1/*-
2 * Copyright (c) 2002-2006 Sam Leffler.  All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 *    notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 *    notice, this list of conditions and the following disclaimer in the
11 *    documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
14 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
15 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
16 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
17 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
19 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
20 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */
24
25#include <sys/cdefs.h>
26__FBSDID("$FreeBSD: releng/11.0/sys/opencrypto/crypto.c 299202 2016-05-06 23:37:19Z pfg $");
27
28/*
29 * Cryptographic Subsystem.
30 *
31 * This code is derived from the Openbsd Cryptographic Framework (OCF)
32 * that has the copyright shown below.  Very little of the original
33 * code remains.
34 */
35
36/*-
37 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
38 *
39 * This code was written by Angelos D. Keromytis in Athens, Greece, in
40 * February 2000. Network Security Technologies Inc. (NSTI) kindly
41 * supported the development of this code.
42 *
43 * Copyright (c) 2000, 2001 Angelos D. Keromytis
44 *
45 * Permission to use, copy, and modify this software with or without fee
46 * is hereby granted, provided that this entire notice is included in
47 * all source code copies of any software which is or includes a copy or
48 * modification of this software.
49 *
50 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
51 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
52 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
53 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
54 * PURPOSE.
55 */
56
57#define	CRYPTO_TIMING				/* enable timing support */
58
59#include "opt_ddb.h"
60
61#include <sys/param.h>
62#include <sys/systm.h>
63#include <sys/eventhandler.h>
64#include <sys/kernel.h>
65#include <sys/kthread.h>
66#include <sys/lock.h>
67#include <sys/module.h>
68#include <sys/mutex.h>
69#include <sys/malloc.h>
70#include <sys/proc.h>
71#include <sys/sdt.h>
72#include <sys/sysctl.h>
73
74#include <ddb/ddb.h>
75
76#include <vm/uma.h>
77#include <opencrypto/cryptodev.h>
78#include <opencrypto/xform.h>			/* XXX for M_XDATA */
79
80#include <sys/kobj.h>
81#include <sys/bus.h>
82#include "cryptodev_if.h"
83
84#if defined(__i386__) || defined(__amd64__)
85#include <machine/pcb.h>
86#endif
87
88SDT_PROVIDER_DEFINE(opencrypto);
89
90/*
91 * Crypto drivers register themselves by allocating a slot in the
92 * crypto_drivers table with crypto_get_driverid() and then registering
93 * each algorithm they support with crypto_register() and crypto_kregister().
94 */
95static	struct mtx crypto_drivers_mtx;		/* lock on driver table */
96#define	CRYPTO_DRIVER_LOCK()	mtx_lock(&crypto_drivers_mtx)
97#define	CRYPTO_DRIVER_UNLOCK()	mtx_unlock(&crypto_drivers_mtx)
98#define	CRYPTO_DRIVER_ASSERT()	mtx_assert(&crypto_drivers_mtx, MA_OWNED)
99
100/*
101 * Crypto device/driver capabilities structure.
102 *
103 * Synchronization:
104 * (d) - protected by CRYPTO_DRIVER_LOCK()
105 * (q) - protected by CRYPTO_Q_LOCK()
106 * Not tagged fields are read-only.
107 */
108struct cryptocap {
109	device_t	cc_dev;			/* (d) device/driver */
110	u_int32_t	cc_sessions;		/* (d) # of sessions */
111	u_int32_t	cc_koperations;		/* (d) # os asym operations */
112	/*
113	 * Largest possible operator length (in bits) for each type of
114	 * encryption algorithm. XXX not used
115	 */
116	u_int16_t	cc_max_op_len[CRYPTO_ALGORITHM_MAX + 1];
117	u_int8_t	cc_alg[CRYPTO_ALGORITHM_MAX + 1];
118	u_int8_t	cc_kalg[CRK_ALGORITHM_MAX + 1];
119
120	int		cc_flags;		/* (d) flags */
121#define CRYPTOCAP_F_CLEANUP	0x80000000	/* needs resource cleanup */
122	int		cc_qblocked;		/* (q) symmetric q blocked */
123	int		cc_kqblocked;		/* (q) asymmetric q blocked */
124};
125static	struct cryptocap *crypto_drivers = NULL;
126static	int crypto_drivers_num = 0;
127
128/*
129 * There are two queues for crypto requests; one for symmetric (e.g.
130 * cipher) operations and one for asymmetric (e.g. MOD)operations.
131 * A single mutex is used to lock access to both queues.  We could
132 * have one per-queue but having one simplifies handling of block/unblock
133 * operations.
134 */
135static	int crp_sleep = 0;
136static	TAILQ_HEAD(,cryptop) crp_q;		/* request queues */
137static	TAILQ_HEAD(,cryptkop) crp_kq;
138static	struct mtx crypto_q_mtx;
139#define	CRYPTO_Q_LOCK()		mtx_lock(&crypto_q_mtx)
140#define	CRYPTO_Q_UNLOCK()	mtx_unlock(&crypto_q_mtx)
141
142/*
143 * There are two queues for processing completed crypto requests; one
144 * for the symmetric and one for the asymmetric ops.  We only need one
145 * but have two to avoid type futzing (cryptop vs. cryptkop).  A single
146 * mutex is used to lock access to both queues.  Note that this lock
147 * must be separate from the lock on request queues to insure driver
148 * callbacks don't generate lock order reversals.
