvo->pvo_pte.lpte.pte_lo |= LPTE_BR;
1905	pvo->pvo_pte.lpte.pte_lo &= ~LPTE_NOEXEC;
1906	if ((prot & VM_PROT_EXECUTE) == 0)
1907		pvo->pvo_pte.lpte.pte_lo |= LPTE_NOEXEC;
1908
1909	/*
1910	 * If the PVO is in the page table, update that pte as well.
1911	 */
1912	if (pt != -1) {
1913		MOEA64_PTE_CHANGE(mmu, pt, &pvo->pvo_pte.lpte,
1914		    pvo->pvo_vpn);
1915		if ((pvo->pvo_pte.lpte.pte_lo &
1916		    (LPTE_I | LPTE_G | LPTE_NOEXEC)) == 0) {
1917			moea64_syncicache(mmu, pm, PVO_VADDR(pvo),
1918			    pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN,
1919			    PAGE_SIZE);
1920		}
1921	}
1922
1923	/*
1924	 * Update vm about the REF/CHG bits if the page is managed.
1925	 */
1926	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
1927		struct	vm_page *pg;
1928
1929		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
1930		if (pg != NULL) {
1931			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
1932				vm_page_dirty(pg);
1933			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
1934				vm_page_aflag_set(pg, PGA_REFERENCED);
1935		}
1936	}
1937	UNLOCK_TABLE();
1938}
1939
1940void
1941moea64_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1942    vm_prot_t prot)
1943{
1944	struct	pvo_entry *pvo, *tpvo;
1945
1946	CTR4(KTR_PMAP, "moea64_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm,
1947	    sva, eva, prot);
1948
1949	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1950	    ("moea64_protect: non current pmap"));
1951
1952	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1953		moea64_remove(mmu, pm, sva, eva);
1954		return;
1955	}
1956
1957	PMAP_LOCK(pm);
1958	if ((eva - sva)/PAGE_SIZE < pm->pm_stats.resident_count) {
1959		for (; sva < eva; sva += PAGE_SIZE) {
1960			pvo = moea64_pvo_find_va(pm, sva);
1961			if (pvo != NULL)
1962				moea64_pvo_protect(mmu, pm, pvo, prot);
1963		}
1964	} else {
1965		LIST_FOREACH_SAFE(pvo, &pm->pmap_pvo, pvo_plink, tpvo) {
1966			if (PVO_VADDR(pvo) < sva || PVO_VADDR(pvo) >= eva)
1967				continue;
1968			moea64_pvo_protect(mmu, pm, pvo, prot);
1969		}
1970	}
1971	PMAP_UNLOCK(pm);
1972}
1973
1974/*
1975 * Map a list of wired pages into kernel virtual address space.  This is
1976 * intended for temporary mappings which do not need page modification or
1977 * references recorded.  Existing mappings in the region are overwritten.
1978 */
1979void
1980moea64_qenter(mmu_t mmu, vm_offset_t va, vm_page_t *m, int count)
1981{
1982	while (count-- > 0) {
1983		moea64_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1984		va += PAGE_SIZE;
1985		m++;
1986	}
1987}
1988
1989/*
1990 * Remove page mappings from kernel virtual address space.  Intended for
1991 * temporary mappings entered by moea64_qenter.
