tcp_timewait.c revision 165657
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 165657 2006-12-30 17:53:28Z jhb $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#ifdef INET6
49#include <sys/domain.h>
50#endif
51#include <sys/priv.h>
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116#include <security/mac/mac_framework.h>
117
118int	tcp_mssdflt = TCP_MSS;
119SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
120    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
121
122#ifdef INET6
123int	tcp_v6mssdflt = TCP6_MSS;
124SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
125	CTLFLAG_RW, &tcp_v6mssdflt , 0,
126	"Default TCP Maximum Segment Size for IPv6");
127#endif
128
129/*
130 * Minimum MSS we accept and use. This prevents DoS attacks where
131 * we are forced to a ridiculous low MSS like 20 and send hundreds
132 * of packets instead of one. The effect scales with the available
133 * bandwidth and quickly saturates the CPU and network interface
134 * with packet generation and sending. Set to zero to disable MINMSS
135 * checking. This setting prevents us from sending too small packets.
136 */
137int	tcp_minmss = TCP_MINMSS;
138SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
139    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
140/*
141 * Number of TCP segments per second we accept from remote host
142 * before we start to calculate average segment size. If average
143 * segment size drops below the minimum TCP MSS we assume a DoS
144 * attack and reset+drop the connection. Care has to be taken not to
145 * set this value too small to not kill interactive type connections
146 * (telnet, SSH) which send many small packets.
147 */
148int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
149SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
150    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
151    "be under the MINMSS Size");
152
153#if 0
154static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
155SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
156    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
157#endif
158
159int	tcp_do_rfc1323 = 1;
160SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
161    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
162
163static int	tcp_tcbhashsize = 0;
164SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
165     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
166
167static int	do_tcpdrain = 1;
168SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
169     "Enable tcp_drain routine for extra help when low on mbufs");
170
171SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
172    &tcbinfo.ipi_count, 0, "Number of active PCBs");
173
174static int	icmp_may_rst = 1;
175SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
176    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
177
178static int	tcp_isn_reseed_interval = 0;
179SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
180    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
181
182static uma_zone_t tcptw_zone;
183static int	maxtcptw;
184
185static int
186tcptw_auto_size(void)
187{
188	int halfrange;
189
190	/*
191	 * Max out at half the ephemeral port range so that TIME_WAIT
192	 * sockets don't tie up too many ephemeral ports.
193	 */
194	if (ipport_lastauto > ipport_firstauto)
195		halfrange = (ipport_lastauto - ipport_firstauto) / 2;
196	else
197		halfrange = (ipport_firstauto - ipport_lastauto) / 2;
198	/* Protect against goofy port ranges smaller than 32. */
199	return (imin(imax(halfrange, 32), maxsockets / 5));
200}
201
202static int
203sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
204{
205	int error, new;
206
207	if (maxtcptw == 0)
208		new = tcptw_auto_size();
209	else
210		new = maxtcptw;
211	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
212	if (error == 0 && req->newptr)
213		if (new >= 32) {
214			maxtcptw = new;
215			uma_zone_set_max(tcptw_zone, maxtcptw);
216		}
217	return (error);
218}
219SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
220    &maxtcptw, 0, sysctl_maxtcptw, "IU",
221    "Maximum number of compressed TCP TIME_WAIT entries");
222
223static int	nolocaltimewait = 0;
224SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
225    &nolocaltimewait, 0, "Do not create compressed TCP TIME_WAIT entries"
226			 "for local connections");
227
228/*
229 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
230 * 1024 exists only for debugging.  A good production default would be
231 * something like 6100.
232 */
233SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
234    "TCP inflight data limiting");
235
236static int	tcp_inflight_enable = 1;
237SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
238    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
239
240static int	tcp_inflight_debug = 0;
241SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
242    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
243
244static int	tcp_inflight_rttthresh;
245SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
246    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
247    "RTT threshold below which inflight will deactivate itself");
248
249static int	tcp_inflight_min = 6144;
250SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
251    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
252
253static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
254SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
255    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
256
257static int	tcp_inflight_stab = 20;
258SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
259    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
260
261uma_zone_t sack_hole_zone;
262
263static struct inpcb *tcp_notify(struct inpcb *, int);
264static void	tcp_isn_tick(void *);
265
266/*
267 * Target size of TCP PCB hash tables. Must be a power of two.
268 *
269 * Note that this can be overridden by the kernel environment
270 * variable net.inet.tcp.tcbhashsize
271 */
272#ifndef TCBHASHSIZE
273#define TCBHASHSIZE	512
274#endif
275
276/*
277 * XXX
278 * Callouts should be moved into struct tcp directly.  They are currently
279 * separate because the tcpcb structure is exported to userland for sysctl
280 * parsing purposes, which do not know about callouts.
281 */
282struct	tcpcb_mem {
283	struct	tcpcb tcb;
284	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
285	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
286};
287
288static uma_zone_t tcpcb_zone;
289struct callout isn_callout;
290static struct mtx isn_mtx;
291
292#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
293#define	ISN_LOCK()	mtx_lock(&isn_mtx)
294#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
295
296/*
297 * TCP initialization.
298 */
299static void
300tcp_zone_change(void *tag)
301{
302
303	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
304	uma_zone_set_max(tcpcb_zone, maxsockets);
305	if (maxtcptw == 0)
306		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
307}
308
309static int
310tcp_inpcb_init(void *mem, int size, int flags)
311{
312	struct inpcb *inp = mem;
313
314	INP_LOCK_INIT(inp, "inp", "tcpinp");
315	return (0);
316}
317
318void
319tcp_init(void)
320{
321	int hashsize = TCBHASHSIZE;
322
323	tcp_delacktime = TCPTV_DELACK;
324	tcp_keepinit = TCPTV_KEEP_INIT;
325	tcp_keepidle = TCPTV_KEEP_IDLE;
326	tcp_keepintvl = TCPTV_KEEPINTVL;
327	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
328	tcp_msl = TCPTV_MSL;
329	tcp_rexmit_min = TCPTV_MIN;
330	tcp_rexmit_slop = TCPTV_CPU_VAR;
331	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
332
333	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
334	LIST_INIT(&tcb);
335	tcbinfo.listhead = &tcb;
336	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
337	if (!powerof2(hashsize)) {
338		printf("WARNING: TCB hash size not a power of 2\n");
339		hashsize = 512; /* safe default */
340	}
341	tcp_tcbhashsize = hashsize;
342	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
343	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
344					&tcbinfo.porthashmask);
345	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
346	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
347	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
348#ifdef INET6
349#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
350#else /* INET6 */
351#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
352#endif /* INET6 */
353	if (max_protohdr < TCP_MINPROTOHDR)
354		max_protohdr = TCP_MINPROTOHDR;
355	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
356		panic("tcp_init");
357#undef TCP_MINPROTOHDR
358	/*
359	 * These have to be type stable for the benefit of the timers.
360	 */
361	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
362	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
363	uma_zone_set_max(tcpcb_zone, maxsockets);
364	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
365	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
366	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
367	if (maxtcptw == 0)
368		uma_zone_set_max(tcptw_zone, tcptw_auto_size());
369	else
370		uma_zone_set_max(tcptw_zone, maxtcptw);
371	tcp_timer_init();
372	syncache_init();
373	tcp_hc_init();
374	tcp_reass_init();
375	ISN_LOCK_INIT();
376	callout_init(&isn_callout, CALLOUT_MPSAFE);
377	tcp_isn_tick(NULL);
378	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
379		SHUTDOWN_PRI_DEFAULT);
380	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
381	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
382	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
383		EVENTHANDLER_PRI_ANY);
384}
385
386void
387tcp_fini(void *xtp)
388{
389
390	callout_stop(&isn_callout);
391}
392
393/*
394 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
395 * tcp_template used to store this data in mbufs, but we now recopy it out
396 * of the tcpcb each time to conserve mbufs.
397 */
398void
399tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
400{
401	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
402
403	INP_LOCK_ASSERT(inp);
404
405#ifdef INET6
406	if ((inp->inp_vflag & INP_IPV6) != 0) {
407		struct ip6_hdr *ip6;
408
409		ip6 = (struct ip6_hdr *)ip_ptr;
410		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
411			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
412		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
413			(IPV6_VERSION & IPV6_VERSION_MASK);
414		ip6->ip6_nxt = IPPROTO_TCP;
415		ip6->ip6_plen = sizeof(struct tcphdr);
416		ip6->ip6_src = inp->in6p_laddr;
417		ip6->ip6_dst = inp->in6p_faddr;
418	} else
419#endif
420	{
421		struct ip *ip;
422
423		ip = (struct ip *)ip_ptr;
424		ip->ip_v = IPVERSION;
425		ip->ip_hl = 5;
426		ip->ip_tos = inp->inp_ip_tos;
427		ip->ip_len = 0;
428		ip->ip_id = 0;
429		ip->ip_off = 0;
430		ip->ip_ttl = inp->inp_ip_ttl;
431		ip->ip_sum = 0;
432		ip->ip_p = IPPROTO_TCP;
433		ip->ip_src = inp->inp_laddr;
434		ip->ip_dst = inp->inp_faddr;
435	}
436	th->th_sport = inp->inp_lport;
437	th->th_dport = inp->inp_fport;
438	th->th_seq = 0;
439	th->th_ack = 0;
440	th->th_x2 = 0;
441	th->th_off = 5;
442	th->th_flags = 0;
443	th->th_win = 0;
444	th->th_urp = 0;
445	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
446}
447
448/*
449 * Create template to be used to send tcp packets on a connection.