149 */
150static	TAILQ_HEAD(,cryptop) crp_ret_q;		/* callback queues */
151static	TAILQ_HEAD(,cryptkop) crp_ret_kq;
152static	struct mtx crypto_ret_q_mtx;
153#define	CRYPTO_RETQ_LOCK()	mtx_lock(&crypto_ret_q_mtx)
154#define	CRYPTO_RETQ_UNLOCK()	mtx_unlock(&crypto_ret_q_mtx)
155#define	CRYPTO_RETQ_EMPTY()	(TAILQ_EMPTY(&crp_ret_q) && TAILQ_EMPTY(&crp_ret_kq))
156
157static	uma_zone_t cryptop_zone;
158static	uma_zone_t cryptodesc_zone;
159
160int	crypto_userasymcrypto = 1;	/* userland may do asym crypto reqs */
161SYSCTL_INT(_kern, OID_AUTO, userasymcrypto, CTLFLAG_RW,
162	   &crypto_userasymcrypto, 0,
163	   "Enable/disable user-mode access to asymmetric crypto support");
164int	crypto_devallowsoft = 0;	/* only use hardware crypto */
165SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RW,
166	   &crypto_devallowsoft, 0,
167	   "Enable/disable use of software crypto by /dev/crypto");
168
169MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records");
170
171static	void crypto_proc(void);
172static	struct proc *cryptoproc;
173static	void crypto_ret_proc(void);
174static	struct proc *cryptoretproc;
175static	void crypto_destroy(void);
176static	int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint);
177static	int crypto_kinvoke(struct cryptkop *krp, int flags);
178
179static	struct cryptostats cryptostats;
180SYSCTL_STRUCT(_kern, OID_AUTO, crypto_stats, CTLFLAG_RW, &cryptostats,
181	    cryptostats, "Crypto system statistics");
182
183#ifdef CRYPTO_TIMING
184static	int crypto_timing = 0;
185SYSCTL_INT(_debug, OID_AUTO, crypto_timing, CTLFLAG_RW,
186	   &crypto_timing, 0, "Enable/disable crypto timing support");
187#endif
188
189static int
190crypto_init(void)
191{
192	int error;
193
194	mtx_init(&crypto_drivers_mtx, "crypto", "crypto driver table",
195		MTX_DEF|MTX_QUIET);
196
197	TAILQ_INIT(&crp_q);
198	TAILQ_INIT(&crp_kq);
199	mtx_init(&crypto_q_mtx, "crypto", "crypto op queues", MTX_DEF);
200
201	TAILQ_INIT(&crp_ret_q);
202	TAILQ_INIT(&crp_ret_kq);
203	mtx_init(&crypto_ret_q_mtx, "crypto", "crypto return queues", MTX_DEF);
204
205	cryptop_zone = uma_zcreate("cryptop", sizeof (struct cryptop),
206				    0, 0, 0, 0,
207				    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
208	cryptodesc_zone = uma_zcreate("cryptodesc", sizeof (struct cryptodesc),
209				    0, 0, 0, 0,
210				    UMA_ALIGN_PTR, UMA_ZONE_ZINIT);
211	if (cryptodesc_zone == NULL || cryptop_zone == NULL) {
212		printf("crypto_init: cannot setup crypto zones\n");
213		error = ENOMEM;
214		goto bad;
215	}
216
217	crypto_drivers_num = CRYPTO_DRIVERS_INITIAL;
218	crypto_drivers = malloc(crypto_drivers_num *
219	    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT | M_ZERO);
220	if (crypto_drivers == NULL) {
221		printf("crypto_init: cannot setup crypto drivers\n");
222		error = ENOMEM;
223		goto bad;
224	}
225
226	error = kproc_create((void (*)(void *)) crypto_proc, NULL,
227		    &cryptoproc, 0, 0, "crypto");
228	if (error) {
229		printf("crypto_init: cannot start crypto thread; error %d",
230			error);
231		goto bad;
232	}
233
234	error = kproc_create((void (*)(void *)) crypto_ret_proc, NULL,
235		    &cryptoretproc, 0, 0, "crypto returns");
236	if (error) {
237		printf("crypto_init: cannot start cryptoret thread; error %d",
238			error);
239		goto bad;
240	}
241	return 0;
242bad:
243	crypto_destroy();
244	return error;
245}
246
247/*
248 * Signal a crypto thread to terminate.  We use the driver
249 * table lock to synchronize the sleep/wakeups so that we
250 * are sure the threads have terminated before we release
251 * the data structures they use.  See crypto_finis below
252 * for the other half of this song-and-dance.
253 */
254static void
255crypto_terminate(struct proc **pp, void *q)
256{
257	struct proc *p;
258
259	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
260	p = *pp;
261	*pp = NULL;
262	if (p) {
263		wakeup_one(q);
264		PROC_LOCK(p);		/* NB: insure we don't miss wakeup */
265		CRYPTO_DRIVER_UNLOCK();	/* let crypto_finis progress */
266		msleep(p, &p->p_mtx, PWAIT, "crypto_destroy", 0);
267		PROC_UNLOCK(p);
268		CRYPTO_DRIVER_LOCK();
269	}
270}
271
272static void
273crypto_destroy(void)
274{
275	/*
276	 * Terminate any crypto threads.
277	 */
278	CRYPTO_DRIVER_LOCK();
279	crypto_terminate(&cryptoproc, &crp_q);
280	crypto_terminate(&cryptoretproc, &crp_ret_q);
281	CRYPTO_DRIVER_UNLOCK();
282
283	/* XXX flush queues??? */
284
285	/*
286	 * Reclaim dynamically allocated resources.
287	 */
288	if (crypto_drivers != NULL)
289		free(crypto_drivers, M_CRYPTO_DATA);
290
291	if (cryptodesc_zone != NULL)
292		uma_zdestroy(cryptodesc_zone);
293	if (cryptop_zone != NULL)
294		uma_zdestroy(cryptop_zone);
295	mtx_destroy(&crypto_q_mtx);
296	mtx_destroy(&crypto_ret_q_mtx);
297	mtx_destroy(&crypto_drivers_mtx);
298}
299
300static struct cryptocap *
301crypto_checkdriver(u_int32_t hid)
302{
303	if (crypto_drivers == NULL)
304		return NULL;
305	return (hid >= crypto_drivers_num ? NULL : &crypto_drivers[hid]);
306}
307
308/*
309 * Compare a driver's list of supported algorithms against another
310 * list; return non-zero if all algorithms are supported.
311 */
312static int
313driver_suitable(const struct cryptocap *cap, const struct cryptoini *cri)
314{
315	const struct cryptoini *cr;
316
317	/* See if all the algorithms are supported. */
318	for (cr = cri; cr; cr = cr->cri_next)
319		if (cap->cc_alg[cr->cri_alg] == 0)
320			return 0;
321	return 1;
322}
323
324/*
325 * Select a driver for a new session that supports the specified
326 * algorithms and, optionally, is constrained according to the flags.
327 * The algorithm we use here is pretty stupid; just use the
328 * first driver that supports all the algorithms we need. If there
329 * are multiple drivers we choose the driver with the fewest active
330 * sessions.  We prefer hardware-backed drivers to software ones.
331 *
332 * XXX We need more smarts here (in real life too, but that's
333 * XXX another story altogether).
334 */
335static struct cryptocap *
336crypto_select_driver(const struct cryptoini *cri, int flags)
337{
338	struct cryptocap *cap, *best;
339	int match, hid;
340
341	CRYPTO_DRIVER_ASSERT();
342
343	/*
344	 * Look first for hardware crypto devices if permitted.
345	 */
346	if (flags & CRYPTOCAP_F_HARDWARE)
347		match = CRYPTOCAP_F_HARDWARE;
348	else
349		match = CRYPTOCAP_F_SOFTWARE;
350	best = NULL;
351again:
352	for (hid = 0; hid < crypto_drivers_num; hid++) {
353		cap = &crypto_drivers[hid];
354		/*
355		 * If it's not initialized, is in the process of
356		 * going away, or is not appropriate (hardware
357		 * or software based on match), then skip.
358		 */
359		if (cap->cc_dev == NULL ||
360		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
361		    (cap->cc_flags & match) == 0)
362			continue;
363
364		/* verify all the algorithms are supported. */
365		if (driver_suitable(cap, cri)) {
366			if (best == NULL ||
367			    cap->cc_sessions < best->cc_sessions)
368				best = cap;
369		}
370	}
371	if (best == NULL && match == CRYPTOCAP_F_HARDWARE &&
372	    (flags & CRYPTOCAP_F_SOFTWARE)) {
373		/* sort of an Algol 68-style for loop */
374		match = CRYPTOCAP_F_SOFTWARE;
375		goto again;
376	}
377	return best;
378}
379
380/*
381 * Create a new session.  The crid argument specifies a crypto
382 * driver to use or constraints on a driver to select (hardware
383 * only, software only, either).  Whatever driver is selected
384 * must be capable of the requested crypto algorithms.
