tcp_timewait.c revision 162151
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
30 * $FreeBSD: head/sys/netinet/tcp_timewait.c 162151 2006-09-08 13:09:15Z glebius $
31 */
32
33#include "opt_compat.h"
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/callout.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/mac.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#ifdef INET6
50#include <sys/domain.h>
51#endif
52#include <sys/proc.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/protosw.h>
56#include <sys/random.h>
57
58#include <vm/uma.h>
59
60#include <net/route.h>
61#include <net/if.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#endif
69#include <netinet/in_pcb.h>
70#ifdef INET6
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#ifdef INET6
76#include <netinet6/ip6_var.h>
77#include <netinet6/scope6_var.h>
78#include <netinet6/nd6.h>
79#endif
80#include <netinet/ip_icmp.h>
81#include <netinet/tcp.h>
82#include <netinet/tcp_fsm.h>
83#include <netinet/tcp_seq.h>
84#include <netinet/tcp_timer.h>
85#include <netinet/tcp_var.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#include <netinet/tcpip.h>
90#ifdef TCPDEBUG
91#include <netinet/tcp_debug.h>
92#endif
93#include <netinet6/ip6protosw.h>
94
95#ifdef IPSEC
96#include <netinet6/ipsec.h>
97#ifdef INET6
98#include <netinet6/ipsec6.h>
99#endif
100#include <netkey/key.h>
101#endif /*IPSEC*/
102
103#ifdef FAST_IPSEC
104#include <netipsec/ipsec.h>
105#include <netipsec/xform.h>
106#ifdef INET6
107#include <netipsec/ipsec6.h>
108#endif
109#include <netipsec/key.h>
110#define	IPSEC
111#endif /*FAST_IPSEC*/
112
113#include <machine/in_cksum.h>
114#include <sys/md5.h>
115
116int	tcp_mssdflt = TCP_MSS;
117SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW,
118    &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
119
120#ifdef INET6
121int	tcp_v6mssdflt = TCP6_MSS;
122SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
123	CTLFLAG_RW, &tcp_v6mssdflt , 0,
124	"Default TCP Maximum Segment Size for IPv6");
125#endif
126
127/*
128 * Minimum MSS we accept and use. This prevents DoS attacks where
129 * we are forced to a ridiculous low MSS like 20 and send hundreds
130 * of packets instead of one. The effect scales with the available
131 * bandwidth and quickly saturates the CPU and network interface
132 * with packet generation and sending. Set to zero to disable MINMSS
133 * checking. This setting prevents us from sending too small packets.
134 */
135int	tcp_minmss = TCP_MINMSS;
136SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW,
137    &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
138/*
139 * Number of TCP segments per second we accept from remote host
140 * before we start to calculate average segment size. If average
141 * segment size drops below the minimum TCP MSS we assume a DoS
142 * attack and reset+drop the connection. Care has to be taken not to
143 * set this value too small to not kill interactive type connections
144 * (telnet, SSH) which send many small packets.
145 */
146int     tcp_minmssoverload = TCP_MINMSSOVERLOAD;
147SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmssoverload, CTLFLAG_RW,
148    &tcp_minmssoverload , 0, "Number of TCP Segments per Second allowed to"
149    "be under the MINMSS Size");
150
151#if 0
152static int	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
153SYSCTL_INT(_net_inet_tcp, TCPCTL_RTTDFLT, rttdflt, CTLFLAG_RW,
154    &tcp_rttdflt , 0, "Default maximum TCP Round Trip Time");
155#endif
156
157int	tcp_do_rfc1323 = 1;
158SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW,
159    &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
160
161static int	tcp_tcbhashsize = 0;
162SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RDTUN,
163     &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
164
165static int	do_tcpdrain = 1;
166SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW, &do_tcpdrain, 0,
167     "Enable tcp_drain routine for extra help when low on mbufs");
168
169SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD,
170    &tcbinfo.ipi_count, 0, "Number of active PCBs");
171
172static int	icmp_may_rst = 1;
173SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW, &icmp_may_rst, 0,
174    "Certain ICMP unreachable messages may abort connections in SYN_SENT");
175
176static int	tcp_isn_reseed_interval = 0;
177SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW,
178    &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
179
180static uma_zone_t tcptw_zone;
181static int	maxtcptw;
182static int
183sysctl_maxtcptw(SYSCTL_HANDLER_ARGS)
184{
185	int error, new;
186
187	if (maxtcptw == 0)
188		new = maxsockets / 5;
189	else
190		new = maxtcptw;
191	error = sysctl_handle_int(oidp, &new, sizeof(int), req);
192	if (error == 0 && req->newptr) {
193		if (new > maxtcptw) {
194			maxtcptw = new;
195			uma_zone_set_max(tcptw_zone, maxtcptw);
196		} else
197			error = EINVAL;
198	}
199	return (error);
200}
201SYSCTL_PROC(_net_inet_tcp, OID_AUTO, maxtcptw, CTLTYPE_INT|CTLFLAG_RW,
202    &maxtcptw, 0, sysctl_maxtcptw, "IU",
203    "Maximum number of compressed TCP TIME_WAIT entries");
204
205static int	nolocaltimewait = 0;
206SYSCTL_INT(_net_inet_tcp, OID_AUTO, nolocaltimewait, CTLFLAG_RW,
207    &nolocaltimewait, 0, "Do not create compressed TCP TIME_WAIT entries"
208			 "for local connections");
209
210/*
211 * TCP bandwidth limiting sysctls.  Note that the default lower bound of
212 * 1024 exists only for debugging.  A good production default would be
213 * something like 6100.
214 */
215SYSCTL_NODE(_net_inet_tcp, OID_AUTO, inflight, CTLFLAG_RW, 0,
216    "TCP inflight data limiting");
217
218static int	tcp_inflight_enable = 1;
219SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, enable, CTLFLAG_RW,
220    &tcp_inflight_enable, 0, "Enable automatic TCP inflight data limiting");
221
222static int	tcp_inflight_debug = 0;
223SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, debug, CTLFLAG_RW,
224    &tcp_inflight_debug, 0, "Debug TCP inflight calculations");
225
226static int	tcp_inflight_rttthresh;
227SYSCTL_PROC(_net_inet_tcp_inflight, OID_AUTO, rttthresh, CTLTYPE_INT|CTLFLAG_RW,
228    &tcp_inflight_rttthresh, 0, sysctl_msec_to_ticks, "I",
229    "RTT threshold below which inflight will deactivate itself");
230
231static int	tcp_inflight_min = 6144;
232SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, min, CTLFLAG_RW,
233    &tcp_inflight_min, 0, "Lower-bound for TCP inflight window");
234
235static int	tcp_inflight_max = TCP_MAXWIN << TCP_MAX_WINSHIFT;
236SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, max, CTLFLAG_RW,
237    &tcp_inflight_max, 0, "Upper-bound for TCP inflight window");
238
239static int	tcp_inflight_stab = 20;
240SYSCTL_INT(_net_inet_tcp_inflight, OID_AUTO, stab, CTLFLAG_RW,
241    &tcp_inflight_stab, 0, "Inflight Algorithm Stabilization 20 = 2 packets");
242
243uma_zone_t sack_hole_zone;
244
245static struct inpcb *tcp_notify(struct inpcb *, int);
246static void	tcp_isn_tick(void *);
247
248/*
249 * Target size of TCP PCB hash tables. Must be a power of two.
250 *
251 * Note that this can be overridden by the kernel environment
252 * variable net.inet.tcp.tcbhashsize
253 */
254#ifndef TCBHASHSIZE
255#define TCBHASHSIZE	512
256#endif
257
258/*
259 * XXX
260 * Callouts should be moved into struct tcp directly.  They are currently
261 * separate because the tcpcb structure is exported to userland for sysctl
262 * parsing purposes, which do not know about callouts.
263 */
264struct	tcpcb_mem {
265	struct	tcpcb tcb;
266	struct	callout tcpcb_mem_rexmt, tcpcb_mem_persist, tcpcb_mem_keep;
267	struct	callout tcpcb_mem_2msl, tcpcb_mem_delack;
268};
269
270static uma_zone_t tcpcb_zone;
271struct callout isn_callout;
272static struct mtx isn_mtx;
273
274#define	ISN_LOCK_INIT()	mtx_init(&isn_mtx, "isn_mtx", NULL, MTX_DEF)
275#define	ISN_LOCK()	mtx_lock(&isn_mtx)
276#define	ISN_UNLOCK()	mtx_unlock(&isn_mtx)
277
278/*
279 * TCP initialization.
280 */
281static void
282tcp_zone_change(void *tag)
283{
284
285	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
286	uma_zone_set_max(tcpcb_zone, maxsockets);
287	if (maxtcptw == 0)
288		uma_zone_set_max(tcptw_zone, maxsockets / 5);
289}
290
291static int
292tcp_inpcb_init(void *mem, int size, int flags)
293{
294	struct inpcb *inp = (struct inpcb *) mem;
295	INP_LOCK_INIT(inp, "inp", "tcpinp");
296	return (0);
297}
298
299void
300tcp_init(void)
301{
302	int hashsize = TCBHASHSIZE;
303
304	tcp_delacktime = TCPTV_DELACK;
305	tcp_keepinit = TCPTV_KEEP_INIT;
306	tcp_keepidle = TCPTV_KEEP_IDLE;
307	tcp_keepintvl = TCPTV_KEEPINTVL;
308	tcp_maxpersistidle = TCPTV_KEEP_IDLE;
309	tcp_msl = TCPTV_MSL;
310	tcp_rexmit_min = TCPTV_MIN;
311	tcp_rexmit_slop = TCPTV_CPU_VAR;
312	tcp_inflight_rttthresh = TCPTV_INFLIGHT_RTTTHRESH;
313
314	INP_INFO_LOCK_INIT(&tcbinfo, "tcp");
315	LIST_INIT(&tcb);
316	tcbinfo.listhead = &tcb;
317	TUNABLE_INT_FETCH("net.inet.tcp.tcbhashsize", &hashsize);
318	if (!powerof2(hashsize)) {
319		printf("WARNING: TCB hash size not a power of 2\n");
320		hashsize = 512; /* safe default */
321	}
322	tcp_tcbhashsize = hashsize;
323	tcbinfo.hashbase = hashinit(hashsize, M_PCB, &tcbinfo.hashmask);
324	tcbinfo.porthashbase = hashinit(hashsize, M_PCB,
325					&tcbinfo.porthashmask);
326	tcbinfo.ipi_zone = uma_zcreate("inpcb", sizeof(struct inpcb),
327	    NULL, NULL, tcp_inpcb_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
328	uma_zone_set_max(tcbinfo.ipi_zone, maxsockets);
329#ifdef INET6
330#define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
331#else /* INET6 */
332#define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
333#endif /* INET6 */
334	if (max_protohdr < TCP_MINPROTOHDR)
335		max_protohdr = TCP_MINPROTOHDR;
336	if (max_linkhdr + TCP_MINPROTOHDR > MHLEN)
337		panic("tcp_init");
338#undef TCP_MINPROTOHDR
339	/*
340	 * These have to be type stable for the benefit of the timers.