450 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
451 * use for this function is in keepalives, which use tcp_respond.
452 */
453struct tcptemp *
454tcpip_maketemplate(struct inpcb *inp)
455{
456	struct mbuf *m;
457	struct tcptemp *n;
458
459	m = m_get(M_DONTWAIT, MT_DATA);
460	if (m == NULL)
461		return (0);
462	m->m_len = sizeof(struct tcptemp);
463	n = mtod(m, struct tcptemp *);
464
465	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
466	return (n);
467}
468
469/*
470 * Send a single message to the TCP at address specified by
471 * the given TCP/IP header.  If m == NULL, then we make a copy
472 * of the tcpiphdr at ti and send directly to the addressed host.
473 * This is used to force keep alive messages out using the TCP
474 * template for a connection.  If flags are given then we send
475 * a message back to the TCP which originated the * segment ti,
476 * and discard the mbuf containing it and any other attached mbufs.
477 *
478 * In any case the ack and sequence number of the transmitted
479 * segment are as specified by the parameters.
480 *
481 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
482 */
483void
484tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
485    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
486{
487	register int tlen;
488	int win = 0;
489	struct ip *ip;
490	struct tcphdr *nth;
491#ifdef INET6
492	struct ip6_hdr *ip6;
493	int isipv6;
494#endif /* INET6 */
495	int ipflags = 0;
496	struct inpcb *inp;
497
498	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
499
500#ifdef INET6
501	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
502	ip6 = ipgen;
503#endif /* INET6 */
504	ip = ipgen;
505
506	if (tp != NULL) {
507		inp = tp->t_inpcb;
508		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
509		INP_INFO_WLOCK_ASSERT(&tcbinfo);
510		INP_LOCK_ASSERT(inp);
511	} else
512		inp = NULL;
513
514	if (tp != NULL) {
515		if (!(flags & TH_RST)) {
516			win = sbspace(&inp->inp_socket->so_rcv);
517			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
518				win = (long)TCP_MAXWIN << tp->rcv_scale;
519		}
520	}
521	if (m == NULL) {
522		m = m_gethdr(M_DONTWAIT, MT_DATA);
523		if (m == NULL)
524			return;
525		tlen = 0;
526		m->m_data += max_linkhdr;
527#ifdef INET6
528		if (isipv6) {
529			bcopy((caddr_t)ip6, mtod(m, caddr_t),
530			      sizeof(struct ip6_hdr));
531			ip6 = mtod(m, struct ip6_hdr *);
532			nth = (struct tcphdr *)(ip6 + 1);
533		} else
534#endif /* INET6 */
535	      {
536		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
537		ip = mtod(m, struct ip *);
538		nth = (struct tcphdr *)(ip + 1);
539	      }
540		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
541		flags = TH_ACK;
542	} else {
543		m_freem(m->m_next);
544		m->m_next = NULL;
545		m->m_data = (caddr_t)ipgen;
546		/* m_len is set later */
547		tlen = 0;
548#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
549#ifdef INET6
550		if (isipv6) {
551			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
552			nth = (struct tcphdr *)(ip6 + 1);
553		} else
554#endif /* INET6 */
555	      {
556		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
557		nth = (struct tcphdr *)(ip + 1);
558	      }
559		if (th != nth) {
560			/*
561			 * this is usually a case when an extension header
562			 * exists between the IPv6 header and the
563			 * TCP header.
564			 */
565			nth->th_sport = th->th_sport;
566			nth->th_dport = th->th_dport;
567		}
568		xchg(nth->th_dport, nth->th_sport, n_short);
569#undef xchg
570	}
571#ifdef INET6
572	if (isipv6) {
573		ip6->ip6_flow = 0;
574		ip6->ip6_vfc = IPV6_VERSION;
575		ip6->ip6_nxt = IPPROTO_TCP;
576		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
577						tlen));
578		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
579	} else
580#endif
581	{
582		tlen += sizeof (struct tcpiphdr);
583		ip->ip_len = tlen;
584		ip->ip_ttl = ip_defttl;
585		if (path_mtu_discovery)
586			ip->ip_off |= IP_DF;
587	}
588	m->m_len = tlen;
589	m->m_pkthdr.len = tlen;
590	m->m_pkthdr.rcvif = NULL;
591#ifdef MAC
592	if (inp != NULL) {
593		/*
594		 * Packet is associated with a socket, so allow the
595		 * label of the response to reflect the socket label.
596		 */
597		INP_LOCK_ASSERT(inp);
598		mac_create_mbuf_from_inpcb(inp, m);
599	} else {
600		/*
601		 * Packet is not associated with a socket, so possibly
602		 * update the label in place.
603		 */
604		mac_reflect_mbuf_tcp(m);
605	}
606#endif
607	nth->th_seq = htonl(seq);
608	nth->th_ack = htonl(ack);
609	nth->th_x2 = 0;
610	nth->th_off = sizeof (struct tcphdr) >> 2;
611	nth->th_flags = flags;
612	if (tp != NULL)
613		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
614	else
615		nth->th_win = htons((u_short)win);
616	nth->th_urp = 0;
617#ifdef INET6
618	if (isipv6) {
619		nth->th_sum = 0;
620		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
621					sizeof(struct ip6_hdr),
622					tlen - sizeof(struct ip6_hdr));
623		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
624		    NULL, NULL);
625	} else
626#endif /* INET6 */
627	{
628		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
629		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
630		m->m_pkthdr.csum_flags = CSUM_TCP;
631		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
632	}
633#ifdef TCPDEBUG
634	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
635		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
636#endif
637#ifdef INET6
638	if (isipv6)
639		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
640	else
641#endif /* INET6 */
642	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
643}
644
645/*
646 * Create a new TCP control block, making an
647 * empty reassembly queue and hooking it to the argument
648 * protocol control block.  The `inp' parameter must have
649 * come from the zone allocator set up in tcp_init().
650 */
651struct tcpcb *
652tcp_newtcpcb(struct inpcb *inp)
653{
654	struct tcpcb_mem *tm;
655	struct tcpcb *tp;
656#ifdef INET6
657	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
658#endif /* INET6 */
659
660	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
661	if (tm == NULL)
662		return (NULL);
663	tp = &tm->tcb;
664	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
665	tp->t_maxseg = tp->t_maxopd =
666#ifdef INET6
667		isipv6 ? tcp_v6mssdflt :
668#endif /* INET6 */
669		tcp_mssdflt;
670
671	/* Set up our timeouts. */
672	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
673	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
674	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
675	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
676	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
677
678	if (tcp_do_rfc1323)
679		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
680	tp->sack_enable = tcp_do_sack;
681	TAILQ_INIT(&tp->snd_holes);
682	tp->t_inpcb = inp;	/* XXX */
683	/*
684	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
685	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
686	 * reasonable initial retransmit time.
687	 */
688	tp->t_srtt = TCPTV_SRTTBASE;
689	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
690	tp->t_rttmin = tcp_rexmit_min;
691	tp->t_rxtcur = TCPTV_RTOBASE;
692	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
693	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
694	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
695	tp->t_rcvtime = ticks;
696	tp->t_bw_rtttime = ticks;
697	/*
698	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
699	 * because the socket may be bound to an IPv6 wildcard address,
700	 * which may match an IPv4-mapped IPv6 address.
701	 */
702	inp->inp_ip_ttl = ip_defttl;
703	inp->inp_ppcb = tp;
704	return (tp);		/* XXX */
705}
706
707/*
708 * Drop a TCP connection, reporting
709 * the specified error.  If connection is synchronized,
710 * then send a RST to peer.
711 */
712struct tcpcb *
713tcp_drop(struct tcpcb *tp, int errno)
714{
715	struct socket *so = tp->t_inpcb->inp_socket;
716
717	INP_INFO_WLOCK_ASSERT(&tcbinfo);
718	INP_LOCK_ASSERT(tp->t_inpcb);
719
720	if (TCPS_HAVERCVDSYN(tp->t_state)) {
721		tp->t_state = TCPS_CLOSED;
722		(void) tcp_output(tp);
723		tcpstat.tcps_drops++;
724	} else
725		tcpstat.tcps_conndrops++;
726	if (errno == ETIMEDOUT && tp->t_softerror)
727		errno = tp->t_softerror;
728	so->so_error = errno;
729	return (tcp_close(tp));
730}
731
732void
733tcp_discardcb(struct tcpcb *tp)
734{
735	struct tseg_qent *q;
736	struct inpcb *inp = tp->t_inpcb;
737	struct socket *so = inp->inp_socket;
738#ifdef INET6
739	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
740#endif /* INET6 */
741
742	INP_LOCK_ASSERT(inp);
743
744	/*
745	 * Make sure that all of our timers are stopped before we
746	 * delete the PCB.