1992 */
1993void
1994moea64_qremove(mmu_t mmu, vm_offset_t va, int count)
1995{
1996	while (count-- > 0) {
1997		moea64_kremove(mmu, va);
1998		va += PAGE_SIZE;
1999	}
2000}
2001
2002void
2003moea64_release_vsid(uint64_t vsid)
2004{
2005	int idx, mask;
2006
2007	mtx_lock(&moea64_slb_mutex);
2008	idx = vsid & (NVSIDS-1);
2009	mask = 1 << (idx % VSID_NBPW);
2010	idx /= VSID_NBPW;
2011	KASSERT(moea64_vsid_bitmap[idx] & mask,
2012	    ("Freeing unallocated VSID %#jx", vsid));
2013	moea64_vsid_bitmap[idx] &= ~mask;
2014	mtx_unlock(&moea64_slb_mutex);
2015}
2016
2017
2018void
2019moea64_release(mmu_t mmu, pmap_t pmap)
2020{
2021
2022	/*
2023	 * Free segment registers' VSIDs
2024	 */
2025    #ifdef __powerpc64__
2026	slb_free_tree(pmap);
2027	slb_free_user_cache(pmap->pm_slb);
2028    #else
2029	KASSERT(pmap->pm_sr[0] != 0, ("moea64_release: pm_sr[0] = 0"));
2030
2031	moea64_release_vsid(VSID_TO_HASH(pmap->pm_sr[0]));
2032    #endif
2033
2034	PMAP_LOCK_DESTROY(pmap);
2035}
2036
2037/*
2038 * Remove all pages mapped by the specified pmap
2039 */
2040void
2041moea64_remove_pages(mmu_t mmu, pmap_t pm)
2042{
2043	struct	pvo_entry *pvo, *tpvo;
2044
2045	vm_page_lock_queues();
2046	PMAP_LOCK(pm);
2047	LIST_FOREACH_SAFE(pvo, &pm->pmap_pvo, pvo_plink, tpvo) {
2048		if (!(pvo->pvo_vaddr & PVO_WIRED))
2049			moea64_pvo_remove(mmu, pvo);
2050	}
2051	vm_page_unlock_queues();
2052	PMAP_UNLOCK(pm);
2053}
2054
2055/*
2056 * Remove the given range of addresses from the specified map.
2057 */
2058void
2059moea64_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
2060{
2061	struct	pvo_entry *pvo, *tpvo;
2062
2063	/*
2064	 * Perform an unsynchronized read.  This is, however, safe.
2065	 */
2066	if (pm->pm_stats.resident_count == 0)
2067		return;
2068
2069	vm_page_lock_queues();
2070	PMAP_LOCK(pm);
2071	if ((eva - sva)/PAGE_SIZE < pm->pm_stats.resident_count) {
2072		for (; sva < eva; sva += PAGE_SIZE) {
2073			pvo = moea64_pvo_find_va(pm, sva);
2074			if (pvo != NULL)
2075				moea64_pvo_remove(mmu, pvo);
2076		}
2077	} else {
2078		LIST_FOREACH_SAFE(pvo, &pm->pmap_pvo, pvo_plink, tpvo) {
2079			if (PVO_VADDR(pvo) < sva || PVO_VADDR(pvo) >= eva)
2080				continue;
2081			moea64_pvo_remove(mmu, pvo);
2082		}
2083	}
2084	vm_page_unlock_queues();
2085	PMAP_UNLOCK(pm);
2086}
2087
2088/*
2089 * Remove physical page from all pmaps in which it resides. moea64_pvo_remove()
2090 * will reflect changes in pte's back to the vm_page.
2091 */
2092void
2093moea64_remove_all(mmu_t mmu, vm_page_t m)
2094{
2095	struct  pvo_head *pvo_head;
2096	struct	pvo_entry *pvo, *next_pvo;
2097	pmap_t	pmap;
2098
2099	vm_page_lock_queues();
2100	pvo_head = vm_page_to_pvoh(m);
2101	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
2102		next_pvo = LIST_NEXT(pvo, pvo_vlink);
2103
2104		pmap = pvo->pvo_pmap;
2105		PMAP_LOCK(pmap);
2106		moea64_pvo_remove(mmu, pvo);
2107		PMAP_UNLOCK(pmap);
2108	}
2109	if ((m->aflags & PGA_WRITEABLE) && moea64_is_modified(mmu, m))
2110		vm_page_dirty(m);
2111	vm_page_aflag_clear(m, PGA_WRITEABLE);
2112	vm_page_unlock_queues();
2113}
2114
2115/*
2116 * Allocate a physical page of memory directly from the phys_avail map.
2117 * Can only be called from moea64_bootstrap before avail start and end are
2118 * calculated.