341	 */
342	tcpcb_zone = uma_zcreate("tcpcb", sizeof(struct tcpcb_mem),
343	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
344	uma_zone_set_max(tcpcb_zone, maxsockets);
345	tcptw_zone = uma_zcreate("tcptw", sizeof(struct tcptw),
346	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
347	TUNABLE_INT_FETCH("net.inet.tcp.maxtcptw", &maxtcptw);
348	if (maxtcptw == 0)
349		uma_zone_set_max(tcptw_zone, maxsockets / 5);
350	else
351		uma_zone_set_max(tcptw_zone, maxtcptw);
352	tcp_timer_init();
353	syncache_init();
354	tcp_hc_init();
355	tcp_reass_init();
356	ISN_LOCK_INIT();
357	callout_init(&isn_callout, CALLOUT_MPSAFE);
358	tcp_isn_tick(NULL);
359	EVENTHANDLER_REGISTER(shutdown_pre_sync, tcp_fini, NULL,
360		SHUTDOWN_PRI_DEFAULT);
361	sack_hole_zone = uma_zcreate("sackhole", sizeof(struct sackhole),
362	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
363	EVENTHANDLER_REGISTER(maxsockets_change, tcp_zone_change, NULL,
364		EVENTHANDLER_PRI_ANY);
365}
366
367void
368tcp_fini(void *xtp)
369{
370
371	callout_stop(&isn_callout);
372}
373
374/*
375 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
376 * tcp_template used to store this data in mbufs, but we now recopy it out
377 * of the tcpcb each time to conserve mbufs.
378 */
379void
380tcpip_fillheaders(struct inpcb *inp, void *ip_ptr, void *tcp_ptr)
381{
382	struct tcphdr *th = (struct tcphdr *)tcp_ptr;
383
384	INP_LOCK_ASSERT(inp);
385
386#ifdef INET6
387	if ((inp->inp_vflag & INP_IPV6) != 0) {
388		struct ip6_hdr *ip6;
389
390		ip6 = (struct ip6_hdr *)ip_ptr;
391		ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
392			(inp->in6p_flowinfo & IPV6_FLOWINFO_MASK);
393		ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
394			(IPV6_VERSION & IPV6_VERSION_MASK);
395		ip6->ip6_nxt = IPPROTO_TCP;
396		ip6->ip6_plen = sizeof(struct tcphdr);
397		ip6->ip6_src = inp->in6p_laddr;
398		ip6->ip6_dst = inp->in6p_faddr;
399	} else
400#endif
401	{
402		struct ip *ip;
403
404		ip = (struct ip *)ip_ptr;
405		ip->ip_v = IPVERSION;
406		ip->ip_hl = 5;
407		ip->ip_tos = inp->inp_ip_tos;
408		ip->ip_len = 0;
409		ip->ip_id = 0;
410		ip->ip_off = 0;
411		ip->ip_ttl = inp->inp_ip_ttl;
412		ip->ip_sum = 0;
413		ip->ip_p = IPPROTO_TCP;
414		ip->ip_src = inp->inp_laddr;
415		ip->ip_dst = inp->inp_faddr;
416	}
417	th->th_sport = inp->inp_lport;
418	th->th_dport = inp->inp_fport;
419	th->th_seq = 0;
420	th->th_ack = 0;
421	th->th_x2 = 0;
422	th->th_off = 5;
423	th->th_flags = 0;
424	th->th_win = 0;
425	th->th_urp = 0;
426	th->th_sum = 0;		/* in_pseudo() is called later for ipv4 */
427}
428
429/*
430 * Create template to be used to send tcp packets on a connection.
431 * Allocates an mbuf and fills in a skeletal tcp/ip header.  The only
432 * use for this function is in keepalives, which use tcp_respond.
433 */
434struct tcptemp *
435tcpip_maketemplate(struct inpcb *inp)
436{
437	struct mbuf *m;
438	struct tcptemp *n;
439
440	m = m_get(M_DONTWAIT, MT_DATA);
441	if (m == NULL)
442		return (0);
443	m->m_len = sizeof(struct tcptemp);
444	n = mtod(m, struct tcptemp *);
445
446	tcpip_fillheaders(inp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
447	return (n);
448}
449
450/*
451 * Send a single message to the TCP at address specified by
452 * the given TCP/IP header.  If m == NULL, then we make a copy
453 * of the tcpiphdr at ti and send directly to the addressed host.
454 * This is used to force keep alive messages out using the TCP
455 * template for a connection.  If flags are given then we send
456 * a message back to the TCP which originated the * segment ti,
457 * and discard the mbuf containing it and any other attached mbufs.
458 *
459 * In any case the ack and sequence number of the transmitted
460 * segment are as specified by the parameters.
461 *
462 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
463 */
464void
465tcp_respond(struct tcpcb *tp, void *ipgen, register struct tcphdr *th,
466    register struct mbuf *m, tcp_seq ack, tcp_seq seq, int flags)
467{
468	register int tlen;
469	int win = 0;
470	struct ip *ip;
471	struct tcphdr *nth;
472#ifdef INET6
473	struct ip6_hdr *ip6;
474	int isipv6;
475#endif /* INET6 */
476	int ipflags = 0;
477	struct inpcb *inp;
478
479	KASSERT(tp != NULL || m != NULL, ("tcp_respond: tp and m both NULL"));
480
481#ifdef INET6
482	isipv6 = ((struct ip *)ipgen)->ip_v == 6;
483	ip6 = ipgen;
484#endif /* INET6 */
485	ip = ipgen;
486
487	if (tp != NULL) {
488		inp = tp->t_inpcb;
489		KASSERT(inp != NULL, ("tcp control block w/o inpcb"));
490		INP_INFO_WLOCK_ASSERT(&tcbinfo);
491		INP_LOCK_ASSERT(inp);
492	} else
493		inp = NULL;
494
495	if (tp != NULL) {
496		if (!(flags & TH_RST)) {
497			win = sbspace(&inp->inp_socket->so_rcv);
498			if (win > (long)TCP_MAXWIN << tp->rcv_scale)
499				win = (long)TCP_MAXWIN << tp->rcv_scale;
500		}
501	}
502	if (m == NULL) {
503		m = m_gethdr(M_DONTWAIT, MT_DATA);
504		if (m == NULL)
505			return;
506		tlen = 0;
507		m->m_data += max_linkhdr;
508#ifdef INET6
509		if (isipv6) {
510			bcopy((caddr_t)ip6, mtod(m, caddr_t),
511			      sizeof(struct ip6_hdr));
512			ip6 = mtod(m, struct ip6_hdr *);
513			nth = (struct tcphdr *)(ip6 + 1);
514		} else
515#endif /* INET6 */
516	      {
517		bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
518		ip = mtod(m, struct ip *);
519		nth = (struct tcphdr *)(ip + 1);
520	      }
521		bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
522		flags = TH_ACK;
523	} else {
524		m_freem(m->m_next);
525		m->m_next = NULL;
526		m->m_data = (caddr_t)ipgen;
527		/* m_len is set later */
528		tlen = 0;
529#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
530#ifdef INET6
531		if (isipv6) {
532			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
533			nth = (struct tcphdr *)(ip6 + 1);
534		} else
535#endif /* INET6 */
536	      {
537		xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
538		nth = (struct tcphdr *)(ip + 1);
539	      }
540		if (th != nth) {
541			/*
542			 * this is usually a case when an extension header
543			 * exists between the IPv6 header and the
544			 * TCP header.
545			 */
546			nth->th_sport = th->th_sport;
547			nth->th_dport = th->th_dport;
548		}
549		xchg(nth->th_dport, nth->th_sport, n_short);
550#undef xchg
551	}
552#ifdef INET6
553	if (isipv6) {
554		ip6->ip6_flow = 0;
555		ip6->ip6_vfc = IPV6_VERSION;
556		ip6->ip6_nxt = IPPROTO_TCP;
557		ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
558						tlen));
559		tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
560	} else
561#endif
562	{
563		tlen += sizeof (struct tcpiphdr);
564		ip->ip_len = tlen;
565		ip->ip_ttl = ip_defttl;
566		if (path_mtu_discovery)
567			ip->ip_off |= IP_DF;
568	}
569	m->m_len = tlen;
570	m->m_pkthdr.len = tlen;
571	m->m_pkthdr.rcvif = NULL;
572#ifdef MAC
573	if (inp != NULL) {
574		/*
575		 * Packet is associated with a socket, so allow the
576		 * label of the response to reflect the socket label.
577		 */
578		INP_LOCK_ASSERT(inp);
579		mac_create_mbuf_from_inpcb(inp, m);
580	} else {
581		/*
582		 * Packet is not associated with a socket, so possibly
583		 * update the label in place.
584		 */
585		mac_reflect_mbuf_tcp(m);
586	}
587#endif
588	nth->th_seq = htonl(seq);
589	nth->th_ack = htonl(ack);
590	nth->th_x2 = 0;
591	nth->th_off = sizeof (struct tcphdr) >> 2;
592	nth->th_flags = flags;
593	if (tp != NULL)
594		nth->th_win = htons((u_short) (win >> tp->rcv_scale));
595	else
596		nth->th_win = htons((u_short)win);
597	nth->th_urp = 0;
598#ifdef INET6
599	if (isipv6) {
600		nth->th_sum = 0;
601		nth->th_sum = in6_cksum(m, IPPROTO_TCP,
602					sizeof(struct ip6_hdr),
603					tlen - sizeof(struct ip6_hdr));
604		ip6->ip6_hlim = in6_selecthlim(tp != NULL ? tp->t_inpcb :
605		    NULL, NULL);
606	} else
607#endif /* INET6 */
608	{
609		nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
610		    htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
611		m->m_pkthdr.csum_flags = CSUM_TCP;
612		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
613	}
614#ifdef TCPDEBUG
615	if (tp == NULL || (inp->inp_socket->so_options & SO_DEBUG))
616		tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
617#endif
618#ifdef INET6
619	if (isipv6)
620		(void) ip6_output(m, NULL, NULL, ipflags, NULL, NULL, inp);
621	else
622#endif /* INET6 */
623	(void) ip_output(m, NULL, NULL, ipflags, NULL, inp);
624}
625
626/*
627 * Create a new TCP control block, making an
628 * empty reassembly queue and hooking it to the argument
629 * protocol control block.  The `inp' parameter must have
630 * come from the zone allocator set up in tcp_init().
631 */
632struct tcpcb *
633tcp_newtcpcb(struct inpcb *inp)
634{
635	struct tcpcb_mem *tm;
636	struct tcpcb *tp;
637#ifdef INET6
638	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
639#endif /* INET6 */
640
641	tm = uma_zalloc(tcpcb_zone, M_NOWAIT | M_ZERO);
642	if (tm == NULL)
643		return (NULL);
644	tp = &tm->tcb;
645	/*	LIST_INIT(&tp->t_segq); */	/* XXX covered by M_ZERO */
646	tp->t_maxseg = tp->t_maxopd =
647#ifdef INET6
648		isipv6 ? tcp_v6mssdflt :
649#endif /* INET6 */
650		tcp_mssdflt;
651
652	/* Set up our timeouts. */
653	callout_init(tp->tt_rexmt = &tm->tcpcb_mem_rexmt, NET_CALLOUT_MPSAFE);
654	callout_init(tp->tt_persist = &tm->tcpcb_mem_persist, NET_CALLOUT_MPSAFE);
655	callout_init(tp->tt_keep = &tm->tcpcb_mem_keep, NET_CALLOUT_MPSAFE);
656	callout_init(tp->tt_2msl = &tm->tcpcb_mem_2msl, NET_CALLOUT_MPSAFE);
657	callout_init(tp->tt_delack = &tm->tcpcb_mem_delack, NET_CALLOUT_MPSAFE);
658
659	if (tcp_do_rfc1323)
660		tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
661	tp->sack_enable = tcp_do_sack;
662	TAILQ_INIT(&tp->snd_holes);
663	tp->t_inpcb = inp;	/* XXX */
664	/*
665	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
666	 * rtt estimate.  Set rttvar so that srtt + 4 * rttvar gives
667	 * reasonable initial retransmit time.