747	 */
748	callout_stop(tp->tt_rexmt);
749	callout_stop(tp->tt_persist);
750	callout_stop(tp->tt_keep);
751	callout_stop(tp->tt_2msl);
752	callout_stop(tp->tt_delack);
753
754	/*
755	 * If we got enough samples through the srtt filter,
756	 * save the rtt and rttvar in the routing entry.
757	 * 'Enough' is arbitrarily defined as 4 rtt samples.
758	 * 4 samples is enough for the srtt filter to converge
759	 * to within enough % of the correct value; fewer samples
760	 * and we could save a bogus rtt. The danger is not high
761	 * as tcp quickly recovers from everything.
762	 * XXX: Works very well but needs some more statistics!
763	 */
764	if (tp->t_rttupdated >= 4) {
765		struct hc_metrics_lite metrics;
766		u_long ssthresh;
767
768		bzero(&metrics, sizeof(metrics));
769		/*
770		 * Update the ssthresh always when the conditions below
771		 * are satisfied. This gives us better new start value
772		 * for the congestion avoidance for new connections.
773		 * ssthresh is only set if packet loss occured on a session.
774		 *
775		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
776		 * being torn down.  Ideally this code would not use 'so'.
777		 */
778		ssthresh = tp->snd_ssthresh;
779		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
780			/*
781			 * convert the limit from user data bytes to
782			 * packets then to packet data bytes.
783			 */
784			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
785			if (ssthresh < 2)
786				ssthresh = 2;
787			ssthresh *= (u_long)(tp->t_maxseg +
788#ifdef INET6
789				      (isipv6 ? sizeof (struct ip6_hdr) +
790					       sizeof (struct tcphdr) :
791#endif
792				       sizeof (struct tcpiphdr)
793#ifdef INET6
794				       )
795#endif
796				      );
797		} else
798			ssthresh = 0;
799		metrics.rmx_ssthresh = ssthresh;
800
801		metrics.rmx_rtt = tp->t_srtt;
802		metrics.rmx_rttvar = tp->t_rttvar;
803		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
804		metrics.rmx_bandwidth = tp->snd_bandwidth;
805		metrics.rmx_cwnd = tp->snd_cwnd;
806		metrics.rmx_sendpipe = 0;
807		metrics.rmx_recvpipe = 0;
808
809		tcp_hc_update(&inp->inp_inc, &metrics);
810	}
811
812	/* free the reassembly queue, if any */
813	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
814		LIST_REMOVE(q, tqe_q);
815		m_freem(q->tqe_m);
816		uma_zfree(tcp_reass_zone, q);
817		tp->t_segqlen--;
818		tcp_reass_qsize--;
819	}
820	tcp_free_sackholes(tp);
821	inp->inp_ppcb = NULL;
822	tp->t_inpcb = NULL;
823	uma_zfree(tcpcb_zone, tp);
824}
825
826/*
827 * Attempt to close a TCP control block, marking it as dropped, and freeing
828 * the socket if we hold the only reference.
829 */
830struct tcpcb *
831tcp_close(struct tcpcb *tp)
832{
833	struct inpcb *inp = tp->t_inpcb;
834	struct socket *so;
835
836	INP_INFO_WLOCK_ASSERT(&tcbinfo);
837	INP_LOCK_ASSERT(inp);
838
839	in_pcbdrop(inp);
840	tcpstat.tcps_closed++;
841	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
842	so = inp->inp_socket;
843	soisdisconnected(so);
844	if (inp->inp_vflag & INP_SOCKREF) {
845		KASSERT(so->so_state & SS_PROTOREF,
846		    ("tcp_close: !SS_PROTOREF"));
847		inp->inp_vflag &= ~INP_SOCKREF;
848		INP_UNLOCK(inp);
849		ACCEPT_LOCK();
850		SOCK_LOCK(so);
851		so->so_state &= ~SS_PROTOREF;
852		sofree(so);
853		return (NULL);
854	}
855	return (tp);
856}
857
858void
859tcp_drain(void)
860{
861
862	if (do_tcpdrain) {
863		struct inpcb *inpb;
864		struct tcpcb *tcpb;
865		struct tseg_qent *te;
866
867	/*
868	 * Walk the tcpbs, if existing, and flush the reassembly queue,
869	 * if there is one...
870	 * XXX: The "Net/3" implementation doesn't imply that the TCP
871	 *      reassembly queue should be flushed, but in a situation
872	 *	where we're really low on mbufs, this is potentially
873	 *	usefull.
874	 */
875		INP_INFO_RLOCK(&tcbinfo);
876		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
877			if (inpb->inp_vflag & INP_TIMEWAIT)
878				continue;
879			INP_LOCK(inpb);
880			if ((tcpb = intotcpcb(inpb)) != NULL) {
881				while ((te = LIST_FIRST(&tcpb->t_segq))
882			            != NULL) {
883					LIST_REMOVE(te, tqe_q);
884					m_freem(te->tqe_m);
885					uma_zfree(tcp_reass_zone, te);
886					tcpb->t_segqlen--;
887					tcp_reass_qsize--;
888				}
889				tcp_clean_sackreport(tcpb);
890			}
891			INP_UNLOCK(inpb);
892		}
893		INP_INFO_RUNLOCK(&tcbinfo);
894	}
895}
896
897/*
898 * Notify a tcp user of an asynchronous error;
899 * store error as soft error, but wake up user
900 * (for now, won't do anything until can select for soft error).
901 *
902 * Do not wake up user since there currently is no mechanism for
903 * reporting soft errors (yet - a kqueue filter may be added).
904 */
905static struct inpcb *
906tcp_notify(struct inpcb *inp, int error)
907{
908	struct tcpcb *tp;
909
910	INP_INFO_WLOCK_ASSERT(&tcbinfo);
911	INP_LOCK_ASSERT(inp);
912
913	if ((inp->inp_vflag & INP_TIMEWAIT) ||
914	    (inp->inp_vflag & INP_DROPPED))
915		return (inp);
916
917	tp = intotcpcb(inp);
918	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
919
920	/*
921	 * Ignore some errors if we are hooked up.
922	 * If connection hasn't completed, has retransmitted several times,
923	 * and receives a second error, give up now.  This is better
924	 * than waiting a long time to establish a connection that
925	 * can never complete.
926	 */
927	if (tp->t_state == TCPS_ESTABLISHED &&
928	    (error == EHOSTUNREACH || error == ENETUNREACH ||
929	     error == EHOSTDOWN)) {
930		return (inp);
931	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
932	    tp->t_softerror) {
933		tp = tcp_drop(tp, error);
934		if (tp != NULL)
935			return (inp);
936		else
937			return (NULL);
938	} else {
939		tp->t_softerror = error;
940		return (inp);
941	}
942#if 0
943	wakeup( &so->so_timeo);
944	sorwakeup(so);
945	sowwakeup(so);
946#endif
947}
948
949static int
950tcp_pcblist(SYSCTL_HANDLER_ARGS)
951{
952	int error, i, n;
953	struct inpcb *inp, **inp_list;
954	inp_gen_t gencnt;
955	struct xinpgen xig;
956
957	/*
958	 * The process of preparing the TCB list is too time-consuming and
959	 * resource-intensive to repeat twice on every request.
960	 */
961	if (req->oldptr == NULL) {
962		n = tcbinfo.ipi_count;
963		req->oldidx = 2 * (sizeof xig)
964			+ (n + n/8) * sizeof(struct xtcpcb);
965		return (0);
966	}
967
968	if (req->newptr != NULL)
969		return (EPERM);
970
971	/*
972	 * OK, now we're committed to doing something.
973	 */
974	INP_INFO_RLOCK(&tcbinfo);
975	gencnt = tcbinfo.ipi_gencnt;
976	n = tcbinfo.ipi_count;
977	INP_INFO_RUNLOCK(&tcbinfo);
978
979	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
980		+ n * sizeof(struct xtcpcb));
981	if (error != 0)
982		return (error);
983
984	xig.xig_len = sizeof xig;
985	xig.xig_count = n;
986	xig.xig_gen = gencnt;
987	xig.xig_sogen = so_gencnt;
988	error = SYSCTL_OUT(req, &xig, sizeof xig);
989	if (error)
990		return (error);
991
992	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
993	if (inp_list == NULL)
994		return (ENOMEM);
995
996	INP_INFO_RLOCK(&tcbinfo);
997	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
998	     inp = LIST_NEXT(inp, inp_list)) {
999		INP_LOCK(inp);
1000		if (inp->inp_gencnt <= gencnt) {
1001			/*
1002			 * XXX: This use of cr_cansee(), introduced with
1003			 * TCP state changes, is not quite right, but for
1004			 * now, better than nothing.