385 */
386int
387crypto_newsession(u_int64_t *sid, struct cryptoini *cri, int crid)
388{
389	struct cryptocap *cap;
390	u_int32_t hid, lid;
391	int err;
392
393	CRYPTO_DRIVER_LOCK();
394	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
395		/*
396		 * Use specified driver; verify it is capable.
397		 */
398		cap = crypto_checkdriver(crid);
399		if (cap != NULL && !driver_suitable(cap, cri))
400			cap = NULL;
401	} else {
402		/*
403		 * No requested driver; select based on crid flags.
404		 */
405		cap = crypto_select_driver(cri, crid);
406		/*
407		 * if NULL then can't do everything in one session.
408		 * XXX Fix this. We need to inject a "virtual" session
409		 * XXX layer right about here.
410		 */
411	}
412	if (cap != NULL) {
413		/* Call the driver initialization routine. */
414		hid = cap - crypto_drivers;
415		lid = hid;		/* Pass the driver ID. */
416		err = CRYPTODEV_NEWSESSION(cap->cc_dev, &lid, cri);
417		if (err == 0) {
418			(*sid) = (cap->cc_flags & 0xff000000)
419			       | (hid & 0x00ffffff);
420			(*sid) <<= 32;
421			(*sid) |= (lid & 0xffffffff);
422			cap->cc_sessions++;
423		} else
424			CRYPTDEB("dev newsession failed");
425	} else {
426		CRYPTDEB("no driver");
427		err = EINVAL;
428	}
429	CRYPTO_DRIVER_UNLOCK();
430	return err;
431}
432
433static void
434crypto_remove(struct cryptocap *cap)
435{
436
437	mtx_assert(&crypto_drivers_mtx, MA_OWNED);
438	if (cap->cc_sessions == 0 && cap->cc_koperations == 0)
439		bzero(cap, sizeof(*cap));
440}
441
442/*
443 * Delete an existing session (or a reserved session on an unregistered
444 * driver).
445 */
446int
447crypto_freesession(u_int64_t sid)
448{
449	struct cryptocap *cap;
450	u_int32_t hid;
451	int err;
452
453	CRYPTO_DRIVER_LOCK();
454
455	if (crypto_drivers == NULL) {
456		err = EINVAL;
457		goto done;
458	}
459
460	/* Determine two IDs. */
461	hid = CRYPTO_SESID2HID(sid);
462
463	if (hid >= crypto_drivers_num) {
464		err = ENOENT;
465		goto done;
466	}
467	cap = &crypto_drivers[hid];
468
469	if (cap->cc_sessions)
470		cap->cc_sessions--;
471
472	/* Call the driver cleanup routine, if available. */
473	err = CRYPTODEV_FREESESSION(cap->cc_dev, sid);
474
475	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
476		crypto_remove(cap);
477
478done:
479	CRYPTO_DRIVER_UNLOCK();
480	return err;
481}
482
483/*
484 * Return an unused driver id.  Used by drivers prior to registering
485 * support for the algorithms they handle.
486 */
487int32_t
488crypto_get_driverid(device_t dev, int flags)
489{
490	struct cryptocap *newdrv;
491	int i;
492
493	if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
494		printf("%s: no flags specified when registering driver\n",
495		    device_get_nameunit(dev));
496		return -1;
497	}
498
499	CRYPTO_DRIVER_LOCK();
500
501	for (i = 0; i < crypto_drivers_num; i++) {
502		if (crypto_drivers[i].cc_dev == NULL &&
503		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP) == 0) {
504			break;
505		}
506	}
507
508	/* Out of entries, allocate some more. */
509	if (i == crypto_drivers_num) {
510		/* Be careful about wrap-around. */
511		if (2 * crypto_drivers_num <= crypto_drivers_num) {
512			CRYPTO_DRIVER_UNLOCK();
513			printf("crypto: driver count wraparound!\n");
514			return -1;
515		}
516
517		newdrv = malloc(2 * crypto_drivers_num *
518		    sizeof(struct cryptocap), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
519		if (newdrv == NULL) {
520			CRYPTO_DRIVER_UNLOCK();
521			printf("crypto: no space to expand driver table!\n");
522			return -1;
523		}
524
525		bcopy(crypto_drivers, newdrv,
526		    crypto_drivers_num * sizeof(struct cryptocap));
527
528		crypto_drivers_num *= 2;
529
530		free(crypto_drivers, M_CRYPTO_DATA);
531		crypto_drivers = newdrv;
532	}
533
534	/* NB: state is zero'd on free */
535	crypto_drivers[i].cc_sessions = 1;	/* Mark */
536	crypto_drivers[i].cc_dev = dev;
537	crypto_drivers[i].cc_flags = flags;
538	if (bootverbose)
539		printf("crypto: assign %s driver id %u, flags %u\n",
540		    device_get_nameunit(dev), i, flags);
541
542	CRYPTO_DRIVER_UNLOCK();
543
544	return i;
545}
546
547/*
548 * Lookup a driver by name.  We match against the full device
549 * name and unit, and against just the name.  The latter gives
550 * us a simple widlcarding by device name.  On success return the
551 * driver/hardware identifier; otherwise return -1.
552 */
553int
554crypto_find_driver(const char *match)
555{
556	int i, len = strlen(match);
557
558	CRYPTO_DRIVER_LOCK();
559	for (i = 0; i < crypto_drivers_num; i++) {
560		device_t dev = crypto_drivers[i].cc_dev;
561		if (dev == NULL ||
562		    (crypto_drivers[i].cc_flags & CRYPTOCAP_F_CLEANUP))
563			continue;
564		if (strncmp(match, device_get_nameunit(dev), len) == 0 ||
565		    strncmp(match, device_get_name(dev), len) == 0)
566			break;
567	}
568	CRYPTO_DRIVER_UNLOCK();
569	return i < crypto_drivers_num ? i : -1;
570}
571
572/*
573 * Return the device_t for the specified driver or NULL
574 * if the driver identifier is invalid.
575 */
576device_t
577crypto_find_device_byhid(int hid)
578{
579	struct cryptocap *cap = crypto_checkdriver(hid);
580	return cap != NULL ? cap->cc_dev : NULL;
581}
582
583/*
584 * Return the device/driver capabilities.
585 */
586int
587crypto_getcaps(int hid)
588{
589	struct cryptocap *cap = crypto_checkdriver(hid);
590	return cap != NULL ? cap->cc_flags : 0;
591}
592
593/*
594 * Register support for a key-related algorithm.  This routine
595 * is called once for each algorithm supported a driver.