668	 */
669	tp->t_srtt = TCPTV_SRTTBASE;
670	tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
671	tp->t_rttmin = tcp_rexmit_min;
672	tp->t_rxtcur = TCPTV_RTOBASE;
673	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
674	tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
675	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
676	tp->t_rcvtime = ticks;
677	tp->t_bw_rtttime = ticks;
678	/*
679	 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
680	 * because the socket may be bound to an IPv6 wildcard address,
681	 * which may match an IPv4-mapped IPv6 address.
682	 */
683	inp->inp_ip_ttl = ip_defttl;
684	inp->inp_ppcb = tp;
685	return (tp);		/* XXX */
686}
687
688/*
689 * Drop a TCP connection, reporting
690 * the specified error.  If connection is synchronized,
691 * then send a RST to peer.
692 */
693struct tcpcb *
694tcp_drop(struct tcpcb *tp, int errno)
695{
696	struct socket *so = tp->t_inpcb->inp_socket;
697
698	INP_INFO_WLOCK_ASSERT(&tcbinfo);
699	INP_LOCK_ASSERT(tp->t_inpcb);
700
701	if (TCPS_HAVERCVDSYN(tp->t_state)) {
702		tp->t_state = TCPS_CLOSED;
703		(void) tcp_output(tp);
704		tcpstat.tcps_drops++;
705	} else
706		tcpstat.tcps_conndrops++;
707	if (errno == ETIMEDOUT && tp->t_softerror)
708		errno = tp->t_softerror;
709	so->so_error = errno;
710	return (tcp_close(tp));
711}
712
713void
714tcp_discardcb(struct tcpcb *tp)
715{
716	struct tseg_qent *q;
717	struct inpcb *inp = tp->t_inpcb;
718	struct socket *so = inp->inp_socket;
719#ifdef INET6
720	int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
721#endif /* INET6 */
722
723	INP_LOCK_ASSERT(inp);
724
725	/*
726	 * Make sure that all of our timers are stopped before we
727	 * delete the PCB.
728	 */
729	callout_stop(tp->tt_rexmt);
730	callout_stop(tp->tt_persist);
731	callout_stop(tp->tt_keep);
732	callout_stop(tp->tt_2msl);
733	callout_stop(tp->tt_delack);
734
735	/*
736	 * If we got enough samples through the srtt filter,
737	 * save the rtt and rttvar in the routing entry.
738	 * 'Enough' is arbitrarily defined as 4 rtt samples.
739	 * 4 samples is enough for the srtt filter to converge
740	 * to within enough % of the correct value; fewer samples
741	 * and we could save a bogus rtt. The danger is not high
742	 * as tcp quickly recovers from everything.
743	 * XXX: Works very well but needs some more statistics!
744	 */
745	if (tp->t_rttupdated >= 4) {
746		struct hc_metrics_lite metrics;
747		u_long ssthresh;
748
749		bzero(&metrics, sizeof(metrics));
750		/*
751		 * Update the ssthresh always when the conditions below
752		 * are satisfied. This gives us better new start value
753		 * for the congestion avoidance for new connections.
754		 * ssthresh is only set if packet loss occured on a session.
755		 *
756		 * XXXRW: 'so' may be NULL here, and/or socket buffer may be
757		 * being torn down.  Ideally this code would not use 'so'.
758		 */
759		ssthresh = tp->snd_ssthresh;
760		if (ssthresh != 0 && ssthresh < so->so_snd.sb_hiwat / 2) {
761			/*
762			 * convert the limit from user data bytes to
763			 * packets then to packet data bytes.
764			 */
765			ssthresh = (ssthresh + tp->t_maxseg / 2) / tp->t_maxseg;
766			if (ssthresh < 2)
767				ssthresh = 2;
768			ssthresh *= (u_long)(tp->t_maxseg +
769#ifdef INET6
770				      (isipv6 ? sizeof (struct ip6_hdr) +
771					       sizeof (struct tcphdr) :
772#endif
773				       sizeof (struct tcpiphdr)
774#ifdef INET6
775				       )
776#endif
777				      );
778		} else
779			ssthresh = 0;
780		metrics.rmx_ssthresh = ssthresh;
781
782		metrics.rmx_rtt = tp->t_srtt;
783		metrics.rmx_rttvar = tp->t_rttvar;
784		/* XXX: This wraps if the pipe is more than 4 Gbit per second */
785		metrics.rmx_bandwidth = tp->snd_bandwidth;
786		metrics.rmx_cwnd = tp->snd_cwnd;
787		metrics.rmx_sendpipe = 0;
788		metrics.rmx_recvpipe = 0;
789
790		tcp_hc_update(&inp->inp_inc, &metrics);
791	}
792
793	/* free the reassembly queue, if any */
794	while ((q = LIST_FIRST(&tp->t_segq)) != NULL) {
795		LIST_REMOVE(q, tqe_q);
796		m_freem(q->tqe_m);
797		uma_zfree(tcp_reass_zone, q);
798		tp->t_segqlen--;
799		tcp_reass_qsize--;
800	}
801	tcp_free_sackholes(tp);
802	inp->inp_ppcb = NULL;
803	tp->t_inpcb = NULL;
804	uma_zfree(tcpcb_zone, tp);
805}
806
807/*
808 * Attempt to close a TCP control block, marking it as dropped, and freeing
809 * the socket if we hold the only reference.
810 */
811struct tcpcb *
812tcp_close(struct tcpcb *tp)
813{
814	struct inpcb *inp = tp->t_inpcb;
815	struct socket *so;
816
817	INP_INFO_WLOCK_ASSERT(&tcbinfo);
818	INP_LOCK_ASSERT(inp);
819
820	in_pcbdrop(inp);
821	tcpstat.tcps_closed++;
822	KASSERT(inp->inp_socket != NULL, ("tcp_close: inp_socket NULL"));
823	so = inp->inp_socket;
824	soisdisconnected(so);
825	if (inp->inp_vflag & INP_SOCKREF) {
826		KASSERT(so->so_state & SS_PROTOREF,
827		    ("tcp_close: !SS_PROTOREF"));
828		inp->inp_vflag &= ~INP_SOCKREF;
829		INP_UNLOCK(inp);
830		ACCEPT_LOCK();
831		SOCK_LOCK(so);
832		so->so_state &= ~SS_PROTOREF;
833		sofree(so);
834		return (NULL);
835	}
836	return (tp);
837}
838
839void
840tcp_drain(void)
841{
842
843	if (do_tcpdrain) {
844		struct inpcb *inpb;
845		struct tcpcb *tcpb;
846		struct tseg_qent *te;
847
848	/*
849	 * Walk the tcpbs, if existing, and flush the reassembly queue,
850	 * if there is one...
851	 * XXX: The "Net/3" implementation doesn't imply that the TCP
852	 *      reassembly queue should be flushed, but in a situation
853	 *	where we're really low on mbufs, this is potentially
854	 *	usefull.
855	 */
856		INP_INFO_RLOCK(&tcbinfo);
857		LIST_FOREACH(inpb, tcbinfo.listhead, inp_list) {
858			if (inpb->inp_vflag & INP_TIMEWAIT)
859				continue;
860			INP_LOCK(inpb);
861			if ((tcpb = intotcpcb(inpb)) != NULL) {
862				while ((te = LIST_FIRST(&tcpb->t_segq))
863			            != NULL) {
864					LIST_REMOVE(te, tqe_q);
865					m_freem(te->tqe_m);
866					uma_zfree(tcp_reass_zone, te);
867					tcpb->t_segqlen--;
868					tcp_reass_qsize--;
869				}
870				tcp_clean_sackreport(tcpb);
871			}
872			INP_UNLOCK(inpb);
873		}
874		INP_INFO_RUNLOCK(&tcbinfo);
875	}
876}
877
878/*
879 * Notify a tcp user of an asynchronous error;
880 * store error as soft error, but wake up user
881 * (for now, won't do anything until can select for soft error).
882 *
883 * Do not wake up user since there currently is no mechanism for
884 * reporting soft errors (yet - a kqueue filter may be added).
885 */
886static struct inpcb *
887tcp_notify(struct inpcb *inp, int error)
888{
889	struct tcpcb *tp;
890
891	INP_INFO_WLOCK_ASSERT(&tcbinfo);
892	INP_LOCK_ASSERT(inp);
893
894	if ((inp->inp_vflag & INP_TIMEWAIT) ||
895	    (inp->inp_vflag & INP_DROPPED))
896		return (inp);
897
898	tp = intotcpcb(inp);
899	KASSERT(tp != NULL, ("tcp_notify: tp == NULL"));
900
901	/*
902	 * Ignore some errors if we are hooked up.
903	 * If connection hasn't completed, has retransmitted several times,
904	 * and receives a second error, give up now.  This is better
905	 * than waiting a long time to establish a connection that
906	 * can never complete.
907	 */
908	if (tp->t_state == TCPS_ESTABLISHED &&
909	    (error == EHOSTUNREACH || error == ENETUNREACH ||
910	     error == EHOSTDOWN)) {
911		return (inp);
912	} else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
913	    tp->t_softerror) {
914		tp = tcp_drop(tp, error);
915		if (tp != NULL)
916			return (inp);
917		else
918			return (NULL);
919	} else {
920		tp->t_softerror = error;
921		return (inp);
922	}
923#if 0
924	wakeup( &so->so_timeo);
925	sorwakeup(so);
926	sowwakeup(so);
927#endif
928}
929
930static int
931tcp_pcblist(SYSCTL_HANDLER_ARGS)
932{
933	int error, i, n;
934	struct inpcb *inp, **inp_list;
935	inp_gen_t gencnt;
936	struct xinpgen xig;
937
938	/*
939	 * The process of preparing the TCB list is too time-consuming and
940	 * resource-intensive to repeat twice on every request.
941	 */
942	if (req->oldptr == NULL) {
943		n = tcbinfo.ipi_count;
944		req->oldidx = 2 * (sizeof xig)
945			+ (n + n/8) * sizeof(struct xtcpcb);
946		return (0);
947	}
948
949	if (req->newptr != NULL)
950		return (EPERM);
951
952	/*
953	 * OK, now we're committed to doing something.