1005			 */
1006			if (inp->inp_vflag & INP_TIMEWAIT) {
1007				if (intotw(inp) != NULL)
1008					error = cr_cansee(req->td->td_ucred,
1009					    intotw(inp)->tw_cred);
1010				else
1011					error = EINVAL;	/* Skip this inp. */
1012			} else
1013				error = cr_canseesocket(req->td->td_ucred,
1014				    inp->inp_socket);
1015			if (error == 0)
1016				inp_list[i++] = inp;
1017		}
1018		INP_UNLOCK(inp);
1019	}
1020	INP_INFO_RUNLOCK(&tcbinfo);
1021	n = i;
1022
1023	error = 0;
1024	for (i = 0; i < n; i++) {
1025		inp = inp_list[i];
1026		INP_LOCK(inp);
1027		if (inp->inp_gencnt <= gencnt) {
1028			struct xtcpcb xt;
1029			void *inp_ppcb;
1030
1031			bzero(&xt, sizeof(xt));
1032			xt.xt_len = sizeof xt;
1033			/* XXX should avoid extra copy */
1034			bcopy(inp, &xt.xt_inp, sizeof *inp);
1035			inp_ppcb = inp->inp_ppcb;
1036			if (inp_ppcb == NULL)
1037				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1038			else if (inp->inp_vflag & INP_TIMEWAIT) {
1039				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1040				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1041			} else
1042				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1043			if (inp->inp_socket != NULL)
1044				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1045			else {
1046				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1047				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1048			}
1049			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1050			INP_UNLOCK(inp);
1051			error = SYSCTL_OUT(req, &xt, sizeof xt);
1052		} else
1053			INP_UNLOCK(inp);
1054
1055	}
1056	if (!error) {
1057		/*
1058		 * Give the user an updated idea of our state.
1059		 * If the generation differs from what we told
1060		 * her before, she knows that something happened
1061		 * while we were processing this request, and it
1062		 * might be necessary to retry.
1063		 */
1064		INP_INFO_RLOCK(&tcbinfo);
1065		xig.xig_gen = tcbinfo.ipi_gencnt;
1066		xig.xig_sogen = so_gencnt;
1067		xig.xig_count = tcbinfo.ipi_count;
1068		INP_INFO_RUNLOCK(&tcbinfo);
1069		error = SYSCTL_OUT(req, &xig, sizeof xig);
1070	}
1071	free(inp_list, M_TEMP);
1072	return (error);
1073}
1074
1075SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1076	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1077
1078static int
1079tcp_getcred(SYSCTL_HANDLER_ARGS)
1080{
1081	struct xucred xuc;
1082	struct sockaddr_in addrs[2];
1083	struct inpcb *inp;
1084	int error;
1085
1086	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1087	    SUSER_ALLOWJAIL);
1088	if (error)
1089		return (error);
1090	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1091	if (error)
1092		return (error);
1093	INP_INFO_RLOCK(&tcbinfo);
1094	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1095	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1096	if (inp == NULL) {
1097		error = ENOENT;
1098		goto outunlocked;
1099	}
1100	INP_LOCK(inp);
1101	if (inp->inp_socket == NULL) {
1102		error = ENOENT;
1103		goto out;
1104	}
1105	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1106	if (error)
1107		goto out;
1108	cru2x(inp->inp_socket->so_cred, &xuc);
1109out:
1110	INP_UNLOCK(inp);
1111outunlocked:
1112	INP_INFO_RUNLOCK(&tcbinfo);
1113	if (error == 0)
1114		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1115	return (error);
1116}
1117
1118SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1119    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1120    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1121
1122#ifdef INET6
1123static int
1124tcp6_getcred(SYSCTL_HANDLER_ARGS)
1125{
1126	struct xucred xuc;
1127	struct sockaddr_in6 addrs[2];
1128	struct inpcb *inp;
1129	int error, mapped = 0;
1130
1131	error = priv_check_cred(req->td->td_ucred, PRIV_NETINET_GETCRED,
1132	    SUSER_ALLOWJAIL);
1133	if (error)
1134		return (error);
1135	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1136	if (error)
1137		return (error);
1138	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1139	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1140		return (error);
1141	}
1142	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1143		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1144			mapped = 1;
1145		else
1146			return (EINVAL);
1147	}
1148
1149	INP_INFO_RLOCK(&tcbinfo);
1150	if (mapped == 1)
1151		inp = in_pcblookup_hash(&tcbinfo,
1152			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1153			addrs[1].sin6_port,
1154			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1155			addrs[0].sin6_port,
1156			0, NULL);
1157	else
1158		inp = in6_pcblookup_hash(&tcbinfo,
1159			&addrs[1].sin6_addr, addrs[1].sin6_port,
1160			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1161	if (inp == NULL) {
1162		error = ENOENT;
1163		goto outunlocked;
1164	}
1165	INP_LOCK(inp);
1166	if (inp->inp_socket == NULL) {
1167		error = ENOENT;
1168		goto out;
1169	}
1170	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1171	if (error)
1172		goto out;
1173	cru2x(inp->inp_socket->so_cred, &xuc);
1174out:
1175	INP_UNLOCK(inp);
1176outunlocked:
1177	INP_INFO_RUNLOCK(&tcbinfo);
1178	if (error == 0)
1179		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1180	return (error);
1181}
1182
1183SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1184    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1185    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1186#endif
1187
1188
1189void
1190tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1191{
1192	struct ip *ip = vip;
1193	struct tcphdr *th;
1194	struct in_addr faddr;
1195	struct inpcb *inp;
1196	struct tcpcb *tp;
1197	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1198	struct icmp *icp;
1199	struct in_conninfo inc;
1200	tcp_seq icmp_tcp_seq;
1201	int mtu;
1202
1203	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1204	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1205		return;
1206
1207	if (cmd == PRC_MSGSIZE)
1208		notify = tcp_mtudisc;
1209	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1210		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1211		notify = tcp_drop_syn_sent;
1212	/*
1213	 * Redirects don't need to be handled up here.
1214	 */
1215	else if (PRC_IS_REDIRECT(cmd))
1216		return;
1217	/*
1218	 * Source quench is depreciated.
1219	 */
1220	else if (cmd == PRC_QUENCH)
1221		return;
1222	/*
1223	 * Hostdead is ugly because it goes linearly through all PCBs.
1224	 * XXX: We never get this from ICMP, otherwise it makes an
1225	 * excellent DoS attack on machines with many connections.
1226	 */
1227	else if (cmd == PRC_HOSTDEAD)
1228		ip = NULL;
1229	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1230		return;
1231	if (ip != NULL) {
1232		icp = (struct icmp *)((caddr_t)ip
1233				      - offsetof(struct icmp, icmp_ip));
1234		th = (struct tcphdr *)((caddr_t)ip
1235				       + (ip->ip_hl << 2));
1236		INP_INFO_WLOCK(&tcbinfo);
1237		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1238		    ip->ip_src, th->th_sport, 0, NULL);
1239		if (inp != NULL)  {
1240			INP_LOCK(inp);
1241			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1242			    !(inp->inp_vflag & INP_DROPPED) &&
1243			    !(inp->inp_socket == NULL)) {
1244				icmp_tcp_seq = htonl(th->th_seq);
1245				tp = intotcpcb(inp);
1246				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1247				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1248					if (cmd == PRC_MSGSIZE) {
1249					    /*
1250					     * MTU discovery:
1251					     * If we got a needfrag set the MTU
1252					     * in the route to the suggested new
1253					     * value (if given) and then notify.
1254					     */
1255					    bzero(&inc, sizeof(inc));
1256					    inc.inc_flags = 0;	/* IPv4 */
1257					    inc.inc_faddr = faddr;
1258
1259					    mtu = ntohs(icp->icmp_nextmtu);
1260					    /*
1261					     * If no alternative MTU was
1262					     * proposed, try the next smaller
1263					     * one.  ip->ip_len has already
1264					     * been swapped in icmp_input().
1265					     */
1266					    if (!mtu)
1267						mtu = ip_next_mtu(ip->ip_len,
1268						 1);
1269					    if (mtu < max(296, (tcp_minmss)
1270						 + sizeof(struct tcpiphdr)))
1271						mtu = 0;
1272					    if (!mtu)
1273						mtu = tcp_mssdflt
1274						 + sizeof(struct tcpiphdr);
1275					    /*
1276					     * Only cache the the MTU if it
1277					     * is smaller than the interface
1278					     * or route MTU.  tcp_mtudisc()
1279					     * will do right thing by itself.
1280					     */
1281					    if (mtu <= tcp_maxmtu(&inc, NULL))
1282						tcp_hc_updatemtu(&inc, mtu);
1283					}
1284
1285					inp = (*notify)(inp, inetctlerrmap[cmd]);
1286				}
1287			}
1288			if (inp != NULL)
1289				INP_UNLOCK(inp);
1290		} else {
1291			inc.inc_fport = th->th_dport;
1292			inc.inc_lport = th->th_sport;
1293			inc.inc_faddr = faddr;
1294			inc.inc_laddr = ip->ip_src;
1295#ifdef INET6
1296			inc.inc_isipv6 = 0;
1297#endif
1298			syncache_unreach(&inc, th);
1299		}
1300		INP_INFO_WUNLOCK(&tcbinfo);
1301	} else
1302		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1303}
1304
1305#ifdef INET6
1306void
1307tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1308{
1309	struct tcphdr th;
1310	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1311	struct ip6_hdr *ip6;
1312	struct mbuf *m;
1313	struct ip6ctlparam *ip6cp = NULL;
1314	const struct sockaddr_in6 *sa6_src = NULL;
1315	int off;
1316	struct tcp_portonly {
1317		u_int16_t th_sport;
1318		u_int16_t th_dport;
1319	} *thp;
1320
1321	if (sa->sa_family != AF_INET6 ||
1322	    sa->sa_len != sizeof(struct sockaddr_in6))
1323		return;
1324
1325	if (cmd == PRC_MSGSIZE)
1326		notify = tcp_mtudisc;
1327	else if (!PRC_IS_REDIRECT(cmd) &&
1328		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1329		return;
1330	/* Source quench is depreciated. */
1331	else if (cmd == PRC_QUENCH)
1332		return;
1333
1334	/* if the parameter is from icmp6, decode it. */
1335	if (d != NULL) {
1336		ip6cp = (struct ip6ctlparam *)d;
1337		m = ip6cp->ip6c_m;
1338		ip6 = ip6cp->ip6c_ip6;
1339		off = ip6cp->ip6c_off;
1340		sa6_src = ip6cp->ip6c_src;
1341	} else {
1342		m = NULL;
1343		ip6 = NULL;
1344		off = 0;	/* fool gcc */
1345		sa6_src = &sa6_any;
1346	}
1347
1348	if (ip6 != NULL) {
1349		struct in_conninfo inc;
1350		/*
1351		 * XXX: We assume that when IPV6 is non NULL,
1352		 * M and OFF are valid.