2119 */
2120vm_offset_t
2121moea64_bootstrap_alloc(vm_size_t size, u_int align)
2122{
2123	vm_offset_t	s, e;
2124	int		i, j;
2125
2126	size = round_page(size);
2127	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
2128		if (align != 0)
2129			s = (phys_avail[i] + align - 1) & ~(align - 1);
2130		else
2131			s = phys_avail[i];
2132		e = s + size;
2133
2134		if (s < phys_avail[i] || e > phys_avail[i + 1])
2135			continue;
2136
2137		if (s + size > platform_real_maxaddr())
2138			continue;
2139
2140		if (s == phys_avail[i]) {
2141			phys_avail[i] += size;
2142		} else if (e == phys_avail[i + 1]) {
2143			phys_avail[i + 1] -= size;
2144		} else {
2145			for (j = phys_avail_count * 2; j > i; j -= 2) {
2146				phys_avail[j] = phys_avail[j - 2];
2147				phys_avail[j + 1] = phys_avail[j - 1];
2148			}
2149
2150			phys_avail[i + 3] = phys_avail[i + 1];
2151			phys_avail[i + 1] = s;
2152			phys_avail[i + 2] = e;
2153			phys_avail_count++;
2154		}
2155
2156		return (s);
2157	}
2158	panic("moea64_bootstrap_alloc: could not allocate memory");
2159}
2160
2161static int
2162moea64_pvo_enter(mmu_t mmu, pmap_t pm, uma_zone_t zone,
2163    struct pvo_head *pvo_head, vm_offset_t va, vm_offset_t pa,
2164    uint64_t pte_lo, int flags)
2165{
2166	struct	 pvo_entry *pvo;
2167	uint64_t vsid;
2168	int	 first;
2169	u_int	 ptegidx;
2170	int	 i;
2171	int      bootstrap;
2172
2173	/*
2174	 * One nasty thing that can happen here is that the UMA calls to
2175	 * allocate new PVOs need to map more memory, which calls pvo_enter(),
2176	 * which calls UMA...
2177	 *
2178	 * We break the loop by detecting recursion and allocating out of
2179	 * the bootstrap pool.
2180	 */
2181
2182	first = 0;
2183	bootstrap = (flags & PVO_BOOTSTRAP);
2184
2185	if (!moea64_initialized)
2186		bootstrap = 1;
2187
2188	/*
2189	 * Compute the PTE Group index.
2190	 */
2191	va &= ~ADDR_POFF;
2192	vsid = va_to_vsid(pm, va);
2193	ptegidx = va_to_pteg(vsid, va, flags & PVO_LARGE);
2194
2195	/*
2196	 * Remove any existing mapping for this page.  Reuse the pvo entry if
2197	 * there is a mapping.
2198	 */
2199	LOCK_TABLE();
2200
2201	moea64_pvo_enter_calls++;
2202
2203	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2204		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2205			if ((pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) == pa &&
2206			    (pvo->pvo_pte.lpte.pte_lo & (LPTE_NOEXEC | LPTE_PP))
2207			    == (pte_lo & (LPTE_NOEXEC | LPTE_PP))) {
2208			    	if (!(pvo->pvo_pte.lpte.pte_hi & LPTE_VALID)) {
2209					/* Re-insert if spilled */
2210					i = MOEA64_PTE_INSERT(mmu, ptegidx,
2211					    &pvo->pvo_pte.lpte);
2212					if (i >= 0)
2213						PVO_PTEGIDX_SET(pvo, i);
2214					moea64_pte_overflow--;
2215				}
2216				UNLOCK_TABLE();
2217				return (0);
2218			}
2219			moea64_pvo_remove(mmu, pvo);
2220			break;
2221		}
2222	}
2223
2224	/*
2225	 * If we aren't overwriting a mapping, try to allocate.
2226	 */
2227	if (bootstrap) {
2228		if (moea64_bpvo_pool_index >= BPVO_POOL_SIZE) {
2229			panic("moea64_enter: bpvo pool exhausted, %d, %d, %zd",
2230			      moea64_bpvo_pool_index, BPVO_POOL_SIZE,
2231			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
2232		}
2233		pvo = &moea64_bpvo_pool[moea64_bpvo_pool_index];
2234		moea64_bpvo_pool_index++;
2235		bootstrap = 1;
2236	} else {
2237		/*
2238		 * Note: drop the table lock around the UMA allocation in
2239		 * case the UMA allocator needs to manipulate the page
2240		 * table. The mapping we are working with is already
2241		 * protected by the PMAP lock.