596 */
597int
598crypto_kregister(u_int32_t driverid, int kalg, u_int32_t flags)
599{
600	struct cryptocap *cap;
601	int err;
602
603	CRYPTO_DRIVER_LOCK();
604
605	cap = crypto_checkdriver(driverid);
606	if (cap != NULL &&
607	    (CRK_ALGORITM_MIN <= kalg && kalg <= CRK_ALGORITHM_MAX)) {
608		/*
609		 * XXX Do some performance testing to determine placing.
610		 * XXX We probably need an auxiliary data structure that
611		 * XXX describes relative performances.
612		 */
613
614		cap->cc_kalg[kalg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
615		if (bootverbose)
616			printf("crypto: %s registers key alg %u flags %u\n"
617				, device_get_nameunit(cap->cc_dev)
618				, kalg
619				, flags
620			);
621		err = 0;
622	} else
623		err = EINVAL;
624
625	CRYPTO_DRIVER_UNLOCK();
626	return err;
627}
628
629/*
630 * Register support for a non-key-related algorithm.  This routine
631 * is called once for each such algorithm supported by a driver.
632 */
633int
634crypto_register(u_int32_t driverid, int alg, u_int16_t maxoplen,
635    u_int32_t flags)
636{
637	struct cryptocap *cap;
638	int err;
639
640	CRYPTO_DRIVER_LOCK();
641
642	cap = crypto_checkdriver(driverid);
643	/* NB: algorithms are in the range [1..max] */
644	if (cap != NULL &&
645	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX)) {
646		/*
647		 * XXX Do some performance testing to determine placing.
648		 * XXX We probably need an auxiliary data structure that
649		 * XXX describes relative performances.
650		 */
651
652		cap->cc_alg[alg] = flags | CRYPTO_ALG_FLAG_SUPPORTED;
653		cap->cc_max_op_len[alg] = maxoplen;
654		if (bootverbose)
655			printf("crypto: %s registers alg %u flags %u maxoplen %u\n"
656				, device_get_nameunit(cap->cc_dev)
657				, alg
658				, flags
659				, maxoplen
660			);
661		cap->cc_sessions = 0;		/* Unmark */
662		err = 0;
663	} else
664		err = EINVAL;
665
666	CRYPTO_DRIVER_UNLOCK();
667	return err;
668}
669
670static void
671driver_finis(struct cryptocap *cap)
672{
673	u_int32_t ses, kops;
674
675	CRYPTO_DRIVER_ASSERT();
676
677	ses = cap->cc_sessions;
678	kops = cap->cc_koperations;
679	bzero(cap, sizeof(*cap));
680	if (ses != 0 || kops != 0) {
681		/*
682		 * If there are pending sessions,
683		 * just mark as invalid.
684		 */
685		cap->cc_flags |= CRYPTOCAP_F_CLEANUP;
686		cap->cc_sessions = ses;
687		cap->cc_koperations = kops;
688	}
689}
690
691/*
692 * Unregister a crypto driver. If there are pending sessions using it,
693 * leave enough information around so that subsequent calls using those
694 * sessions will correctly detect the driver has been unregistered and
695 * reroute requests.
696 */
697int
698crypto_unregister(u_int32_t driverid, int alg)
699{
700	struct cryptocap *cap;
701	int i, err;
702
703	CRYPTO_DRIVER_LOCK();
704	cap = crypto_checkdriver(driverid);
705	if (cap != NULL &&
706	    (CRYPTO_ALGORITHM_MIN <= alg && alg <= CRYPTO_ALGORITHM_MAX) &&
707	    cap->cc_alg[alg] != 0) {
708		cap->cc_alg[alg] = 0;
709		cap->cc_max_op_len[alg] = 0;
710
711		/* Was this the last algorithm ? */
712		for (i = 1; i <= CRYPTO_ALGORITHM_MAX; i++)
713			if (cap->cc_alg[i] != 0)
714				break;
715
716		if (i == CRYPTO_ALGORITHM_MAX + 1)
717			driver_finis(cap);
718		err = 0;
719	} else
720		err = EINVAL;
721	CRYPTO_DRIVER_UNLOCK();
722
723	return err;
724}
725
726/*
727 * Unregister all algorithms associated with a crypto driver.
728 * If there are pending sessions using it, leave enough information
729 * around so that subsequent calls using those sessions will
730 * correctly detect the driver has been unregistered and reroute
731 * requests.
732 */
733int
734crypto_unregister_all(u_int32_t driverid)
735{
736	struct cryptocap *cap;
737	int err;
738
739	CRYPTO_DRIVER_LOCK();
740	cap = crypto_checkdriver(driverid);
741	if (cap != NULL) {
742		driver_finis(cap);
743		err = 0;
744	} else
745		err = EINVAL;
746	CRYPTO_DRIVER_UNLOCK();
747
748	return err;
749}
750
751/*
752 * Clear blockage on a driver.  The what parameter indicates whether
753 * the driver is now ready for cryptop's and/or cryptokop's.
754 */
755int
756crypto_unblock(u_int32_t driverid, int what)
757{
758	struct cryptocap *cap;
759	int err;
760
761	CRYPTO_Q_LOCK();
762	cap = crypto_checkdriver(driverid);
763	if (cap != NULL) {
764		if (what & CRYPTO_SYMQ)
765			cap->cc_qblocked = 0;
766		if (what & CRYPTO_ASYMQ)
767			cap->cc_kqblocked = 0;
768		if (crp_sleep)
769			wakeup_one(&crp_q);
770		err = 0;
771	} else
772		err = EINVAL;
773	CRYPTO_Q_UNLOCK();
774
775	return err;
776}
777
778/*
779 * Add a crypto request to a queue, to be processed by the kernel thread.
780 */
781int
782crypto_dispatch(struct cryptop *crp)
783{
784	struct cryptocap *cap;
785	u_int32_t hid;
786	int result;
787
788	cryptostats.cs_ops++;
789
790#ifdef CRYPTO_TIMING
791	if (crypto_timing)
792		binuptime(&crp->crp_tstamp);
793#endif
794
795	hid = CRYPTO_SESID2HID(crp->crp_sid);
796
797	if ((crp->crp_flags & CRYPTO_F_BATCH) == 0) {
798		/*
799		 * Caller marked the request to be processed
800		 * immediately; dispatch it directly to the
801		 * driver unless the driver is currently blocked.
802		 */
803		cap = crypto_checkdriver(hid);
804		/* Driver cannot disappeared when there is an active session. */
805		KASSERT(cap != NULL, ("%s: Driver disappeared.", __func__));
806		if (!cap->cc_qblocked) {
807			result = crypto_invoke(cap, crp, 0);
808			if (result != ERESTART)
809				return (result);
810			/*
811			 * The driver ran out of resources, put the request on
812			 * the queue.
813			 */
814		}
815	}
816	CRYPTO_Q_LOCK();
817	TAILQ_INSERT_TAIL(&crp_q, crp, crp_next);
818	if (crp_sleep)
819		wakeup_one(&crp_q);
820	CRYPTO_Q_UNLOCK();
821	return 0;
822}
823
824/*
825 * Add an asymetric crypto request to a queue,
826 * to be processed by the kernel thread.