1353		 */
1354
1355		/* check if we can safely examine src and dst ports */
1356		if (m->m_pkthdr.len < off + sizeof(*thp))
1357			return;
1358
1359		bzero(&th, sizeof(th));
1360		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1361
1362		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1363		    (struct sockaddr *)ip6cp->ip6c_src,
1364		    th.th_sport, cmd, NULL, notify);
1365
1366		inc.inc_fport = th.th_dport;
1367		inc.inc_lport = th.th_sport;
1368		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1369		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1370		inc.inc_isipv6 = 1;
1371		INP_INFO_WLOCK(&tcbinfo);
1372		syncache_unreach(&inc, &th);
1373		INP_INFO_WUNLOCK(&tcbinfo);
1374	} else
1375		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1376			      0, cmd, NULL, notify);
1377}
1378#endif /* INET6 */
1379
1380
1381/*
1382 * Following is where TCP initial sequence number generation occurs.
1383 *
1384 * There are two places where we must use initial sequence numbers:
1385 * 1.  In SYN-ACK packets.
1386 * 2.  In SYN packets.
1387 *
1388 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1389 * tcp_syncache.c for details.
1390 *
1391 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1392 * depends on this property.  In addition, these ISNs should be
1393 * unguessable so as to prevent connection hijacking.  To satisfy
1394 * the requirements of this situation, the algorithm outlined in
1395 * RFC 1948 is used, with only small modifications.
1396 *
1397 * Implementation details:
1398 *
1399 * Time is based off the system timer, and is corrected so that it
1400 * increases by one megabyte per second.  This allows for proper
1401 * recycling on high speed LANs while still leaving over an hour
1402 * before rollover.
1403 *
1404 * As reading the *exact* system time is too expensive to be done
1405 * whenever setting up a TCP connection, we increment the time
1406 * offset in two ways.  First, a small random positive increment
1407 * is added to isn_offset for each connection that is set up.
1408 * Second, the function tcp_isn_tick fires once per clock tick
1409 * and increments isn_offset as necessary so that sequence numbers
1410 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1411 * random positive increments serve only to ensure that the same
1412 * exact sequence number is never sent out twice (as could otherwise
1413 * happen when a port is recycled in less than the system tick
1414 * interval.)
1415 *
1416 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1417 * between seeding of isn_secret.  This is normally set to zero,
1418 * as reseeding should not be necessary.
1419 *
1420 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1421 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1422 * general, this means holding an exclusive (write) lock.
1423 */
1424
1425#define ISN_BYTES_PER_SECOND 1048576
1426#define ISN_STATIC_INCREMENT 4096
1427#define ISN_RANDOM_INCREMENT (4096 - 1)
1428
1429static u_char isn_secret[32];
1430static int isn_last_reseed;
1431static u_int32_t isn_offset, isn_offset_old;
1432static MD5_CTX isn_ctx;
1433
1434tcp_seq
1435tcp_new_isn(struct tcpcb *tp)
1436{
1437	u_int32_t md5_buffer[4];
1438	tcp_seq new_isn;
1439
1440	INP_LOCK_ASSERT(tp->t_inpcb);
1441
1442	ISN_LOCK();
1443	/* Seed if this is the first use, reseed if requested. */
1444	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1445	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1446		< (u_int)ticks))) {
1447		read_random(&isn_secret, sizeof(isn_secret));
1448		isn_last_reseed = ticks;
1449	}
1450
1451	/* Compute the md5 hash and return the ISN. */
1452	MD5Init(&isn_ctx);
1453	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1454	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1455#ifdef INET6
1456	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1457		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1458			  sizeof(struct in6_addr));
1459		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1460			  sizeof(struct in6_addr));
1461	} else
1462#endif
1463	{
1464		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1465			  sizeof(struct in_addr));
1466		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1467			  sizeof(struct in_addr));
1468	}
1469	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1470	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1471	new_isn = (tcp_seq) md5_buffer[0];
1472	isn_offset += ISN_STATIC_INCREMENT +
1473		(arc4random() & ISN_RANDOM_INCREMENT);
1474	new_isn += isn_offset;
1475	ISN_UNLOCK();
1476	return (new_isn);
1477}
1478
1479/*
1480 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1481 * to keep time flowing at a relatively constant rate.  If the random
1482 * increments have already pushed us past the projected offset, do nothing.
1483 */
1484static void
1485tcp_isn_tick(void *xtp)
1486{
1487	u_int32_t projected_offset;
1488
1489	ISN_LOCK();
1490	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1491
1492	if (projected_offset > isn_offset)
1493		isn_offset = projected_offset;
1494
1495	isn_offset_old = isn_offset;
1496	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1497	ISN_UNLOCK();
1498}
1499
1500/*
1501 * When a specific ICMP unreachable message is received and the
1502 * connection state is SYN-SENT, drop the connection.  This behavior
1503 * is controlled by the icmp_may_rst sysctl.
1504 */
1505struct inpcb *
1506tcp_drop_syn_sent(struct inpcb *inp, int errno)
1507{
1508	struct tcpcb *tp;
1509
1510	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1511	INP_LOCK_ASSERT(inp);
1512
1513	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1514	    (inp->inp_vflag & INP_DROPPED))
1515		return (inp);
1516
1517	tp = intotcpcb(inp);
1518	if (tp->t_state != TCPS_SYN_SENT)
1519		return (inp);
1520
1521	tp = tcp_drop(tp, errno);
1522	if (tp != NULL)
1523		return (inp);
1524	else
1525		return (NULL);
1526}
1527
1528/*
1529 * When `need fragmentation' ICMP is received, update our idea of the MSS
1530 * based on the new value in the route.  Also nudge TCP to send something,
1531 * since we know the packet we just sent was dropped.
1532 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1533 */
1534struct inpcb *
1535tcp_mtudisc(struct inpcb *inp, int errno)
1536{
1537	struct tcpcb *tp;
1538	struct socket *so = inp->inp_socket;
1539	u_int maxmtu;
1540	u_int romtu;
1541	int mss;
1542#ifdef INET6
1543	int isipv6;
1544#endif /* INET6 */
1545
1546	INP_LOCK_ASSERT(inp);
1547	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1548	    (inp->inp_vflag & INP_DROPPED))
1549		return (inp);
1550
1551	tp = intotcpcb(inp);
1552	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1553
1554#ifdef INET6
1555	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1556#endif
1557	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1558	romtu =
1559#ifdef INET6
1560	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1561#endif /* INET6 */
1562	    tcp_maxmtu(&inp->inp_inc, NULL);
1563	if (!maxmtu)
1564		maxmtu = romtu;
1565	else
1566		maxmtu = min(maxmtu, romtu);
1567	if (!maxmtu) {
1568		tp->t_maxopd = tp->t_maxseg =
1569#ifdef INET6
1570			isipv6 ? tcp_v6mssdflt :
1571#endif /* INET6 */
1572			tcp_mssdflt;
1573		return (inp);
1574	}
1575	mss = maxmtu -
1576#ifdef INET6
1577		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1578#endif /* INET6 */
1579		 sizeof(struct tcpiphdr)
1580#ifdef INET6
1581		 )
1582#endif /* INET6 */
1583		;
1584
1585	/*
1586	 * XXX - The above conditional probably violates the TCP
1587	 * spec.  The problem is that, since we don't know the
1588	 * other end's MSS, we are supposed to use a conservative
1589	 * default.  But, if we do that, then MTU discovery will
1590	 * never actually take place, because the conservative
1591	 * default is much less than the MTUs typically seen
1592	 * on the Internet today.  For the moment, we'll sweep
1593	 * this under the carpet.
1594	 *
1595	 * The conservative default might not actually be a problem
1596	 * if the only case this occurs is when sending an initial
1597	 * SYN with options and data to a host we've never talked
1598	 * to before.  Then, they will reply with an MSS value which
1599	 * will get recorded and the new parameters should get
1600	 * recomputed.  For Further Study.