2242		 */
2243		UNLOCK_TABLE();
2244		pvo = uma_zalloc(zone, M_NOWAIT);
2245		LOCK_TABLE();
2246	}
2247
2248	if (pvo == NULL) {
2249		UNLOCK_TABLE();
2250		return (ENOMEM);
2251	}
2252
2253	moea64_pvo_entries++;
2254	pvo->pvo_vaddr = va;
2255	pvo->pvo_vpn = (uint64_t)((va & ADDR_PIDX) >> ADDR_PIDX_SHFT)
2256	    | (vsid << 16);
2257	pvo->pvo_pmap = pm;
2258	LIST_INSERT_HEAD(&moea64_pvo_table[ptegidx], pvo, pvo_olink);
2259	pvo->pvo_vaddr &= ~ADDR_POFF;
2260
2261	if (flags & PVO_WIRED)
2262		pvo->pvo_vaddr |= PVO_WIRED;
2263	if (pvo_head != &moea64_pvo_kunmanaged)
2264		pvo->pvo_vaddr |= PVO_MANAGED;
2265	if (bootstrap)
2266		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
2267	if (flags & PVO_LARGE)
2268		pvo->pvo_vaddr |= PVO_LARGE;
2269
2270	moea64_pte_create(&pvo->pvo_pte.lpte, vsid, va,
2271	    (uint64_t)(pa) | pte_lo, flags);
2272
2273	/*
2274	 * Add to pmap list
2275	 */
2276	LIST_INSERT_HEAD(&pm->pmap_pvo, pvo, pvo_plink);
2277
2278	/*
2279	 * Remember if the list was empty and therefore will be the first
2280	 * item.
2281	 */
2282	if (LIST_FIRST(pvo_head) == NULL)
2283		first = 1;
2284	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
2285
2286	if (pvo->pvo_vaddr & PVO_WIRED) {
2287		pvo->pvo_pte.lpte.pte_hi |= LPTE_WIRED;
2288		pm->pm_stats.wired_count++;
2289	}
2290	pm->pm_stats.resident_count++;
2291
2292	/*
2293	 * We hope this succeeds but it isn't required.
2294	 */
2295	i = MOEA64_PTE_INSERT(mmu, ptegidx, &pvo->pvo_pte.lpte);
2296	if (i >= 0) {
2297		PVO_PTEGIDX_SET(pvo, i);
2298	} else {
2299		panic("moea64_pvo_enter: overflow");
2300		moea64_pte_overflow++;
2301	}
2302
2303	if (pm == kernel_pmap)
2304		isync();
2305
2306	UNLOCK_TABLE();
2307
2308#ifdef __powerpc64__
2309	/*
2310	 * Make sure all our bootstrap mappings are in the SLB as soon
2311	 * as virtual memory is switched on.
2312	 */
2313	if (!pmap_bootstrapped)
2314		moea64_bootstrap_slb_prefault(va, flags & PVO_LARGE);
2315#endif
2316
2317	return (first ? ENOENT : 0);
2318}
2319
2320static void
2321moea64_pvo_remove(mmu_t mmu, struct pvo_entry *pvo)
2322{
2323	uintptr_t pt;
2324
2325	/*
2326	 * If there is an active pte entry, we need to deactivate it (and
2327	 * save the ref & cfg bits).
2328	 */
2329	LOCK_TABLE();
2330	pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2331	if (pt != -1) {
2332		MOEA64_PTE_UNSET(mmu, pt, &pvo->pvo_pte.lpte, pvo->pvo_vpn);
2333		PVO_PTEGIDX_CLR(pvo);
2334	} else {
2335		moea64_pte_overflow--;
2336	}
2337
2338	/*
2339	 * Update our statistics.
2340	 */
2341	pvo->pvo_pmap->pm_stats.resident_count--;
2342	if (pvo->pvo_vaddr & PVO_WIRED)
2343		pvo->pvo_pmap->pm_stats.wired_count--;
2344
2345	/*
2346	 * Update vm about the REF/CHG bits if the page is managed.