827 */
828int
829crypto_kdispatch(struct cryptkop *krp)
830{
831	int error;
832
833	cryptostats.cs_kops++;
834
835	error = crypto_kinvoke(krp, krp->krp_crid);
836	if (error == ERESTART) {
837		CRYPTO_Q_LOCK();
838		TAILQ_INSERT_TAIL(&crp_kq, krp, krp_next);
839		if (crp_sleep)
840			wakeup_one(&crp_q);
841		CRYPTO_Q_UNLOCK();
842		error = 0;
843	}
844	return error;
845}
846
847/*
848 * Verify a driver is suitable for the specified operation.
849 */
850static __inline int
851kdriver_suitable(const struct cryptocap *cap, const struct cryptkop *krp)
852{
853	return (cap->cc_kalg[krp->krp_op] & CRYPTO_ALG_FLAG_SUPPORTED) != 0;
854}
855
856/*
857 * Select a driver for an asym operation.  The driver must
858 * support the necessary algorithm.  The caller can constrain
859 * which device is selected with the flags parameter.  The
860 * algorithm we use here is pretty stupid; just use the first
861 * driver that supports the algorithms we need. If there are
862 * multiple suitable drivers we choose the driver with the
863 * fewest active operations.  We prefer hardware-backed
864 * drivers to software ones when either may be used.
865 */
866static struct cryptocap *
867crypto_select_kdriver(const struct cryptkop *krp, int flags)
868{
869	struct cryptocap *cap, *best, *blocked;
870	int match, hid;
871
872	CRYPTO_DRIVER_ASSERT();
873
874	/*
875	 * Look first for hardware crypto devices if permitted.
876	 */
877	if (flags & CRYPTOCAP_F_HARDWARE)
878		match = CRYPTOCAP_F_HARDWARE;
879	else
880		match = CRYPTOCAP_F_SOFTWARE;
881	best = NULL;
882	blocked = NULL;
883again:
884	for (hid = 0; hid < crypto_drivers_num; hid++) {
885		cap = &crypto_drivers[hid];
886		/*
887		 * If it's not initialized, is in the process of
888		 * going away, or is not appropriate (hardware
889		 * or software based on match), then skip.
890		 */
891		if (cap->cc_dev == NULL ||
892		    (cap->cc_flags & CRYPTOCAP_F_CLEANUP) ||
893		    (cap->cc_flags & match) == 0)
894			continue;
895
896		/* verify all the algorithms are supported. */
897		if (kdriver_suitable(cap, krp)) {
898			if (best == NULL ||
899			    cap->cc_koperations < best->cc_koperations)
900				best = cap;
901		}
902	}
903	if (best != NULL)
904		return best;
905	if (match == CRYPTOCAP_F_HARDWARE && (flags & CRYPTOCAP_F_SOFTWARE)) {
906		/* sort of an Algol 68-style for loop */
907		match = CRYPTOCAP_F_SOFTWARE;
908		goto again;
909	}
910	return best;
911}
912
913/*
914 * Dispatch an asymmetric crypto request.
915 */
916static int
917crypto_kinvoke(struct cryptkop *krp, int crid)
918{
919	struct cryptocap *cap = NULL;
920	int error;
921
922	KASSERT(krp != NULL, ("%s: krp == NULL", __func__));
923	KASSERT(krp->krp_callback != NULL,
924	    ("%s: krp->crp_callback == NULL", __func__));
925
926	CRYPTO_DRIVER_LOCK();
927	if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) {
928		cap = crypto_checkdriver(crid);
929		if (cap != NULL) {
930			/*
931			 * Driver present, it must support the necessary
932			 * algorithm and, if s/w drivers are excluded,
933			 * it must be registered as hardware-backed.
934			 */
935			if (!kdriver_suitable(cap, krp) ||
936			    (!crypto_devallowsoft &&
937			     (cap->cc_flags & CRYPTOCAP_F_HARDWARE) == 0))
938				cap = NULL;
939		}
940	} else {
941		/*
942		 * No requested driver; select based on crid flags.
943		 */
944		if (!crypto_devallowsoft)	/* NB: disallow s/w drivers */
945			crid &= ~CRYPTOCAP_F_SOFTWARE;
946		cap = crypto_select_kdriver(krp, crid);
947	}
948	if (cap != NULL && !cap->cc_kqblocked) {
949		krp->krp_hid = cap - crypto_drivers;
950		cap->cc_koperations++;
951		CRYPTO_DRIVER_UNLOCK();
952		error = CRYPTODEV_KPROCESS(cap->cc_dev, krp, 0);
953		CRYPTO_DRIVER_LOCK();
954		if (error == ERESTART) {
955			cap->cc_koperations--;
956			CRYPTO_DRIVER_UNLOCK();
957			return (error);
958		}
959	} else {
960		/*
961		 * NB: cap is !NULL if device is blocked; in
962		 *     that case return ERESTART so the operation
963		 *     is resubmitted if possible.
964		 */
965		error = (cap == NULL) ? ENODEV : ERESTART;
966	}
967	CRYPTO_DRIVER_UNLOCK();
968
969	if (error) {
970		krp->krp_status = error;
971		crypto_kdone(krp);
972	}
973	return 0;
974}
975
976#ifdef CRYPTO_TIMING
977static void
978crypto_tstat(struct cryptotstat *ts, struct bintime *bt)
979{
980	struct bintime now, delta;
981	struct timespec t;
982	uint64_t u;
983
984	binuptime(&now);
985	u = now.frac;
986	delta.frac = now.frac - bt->frac;
987	delta.sec = now.sec - bt->sec;
988	if (u < delta.frac)
989		delta.sec--;
990	bintime2timespec(&delta, &t);
991	timespecadd(&ts->acc, &t);
992	if (timespeccmp(&t, &ts->min, <))
993		ts->min = t;
994	if (timespeccmp(&t, &ts->max, >))
995		ts->max = t;
996	ts->count++;
997
998	*bt = now;
999}
1000#endif
1001
1002/*
1003 * Dispatch a crypto request to the appropriate crypto devices.
1004 */
1005static int
1006crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint)
1007{
1008
1009	KASSERT(crp != NULL, ("%s: crp == NULL", __func__));
1010	KASSERT(crp->crp_callback != NULL,
1011	    ("%s: crp->crp_callback == NULL", __func__));
1012	KASSERT(crp->crp_desc != NULL, ("%s: crp->crp_desc == NULL", __func__));
1013
1014#ifdef CRYPTO_TIMING
1015	if (crypto_timing)
1016		crypto_tstat(&cryptostats.cs_invoke, &crp->crp_tstamp);
1017#endif
1018	if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) {
1019		struct cryptodesc *crd;
1020		u_int64_t nid;
1021
1022		/*
1023		 * Driver has unregistered; migrate the session and return
1024		 * an error to the caller so they'll resubmit the op.