1601	 */
1602	if (tp->t_maxopd <= mss)
1603		return (inp);
1604	tp->t_maxopd = mss;
1605
1606	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1607	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1608		mss -= TCPOLEN_TSTAMP_APPA;
1609#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1610	if (mss > MCLBYTES)
1611		mss &= ~(MCLBYTES-1);
1612#else
1613	if (mss > MCLBYTES)
1614		mss = mss / MCLBYTES * MCLBYTES;
1615#endif
1616	if (so->so_snd.sb_hiwat < mss)
1617		mss = so->so_snd.sb_hiwat;
1618
1619	tp->t_maxseg = mss;
1620
1621	tcpstat.tcps_mturesent++;
1622	tp->t_rtttime = 0;
1623	tp->snd_nxt = tp->snd_una;
1624	tcp_free_sackholes(tp);
1625	tp->snd_recover = tp->snd_max;
1626	if (tp->sack_enable)
1627		EXIT_FASTRECOVERY(tp);
1628	tcp_output(tp);
1629	return (inp);
1630}
1631
1632/*
1633 * Look-up the routing entry to the peer of this inpcb.  If no route
1634 * is found and it cannot be allocated, then return NULL.  This routine
1635 * is called by TCP routines that access the rmx structure and by tcp_mss
1636 * to get the interface MTU.
1637 */
1638u_long
1639tcp_maxmtu(struct in_conninfo *inc, int *flags)
1640{
1641	struct route sro;
1642	struct sockaddr_in *dst;
1643	struct ifnet *ifp;
1644	u_long maxmtu = 0;
1645
1646	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1647
1648	bzero(&sro, sizeof(sro));
1649	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1650	        dst = (struct sockaddr_in *)&sro.ro_dst;
1651		dst->sin_family = AF_INET;
1652		dst->sin_len = sizeof(*dst);
1653		dst->sin_addr = inc->inc_faddr;
1654		rtalloc_ign(&sro, RTF_CLONING);
1655	}
1656	if (sro.ro_rt != NULL) {
1657		ifp = sro.ro_rt->rt_ifp;
1658		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1659			maxmtu = ifp->if_mtu;
1660		else
1661			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1662
1663		/* Report additional interface capabilities. */
1664		if (flags != NULL) {
1665			if (ifp->if_capenable & IFCAP_TSO4 &&
1666			    ifp->if_hwassist & CSUM_TSO)
1667				*flags |= CSUM_TSO;
1668		}
1669		RTFREE(sro.ro_rt);
1670	}
1671	return (maxmtu);
1672}
1673
1674#ifdef INET6
1675u_long
1676tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1677{
1678	struct route_in6 sro6;
1679	struct ifnet *ifp;
1680	u_long maxmtu = 0;
1681
1682	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1683
1684	bzero(&sro6, sizeof(sro6));
1685	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1686		sro6.ro_dst.sin6_family = AF_INET6;
1687		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1688		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1689		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1690	}
1691	if (sro6.ro_rt != NULL) {
1692		ifp = sro6.ro_rt->rt_ifp;
1693		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1694			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1695		else
1696			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1697				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1698
1699		/* Report additional interface capabilities. */
1700		if (flags != NULL) {
1701			if (ifp->if_capenable & IFCAP_TSO6 &&
1702			    ifp->if_hwassist & CSUM_TSO)
1703				*flags |= CSUM_TSO;
1704		}
1705		RTFREE(sro6.ro_rt);
1706	}
1707
1708	return (maxmtu);
1709}
1710#endif /* INET6 */
1711
1712#ifdef IPSEC
1713/* compute ESP/AH header size for TCP, including outer IP header. */
1714size_t
1715ipsec_hdrsiz_tcp(struct tcpcb *tp)
1716{
1717	struct inpcb *inp;
1718	struct mbuf *m;
1719	size_t hdrsiz;
1720	struct ip *ip;
1721#ifdef INET6
1722	struct ip6_hdr *ip6;
1723#endif
1724	struct tcphdr *th;
1725
1726	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1727		return (0);
1728	MGETHDR(m, M_DONTWAIT, MT_DATA);
1729	if (!m)
1730		return (0);
1731
1732#ifdef INET6
1733	if ((inp->inp_vflag & INP_IPV6) != 0) {
1734		ip6 = mtod(m, struct ip6_hdr *);
1735		th = (struct tcphdr *)(ip6 + 1);
1736		m->m_pkthdr.len = m->m_len =
1737			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1738		tcpip_fillheaders(inp, ip6, th);
1739		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1740	} else
1741#endif /* INET6 */
1742	{
1743		ip = mtod(m, struct ip *);
1744		th = (struct tcphdr *)(ip + 1);
1745		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1746		tcpip_fillheaders(inp, ip, th);
1747		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1748	}
1749
1750	m_free(m);
1751	return (hdrsiz);
1752}
1753#endif /*IPSEC*/
1754
1755/*
1756 * Move a TCP connection into TIME_WAIT state.
1757 *    tcbinfo is locked.
1758 *    inp is locked, and is unlocked before returning.
1759 */
1760void
1761tcp_twstart(struct tcpcb *tp)
1762{
1763	struct tcptw *tw;
1764	struct inpcb *inp = tp->t_inpcb;
1765	int acknow;
1766	struct socket *so;
1767
1768	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1769	INP_LOCK_ASSERT(inp);
1770
1771	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1772		tp = tcp_close(tp);
1773		if (tp != NULL)
1774			INP_UNLOCK(inp);
1775		return;
1776	}
1777
1778	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1779	if (tw == NULL) {
1780		tw = tcp_timer_2msl_tw(1);
1781		if (tw == NULL) {
1782			tp = tcp_close(tp);
1783			if (tp != NULL)
1784				INP_UNLOCK(inp);
1785			return;
1786		}
1787	}
1788	tw->tw_inpcb = inp;
1789
1790	/*
1791	 * Recover last window size sent.
1792	 */
1793	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1794
1795	/*
1796	 * Set t_recent if timestamps are used on the connection.
1797	 */
1798	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1799	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1800		tw->t_recent = tp->ts_recent;
1801	else
1802		tw->t_recent = 0;
1803
1804	tw->snd_nxt = tp->snd_nxt;
1805	tw->rcv_nxt = tp->rcv_nxt;
1806	tw->iss     = tp->iss;
1807	tw->irs     = tp->irs;
1808	tw->t_starttime = tp->t_starttime;
1809	tw->tw_time = 0;
1810
1811/* XXX
1812 * If this code will
1813 * be used for fin-wait-2 state also, then we may need
1814 * a ts_recent from the last segment.
1815 */
1816	acknow = tp->t_flags & TF_ACKNOW;
1817
1818	/*
1819	 * First, discard tcpcb state, which includes stopping its timers and
1820	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1821	 * that work is now done in the caller.
1822	 *
1823	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1824	 * and might not be needed here any longer.
1825	 */
1826	tcp_discardcb(tp);
1827	so = inp->inp_socket;
1828	soisdisconnected(so);
1829	SOCK_LOCK(so);
1830	tw->tw_cred = crhold(so->so_cred);
1831	tw->tw_so_options = so->so_options;
1832	SOCK_UNLOCK(so);
1833	if (acknow)
1834		tcp_twrespond(tw, TH_ACK);
1835	inp->inp_ppcb = tw;
1836	inp->inp_vflag |= INP_TIMEWAIT;
1837	tcp_timer_2msl_reset(tw, 0);
1838
1839	/*
1840	 * If the inpcb owns the sole reference to the socket, then we can
1841	 * detach and free the socket as it is not needed in time wait.
1842	 */
1843	if (inp->inp_vflag & INP_SOCKREF) {
1844		KASSERT(so->so_state & SS_PROTOREF,
1845		    ("tcp_twstart: !SS_PROTOREF"));
1846		inp->inp_vflag &= ~INP_SOCKREF;
1847		INP_UNLOCK(inp);
1848		ACCEPT_LOCK();
1849		SOCK_LOCK(so);
1850		so->so_state &= ~SS_PROTOREF;
1851		sofree(so);
1852	} else
1853		INP_UNLOCK(inp);
1854}
1855
1856#if 0
1857/*
1858 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1859 * the actual rate is slightly higher due to the addition of
1860 * random positive increments.
1861 *
1862 * Most other new OSes use semi-randomized ISN values, so we
1863 * do not need to worry about them.
1864 */
1865#define MS_ISN_BYTES_PER_SECOND		250000
1866
1867/*
1868 * Determine if the ISN we will generate has advanced beyond the last
1869 * sequence number used by the previous connection.  If so, indicate
1870 * that it is safe to recycle this tw socket by returning 1.
1871 */
1872int
1873tcp_twrecycleable(struct tcptw *tw)
1874{
1875	tcp_seq new_iss = tw->iss;
1876	tcp_seq new_irs = tw->irs;
1877
1878	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1879	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1880	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1881
1882	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1883		return (1);
1884	else
1885		return (0);
1886}
1887#endif
1888
1889void
1890tcp_twclose(struct tcptw *tw, int reuse)
1891{
1892	struct socket *so;
1893	struct inpcb *inp;
1894
1895	/*
1896	 * At this point, we are in one of two situations:
1897	 *
1898	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1899	 *     all state.
1900	 *
1901	 * (2) We have a socket -- if we own a reference, release it and
1902	 *     notify the socket layer.