2347	 */
2348	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2349		struct	vm_page *pg;
2350
2351		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN);
2352		if (pg != NULL) {
2353			if (pvo->pvo_pte.lpte.pte_lo & LPTE_CHG)
2354				vm_page_dirty(pg);
2355			if (pvo->pvo_pte.lpte.pte_lo & LPTE_REF)
2356				vm_page_aflag_set(pg, PGA_REFERENCED);
2357		}
2358	}
2359
2360	/*
2361	 * Remove this PVO from the PV and pmap lists.
2362	 */
2363	LIST_REMOVE(pvo, pvo_vlink);
2364	LIST_REMOVE(pvo, pvo_plink);
2365
2366	/*
2367	 * Remove this from the overflow list and return it to the pool
2368	 * if we aren't going to reuse it.
2369	 */
2370	LIST_REMOVE(pvo, pvo_olink);
2371
2372	moea64_pvo_entries--;
2373	moea64_pvo_remove_calls++;
2374
2375	UNLOCK_TABLE();
2376
2377	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2378		uma_zfree((pvo->pvo_vaddr & PVO_MANAGED) ? moea64_mpvo_zone :
2379		    moea64_upvo_zone, pvo);
2380}
2381
2382static struct pvo_entry *
2383moea64_pvo_find_va(pmap_t pm, vm_offset_t va)
2384{
2385	struct		pvo_entry *pvo;
2386	int		ptegidx;
2387	uint64_t	vsid;
2388	#ifdef __powerpc64__
2389	uint64_t	slbv;
2390
2391	if (pm == kernel_pmap) {
2392		slbv = kernel_va_to_slbv(va);
2393	} else {
2394		struct slb *slb;
2395		slb = user_va_to_slb_entry(pm, va);
2396		/* The page is not mapped if the segment isn't */
2397		if (slb == NULL)
2398			return NULL;
2399		slbv = slb->slbv;
2400	}
2401
2402	vsid = (slbv & SLBV_VSID_MASK) >> SLBV_VSID_SHIFT;
2403	if (slbv & SLBV_L)
2404		va &= ~moea64_large_page_mask;
2405	else
2406		va &= ~ADDR_POFF;
2407	ptegidx = va_to_pteg(vsid, va, slbv & SLBV_L);
2408	#else
2409	va &= ~ADDR_POFF;
2410	vsid = va_to_vsid(pm, va);
2411	ptegidx = va_to_pteg(vsid, va, 0);
2412	#endif
2413
2414	LOCK_TABLE();
2415	LIST_FOREACH(pvo, &moea64_pvo_table[ptegidx], pvo_olink) {
2416		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va)
2417			break;
2418	}
2419	UNLOCK_TABLE();
2420
2421	return (pvo);
2422}
2423
2424static boolean_t
2425moea64_query_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2426{
2427	struct	pvo_entry *pvo;
2428	uintptr_t pt;
2429
2430	vm_page_lock_queues();
2431
2432	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2433		/*
2434		 * See if we saved the bit off.  If so, return success.
2435		 */
2436		if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2437			vm_page_unlock_queues();
2438			return (TRUE);
2439		}
2440	}
2441
2442	/*
2443	 * No luck, now go through the hard part of looking at the PTEs
2444	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2445	 * the PTEs.
2446	 */
2447	powerpc_sync();
2448	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2449
2450		/*
2451		 * See if this pvo has a valid PTE.  if so, fetch the
2452		 * REF/CHG bits from the valid PTE.  If the appropriate
2453		 * ptebit is set, return success.
2454		 */
2455		LOCK_TABLE();
2456		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2457		if (pt != -1) {
2458			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2459			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2460				UNLOCK_TABLE();
2461				vm_page_unlock_queues();
2462				return (TRUE);
2463			}
2464		}
2465		UNLOCK_TABLE();
2466	}
2467
2468	vm_page_unlock_queues();
2469	return (FALSE);
2470}
2471
2472static u_int
2473moea64_clear_bit(mmu_t mmu, vm_page_t m, u_int64_t ptebit)
2474{
2475	u_int	count;
2476	struct	pvo_entry *pvo;
2477	uintptr_t pt;
2478
2479	vm_page_lock_queues();
2480
2481	/*
2482	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2483	 * we can reset the right ones).  note that since the pvo entries and
2484	 * list heads are accessed via BAT0 and are never placed in the page
2485	 * table, we don't have to worry about further accesses setting the
2486	 * REF/CHG bits.