1025		 *
1026		 * XXX: What if there are more already queued requests for this
1027		 *      session?
1028		 */
1029		crypto_freesession(crp->crp_sid);
1030
1031		for (crd = crp->crp_desc; crd->crd_next; crd = crd->crd_next)
1032			crd->CRD_INI.cri_next = &(crd->crd_next->CRD_INI);
1033
1034		/* XXX propagate flags from initial session? */
1035		if (crypto_newsession(&nid, &(crp->crp_desc->CRD_INI),
1036		    CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0)
1037			crp->crp_sid = nid;
1038
1039		crp->crp_etype = EAGAIN;
1040		crypto_done(crp);
1041		return 0;
1042	} else {
1043		/*
1044		 * Invoke the driver to process the request.
1045		 */
1046		return CRYPTODEV_PROCESS(cap->cc_dev, crp, hint);
1047	}
1048}
1049
1050/*
1051 * Release a set of crypto descriptors.
1052 */
1053void
1054crypto_freereq(struct cryptop *crp)
1055{
1056	struct cryptodesc *crd;
1057
1058	if (crp == NULL)
1059		return;
1060
1061#ifdef DIAGNOSTIC
1062	{
1063		struct cryptop *crp2;
1064
1065		CRYPTO_Q_LOCK();
1066		TAILQ_FOREACH(crp2, &crp_q, crp_next) {
1067			KASSERT(crp2 != crp,
1068			    ("Freeing cryptop from the crypto queue (%p).",
1069			    crp));
1070		}
1071		CRYPTO_Q_UNLOCK();
1072		CRYPTO_RETQ_LOCK();
1073		TAILQ_FOREACH(crp2, &crp_ret_q, crp_next) {
1074			KASSERT(crp2 != crp,
1075			    ("Freeing cryptop from the return queue (%p).",
1076			    crp));
1077		}
1078		CRYPTO_RETQ_UNLOCK();
1079	}
1080#endif
1081
1082	while ((crd = crp->crp_desc) != NULL) {
1083		crp->crp_desc = crd->crd_next;
1084		uma_zfree(cryptodesc_zone, crd);
1085	}
1086	uma_zfree(cryptop_zone, crp);
1087}
1088
1089/*
1090 * Acquire a set of crypto descriptors.
1091 */
1092struct cryptop *
1093crypto_getreq(int num)
1094{
1095	struct cryptodesc *crd;
1096	struct cryptop *crp;
1097
1098	crp = uma_zalloc(cryptop_zone, M_NOWAIT|M_ZERO);
1099	if (crp != NULL) {
1100		while (num--) {
1101			crd = uma_zalloc(cryptodesc_zone, M_NOWAIT|M_ZERO);
1102			if (crd == NULL) {
1103				crypto_freereq(crp);
1104				return NULL;
1105			}
1106
1107			crd->crd_next = crp->crp_desc;
1108			crp->crp_desc = crd;
1109		}
1110	}
1111	return crp;
1112}
1113
1114/*
1115 * Invoke the callback on behalf of the driver.
1116 */
1117void
1118crypto_done(struct cryptop *crp)
1119{
1120	KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0,
1121		("crypto_done: op already done, flags 0x%x", crp->crp_flags));
1122	crp->crp_flags |= CRYPTO_F_DONE;
1123	if (crp->crp_etype != 0)
1124		cryptostats.cs_errs++;
1125#ifdef CRYPTO_TIMING
1126	if (crypto_timing)
1127		crypto_tstat(&cryptostats.cs_done, &crp->crp_tstamp);
1128#endif
1129	/*
1130	 * CBIMM means unconditionally do the callback immediately;
1131	 * CBIFSYNC means do the callback immediately only if the
1132	 * operation was done synchronously.  Both are used to avoid
1133	 * doing extraneous context switches; the latter is mostly
1134	 * used with the software crypto driver.
1135	 */
1136	if ((crp->crp_flags & CRYPTO_F_CBIMM) ||
1137	    ((crp->crp_flags & CRYPTO_F_CBIFSYNC) &&
1138	     (CRYPTO_SESID2CAPS(crp->crp_sid) & CRYPTOCAP_F_SYNC))) {
1139		/*
1140		 * Do the callback directly.  This is ok when the
1141		 * callback routine does very little (e.g. the
1142		 * /dev/crypto callback method just does a wakeup).
1143		 */
1144#ifdef CRYPTO_TIMING
1145		if (crypto_timing) {
1146			/*
1147			 * NB: We must copy the timestamp before
1148			 * doing the callback as the cryptop is
1149			 * likely to be reclaimed.
1150			 */
1151			struct bintime t = crp->crp_tstamp;
1152			crypto_tstat(&cryptostats.cs_cb, &t);
1153			crp->crp_callback(crp);
1154			crypto_tstat(&cryptostats.cs_finis, &t);
1155		} else
1156#endif
1157			crp->crp_callback(crp);
1158	} else {
1159		/*
1160		 * Normal case; queue the callback for the thread.
1161		 */
1162		CRYPTO_RETQ_LOCK();
1163		if (CRYPTO_RETQ_EMPTY())
1164			wakeup_one(&crp_ret_q);	/* shared wait channel */
1165		TAILQ_INSERT_TAIL(&crp_ret_q, crp, crp_next);
1166		CRYPTO_RETQ_UNLOCK();
1167	}
1168}
1169
1170/*
1171 * Invoke the callback on behalf of the driver.
1172 */
1173void
1174crypto_kdone(struct cryptkop *krp)
1175{
1176	struct cryptocap *cap;
1177
1178	if (krp->krp_status != 0)
1179		cryptostats.cs_kerrs++;
1180	CRYPTO_DRIVER_LOCK();
1181	/* XXX: What if driver is loaded in the meantime? */
1182	if (krp->krp_hid < crypto_drivers_num) {
1183		cap = &crypto_drivers[krp->krp_hid];
1184		KASSERT(cap->cc_koperations > 0, ("cc_koperations == 0"));
1185		cap->cc_koperations--;
1186		if (cap->cc_flags & CRYPTOCAP_F_CLEANUP)
1187			crypto_remove(cap);
1188	}
1189	CRYPTO_DRIVER_UNLOCK();
1190	CRYPTO_RETQ_LOCK();
1191	if (CRYPTO_RETQ_EMPTY())
1192		wakeup_one(&crp_ret_q);		/* shared wait channel */
1193	TAILQ_INSERT_TAIL(&crp_ret_kq, krp, krp_next);
1194	CRYPTO_RETQ_UNLOCK();
1195}
1196
1197int
1198crypto_getfeat(int *featp)
1199{
1200	int hid, kalg, feat = 0;
1201
1202	CRYPTO_DRIVER_LOCK();
1203	for (hid = 0; hid < crypto_drivers_num; hid++) {
1204		const struct cryptocap *cap = &crypto_drivers[hid];
1205
1206		if ((cap->cc_flags & CRYPTOCAP_F_SOFTWARE) &&
1207		    !crypto_devallowsoft) {
1208			continue;
1209		}
1210		for (kalg = 0; kalg < CRK_ALGORITHM_MAX; kalg++)
1211			if (cap->cc_kalg[kalg] & CRYPTO_ALG_FLAG_SUPPORTED)
1212				feat |=  1 << kalg;
1213	}
1214	CRYPTO_DRIVER_UNLOCK();
1215	*featp = feat;
1216	return (0);
1217}
1218
1219/*
1220 * Terminate a thread at module unload.  The process that
1221 * initiated this is waiting for us to signal that we're gone;
1222 * wake it up and exit.  We use the driver table lock to insure
1223 * we don't do the wakeup before they're waiting.  There is no
1224 * race here because the waiter sleeps on the proc lock for the
1225 * thread so it gets notified at the right time because of an
1226 * extra wakeup that's done in exit1().