954	 */
955	INP_INFO_RLOCK(&tcbinfo);
956	gencnt = tcbinfo.ipi_gencnt;
957	n = tcbinfo.ipi_count;
958	INP_INFO_RUNLOCK(&tcbinfo);
959
960	error = sysctl_wire_old_buffer(req, 2 * (sizeof xig)
961		+ n * sizeof(struct xtcpcb));
962	if (error != 0)
963		return (error);
964
965	xig.xig_len = sizeof xig;
966	xig.xig_count = n;
967	xig.xig_gen = gencnt;
968	xig.xig_sogen = so_gencnt;
969	error = SYSCTL_OUT(req, &xig, sizeof xig);
970	if (error)
971		return (error);
972
973	inp_list = malloc(n * sizeof *inp_list, M_TEMP, M_WAITOK);
974	if (inp_list == NULL)
975		return (ENOMEM);
976
977	INP_INFO_RLOCK(&tcbinfo);
978	for (inp = LIST_FIRST(tcbinfo.listhead), i = 0; inp != NULL && i < n;
979	     inp = LIST_NEXT(inp, inp_list)) {
980		INP_LOCK(inp);
981		if (inp->inp_gencnt <= gencnt) {
982			/*
983			 * XXX: This use of cr_cansee(), introduced with
984			 * TCP state changes, is not quite right, but for
985			 * now, better than nothing.
986			 */
987			if (inp->inp_vflag & INP_TIMEWAIT) {
988				if (intotw(inp) != NULL)
989					error = cr_cansee(req->td->td_ucred,
990					    intotw(inp)->tw_cred);
991				else
992					error = EINVAL;	/* Skip this inp. */
993			} else
994				error = cr_canseesocket(req->td->td_ucred,
995				    inp->inp_socket);
996			if (error == 0)
997				inp_list[i++] = inp;
998		}
999		INP_UNLOCK(inp);
1000	}
1001	INP_INFO_RUNLOCK(&tcbinfo);
1002	n = i;
1003
1004	error = 0;
1005	for (i = 0; i < n; i++) {
1006		inp = inp_list[i];
1007		INP_LOCK(inp);
1008		if (inp->inp_gencnt <= gencnt) {
1009			struct xtcpcb xt;
1010			void *inp_ppcb;
1011
1012			bzero(&xt, sizeof(xt));
1013			xt.xt_len = sizeof xt;
1014			/* XXX should avoid extra copy */
1015			bcopy(inp, &xt.xt_inp, sizeof *inp);
1016			inp_ppcb = inp->inp_ppcb;
1017			if (inp_ppcb == NULL)
1018				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1019			else if (inp->inp_vflag & INP_TIMEWAIT) {
1020				bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1021				xt.xt_tp.t_state = TCPS_TIME_WAIT;
1022			} else
1023				bcopy(inp_ppcb, &xt.xt_tp, sizeof xt.xt_tp);
1024			if (inp->inp_socket != NULL)
1025				sotoxsocket(inp->inp_socket, &xt.xt_socket);
1026			else {
1027				bzero(&xt.xt_socket, sizeof xt.xt_socket);
1028				xt.xt_socket.xso_protocol = IPPROTO_TCP;
1029			}
1030			xt.xt_inp.inp_gencnt = inp->inp_gencnt;
1031			INP_UNLOCK(inp);
1032			error = SYSCTL_OUT(req, &xt, sizeof xt);
1033		} else
1034			INP_UNLOCK(inp);
1035
1036	}
1037	if (!error) {
1038		/*
1039		 * Give the user an updated idea of our state.
1040		 * If the generation differs from what we told
1041		 * her before, she knows that something happened
1042		 * while we were processing this request, and it
1043		 * might be necessary to retry.
1044		 */
1045		INP_INFO_RLOCK(&tcbinfo);
1046		xig.xig_gen = tcbinfo.ipi_gencnt;
1047		xig.xig_sogen = so_gencnt;
1048		xig.xig_count = tcbinfo.ipi_count;
1049		INP_INFO_RUNLOCK(&tcbinfo);
1050		error = SYSCTL_OUT(req, &xig, sizeof xig);
1051	}
1052	free(inp_list, M_TEMP);
1053	return (error);
1054}
1055
1056SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD, 0, 0,
1057	    tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1058
1059static int
1060tcp_getcred(SYSCTL_HANDLER_ARGS)
1061{
1062	struct xucred xuc;
1063	struct sockaddr_in addrs[2];
1064	struct inpcb *inp;
1065	int error;
1066
1067	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1068	if (error)
1069		return (error);
1070	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1071	if (error)
1072		return (error);
1073	INP_INFO_RLOCK(&tcbinfo);
1074	inp = in_pcblookup_hash(&tcbinfo, addrs[1].sin_addr, addrs[1].sin_port,
1075	    addrs[0].sin_addr, addrs[0].sin_port, 0, NULL);
1076	if (inp == NULL) {
1077		error = ENOENT;
1078		goto outunlocked;
1079	}
1080	INP_LOCK(inp);
1081	if (inp->inp_socket == NULL) {
1082		error = ENOENT;
1083		goto out;
1084	}
1085	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1086	if (error)
1087		goto out;
1088	cru2x(inp->inp_socket->so_cred, &xuc);
1089out:
1090	INP_UNLOCK(inp);
1091outunlocked:
1092	INP_INFO_RUNLOCK(&tcbinfo);
1093	if (error == 0)
1094		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1095	return (error);
1096}
1097
1098SYSCTL_PROC(_net_inet_tcp, OID_AUTO, getcred,
1099    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1100    tcp_getcred, "S,xucred", "Get the xucred of a TCP connection");
1101
1102#ifdef INET6
1103static int
1104tcp6_getcred(SYSCTL_HANDLER_ARGS)
1105{
1106	struct xucred xuc;
1107	struct sockaddr_in6 addrs[2];
1108	struct inpcb *inp;
1109	int error, mapped = 0;
1110
1111	error = suser_cred(req->td->td_ucred, SUSER_ALLOWJAIL);
1112	if (error)
1113		return (error);
1114	error = SYSCTL_IN(req, addrs, sizeof(addrs));
1115	if (error)
1116		return (error);
1117	if ((error = sa6_embedscope(&addrs[0], ip6_use_defzone)) != 0 ||
1118	    (error = sa6_embedscope(&addrs[1], ip6_use_defzone)) != 0) {
1119		return (error);
1120	}
1121	if (IN6_IS_ADDR_V4MAPPED(&addrs[0].sin6_addr)) {
1122		if (IN6_IS_ADDR_V4MAPPED(&addrs[1].sin6_addr))
1123			mapped = 1;
1124		else
1125			return (EINVAL);
1126	}
1127
1128	INP_INFO_RLOCK(&tcbinfo);
1129	if (mapped == 1)
1130		inp = in_pcblookup_hash(&tcbinfo,
1131			*(struct in_addr *)&addrs[1].sin6_addr.s6_addr[12],
1132			addrs[1].sin6_port,
1133			*(struct in_addr *)&addrs[0].sin6_addr.s6_addr[12],
1134			addrs[0].sin6_port,
1135			0, NULL);
1136	else
1137		inp = in6_pcblookup_hash(&tcbinfo,
1138			&addrs[1].sin6_addr, addrs[1].sin6_port,
1139			&addrs[0].sin6_addr, addrs[0].sin6_port, 0, NULL);
1140	if (inp == NULL) {
1141		error = ENOENT;
1142		goto outunlocked;
1143	}
1144	INP_LOCK(inp);
1145	if (inp->inp_socket == NULL) {
1146		error = ENOENT;
1147		goto out;
1148	}
1149	error = cr_canseesocket(req->td->td_ucred, inp->inp_socket);
1150	if (error)
1151		goto out;
1152	cru2x(inp->inp_socket->so_cred, &xuc);
1153out:
1154	INP_UNLOCK(inp);
1155outunlocked:
1156	INP_INFO_RUNLOCK(&tcbinfo);
1157	if (error == 0)
1158		error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred));
1159	return (error);
1160}
1161
1162SYSCTL_PROC(_net_inet6_tcp6, OID_AUTO, getcred,
1163    CTLTYPE_OPAQUE|CTLFLAG_RW|CTLFLAG_PRISON, 0, 0,
1164    tcp6_getcred, "S,xucred", "Get the xucred of a TCP6 connection");
1165#endif
1166
1167
1168void
1169tcp_ctlinput(int cmd, struct sockaddr *sa, void *vip)
1170{
1171	struct ip *ip = vip;
1172	struct tcphdr *th;
1173	struct in_addr faddr;
1174	struct inpcb *inp;
1175	struct tcpcb *tp;
1176	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1177	struct icmp *icp;
1178	struct in_conninfo inc;
1179	tcp_seq icmp_tcp_seq;
1180	int mtu;
1181
1182	faddr = ((struct sockaddr_in *)sa)->sin_addr;
1183	if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1184		return;
1185
1186	if (cmd == PRC_MSGSIZE)
1187		notify = tcp_mtudisc;
1188	else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1189		cmd == PRC_UNREACH_PORT || cmd == PRC_TIMXCEED_INTRANS) && ip)
1190		notify = tcp_drop_syn_sent;
1191	/*
1192	 * Redirects don't need to be handled up here.
1193	 */
1194	else if (PRC_IS_REDIRECT(cmd))
1195		return;
1196	/*
1197	 * Source quench is depreciated.
1198	 */
1199	else if (cmd == PRC_QUENCH)
1200		return;
1201	/*
1202	 * Hostdead is ugly because it goes linearly through all PCBs.
1203	 * XXX: We never get this from ICMP, otherwise it makes an
1204	 * excellent DoS attack on machines with many connections.
1205	 */
1206	else if (cmd == PRC_HOSTDEAD)
1207		ip = NULL;
1208	else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0)
1209		return;
1210	if (ip != NULL) {
1211		icp = (struct icmp *)((caddr_t)ip
1212				      - offsetof(struct icmp, icmp_ip));
1213		th = (struct tcphdr *)((caddr_t)ip
1214				       + (ip->ip_hl << 2));
1215		INP_INFO_WLOCK(&tcbinfo);
1216		inp = in_pcblookup_hash(&tcbinfo, faddr, th->th_dport,
1217		    ip->ip_src, th->th_sport, 0, NULL);
1218		if (inp != NULL)  {
1219			INP_LOCK(inp);
1220			if (!(inp->inp_vflag & INP_TIMEWAIT) &&
1221			    !(inp->inp_vflag & INP_DROPPED) &&
1222			    !(inp->inp_socket == NULL)) {
1223				icmp_tcp_seq = htonl(th->th_seq);
1224				tp = intotcpcb(inp);
1225				if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1226				    SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1227					if (cmd == PRC_MSGSIZE) {
1228					    /*
1229					     * MTU discovery:
1230					     * If we got a needfrag set the MTU
1231					     * in the route to the suggested new
1232					     * value (if given) and then notify.
1233					     */
1234					    bzero(&inc, sizeof(inc));
1235					    inc.inc_flags = 0;	/* IPv4 */
1236					    inc.inc_faddr = faddr;
1237
1238					    mtu = ntohs(icp->icmp_nextmtu);
1239					    /*
1240					     * If no alternative MTU was
1241					     * proposed, try the next smaller
1242					     * one.  ip->ip_len has already
1243					     * been swapped in icmp_input().
1244					     */
1245					    if (!mtu)
1246						mtu = ip_next_mtu(ip->ip_len,
1247						 1);
1248					    if (mtu < max(296, (tcp_minmss)
1249						 + sizeof(struct tcpiphdr)))
1250						mtu = 0;
1251					    if (!mtu)
1252						mtu = tcp_mssdflt
1253						 + sizeof(struct tcpiphdr);
1254					    /*
1255					     * Only cache the the MTU if it
1256					     * is smaller than the interface
1257					     * or route MTU.  tcp_mtudisc()
1258					     * will do right thing by itself.