1903	 */
1904	inp = tw->tw_inpcb;
1905	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1906	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1907	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1908	INP_LOCK_ASSERT(inp);
1909
1910	tw->tw_inpcb = NULL;
1911	tcp_timer_2msl_stop(tw);
1912	inp->inp_ppcb = NULL;
1913	in_pcbdrop(inp);
1914
1915	so = inp->inp_socket;
1916	if (so != NULL) {
1917		/*
1918		 * If there's a socket, handle two cases: first, we own a
1919		 * strong reference, which we will now release, or we don't
1920		 * in which case another reference exists (XXXRW: think
1921		 * about this more), and we don't need to take action.
1922		 */
1923		if (inp->inp_vflag & INP_SOCKREF) {
1924			inp->inp_vflag &= ~INP_SOCKREF;
1925			INP_UNLOCK(inp);
1926			ACCEPT_LOCK();
1927			SOCK_LOCK(so);
1928			KASSERT(so->so_state & SS_PROTOREF,
1929			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1930			so->so_state &= ~SS_PROTOREF;
1931			sofree(so);
1932		} else {
1933			/*
1934			 * If we don't own the only reference, the socket and
1935			 * inpcb need to be left around to be handled by
1936			 * tcp_usr_detach() later.
1937			 */
1938			INP_UNLOCK(inp);
1939		}
1940	} else {
1941#ifdef INET6
1942		if (inp->inp_vflag & INP_IPV6PROTO)
1943			in6_pcbfree(inp);
1944		else
1945#endif
1946			in_pcbfree(inp);
1947	}
1948	tcpstat.tcps_closed++;
1949	crfree(tw->tw_cred);
1950	tw->tw_cred = NULL;
1951	if (reuse)
1952		return;
1953	uma_zfree(tcptw_zone, tw);
1954}
1955
1956int
1957tcp_twrespond(struct tcptw *tw, int flags)
1958{
1959	struct inpcb *inp = tw->tw_inpcb;
1960	struct tcphdr *th;
1961	struct mbuf *m;
1962	struct ip *ip = NULL;
1963	u_int8_t *optp;
1964	u_int hdrlen, optlen;
1965	int error;
1966#ifdef INET6
1967	struct ip6_hdr *ip6 = NULL;
1968	int isipv6 = inp->inp_inc.inc_isipv6;
1969#endif
1970
1971	INP_LOCK_ASSERT(inp);
1972
1973	m = m_gethdr(M_DONTWAIT, MT_DATA);
1974	if (m == NULL)
1975		return (ENOBUFS);
1976	m->m_data += max_linkhdr;
1977
1978#ifdef MAC
1979	mac_create_mbuf_from_inpcb(inp, m);
1980#endif
1981
1982#ifdef INET6
1983	if (isipv6) {
1984		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1985		ip6 = mtod(m, struct ip6_hdr *);
1986		th = (struct tcphdr *)(ip6 + 1);
1987		tcpip_fillheaders(inp, ip6, th);
1988	} else
1989#endif
1990	{
1991		hdrlen = sizeof(struct tcpiphdr);
1992		ip = mtod(m, struct ip *);
1993		th = (struct tcphdr *)(ip + 1);
1994		tcpip_fillheaders(inp, ip, th);
1995	}
1996	optp = (u_int8_t *)(th + 1);
1997
1998	/*
1999	 * Send a timestamp and echo-reply if both our side and our peer
2000	 * have sent timestamps in our SYN's and this is not a RST.
2001	 */
2002	if (tw->t_recent && flags == TH_ACK) {
2003		u_int32_t *lp = (u_int32_t *)optp;
2004
2005		/* Form timestamp option as shown in appendix A of RFC 1323. */
2006		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
2007		*lp++ = htonl(ticks);
2008		*lp   = htonl(tw->t_recent);
2009		optp += TCPOLEN_TSTAMP_APPA;
2010	}
2011
2012	optlen = optp - (u_int8_t *)(th + 1);
2013
2014	m->m_len = hdrlen + optlen;
2015	m->m_pkthdr.len = m->m_len;
2016
2017	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
2018
2019	th->th_seq = htonl(tw->snd_nxt);
2020	th->th_ack = htonl(tw->rcv_nxt);
2021	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2022	th->th_flags = flags;
2023	th->th_win = htons(tw->last_win);
2024
2025#ifdef INET6
2026	if (isipv6) {
2027		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2028		    sizeof(struct tcphdr) + optlen);
2029		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2030		error = ip6_output(m, inp->in6p_outputopts, NULL,
2031		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2032	} else
2033#endif
2034	{
2035		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2036		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2037		m->m_pkthdr.csum_flags = CSUM_TCP;
2038		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2039		ip->ip_len = m->m_pkthdr.len;
2040		if (path_mtu_discovery)
2041			ip->ip_off |= IP_DF;
2042		error = ip_output(m, inp->inp_options, NULL,
2043		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2044		    NULL, inp);
2045	}
2046	if (flags & TH_ACK)
2047		tcpstat.tcps_sndacks++;
2048	else
2049		tcpstat.tcps_sndctrl++;
2050	tcpstat.tcps_sndtotal++;
2051	return (error);
2052}
2053
2054/*
2055 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2056 *
2057 * This code attempts to calculate the bandwidth-delay product as a
2058 * means of determining the optimal window size to maximize bandwidth,
2059 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2060 * routers.  This code also does a fairly good job keeping RTTs in check
2061 * across slow links like modems.  We implement an algorithm which is very
2062 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2063 * transmitter side of a TCP connection and so only effects the transmit
2064 * side of the connection.
2065 *
2066 * BACKGROUND:  TCP makes no provision for the management of buffer space
2067 * at the end points or at the intermediate routers and switches.  A TCP
2068 * stream, whether using NewReno or not, will eventually buffer as
2069 * many packets as it is able and the only reason this typically works is
2070 * due to the fairly small default buffers made available for a connection
2071 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2072 * scaling it is now fairly easy for even a single TCP connection to blow-out
2073 * all available buffer space not only on the local interface, but on
2074 * intermediate routers and switches as well.  NewReno makes a misguided
2075 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2076 * then backing off, then steadily increasing the window again until another
2077 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2078 * is only made worse as network loads increase and the idea of intentionally
2079 * blowing out network buffers is, frankly, a terrible way to manage network
2080 * resources.
2081 *
2082 * It is far better to limit the transmit window prior to the failure
2083 * condition being achieved.  There are two general ways to do this:  First
2084 * you can 'scan' through different transmit window sizes and locate the
2085 * point where the RTT stops increasing, indicating that you have filled the
2086 * pipe, then scan backwards until you note that RTT stops decreasing, then
2087 * repeat ad-infinitum.  This method works in principle but has severe
2088 * implementation issues due to RTT variances, timer granularity, and
2089 * instability in the algorithm which can lead to many false positives and
2090 * create oscillations as well as interact badly with other TCP streams
2091 * implementing the same algorithm.
2092 *
2093 * The second method is to limit the window to the bandwidth delay product
2094 * of the link.  This is the method we implement.  RTT variances and our
2095 * own manipulation of the congestion window, bwnd, can potentially
2096 * destabilize the algorithm.  For this reason we have to stabilize the
2097 * elements used to calculate the window.  We do this by using the minimum
2098 * observed RTT, the long term average of the observed bandwidth, and
2099 * by adding two segments worth of slop.  It isn't perfect but it is able
2100 * to react to changing conditions and gives us a very stable basis on
2101 * which to extend the algorithm.
2102 */
2103void
2104tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2105{
2106	u_long bw;
2107	u_long bwnd;
2108	int save_ticks;
2109
2110	INP_LOCK_ASSERT(tp->t_inpcb);
2111
2112	/*
2113	 * If inflight_enable is disabled in the middle of a tcp connection,
2114	 * make sure snd_bwnd is effectively disabled.
2115	 */
2116	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2117		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2118		tp->snd_bandwidth = 0;
2119		return;
2120	}
2121
2122	/*
2123	 * Figure out the bandwidth.  Due to the tick granularity this
2124	 * is a very rough number and it MUST be averaged over a fairly
2125	 * long period of time.  XXX we need to take into account a link
2126	 * that is not using all available bandwidth, but for now our
2127	 * slop will ramp us up if this case occurs and the bandwidth later
2128	 * increases.
2129	 *
2130	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2131	 * effectively reset t_bw_rtttime for this case.
2132	 */
2133	save_ticks = ticks;
2134	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2135		return;
2136
2137	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2138	    (save_ticks - tp->t_bw_rtttime);
2139	tp->t_bw_rtttime = save_ticks;
2140	tp->t_bw_rtseq = ack_seq;
2141	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2142		return;
2143	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2144
2145	tp->snd_bandwidth = bw;
2146
2147	/*
2148	 * Calculate the semi-static bandwidth delay product, plus two maximal
2149	 * segments.  The additional slop puts us squarely in the sweet
2150	 * spot and also handles the bandwidth run-up case and stabilization.
2151	 * Without the slop we could be locking ourselves into a lower
2152	 * bandwidth.
2153	 *
2154	 * Situations Handled:
2155	 *	(1) Prevents over-queueing of packets on LANs, especially on
2156	 *	    high speed LANs, allowing larger TCP buffers to be
2157	 *	    specified, and also does a good job preventing
2158	 *	    over-queueing of packets over choke points like modems
2159	 *	    (at least for the transmit side).