1227 */
1228static void
1229crypto_finis(void *chan)
1230{
1231	CRYPTO_DRIVER_LOCK();
1232	wakeup_one(chan);
1233	CRYPTO_DRIVER_UNLOCK();
1234	kproc_exit(0);
1235}
1236
1237/*
1238 * Crypto thread, dispatches crypto requests.
1239 */
1240static void
1241crypto_proc(void)
1242{
1243	struct cryptop *crp, *submit;
1244	struct cryptkop *krp;
1245	struct cryptocap *cap;
1246	u_int32_t hid;
1247	int result, hint;
1248
1249#if defined(__i386__) || defined(__amd64__)
1250	fpu_kern_thread(FPU_KERN_NORMAL);
1251#endif
1252
1253	CRYPTO_Q_LOCK();
1254	for (;;) {
1255		/*
1256		 * Find the first element in the queue that can be
1257		 * processed and look-ahead to see if multiple ops
1258		 * are ready for the same driver.
1259		 */
1260		submit = NULL;
1261		hint = 0;
1262		TAILQ_FOREACH(crp, &crp_q, crp_next) {
1263			hid = CRYPTO_SESID2HID(crp->crp_sid);
1264			cap = crypto_checkdriver(hid);
1265			/*
1266			 * Driver cannot disappeared when there is an active
1267			 * session.
1268			 */
1269			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1270			    __func__, __LINE__));
1271			if (cap == NULL || cap->cc_dev == NULL) {
1272				/* Op needs to be migrated, process it. */
1273				if (submit == NULL)
1274					submit = crp;
1275				break;
1276			}
1277			if (!cap->cc_qblocked) {
1278				if (submit != NULL) {
1279					/*
1280					 * We stop on finding another op,
1281					 * regardless whether its for the same
1282					 * driver or not.  We could keep
1283					 * searching the queue but it might be
1284					 * better to just use a per-driver
1285					 * queue instead.
1286					 */
1287					if (CRYPTO_SESID2HID(submit->crp_sid) == hid)
1288						hint = CRYPTO_HINT_MORE;
1289					break;
1290				} else {
1291					submit = crp;
1292					if ((submit->crp_flags & CRYPTO_F_BATCH) == 0)
1293						break;
1294					/* keep scanning for more are q'd */
1295				}
1296			}
1297		}
1298		if (submit != NULL) {
1299			TAILQ_REMOVE(&crp_q, submit, crp_next);
1300			hid = CRYPTO_SESID2HID(submit->crp_sid);
1301			cap = crypto_checkdriver(hid);
1302			KASSERT(cap != NULL, ("%s:%u Driver disappeared.",
1303			    __func__, __LINE__));
1304			result = crypto_invoke(cap, submit, hint);
1305			if (result == ERESTART) {
1306				/*
1307				 * The driver ran out of resources, mark the
1308				 * driver ``blocked'' for cryptop's and put
1309				 * the request back in the queue.  It would
1310				 * best to put the request back where we got
1311				 * it but that's hard so for now we put it
1312				 * at the front.  This should be ok; putting
1313				 * it at the end does not work.
1314				 */
1315				/* XXX validate sid again? */
1316				crypto_drivers[CRYPTO_SESID2HID(submit->crp_sid)].cc_qblocked = 1;
1317				TAILQ_INSERT_HEAD(&crp_q, submit, crp_next);
1318				cryptostats.cs_blocks++;
1319			}
1320		}
1321
1322		/* As above, but for key ops */
1323		TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1324			cap = crypto_checkdriver(krp->krp_hid);
1325			if (cap == NULL || cap->cc_dev == NULL) {
1326				/*
1327				 * Operation needs to be migrated, invalidate
1328				 * the assigned device so it will reselect a
1329				 * new one below.  Propagate the original
1330				 * crid selection flags if supplied.
1331				 */
1332				krp->krp_hid = krp->krp_crid &
1333				    (CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE);
1334				if (krp->krp_hid == 0)
1335					krp->krp_hid =
1336				    CRYPTOCAP_F_SOFTWARE|CRYPTOCAP_F_HARDWARE;
1337				break;
1338			}
1339			if (!cap->cc_kqblocked)
1340				break;
1341		}
1342		if (krp != NULL) {
1343			TAILQ_REMOVE(&crp_kq, krp, krp_next);
1344			result = crypto_kinvoke(krp, krp->krp_hid);
1345			if (result == ERESTART) {
1346				/*
1347				 * The driver ran out of resources, mark the
1348				 * driver ``blocked'' for cryptkop's and put
1349				 * the request back in the queue.  It would
1350				 * best to put the request back where we got
1351				 * it but that's hard so for now we put it
1352				 * at the front.  This should be ok; putting
1353				 * it at the end does not work.
1354				 */
1355				/* XXX validate sid again? */
1356				crypto_drivers[krp->krp_hid].cc_kqblocked = 1;
1357				TAILQ_INSERT_HEAD(&crp_kq, krp, krp_next);
1358				cryptostats.cs_kblocks++;
1359			}
1360		}
1361
1362		if (submit == NULL && krp == NULL) {
1363			/*
1364			 * Nothing more to be processed.  Sleep until we're
1365			 * woken because there are more ops to process.
1366			 * This happens either by submission or by a driver
1367			 * becoming unblocked and notifying us through
1368			 * crypto_unblock.  Note that when we wakeup we
1369			 * start processing each queue again from the
1370			 * front. It's not clear that it's important to
1371			 * preserve this ordering since ops may finish
1372			 * out of order if dispatched to different devices
1373			 * and some become blocked while others do not.
1374			 */
1375			crp_sleep = 1;
1376			msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0);
1377			crp_sleep = 0;
1378			if (cryptoproc == NULL)
1379				break;
1380			cryptostats.cs_intrs++;
1381		}
1382	}
1383	CRYPTO_Q_UNLOCK();
1384
1385	crypto_finis(&crp_q);
1386}
1387
1388/*
1389 * Crypto returns thread, does callbacks for processed crypto requests.
1390 * Callbacks are done here, rather than in the crypto drivers, because
1391 * callbacks typically are expensive and would slow interrupt handling.