1259					     */
1260					    if (mtu <= tcp_maxmtu(&inc, NULL))
1261						tcp_hc_updatemtu(&inc, mtu);
1262					}
1263
1264					inp = (*notify)(inp, inetctlerrmap[cmd]);
1265				}
1266			}
1267			if (inp != NULL)
1268				INP_UNLOCK(inp);
1269		} else {
1270			inc.inc_fport = th->th_dport;
1271			inc.inc_lport = th->th_sport;
1272			inc.inc_faddr = faddr;
1273			inc.inc_laddr = ip->ip_src;
1274#ifdef INET6
1275			inc.inc_isipv6 = 0;
1276#endif
1277			syncache_unreach(&inc, th);
1278		}
1279		INP_INFO_WUNLOCK(&tcbinfo);
1280	} else
1281		in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1282}
1283
1284#ifdef INET6
1285void
1286tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1287{
1288	struct tcphdr th;
1289	struct inpcb *(*notify)(struct inpcb *, int) = tcp_notify;
1290	struct ip6_hdr *ip6;
1291	struct mbuf *m;
1292	struct ip6ctlparam *ip6cp = NULL;
1293	const struct sockaddr_in6 *sa6_src = NULL;
1294	int off;
1295	struct tcp_portonly {
1296		u_int16_t th_sport;
1297		u_int16_t th_dport;
1298	} *thp;
1299
1300	if (sa->sa_family != AF_INET6 ||
1301	    sa->sa_len != sizeof(struct sockaddr_in6))
1302		return;
1303
1304	if (cmd == PRC_MSGSIZE)
1305		notify = tcp_mtudisc;
1306	else if (!PRC_IS_REDIRECT(cmd) &&
1307		 ((unsigned)cmd >= PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1308		return;
1309	/* Source quench is depreciated. */
1310	else if (cmd == PRC_QUENCH)
1311		return;
1312
1313	/* if the parameter is from icmp6, decode it. */
1314	if (d != NULL) {
1315		ip6cp = (struct ip6ctlparam *)d;
1316		m = ip6cp->ip6c_m;
1317		ip6 = ip6cp->ip6c_ip6;
1318		off = ip6cp->ip6c_off;
1319		sa6_src = ip6cp->ip6c_src;
1320	} else {
1321		m = NULL;
1322		ip6 = NULL;
1323		off = 0;	/* fool gcc */
1324		sa6_src = &sa6_any;
1325	}
1326
1327	if (ip6 != NULL) {
1328		struct in_conninfo inc;
1329		/*
1330		 * XXX: We assume that when IPV6 is non NULL,
1331		 * M and OFF are valid.
1332		 */
1333
1334		/* check if we can safely examine src and dst ports */
1335		if (m->m_pkthdr.len < off + sizeof(*thp))
1336			return;
1337
1338		bzero(&th, sizeof(th));
1339		m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1340
1341		in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1342		    (struct sockaddr *)ip6cp->ip6c_src,
1343		    th.th_sport, cmd, NULL, notify);
1344
1345		inc.inc_fport = th.th_dport;
1346		inc.inc_lport = th.th_sport;
1347		inc.inc6_faddr = ((struct sockaddr_in6 *)sa)->sin6_addr;
1348		inc.inc6_laddr = ip6cp->ip6c_src->sin6_addr;
1349		inc.inc_isipv6 = 1;
1350		INP_INFO_WLOCK(&tcbinfo);
1351		syncache_unreach(&inc, &th);
1352		INP_INFO_WUNLOCK(&tcbinfo);
1353	} else
1354		in6_pcbnotify(&tcbinfo, sa, 0, (const struct sockaddr *)sa6_src,
1355			      0, cmd, NULL, notify);
1356}
1357#endif /* INET6 */
1358
1359
1360/*
1361 * Following is where TCP initial sequence number generation occurs.
1362 *
1363 * There are two places where we must use initial sequence numbers:
1364 * 1.  In SYN-ACK packets.
1365 * 2.  In SYN packets.
1366 *
1367 * All ISNs for SYN-ACK packets are generated by the syncache.  See
1368 * tcp_syncache.c for details.
1369 *
1370 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1371 * depends on this property.  In addition, these ISNs should be
1372 * unguessable so as to prevent connection hijacking.  To satisfy
1373 * the requirements of this situation, the algorithm outlined in
1374 * RFC 1948 is used, with only small modifications.
1375 *
1376 * Implementation details:
1377 *
1378 * Time is based off the system timer, and is corrected so that it
1379 * increases by one megabyte per second.  This allows for proper
1380 * recycling on high speed LANs while still leaving over an hour
1381 * before rollover.
1382 *
1383 * As reading the *exact* system time is too expensive to be done
1384 * whenever setting up a TCP connection, we increment the time
1385 * offset in two ways.  First, a small random positive increment
1386 * is added to isn_offset for each connection that is set up.
1387 * Second, the function tcp_isn_tick fires once per clock tick
1388 * and increments isn_offset as necessary so that sequence numbers
1389 * are incremented at approximately ISN_BYTES_PER_SECOND.  The
1390 * random positive increments serve only to ensure that the same
1391 * exact sequence number is never sent out twice (as could otherwise
1392 * happen when a port is recycled in less than the system tick
1393 * interval.)
1394 *
1395 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1396 * between seeding of isn_secret.  This is normally set to zero,
1397 * as reseeding should not be necessary.
1398 *
1399 * Locking of the global variables isn_secret, isn_last_reseed, isn_offset,
1400 * isn_offset_old, and isn_ctx is performed using the TCP pcbinfo lock.  In
1401 * general, this means holding an exclusive (write) lock.
1402 */
1403
1404#define ISN_BYTES_PER_SECOND 1048576
1405#define ISN_STATIC_INCREMENT 4096
1406#define ISN_RANDOM_INCREMENT (4096 - 1)
1407
1408static u_char isn_secret[32];
1409static int isn_last_reseed;
1410static u_int32_t isn_offset, isn_offset_old;
1411static MD5_CTX isn_ctx;
1412
1413tcp_seq
1414tcp_new_isn(struct tcpcb *tp)
1415{
1416	u_int32_t md5_buffer[4];
1417	tcp_seq new_isn;
1418
1419	INP_LOCK_ASSERT(tp->t_inpcb);
1420
1421	ISN_LOCK();
1422	/* Seed if this is the first use, reseed if requested. */
1423	if ((isn_last_reseed == 0) || ((tcp_isn_reseed_interval > 0) &&
1424	     (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1425		< (u_int)ticks))) {
1426		read_random(&isn_secret, sizeof(isn_secret));
1427		isn_last_reseed = ticks;
1428	}
1429
1430	/* Compute the md5 hash and return the ISN. */
1431	MD5Init(&isn_ctx);
1432	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1433	MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
1434#ifdef INET6
1435	if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
1436		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
1437			  sizeof(struct in6_addr));
1438		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
1439			  sizeof(struct in6_addr));
1440	} else
1441#endif
1442	{
1443		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
1444			  sizeof(struct in_addr));
1445		MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
1446			  sizeof(struct in_addr));
1447	}
1448	MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
1449	MD5Final((u_char *) &md5_buffer, &isn_ctx);
1450	new_isn = (tcp_seq) md5_buffer[0];
1451	isn_offset += ISN_STATIC_INCREMENT +
1452		(arc4random() & ISN_RANDOM_INCREMENT);
1453	new_isn += isn_offset;
1454	ISN_UNLOCK();
1455	return (new_isn);
1456}
1457
1458/*
1459 * Increment the offset to the next ISN_BYTES_PER_SECOND / hz boundary
1460 * to keep time flowing at a relatively constant rate.  If the random
1461 * increments have already pushed us past the projected offset, do nothing.
1462 */
1463static void
1464tcp_isn_tick(void *xtp)
1465{
1466	u_int32_t projected_offset;
1467
1468	ISN_LOCK();
1469	projected_offset = isn_offset_old + ISN_BYTES_PER_SECOND / 100;
1470
1471	if (projected_offset > isn_offset)
1472		isn_offset = projected_offset;
1473
1474	isn_offset_old = isn_offset;
1475	callout_reset(&isn_callout, hz/100, tcp_isn_tick, NULL);
1476	ISN_UNLOCK();
1477}
1478
1479/*
1480 * When a specific ICMP unreachable message is received and the
1481 * connection state is SYN-SENT, drop the connection.  This behavior
1482 * is controlled by the icmp_may_rst sysctl.
1483 */
1484struct inpcb *
1485tcp_drop_syn_sent(struct inpcb *inp, int errno)
1486{
1487	struct tcpcb *tp;
1488
1489	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1490	INP_LOCK_ASSERT(inp);
1491
1492	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1493	    (inp->inp_vflag & INP_DROPPED))
1494		return (inp);
1495
1496	tp = intotcpcb(inp);
1497	if (tp->t_state != TCPS_SYN_SENT)
1498		return (inp);
1499
1500	tp = tcp_drop(tp, errno);
1501	if (tp != NULL)
1502		return (inp);
1503	else
1504		return (NULL);
1505}
1506
1507/*
1508 * When `need fragmentation' ICMP is received, update our idea of the MSS
1509 * based on the new value in the route.  Also nudge TCP to send something,
1510 * since we know the packet we just sent was dropped.
1511 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1512 */
1513struct inpcb *
1514tcp_mtudisc(struct inpcb *inp, int errno)
1515{
1516	struct tcpcb *tp;
1517	struct socket *so = inp->inp_socket;
1518	u_int maxmtu;
1519	u_int romtu;
1520	int mss;
1521#ifdef INET6
1522	int isipv6;
1523#endif /* INET6 */
1524
1525	INP_LOCK_ASSERT(inp);
1526	if ((inp->inp_vflag & INP_TIMEWAIT) ||
1527	    (inp->inp_vflag & INP_DROPPED))
1528		return (inp);
1529
1530	tp = intotcpcb(inp);
1531	KASSERT(tp != NULL, ("tcp_mtudisc: tp == NULL"));
1532
1533#ifdef INET6
1534	isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
1535#endif
1536	maxmtu = tcp_hc_getmtu(&inp->inp_inc); /* IPv4 and IPv6 */
1537	romtu =
1538#ifdef INET6
1539	    isipv6 ? tcp_maxmtu6(&inp->inp_inc, NULL) :
1540#endif /* INET6 */
1541	    tcp_maxmtu(&inp->inp_inc, NULL);
1542	if (!maxmtu)
1543		maxmtu = romtu;
1544	else
1545		maxmtu = min(maxmtu, romtu);
1546	if (!maxmtu) {
1547		tp->t_maxopd = tp->t_maxseg =
1548#ifdef INET6
1549			isipv6 ? tcp_v6mssdflt :
1550#endif /* INET6 */
1551			tcp_mssdflt;
1552		return (inp);
1553	}
1554	mss = maxmtu -
1555#ifdef INET6
1556		(isipv6 ? sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
1557#endif /* INET6 */
1558		 sizeof(struct tcpiphdr)
1559#ifdef INET6
1560		 )
1561#endif /* INET6 */
1562		;
1563
1564	/*
1565	 * XXX - The above conditional probably violates the TCP
1566	 * spec.  The problem is that, since we don't know the
1567	 * other end's MSS, we are supposed to use a conservative
1568	 * default.  But, if we do that, then MTU discovery will
1569	 * never actually take place, because the conservative
1570	 * default is much less than the MTUs typically seen
1571	 * on the Internet today.  For the moment, we'll sweep
1572	 * this under the carpet.