2160	 *
2161	 *	(2) Is able to handle changing network loads (bandwidth
2162	 *	    drops so bwnd drops, bandwidth increases so bwnd
2163	 *	    increases).
2164	 *
2165	 *	(3) Theoretically should stabilize in the face of multiple
2166	 *	    connections implementing the same algorithm (this may need
2167	 *	    a little work).
2168	 *
2169	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2170	 *	    be adjusted with a sysctl but typically only needs to be
2171	 *	    on very slow connections.  A value no smaller then 5
2172	 *	    should be used, but only reduce this default if you have
2173	 *	    no other choice.
2174	 */
2175#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2176	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2177#undef USERTT
2178
2179	if (tcp_inflight_debug > 0) {
2180		static int ltime;
2181		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2182			ltime = ticks;
2183			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2184			    tp,
2185			    bw,
2186			    tp->t_rttbest,
2187			    tp->t_srtt,
2188			    bwnd
2189			);
2190		}
2191	}
2192	if ((long)bwnd < tcp_inflight_min)
2193		bwnd = tcp_inflight_min;
2194	if (bwnd > tcp_inflight_max)
2195		bwnd = tcp_inflight_max;
2196	if ((long)bwnd < tp->t_maxseg * 2)
2197		bwnd = tp->t_maxseg * 2;
2198	tp->snd_bwnd = bwnd;
2199}
2200
2201#ifdef TCP_SIGNATURE
2202/*
2203 * Callback function invoked by m_apply() to digest TCP segment data
2204 * contained within an mbuf chain.
2205 */
2206static int
2207tcp_signature_apply(void *fstate, void *data, u_int len)
2208{
2209
2210	MD5Update(fstate, (u_char *)data, len);
2211	return (0);
2212}
2213
2214/*
2215 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2216 *
2217 * Parameters:
2218 * m		pointer to head of mbuf chain
2219 * off0		offset to TCP header within the mbuf chain
2220 * len		length of TCP segment data, excluding options
2221 * optlen	length of TCP segment options
2222 * buf		pointer to storage for computed MD5 digest
2223 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2224 *
2225 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2226 * When called from tcp_input(), we can be sure that th_sum has been
2227 * zeroed out and verified already.
2228 *
2229 * This function is for IPv4 use only. Calling this function with an
2230 * IPv6 packet in the mbuf chain will yield undefined results.
2231 *
2232 * Return 0 if successful, otherwise return -1.
2233 *
2234 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2235 * search with the destination IP address, and a 'magic SPI' to be
2236 * determined by the application. This is hardcoded elsewhere to 1179
2237 * right now. Another branch of this code exists which uses the SPD to
2238 * specify per-application flows but it is unstable.
2239 */
2240int
2241tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2242    u_char *buf, u_int direction)
2243{
2244	union sockaddr_union dst;
2245	struct ippseudo ippseudo;
2246	MD5_CTX ctx;
2247	int doff;
2248	struct ip *ip;
2249	struct ipovly *ipovly;
2250	struct secasvar *sav;
2251	struct tcphdr *th;
2252	u_short savecsum;
2253
2254	KASSERT(m != NULL, ("NULL mbuf chain"));
2255	KASSERT(buf != NULL, ("NULL signature pointer"));
2256
2257	/* Extract the destination from the IP header in the mbuf. */
2258	ip = mtod(m, struct ip *);
2259	bzero(&dst, sizeof(union sockaddr_union));
2260	dst.sa.sa_len = sizeof(struct sockaddr_in);
2261	dst.sa.sa_family = AF_INET;
2262	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2263	    ip->ip_src : ip->ip_dst;
2264
2265	/* Look up an SADB entry which matches the address of the peer. */
2266	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2267	if (sav == NULL) {
2268		printf("%s: SADB lookup failed for %s\n", __func__,
2269		    inet_ntoa(dst.sin.sin_addr));
2270		return (EINVAL);
2271	}
2272
2273	MD5Init(&ctx);
2274	ipovly = (struct ipovly *)ip;
2275	th = (struct tcphdr *)((u_char *)ip + off0);
2276	doff = off0 + sizeof(struct tcphdr) + optlen;
2277
2278	/*
2279	 * Step 1: Update MD5 hash with IP pseudo-header.
2280	 *
2281	 * XXX The ippseudo header MUST be digested in network byte order,
2282	 * or else we'll fail the regression test. Assume all fields we've
2283	 * been doing arithmetic on have been in host byte order.
2284	 * XXX One cannot depend on ipovly->ih_len here. When called from
2285	 * tcp_output(), the underlying ip_len member has not yet been set.
2286	 */
2287	ippseudo.ippseudo_src = ipovly->ih_src;
2288	ippseudo.ippseudo_dst = ipovly->ih_dst;
2289	ippseudo.ippseudo_pad = 0;
2290	ippseudo.ippseudo_p = IPPROTO_TCP;
2291	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2292	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2293
2294	/*
2295	 * Step 2: Update MD5 hash with TCP header, excluding options.
2296	 * The TCP checksum must be set to zero.
2297	 */
2298	savecsum = th->th_sum;
2299	th->th_sum = 0;
2300	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2301	th->th_sum = savecsum;
2302
2303	/*
2304	 * Step 3: Update MD5 hash with TCP segment data.
2305	 *         Use m_apply() to avoid an early m_pullup().
2306	 */
2307	if (len > 0)
2308		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2309
2310	/*
2311	 * Step 4: Update MD5 hash with shared secret.
2312	 */
2313	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2314	MD5Final(buf, &ctx);
2315
2316	key_sa_recordxfer(sav, m);
2317	KEY_FREESAV(&sav);
2318	return (0);
2319}
2320#endif /* TCP_SIGNATURE */
2321
2322static int
2323sysctl_drop(SYSCTL_HANDLER_ARGS)
2324{
2325	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2326	struct sockaddr_storage addrs[2];
2327	struct inpcb *inp;
2328	struct tcpcb *tp;
2329	struct tcptw *tw;
2330	struct sockaddr_in *fin, *lin;
2331#ifdef INET6
2332	struct sockaddr_in6 *fin6, *lin6;
2333	struct in6_addr f6, l6;
2334#endif
2335	int error;
2336
2337	inp = NULL;
2338	fin = lin = NULL;
2339#ifdef INET6
2340	fin6 = lin6 = NULL;
2341#endif
2342	error = 0;
2343
2344	if (req->oldptr != NULL || req->oldlen != 0)
2345		return (EINVAL);
2346	if (req->newptr == NULL)
2347		return (EPERM);
2348	if (req->newlen < sizeof(addrs))
2349		return (ENOMEM);
2350	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2351	if (error)
2352		return (error);
2353
2354	switch (addrs[0].ss_family) {
2355#ifdef INET6
2356	case AF_INET6:
2357		fin6 = (struct sockaddr_in6 *)&addrs[0];
2358		lin6 = (struct sockaddr_in6 *)&addrs[1];
2359		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2360		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2361			return (EINVAL);
2362		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2363			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2364				return (EINVAL);
2365			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2366			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2367			fin = (struct sockaddr_in *)&addrs[0];
2368			lin = (struct sockaddr_in *)&addrs[1];
2369			break;
2370		}
2371		error = sa6_embedscope(fin6, ip6_use_defzone);
2372		if (error)
2373			return (error);
2374		error = sa6_embedscope(lin6, ip6_use_defzone);
2375		if (error)
2376			return (error);
2377		break;
2378#endif
2379	case AF_INET:
2380		fin = (struct sockaddr_in *)&addrs[0];
2381		lin = (struct sockaddr_in *)&addrs[1];
2382		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2383		    lin->sin_len != sizeof(struct sockaddr_in))
2384			return (EINVAL);
2385		break;
2386	default:
2387		return (EINVAL);
2388	}
2389	INP_INFO_WLOCK(&tcbinfo);
2390	switch (addrs[0].ss_family) {
2391#ifdef INET6
2392	case AF_INET6:
2393		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2394		    &l6, lin6->sin6_port, 0, NULL);
2395		break;
2396#endif
2397	case AF_INET:
2398		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2399		    lin->sin_addr, lin->sin_port, 0, NULL);
2400		break;
2401	}
2402	if (inp != NULL) {
2403		INP_LOCK(inp);
2404		if (inp->inp_vflag & INP_TIMEWAIT) {
2405			/*
2406			 * XXXRW: There currently exists a state where an
2407			 * inpcb is present, but its timewait state has been
2408			 * discarded.  For now, don't allow dropping of this
2409			 * type of inpcb.
2410			 */
2411			tw = intotw(inp);
2412			if (tw != NULL)
2413				tcp_twclose(tw, 0);
2414		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2415			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2416			tp = intotcpcb(inp);
2417			tcp_drop(tp, ECONNABORTED);
2418		}
2419		INP_UNLOCK(inp);
2420	} else
2421		error = ESRCH;
2422	INP_INFO_WUNLOCK(&tcbinfo);
2423	return (error);
2424}
2425
2426SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2427    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2428    0, sysctl_drop, "", "Drop TCP connection");
2429