1392 */
1393static void
1394crypto_ret_proc(void)
1395{
1396	struct cryptop *crpt;
1397	struct cryptkop *krpt;
1398
1399	CRYPTO_RETQ_LOCK();
1400	for (;;) {
1401		/* Harvest return q's for completed ops */
1402		crpt = TAILQ_FIRST(&crp_ret_q);
1403		if (crpt != NULL)
1404			TAILQ_REMOVE(&crp_ret_q, crpt, crp_next);
1405
1406		krpt = TAILQ_FIRST(&crp_ret_kq);
1407		if (krpt != NULL)
1408			TAILQ_REMOVE(&crp_ret_kq, krpt, krp_next);
1409
1410		if (crpt != NULL || krpt != NULL) {
1411			CRYPTO_RETQ_UNLOCK();
1412			/*
1413			 * Run callbacks unlocked.
1414			 */
1415			if (crpt != NULL) {
1416#ifdef CRYPTO_TIMING
1417				if (crypto_timing) {
1418					/*
1419					 * NB: We must copy the timestamp before
1420					 * doing the callback as the cryptop is
1421					 * likely to be reclaimed.
1422					 */
1423					struct bintime t = crpt->crp_tstamp;
1424					crypto_tstat(&cryptostats.cs_cb, &t);
1425					crpt->crp_callback(crpt);
1426					crypto_tstat(&cryptostats.cs_finis, &t);
1427				} else
1428#endif
1429					crpt->crp_callback(crpt);
1430			}
1431			if (krpt != NULL)
1432				krpt->krp_callback(krpt);
1433			CRYPTO_RETQ_LOCK();
1434		} else {
1435			/*
1436			 * Nothing more to be processed.  Sleep until we're
1437			 * woken because there are more returns to process.
1438			 */
1439			msleep(&crp_ret_q, &crypto_ret_q_mtx, PWAIT,
1440				"crypto_ret_wait", 0);
1441			if (cryptoretproc == NULL)
1442				break;
1443			cryptostats.cs_rets++;
1444		}
1445	}
1446	CRYPTO_RETQ_UNLOCK();
1447
1448	crypto_finis(&crp_ret_q);
1449}
1450
1451#ifdef DDB
1452static void
1453db_show_drivers(void)
1454{
1455	int hid;
1456
1457	db_printf("%12s %4s %4s %8s %2s %2s\n"
1458		, "Device"
1459		, "Ses"
1460		, "Kops"
1461		, "Flags"
1462		, "QB"
1463		, "KB"
1464	);
1465	for (hid = 0; hid < crypto_drivers_num; hid++) {
1466		const struct cryptocap *cap = &crypto_drivers[hid];
1467		if (cap->cc_dev == NULL)
1468			continue;
1469		db_printf("%-12s %4u %4u %08x %2u %2u\n"
1470		    , device_get_nameunit(cap->cc_dev)
1471		    , cap->cc_sessions
1472		    , cap->cc_koperations
1473		    , cap->cc_flags
1474		    , cap->cc_qblocked
1475		    , cap->cc_kqblocked
1476		);
1477	}
1478}
1479
1480DB_SHOW_COMMAND(crypto, db_show_crypto)
1481{
1482	struct cryptop *crp;
1483
1484	db_show_drivers();
1485	db_printf("\n");
1486
1487	db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n",
1488	    "HID", "Caps", "Ilen", "Olen", "Etype", "Flags",
1489	    "Desc", "Callback");
1490	TAILQ_FOREACH(crp, &crp_q, crp_next) {
1491		db_printf("%4u %08x %4u %4u %4u %04x %8p %8p\n"
1492		    , (int) CRYPTO_SESID2HID(crp->crp_sid)
1493		    , (int) CRYPTO_SESID2CAPS(crp->crp_sid)
1494		    , crp->crp_ilen, crp->crp_olen
1495		    , crp->crp_etype
1496		    , crp->crp_flags
1497		    , crp->crp_desc
1498		    , crp->crp_callback
1499		);
1500	}
1501	if (!TAILQ_EMPTY(&crp_ret_q)) {
1502		db_printf("\n%4s %4s %4s %8s\n",
1503		    "HID", "Etype", "Flags", "Callback");
1504		TAILQ_FOREACH(crp, &crp_ret_q, crp_next) {
1505			db_printf("%4u %4u %04x %8p\n"
1506			    , (int) CRYPTO_SESID2HID(crp->crp_sid)
1507			    , crp->crp_etype
1508			    , crp->crp_flags
1509			    , crp->crp_callback
1510			);
1511		}
1512	}
1513}
1514
1515DB_SHOW_COMMAND(kcrypto, db_show_kcrypto)
1516{
1517	struct cryptkop *krp;
1518
1519	db_show_drivers();
1520	db_printf("\n");
1521
1522	db_printf("%4s %5s %4s %4s %8s %4s %8s\n",
1523	    "Op", "Status", "#IP", "#OP", "CRID", "HID", "Callback");
1524	TAILQ_FOREACH(krp, &crp_kq, krp_next) {
1525		db_printf("%4u %5u %4u %4u %08x %4u %8p\n"
1526		    , krp->krp_op
1527		    , krp->krp_status
1528		    , krp->krp_iparams, krp->krp_oparams
1529		    , krp->krp_crid, krp->krp_hid
1530		    , krp->krp_callback
1531		);
1532	}
1533	if (!TAILQ_EMPTY(&crp_ret_q)) {
1534		db_printf("%4s %5s %8s %4s %8s\n",
1535		    "Op", "Status", "CRID", "HID", "Callback");
1536		TAILQ_FOREACH(krp, &crp_ret_kq, krp_next) {
1537			db_printf("%4u %5u %08x %4u %8p\n"
1538			    , krp->krp_op
1539			    , krp->krp_status
1540			    , krp->krp_crid, krp->krp_hid
1541			    , krp->krp_callback
1542			);
1543		}
1544	}
1545}
1546#endif
1547
1548int crypto_modevent(module_t mod, int type, void *unused);
1549
1550/*
1551 * Initialization code, both for static and dynamic loading.
1552 * Note this is not invoked with the usual MODULE_DECLARE
1553 * mechanism but instead is listed as a dependency by the
1554 * cryptosoft driver.  This guarantees proper ordering of
1555 * calls on module load/unload.
1556 */
1557int
1558crypto_modevent(module_t mod, int type, void *unused)
1559{
1560	int error = EINVAL;
1561
1562	switch (type) {
1563	case MOD_LOAD:
1564		error = crypto_init();
1565		if (error == 0 && bootverbose)
1566			printf("crypto: <crypto core>\n");
1567		break;
1568	case MOD_UNLOAD:
1569		/*XXX disallow if active sessions */
1570		error = 0;
1571		crypto_destroy();
1572		return 0;
1573	}
1574	return error;
1575}
1576MODULE_VERSION(crypto, 1);
1577MODULE_DEPEND(crypto, zlib, 1, 1, 1);
1578