1573	 *
1574	 * The conservative default might not actually be a problem
1575	 * if the only case this occurs is when sending an initial
1576	 * SYN with options and data to a host we've never talked
1577	 * to before.  Then, they will reply with an MSS value which
1578	 * will get recorded and the new parameters should get
1579	 * recomputed.  For Further Study.
1580	 */
1581	if (tp->t_maxopd <= mss)
1582		return (inp);
1583	tp->t_maxopd = mss;
1584
1585	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
1586	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
1587		mss -= TCPOLEN_TSTAMP_APPA;
1588#if	(MCLBYTES & (MCLBYTES - 1)) == 0
1589	if (mss > MCLBYTES)
1590		mss &= ~(MCLBYTES-1);
1591#else
1592	if (mss > MCLBYTES)
1593		mss = mss / MCLBYTES * MCLBYTES;
1594#endif
1595	if (so->so_snd.sb_hiwat < mss)
1596		mss = so->so_snd.sb_hiwat;
1597
1598	tp->t_maxseg = mss;
1599
1600	tcpstat.tcps_mturesent++;
1601	tp->t_rtttime = 0;
1602	tp->snd_nxt = tp->snd_una;
1603	tcp_free_sackholes(tp);
1604	tp->snd_recover = tp->snd_max;
1605	if (tp->sack_enable)
1606		EXIT_FASTRECOVERY(tp);
1607	tcp_output(tp);
1608	return (inp);
1609}
1610
1611/*
1612 * Look-up the routing entry to the peer of this inpcb.  If no route
1613 * is found and it cannot be allocated, then return NULL.  This routine
1614 * is called by TCP routines that access the rmx structure and by tcp_mss
1615 * to get the interface MTU.
1616 */
1617u_long
1618tcp_maxmtu(struct in_conninfo *inc, int *flags)
1619{
1620	struct route sro;
1621	struct sockaddr_in *dst;
1622	struct ifnet *ifp;
1623	u_long maxmtu = 0;
1624
1625	KASSERT(inc != NULL, ("tcp_maxmtu with NULL in_conninfo pointer"));
1626
1627	bzero(&sro, sizeof(sro));
1628	if (inc->inc_faddr.s_addr != INADDR_ANY) {
1629	        dst = (struct sockaddr_in *)&sro.ro_dst;
1630		dst->sin_family = AF_INET;
1631		dst->sin_len = sizeof(*dst);
1632		dst->sin_addr = inc->inc_faddr;
1633		rtalloc_ign(&sro, RTF_CLONING);
1634	}
1635	if (sro.ro_rt != NULL) {
1636		ifp = sro.ro_rt->rt_ifp;
1637		if (sro.ro_rt->rt_rmx.rmx_mtu == 0)
1638			maxmtu = ifp->if_mtu;
1639		else
1640			maxmtu = min(sro.ro_rt->rt_rmx.rmx_mtu, ifp->if_mtu);
1641
1642		/* Report additional interface capabilities. */
1643		if (flags != NULL) {
1644			if (ifp->if_capenable & IFCAP_TSO4 &&
1645			    ifp->if_hwassist & CSUM_TSO)
1646				*flags |= CSUM_TSO;
1647		}
1648		RTFREE(sro.ro_rt);
1649	}
1650	return (maxmtu);
1651}
1652
1653#ifdef INET6
1654u_long
1655tcp_maxmtu6(struct in_conninfo *inc, int *flags)
1656{
1657	struct route_in6 sro6;
1658	struct ifnet *ifp;
1659	u_long maxmtu = 0;
1660
1661	KASSERT(inc != NULL, ("tcp_maxmtu6 with NULL in_conninfo pointer"));
1662
1663	bzero(&sro6, sizeof(sro6));
1664	if (!IN6_IS_ADDR_UNSPECIFIED(&inc->inc6_faddr)) {
1665		sro6.ro_dst.sin6_family = AF_INET6;
1666		sro6.ro_dst.sin6_len = sizeof(struct sockaddr_in6);
1667		sro6.ro_dst.sin6_addr = inc->inc6_faddr;
1668		rtalloc_ign((struct route *)&sro6, RTF_CLONING);
1669	}
1670	if (sro6.ro_rt != NULL) {
1671		ifp = sro6.ro_rt->rt_ifp;
1672		if (sro6.ro_rt->rt_rmx.rmx_mtu == 0)
1673			maxmtu = IN6_LINKMTU(sro6.ro_rt->rt_ifp);
1674		else
1675			maxmtu = min(sro6.ro_rt->rt_rmx.rmx_mtu,
1676				     IN6_LINKMTU(sro6.ro_rt->rt_ifp));
1677
1678		/* Report additional interface capabilities. */
1679		if (flags != NULL) {
1680			if (ifp->if_capenable & IFCAP_TSO6 &&
1681			    ifp->if_hwassist & CSUM_TSO)
1682				*flags |= CSUM_TSO;
1683		}
1684		RTFREE(sro6.ro_rt);
1685	}
1686
1687	return (maxmtu);
1688}
1689#endif /* INET6 */
1690
1691#ifdef IPSEC
1692/* compute ESP/AH header size for TCP, including outer IP header. */
1693size_t
1694ipsec_hdrsiz_tcp(struct tcpcb *tp)
1695{
1696	struct inpcb *inp;
1697	struct mbuf *m;
1698	size_t hdrsiz;
1699	struct ip *ip;
1700#ifdef INET6
1701	struct ip6_hdr *ip6;
1702#endif
1703	struct tcphdr *th;
1704
1705	if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
1706		return (0);
1707	MGETHDR(m, M_DONTWAIT, MT_DATA);
1708	if (!m)
1709		return (0);
1710
1711#ifdef INET6
1712	if ((inp->inp_vflag & INP_IPV6) != 0) {
1713		ip6 = mtod(m, struct ip6_hdr *);
1714		th = (struct tcphdr *)(ip6 + 1);
1715		m->m_pkthdr.len = m->m_len =
1716			sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1717		tcpip_fillheaders(inp, ip6, th);
1718		hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1719	} else
1720#endif /* INET6 */
1721	{
1722		ip = mtod(m, struct ip *);
1723		th = (struct tcphdr *)(ip + 1);
1724		m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
1725		tcpip_fillheaders(inp, ip, th);
1726		hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
1727	}
1728
1729	m_free(m);
1730	return (hdrsiz);
1731}
1732#endif /*IPSEC*/
1733
1734/*
1735 * Move a TCP connection into TIME_WAIT state.
1736 *    tcbinfo is locked.
1737 *    inp is locked, and is unlocked before returning.
1738 */
1739void
1740tcp_twstart(struct tcpcb *tp)
1741{
1742	struct tcptw *tw;
1743	struct inpcb *inp = tp->t_inpcb;
1744	int acknow;
1745	struct socket *so;
1746
1747	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_reset(). */
1748	INP_LOCK_ASSERT(inp);
1749
1750	if (nolocaltimewait && in_localip(inp->inp_faddr)) {
1751		tp = tcp_close(tp);
1752		if (tp != NULL)
1753			INP_UNLOCK(inp);
1754		return;
1755	}
1756
1757	tw = uma_zalloc(tcptw_zone, M_NOWAIT);
1758	if (tw == NULL) {
1759		tw = tcp_timer_2msl_tw(1);
1760		if (tw == NULL) {
1761			tp = tcp_close(tp);
1762			if (tp != NULL)
1763				INP_UNLOCK(inp);
1764			return;
1765		}
1766	}
1767	tw->tw_inpcb = inp;
1768
1769	/*
1770	 * Recover last window size sent.
1771	 */
1772	tw->last_win = (tp->rcv_adv - tp->rcv_nxt) >> tp->rcv_scale;
1773
1774	/*
1775	 * Set t_recent if timestamps are used on the connection.
1776	 */
1777	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1778	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
1779		tw->t_recent = tp->ts_recent;
1780	else
1781		tw->t_recent = 0;
1782
1783	tw->snd_nxt = tp->snd_nxt;
1784	tw->rcv_nxt = tp->rcv_nxt;
1785	tw->iss     = tp->iss;
1786	tw->irs     = tp->irs;
1787	tw->t_starttime = tp->t_starttime;
1788	tw->tw_time = 0;
1789
1790/* XXX
1791 * If this code will
1792 * be used for fin-wait-2 state also, then we may need
1793 * a ts_recent from the last segment.
1794 */
1795	acknow = tp->t_flags & TF_ACKNOW;
1796
1797	/*
1798	 * First, discard tcpcb state, which includes stopping its timers and
1799	 * freeing it.  tcp_discardcb() used to also release the inpcb, but
1800	 * that work is now done in the caller.
1801	 *
1802	 * Note: soisdisconnected() call used to be made in tcp_discardcb(),
1803	 * and might not be needed here any longer.
1804	 */
1805	tcp_discardcb(tp);
1806	so = inp->inp_socket;
1807	soisdisconnected(so);
1808	SOCK_LOCK(so);
1809	tw->tw_cred = crhold(so->so_cred);
1810	tw->tw_so_options = so->so_options;
1811	SOCK_UNLOCK(so);
1812	if (acknow)
1813		tcp_twrespond(tw, TH_ACK);
1814	inp->inp_ppcb = tw;
1815	inp->inp_vflag |= INP_TIMEWAIT;
1816	tcp_timer_2msl_reset(tw, 0);
1817
1818	/*
1819	 * If the inpcb owns the sole reference to the socket, then we can
1820	 * detach and free the socket as it is not needed in time wait.
1821	 */
1822	if (inp->inp_vflag & INP_SOCKREF) {
1823		KASSERT(so->so_state & SS_PROTOREF,
1824		    ("tcp_twstart: !SS_PROTOREF"));
1825		inp->inp_vflag &= ~INP_SOCKREF;
1826		INP_UNLOCK(inp);
1827		ACCEPT_LOCK();
1828		SOCK_LOCK(so);
1829		so->so_state &= ~SS_PROTOREF;
1830		sofree(so);
1831	} else
1832		INP_UNLOCK(inp);
1833}
1834
1835#if 0
1836/*
1837 * The appromixate rate of ISN increase of Microsoft TCP stacks;
1838 * the actual rate is slightly higher due to the addition of
1839 * random positive increments.
1840 *
1841 * Most other new OSes use semi-randomized ISN values, so we
1842 * do not need to worry about them.
1843 */
1844#define MS_ISN_BYTES_PER_SECOND		250000
1845
1846/*
1847 * Determine if the ISN we will generate has advanced beyond the last
1848 * sequence number used by the previous connection.  If so, indicate
1849 * that it is safe to recycle this tw socket by returning 1.