2487	 */
2488	powerpc_sync();
2489
2490	/*
2491	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2492	 * valid pte clear the ptebit from the valid pte.
2493	 */
2494	count = 0;
2495	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2496
2497		LOCK_TABLE();
2498		pt = MOEA64_PVO_TO_PTE(mmu, pvo);
2499		if (pt != -1) {
2500			MOEA64_PTE_SYNCH(mmu, pt, &pvo->pvo_pte.lpte);
2501			if (pvo->pvo_pte.lpte.pte_lo & ptebit) {
2502				count++;
2503				MOEA64_PTE_CLEAR(mmu, pt, &pvo->pvo_pte.lpte,
2504				    pvo->pvo_vpn, ptebit);
2505			}
2506		}
2507		pvo->pvo_pte.lpte.pte_lo &= ~ptebit;
2508		UNLOCK_TABLE();
2509	}
2510
2511	vm_page_unlock_queues();
2512	return (count);
2513}
2514
2515boolean_t
2516moea64_dev_direct_mapped(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2517{
2518	struct pvo_entry *pvo;
2519	vm_offset_t ppa;
2520	int error = 0;
2521
2522	PMAP_LOCK(kernel_pmap);
2523	for (ppa = pa & ~ADDR_POFF; ppa < pa + size; ppa += PAGE_SIZE) {
2524		pvo = moea64_pvo_find_va(kernel_pmap, ppa);
2525		if (pvo == NULL ||
2526		    (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) != ppa) {
2527			error = EFAULT;
2528			break;
2529		}
2530	}
2531	PMAP_UNLOCK(kernel_pmap);
2532
2533	return (error);
2534}
2535
2536/*
2537 * Map a set of physical memory pages into the kernel virtual
2538 * address space. Return a pointer to where it is mapped. This
2539 * routine is intended to be used for mapping device memory,
2540 * NOT real memory.
2541 */
2542void *
2543moea64_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2544{
2545	vm_offset_t va, tmpva, ppa, offset;
2546
2547	ppa = trunc_page(pa);
2548	offset = pa & PAGE_MASK;
2549	size = roundup(offset + size, PAGE_SIZE);
2550
2551	va = kmem_alloc_nofault(kernel_map, size);
2552
2553	if (!va)
2554		panic("moea64_mapdev: Couldn't alloc kernel virtual memory");
2555
2556	for (tmpva = va; size > 0;) {
2557		moea64_kenter_attr(mmu, tmpva, ppa, ma);
2558		size -= PAGE_SIZE;
2559		tmpva += PAGE_SIZE;
2560		ppa += PAGE_SIZE;
2561	}
2562
2563	return ((void *)(va + offset));
2564}
2565
2566void *
2567moea64_mapdev(mmu_t mmu, vm_offset_t pa, vm_size_t size)
2568{
2569
2570	return moea64_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT);
2571}
2572
2573void
2574moea64_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2575{
2576	vm_offset_t base, offset;
2577
2578	base = trunc_page(va);
2579	offset = va & PAGE_MASK;
2580	size = roundup(offset + size, PAGE_SIZE);
2581
2582	kmem_free(kernel_map, base, size);
2583}
2584
2585void
2586moea64_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2587{
2588	struct pvo_entry *pvo;
2589	vm_offset_t lim;
2590	vm_paddr_t pa;
2591	vm_size_t len;
2592
2593	PMAP_LOCK(pm);
2594	while (sz > 0) {
2595		lim = round_page(va);
2596		len = MIN(lim - va, sz);
2597		pvo = moea64_pvo_find_va(pm, va & ~ADDR_POFF);
2598		if (pvo != NULL && !(pvo->pvo_pte.lpte.pte_lo & LPTE_I)) {
2599			pa = (pvo->pvo_pte.lpte.pte_lo & LPTE_RPGN) |
2600			    (va & ADDR_POFF);
2601			moea64_syncicache(mmu, pm, va, pa, len);
2602		}
2603		va += len;
2604		sz -= len;
2605	}
2606	PMAP_UNLOCK(pm);
2607}
2608