1850 */
1851int
1852tcp_twrecycleable(struct tcptw *tw)
1853{
1854	tcp_seq new_iss = tw->iss;
1855	tcp_seq new_irs = tw->irs;
1856
1857	INP_INFO_WLOCK_ASSERT(&tcbinfo);
1858	new_iss += (ticks - tw->t_starttime) * (ISN_BYTES_PER_SECOND / hz);
1859	new_irs += (ticks - tw->t_starttime) * (MS_ISN_BYTES_PER_SECOND / hz);
1860
1861	if (SEQ_GT(new_iss, tw->snd_nxt) && SEQ_GT(new_irs, tw->rcv_nxt))
1862		return (1);
1863	else
1864		return (0);
1865}
1866#endif
1867
1868void
1869tcp_twclose(struct tcptw *tw, int reuse)
1870{
1871	struct socket *so;
1872	struct inpcb *inp;
1873
1874	/*
1875	 * At this point, we are in one of two situations:
1876	 *
1877	 * (1) We have no socket, just an inpcb<->twtcp pair.  We can free
1878	 *     all state.
1879	 *
1880	 * (2) We have a socket -- if we own a reference, release it and
1881	 *     notify the socket layer.
1882	 */
1883	inp = tw->tw_inpcb;
1884	KASSERT((inp->inp_vflag & INP_TIMEWAIT), ("tcp_twclose: !timewait"));
1885	KASSERT(intotw(inp) == tw, ("tcp_twclose: inp_ppcb != tw"));
1886	INP_INFO_WLOCK_ASSERT(&tcbinfo);	/* tcp_timer_2msl_stop(). */
1887	INP_LOCK_ASSERT(inp);
1888
1889	tw->tw_inpcb = NULL;
1890	tcp_timer_2msl_stop(tw);
1891	inp->inp_ppcb = NULL;
1892	in_pcbdrop(inp);
1893
1894	so = inp->inp_socket;
1895	if (so != NULL) {
1896		/*
1897		 * If there's a socket, handle two cases: first, we own a
1898		 * strong reference, which we will now release, or we don't
1899		 * in which case another reference exists (XXXRW: think
1900		 * about this more), and we don't need to take action.
1901		 */
1902		if (inp->inp_vflag & INP_SOCKREF) {
1903			inp->inp_vflag &= ~INP_SOCKREF;
1904			INP_UNLOCK(inp);
1905			ACCEPT_LOCK();
1906			SOCK_LOCK(so);
1907			KASSERT(so->so_state & SS_PROTOREF,
1908			    ("tcp_twclose: INP_SOCKREF && !SS_PROTOREF"));
1909			so->so_state &= ~SS_PROTOREF;
1910			sofree(so);
1911		} else {
1912			/*
1913			 * If we don't own the only reference, the socket and
1914			 * inpcb need to be left around to be handled by
1915			 * tcp_usr_detach() later.
1916			 */
1917			INP_UNLOCK(inp);
1918		}
1919	} else {
1920#ifdef INET6
1921		if (inp->inp_vflag & INP_IPV6PROTO)
1922			in6_pcbfree(inp);
1923		else
1924#endif
1925			in_pcbfree(inp);
1926	}
1927	tcpstat.tcps_closed++;
1928	crfree(tw->tw_cred);
1929	tw->tw_cred = NULL;
1930	if (reuse)
1931		return;
1932	uma_zfree(tcptw_zone, tw);
1933}
1934
1935int
1936tcp_twrespond(struct tcptw *tw, int flags)
1937{
1938	struct inpcb *inp = tw->tw_inpcb;
1939	struct tcphdr *th;
1940	struct mbuf *m;
1941	struct ip *ip = NULL;
1942	u_int8_t *optp;
1943	u_int hdrlen, optlen;
1944	int error;
1945#ifdef INET6
1946	struct ip6_hdr *ip6 = NULL;
1947	int isipv6 = inp->inp_inc.inc_isipv6;
1948#endif
1949
1950	INP_LOCK_ASSERT(inp);
1951
1952	m = m_gethdr(M_DONTWAIT, MT_DATA);
1953	if (m == NULL)
1954		return (ENOBUFS);
1955	m->m_data += max_linkhdr;
1956
1957#ifdef MAC
1958	mac_create_mbuf_from_inpcb(inp, m);
1959#endif
1960
1961#ifdef INET6
1962	if (isipv6) {
1963		hdrlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
1964		ip6 = mtod(m, struct ip6_hdr *);
1965		th = (struct tcphdr *)(ip6 + 1);
1966		tcpip_fillheaders(inp, ip6, th);
1967	} else
1968#endif
1969	{
1970		hdrlen = sizeof(struct tcpiphdr);
1971		ip = mtod(m, struct ip *);
1972		th = (struct tcphdr *)(ip + 1);
1973		tcpip_fillheaders(inp, ip, th);
1974	}
1975	optp = (u_int8_t *)(th + 1);
1976
1977	/*
1978	 * Send a timestamp and echo-reply if both our side and our peer
1979	 * have sent timestamps in our SYN's and this is not a RST.
1980	 */
1981	if (tw->t_recent && flags == TH_ACK) {
1982		u_int32_t *lp = (u_int32_t *)optp;
1983
1984		/* Form timestamp option as shown in appendix A of RFC 1323. */
1985		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1986		*lp++ = htonl(ticks);
1987		*lp   = htonl(tw->t_recent);
1988		optp += TCPOLEN_TSTAMP_APPA;
1989	}
1990
1991	optlen = optp - (u_int8_t *)(th + 1);
1992
1993	m->m_len = hdrlen + optlen;
1994	m->m_pkthdr.len = m->m_len;
1995
1996	KASSERT(max_linkhdr + m->m_len <= MHLEN, ("tcptw: mbuf too small"));
1997
1998	th->th_seq = htonl(tw->snd_nxt);
1999	th->th_ack = htonl(tw->rcv_nxt);
2000	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
2001	th->th_flags = flags;
2002	th->th_win = htons(tw->last_win);
2003
2004#ifdef INET6
2005	if (isipv6) {
2006		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
2007		    sizeof(struct tcphdr) + optlen);
2008		ip6->ip6_hlim = in6_selecthlim(inp, NULL);
2009		error = ip6_output(m, inp->in6p_outputopts, NULL,
2010		    (tw->tw_so_options & SO_DONTROUTE), NULL, NULL, inp);
2011	} else
2012#endif
2013	{
2014		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
2015		    htons(sizeof(struct tcphdr) + optlen + IPPROTO_TCP));
2016		m->m_pkthdr.csum_flags = CSUM_TCP;
2017		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
2018		ip->ip_len = m->m_pkthdr.len;
2019		if (path_mtu_discovery)
2020			ip->ip_off |= IP_DF;
2021		error = ip_output(m, inp->inp_options, NULL,
2022		    ((tw->tw_so_options & SO_DONTROUTE) ? IP_ROUTETOIF : 0),
2023		    NULL, inp);
2024	}
2025	if (flags & TH_ACK)
2026		tcpstat.tcps_sndacks++;
2027	else
2028		tcpstat.tcps_sndctrl++;
2029	tcpstat.tcps_sndtotal++;
2030	return (error);
2031}
2032
2033/*
2034 * TCP BANDWIDTH DELAY PRODUCT WINDOW LIMITING
2035 *
2036 * This code attempts to calculate the bandwidth-delay product as a
2037 * means of determining the optimal window size to maximize bandwidth,
2038 * minimize RTT, and avoid the over-allocation of buffers on interfaces and
2039 * routers.  This code also does a fairly good job keeping RTTs in check
2040 * across slow links like modems.  We implement an algorithm which is very
2041 * similar (but not meant to be) TCP/Vegas.  The code operates on the
2042 * transmitter side of a TCP connection and so only effects the transmit
2043 * side of the connection.
2044 *
2045 * BACKGROUND:  TCP makes no provision for the management of buffer space
2046 * at the end points or at the intermediate routers and switches.  A TCP
2047 * stream, whether using NewReno or not, will eventually buffer as
2048 * many packets as it is able and the only reason this typically works is
2049 * due to the fairly small default buffers made available for a connection
2050 * (typicaly 16K or 32K).  As machines use larger windows and/or window
2051 * scaling it is now fairly easy for even a single TCP connection to blow-out
2052 * all available buffer space not only on the local interface, but on
2053 * intermediate routers and switches as well.  NewReno makes a misguided
2054 * attempt to 'solve' this problem by waiting for an actual failure to occur,
2055 * then backing off, then steadily increasing the window again until another
2056 * failure occurs, ad-infinitum.  This results in terrible oscillation that
2057 * is only made worse as network loads increase and the idea of intentionally
2058 * blowing out network buffers is, frankly, a terrible way to manage network
2059 * resources.
2060 *
2061 * It is far better to limit the transmit window prior to the failure
2062 * condition being achieved.  There are two general ways to do this:  First
2063 * you can 'scan' through different transmit window sizes and locate the
2064 * point where the RTT stops increasing, indicating that you have filled the
2065 * pipe, then scan backwards until you note that RTT stops decreasing, then
2066 * repeat ad-infinitum.  This method works in principle but has severe
2067 * implementation issues due to RTT variances, timer granularity, and
2068 * instability in the algorithm which can lead to many false positives and
2069 * create oscillations as well as interact badly with other TCP streams
2070 * implementing the same algorithm.
2071 *
2072 * The second method is to limit the window to the bandwidth delay product
2073 * of the link.  This is the method we implement.  RTT variances and our
2074 * own manipulation of the congestion window, bwnd, can potentially
2075 * destabilize the algorithm.  For this reason we have to stabilize the
2076 * elements used to calculate the window.  We do this by using the minimum
2077 * observed RTT, the long term average of the observed bandwidth, and
2078 * by adding two segments worth of slop.  It isn't perfect but it is able
2079 * to react to changing conditions and gives us a very stable basis on
2080 * which to extend the algorithm.
2081 */
2082void
2083tcp_xmit_bandwidth_limit(struct tcpcb *tp, tcp_seq ack_seq)
2084{
2085	u_long bw;
2086	u_long bwnd;
2087	int save_ticks;
2088
2089	INP_LOCK_ASSERT(tp->t_inpcb);
2090
2091	/*
2092	 * If inflight_enable is disabled in the middle of a tcp connection,
2093	 * make sure snd_bwnd is effectively disabled.
2094	 */
2095	if (tcp_inflight_enable == 0 || tp->t_rttlow < tcp_inflight_rttthresh) {
2096		tp->snd_bwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
2097		tp->snd_bandwidth = 0;
2098		return;
2099	}
2100
2101	/*
2102	 * Figure out the bandwidth.  Due to the tick granularity this
2103	 * is a very rough number and it MUST be averaged over a fairly
2104	 * long period of time.  XXX we need to take into account a link
2105	 * that is not using all available bandwidth, but for now our
2106	 * slop will ramp us up if this case occurs and the bandwidth later
2107	 * increases.
2108	 *
2109	 * Note: if ticks rollover 'bw' may wind up negative.  We must
2110	 * effectively reset t_bw_rtttime for this case.
2111	 */
2112	save_ticks = ticks;
2113	if ((u_int)(save_ticks - tp->t_bw_rtttime) < 1)
2114		return;
2115
2116	bw = (int64_t)(ack_seq - tp->t_bw_rtseq) * hz /
2117	    (save_ticks - tp->t_bw_rtttime);
2118	tp->t_bw_rtttime = save_ticks;
2119	tp->t_bw_rtseq = ack_seq;
2120	if (tp->t_bw_rtttime == 0 || (int)bw < 0)
2121		return;
2122	bw = ((int64_t)tp->snd_bandwidth * 15 + bw) >> 4;
2123
2124	tp->snd_bandwidth = bw;
2125
2126	/*
2127	 * Calculate the semi-static bandwidth delay product, plus two maximal
2128	 * segments.  The additional slop puts us squarely in the sweet
2129	 * spot and also handles the bandwidth run-up case and stabilization.
2130	 * Without the slop we could be locking ourselves into a lower
2131	 * bandwidth.
2132	 *
2133	 * Situations Handled:
2134	 *	(1) Prevents over-queueing of packets on LANs, especially on
2135	 *	    high speed LANs, allowing larger TCP buffers to be
2136	 *	    specified, and also does a good job preventing
2137	 *	    over-queueing of packets over choke points like modems
2138	 *	    (at least for the transmit side).
2139	 *
2140	 *	(2) Is able to handle changing network loads (bandwidth
2141	 *	    drops so bwnd drops, bandwidth increases so bwnd
2142	 *	    increases).
2143	 *
2144	 *	(3) Theoretically should stabilize in the face of multiple
2145	 *	    connections implementing the same algorithm (this may need
2146	 *	    a little work).
2147	 *
2148	 *	(4) Stability value (defaults to 20 = 2 maximal packets) can
2149	 *	    be adjusted with a sysctl but typically only needs to be
2150	 *	    on very slow connections.  A value no smaller then 5
2151	 *	    should be used, but only reduce this default if you have
2152	 *	    no other choice.
2153	 */
2154#define USERTT	((tp->t_srtt + tp->t_rttbest) / 2)
2155	bwnd = (int64_t)bw * USERTT / (hz << TCP_RTT_SHIFT) + tcp_inflight_stab * tp->t_maxseg / 10;
2156#undef USERTT
2157
2158	if (tcp_inflight_debug > 0) {
2159		static int ltime;
2160		if ((u_int)(ticks - ltime) >= hz / tcp_inflight_debug) {
2161			ltime = ticks;
2162			printf("%p bw %ld rttbest %d srtt %d bwnd %ld\n",
2163			    tp,
2164			    bw,
2165			    tp->t_rttbest,
2166			    tp->t_srtt,
2167			    bwnd
2168			);
2169		}
2170	}
2171	if ((long)bwnd < tcp_inflight_min)
2172		bwnd = tcp_inflight_min;
2173	if (bwnd > tcp_inflight_max)
2174		bwnd = tcp_inflight_max;
2175	if ((long)bwnd < tp->t_maxseg * 2)
2176		bwnd = tp->t_maxseg * 2;
2177	tp->snd_bwnd = bwnd;
2178}
2179
2180#ifdef TCP_SIGNATURE
2181/*
2182 * Callback function invoked by m_apply() to digest TCP segment data
2183 * contained within an mbuf chain.
2184 */
2185static int
2186tcp_signature_apply(void *fstate, void *data, u_int len)
2187{
2188
2189	MD5Update(fstate, (u_char *)data, len);
2190	return (0);
2191}
2192
2193/*
2194 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
2195 *
2196 * Parameters:
2197 * m		pointer to head of mbuf chain
2198 * off0		offset to TCP header within the mbuf chain
2199 * len		length of TCP segment data, excluding options
2200 * optlen	length of TCP segment options
2201 * buf		pointer to storage for computed MD5 digest
2202 * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
2203 *
2204 * We do this over ip, tcphdr, segment data, and the key in the SADB.
2205 * When called from tcp_input(), we can be sure that th_sum has been
2206 * zeroed out and verified already.
2207 *
2208 * This function is for IPv4 use only. Calling this function with an
2209 * IPv6 packet in the mbuf chain will yield undefined results.
2210 *
2211 * Return 0 if successful, otherwise return -1.
2212 *
2213 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
2214 * search with the destination IP address, and a 'magic SPI' to be
2215 * determined by the application. This is hardcoded elsewhere to 1179
2216 * right now. Another branch of this code exists which uses the SPD to
2217 * specify per-application flows but it is unstable.
2218 */
2219int
2220tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
2221    u_char *buf, u_int direction)
2222{
2223	union sockaddr_union dst;
2224	struct ippseudo ippseudo;
2225	MD5_CTX ctx;
2226	int doff;
2227	struct ip *ip;
2228	struct ipovly *ipovly;
2229	struct secasvar *sav;
2230	struct tcphdr *th;
2231	u_short savecsum;
2232
2233	KASSERT(m != NULL, ("NULL mbuf chain"));
2234	KASSERT(buf != NULL, ("NULL signature pointer"));
2235
2236	/* Extract the destination from the IP header in the mbuf. */
2237	ip = mtod(m, struct ip *);
2238	bzero(&dst, sizeof(union sockaddr_union));
2239	dst.sa.sa_len = sizeof(struct sockaddr_in);
2240	dst.sa.sa_family = AF_INET;
2241	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
2242	    ip->ip_src : ip->ip_dst;
2243
2244	/* Look up an SADB entry which matches the address of the peer. */
2245	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2246	if (sav == NULL) {
2247		printf("%s: SADB lookup failed for %s\n", __func__,
2248		    inet_ntoa(dst.sin.sin_addr));
2249		return (EINVAL);
2250	}
2251
2252	MD5Init(&ctx);
2253	ipovly = (struct ipovly *)ip;
2254	th = (struct tcphdr *)((u_char *)ip + off0);
2255	doff = off0 + sizeof(struct tcphdr) + optlen;
2256
2257	/*
2258	 * Step 1: Update MD5 hash with IP pseudo-header.
2259	 *
2260	 * XXX The ippseudo header MUST be digested in network byte order,
2261	 * or else we'll fail the regression test. Assume all fields we've
2262	 * been doing arithmetic on have been in host byte order.
2263	 * XXX One cannot depend on ipovly->ih_len here. When called from
2264	 * tcp_output(), the underlying ip_len member has not yet been set.
2265	 */
2266	ippseudo.ippseudo_src = ipovly->ih_src;
2267	ippseudo.ippseudo_dst = ipovly->ih_dst;
2268	ippseudo.ippseudo_pad = 0;
2269	ippseudo.ippseudo_p = IPPROTO_TCP;
2270	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
2271	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
2272
2273	/*
2274	 * Step 2: Update MD5 hash with TCP header, excluding options.
2275	 * The TCP checksum must be set to zero.
2276	 */
2277	savecsum = th->th_sum;
2278	th->th_sum = 0;
2279	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
2280	th->th_sum = savecsum;
2281
2282	/*
2283	 * Step 3: Update MD5 hash with TCP segment data.
2284	 *         Use m_apply() to avoid an early m_pullup().
2285	 */
2286	if (len > 0)
2287		m_apply(m, doff, len, tcp_signature_apply, &ctx);
2288
2289	/*
2290	 * Step 4: Update MD5 hash with shared secret.
2291	 */
2292	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2293	MD5Final(buf, &ctx);
2294
2295	key_sa_recordxfer(sav, m);
2296	KEY_FREESAV(&sav);
2297	return (0);
2298}
2299#endif /* TCP_SIGNATURE */
2300
2301static int
2302sysctl_drop(SYSCTL_HANDLER_ARGS)
2303{
2304	/* addrs[0] is a foreign socket, addrs[1] is a local one. */
2305	struct sockaddr_storage addrs[2];
2306	struct inpcb *inp;
2307	struct tcpcb *tp;
2308	struct tcptw *tw;
2309	struct sockaddr_in *fin, *lin;
2310#ifdef INET6
2311	struct sockaddr_in6 *fin6, *lin6;
2312	struct in6_addr f6, l6;
2313#endif
2314	int error;
2315
2316	inp = NULL;
2317	fin = lin = NULL;
2318#ifdef INET6
2319	fin6 = lin6 = NULL;
2320#endif
2321	error = 0;
2322
2323	if (req->oldptr != NULL || req->oldlen != 0)
2324		return (EINVAL);
2325	if (req->newptr == NULL)
2326		return (EPERM);
2327	if (req->newlen < sizeof(addrs))
2328		return (ENOMEM);
2329	error = SYSCTL_IN(req, &addrs, sizeof(addrs));
2330	if (error)
2331		return (error);
2332
2333	switch (addrs[0].ss_family) {
2334#ifdef INET6
2335	case AF_INET6:
2336		fin6 = (struct sockaddr_in6 *)&addrs[0];
2337		lin6 = (struct sockaddr_in6 *)&addrs[1];
2338		if (fin6->sin6_len != sizeof(struct sockaddr_in6) ||
2339		    lin6->sin6_len != sizeof(struct sockaddr_in6))
2340			return (EINVAL);
2341		if (IN6_IS_ADDR_V4MAPPED(&fin6->sin6_addr)) {
2342			if (!IN6_IS_ADDR_V4MAPPED(&lin6->sin6_addr))
2343				return (EINVAL);
2344			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[0]);
2345			in6_sin6_2_sin_in_sock((struct sockaddr *)&addrs[1]);
2346			fin = (struct sockaddr_in *)&addrs[0];
2347			lin = (struct sockaddr_in *)&addrs[1];
2348			break;
2349		}
2350		error = sa6_embedscope(fin6, ip6_use_defzone);
2351		if (error)
2352			return (error);
2353		error = sa6_embedscope(lin6, ip6_use_defzone);
2354		if (error)
2355			return (error);
2356		break;
2357#endif
2358	case AF_INET:
2359		fin = (struct sockaddr_in *)&addrs[0];
2360		lin = (struct sockaddr_in *)&addrs[1];
2361		if (fin->sin_len != sizeof(struct sockaddr_in) ||
2362		    lin->sin_len != sizeof(struct sockaddr_in))
2363			return (EINVAL);
2364		break;
2365	default:
2366		return (EINVAL);
2367	}
2368	INP_INFO_WLOCK(&tcbinfo);
2369	switch (addrs[0].ss_family) {
2370#ifdef INET6
2371	case AF_INET6:
2372		inp = in6_pcblookup_hash(&tcbinfo, &f6, fin6->sin6_port,
2373		    &l6, lin6->sin6_port, 0, NULL);
2374		break;
2375#endif
2376	case AF_INET:
2377		inp = in_pcblookup_hash(&tcbinfo, fin->sin_addr, fin->sin_port,
2378		    lin->sin_addr, lin->sin_port, 0, NULL);
2379		break;
2380	}
2381	if (inp != NULL) {
2382		INP_LOCK(inp);
2383		if (inp->inp_vflag & INP_TIMEWAIT) {
2384			/*
2385			 * XXXRW: There currently exists a state where an
2386			 * inpcb is present, but its timewait state has been
2387			 * discarded.  For now, don't allow dropping of this
2388			 * type of inpcb.
2389			 */
2390			tw = intotw(inp);
2391			if (tw != NULL)
2392				tcp_twclose(tw, 0);
2393		} else if (!(inp->inp_vflag & INP_DROPPED) &&
2394			   !(inp->inp_socket->so_options & SO_ACCEPTCONN)) {
2395			tp = intotcpcb(inp);
2396			tcp_drop(tp, ECONNABORTED);
2397		}
2398		INP_UNLOCK(inp);
2399	} else
2400		error = ESRCH;
2401	INP_INFO_WUNLOCK(&tcbinfo);
2402	return (error);
2403}
2404
2405SYSCTL_PROC(_net_inet_tcp, TCPCTL_DROP, drop,
2406    CTLTYPE_STRUCT|CTLFLAG_WR|CTLFLAG_SKIP, NULL,
2407    0, sysctl_drop, "", "Drop TCP connection");
2408