tcp_syncache.c revision 98982
1/*-
2 * Copyright (c) 2001 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Jonathan Lemon
6 * and NAI Labs, the Security Research Division of Network Associates, Inc.
7 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8 * DARPA CHATS research program.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 *    products derived from this software without specific prior written
20 *    permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $FreeBSD: head/sys/netinet/tcp_syncache.c 98982 2002-06-28 19:12:38Z jlemon $
35 */
36
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/sysctl.h>
44#include <sys/malloc.h>
45#include <sys/mbuf.h>
46#include <sys/md5.h>
47#include <sys/proc.h>		/* for proc0 declaration */
48#include <sys/random.h>
49#include <sys/socket.h>
50#include <sys/socketvar.h>
51
52#include <net/if.h>
53#include <net/route.h>
54
55#include <netinet/in.h>
56#include <netinet/in_systm.h>
57#include <netinet/ip.h>
58#include <netinet/in_var.h>
59#include <netinet/in_pcb.h>
60#include <netinet/ip_var.h>
61#ifdef INET6
62#include <netinet/ip6.h>
63#include <netinet/icmp6.h>
64#include <netinet6/nd6.h>
65#include <netinet6/ip6_var.h>
66#include <netinet6/in6_pcb.h>
67#endif
68#include <netinet/tcp.h>
69#include <netinet/tcp_fsm.h>
70#include <netinet/tcp_seq.h>
71#include <netinet/tcp_timer.h>
72#include <netinet/tcp_var.h>
73#ifdef INET6
74#include <netinet6/tcp6_var.h>
75#endif
76
77#ifdef IPSEC
78#include <netinet6/ipsec.h>
79#ifdef INET6
80#include <netinet6/ipsec6.h>
81#endif
82#include <netkey/key.h>
83#endif /*IPSEC*/
84
85#include <machine/in_cksum.h>
86#include <vm/uma.h>
87
88static int tcp_syncookies = 1;
89SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
90    &tcp_syncookies, 0,
91    "Use TCP SYN cookies if the syncache overflows");
92
93static void	 syncache_drop(struct syncache *, struct syncache_head *);
94static void	 syncache_free(struct syncache *);
95static void	 syncache_insert(struct syncache *, struct syncache_head *);
96struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
97static int	 syncache_respond(struct syncache *, struct mbuf *);
98static struct 	 socket *syncache_socket(struct syncache *, struct socket *,
99		    struct mbuf *m);
100static void	 syncache_timer(void *);
101static u_int32_t syncookie_generate(struct syncache *);
102static struct syncache *syncookie_lookup(struct in_conninfo *,
103		    struct tcphdr *, struct socket *);
104
105/*
106 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
107 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
108 * the odds are that the user has given up attempting to connect by then.
109 */
110#define SYNCACHE_MAXREXMTS		3
111
112/* Arbitrary values */
113#define TCP_SYNCACHE_HASHSIZE		512
114#define TCP_SYNCACHE_BUCKETLIMIT	30
115
116struct tcp_syncache {
117	struct	syncache_head *hashbase;
118	uma_zone_t zone;
119	u_int	hashsize;
120	u_int	hashmask;
121	u_int	bucket_limit;
122	u_int	cache_count;
123	u_int	cache_limit;
124	u_int	rexmt_limit;
125	u_int	hash_secret;
126	u_int	next_reseed;
127	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
128	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
129};
130static struct tcp_syncache tcp_syncache;
131
132SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
133
134SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
135     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
136
137SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
138     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
139
140SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
141     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
142
143SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
144     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
145
146SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
147     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
148
149static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
150
151#define SYNCACHE_HASH(inc, mask) 					\
152	((tcp_syncache.hash_secret ^					\
153	  (inc)->inc_faddr.s_addr ^					\
154	  ((inc)->inc_faddr.s_addr >> 16) ^ 				\
155	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
156
157#define SYNCACHE_HASH6(inc, mask) 					\
158	((tcp_syncache.hash_secret ^					\
159	  (inc)->inc6_faddr.s6_addr32[0] ^ 				\
160	  (inc)->inc6_faddr.s6_addr32[3] ^ 				\
161	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
162
163#define ENDPTS_EQ(a, b) (						\
164	(a)->ie_fport == (b)->ie_fport &&				\
165	(a)->ie_lport == (b)->ie_lport &&				\
166	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
167	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
168)
169
170#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
171
172#define SYNCACHE_TIMEOUT(sc, slot) do {					\
173	sc->sc_rxtslot = slot;						\
174	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];	\
175	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[slot], sc, sc_timerq);	\
176	if (!callout_active(&tcp_syncache.tt_timerq[slot]))		\
177		callout_reset(&tcp_syncache.tt_timerq[slot],		\
178		    TCPTV_RTOBASE * tcp_backoff[slot],			\
179		    syncache_timer, (void *)((intptr_t)slot));		\
180} while (0)
181
182static void
183syncache_free(struct syncache *sc)
184{
185	struct rtentry *rt;
186
187	if (sc->sc_ipopts)
188		(void) m_free(sc->sc_ipopts);
189#ifdef INET6
190	if (sc->sc_inc.inc_isipv6)
191		rt = sc->sc_route6.ro_rt;
192	else
193#endif
194		rt = sc->sc_route.ro_rt;
195	if (rt != NULL) {
196		/*
197		 * If this is the only reference to a protocol cloned
198		 * route, remove it immediately.
199		 */
200		if (rt->rt_flags & RTF_WASCLONED &&
201		    (sc->sc_flags & SCF_KEEPROUTE) == 0 &&
202		    rt->rt_refcnt == 1)
203			rtrequest(RTM_DELETE, rt_key(rt),
204			    rt->rt_gateway, rt_mask(rt),
205			    rt->rt_flags, NULL);
206		RTFREE(rt);
207	}
208	uma_zfree(tcp_syncache.zone, sc);
209}
210
211void
212syncache_init(void)
213{
214	int i;
215
216	tcp_syncache.cache_count = 0;
217	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
218	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
219	tcp_syncache.cache_limit =
220	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
221	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
222	tcp_syncache.next_reseed = 0;
223	tcp_syncache.hash_secret = arc4random();
224
225        TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
226	    &tcp_syncache.hashsize);
227        TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
228	    &tcp_syncache.cache_limit);
229        TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
230	    &tcp_syncache.bucket_limit);
231	if (!powerof2(tcp_syncache.hashsize)) {
232                printf("WARNING: syncache hash size is not a power of 2.\n");
233		tcp_syncache.hashsize = 512;	/* safe default */
234        }
235	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
236
237	/* Allocate the hash table. */
238	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
239	    tcp_syncache.hashsize * sizeof(struct syncache_head),
240	    M_SYNCACHE, M_WAITOK);
241
242	/* Initialize the hash buckets. */
243	for (i = 0; i < tcp_syncache.hashsize; i++) {
244		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
245		tcp_syncache.hashbase[i].sch_length = 0;
246	}
247
248	/* Initialize the timer queues. */
249	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
250		TAILQ_INIT(&tcp_syncache.timerq[i]);
251		callout_init(&tcp_syncache.tt_timerq[i], 0);
252	}
253
254	/*
255	 * Allocate the syncache entries.  Allow the zone to allocate one
256	 * more entry than cache limit, so a new entry can bump out an
257	 * older one.
258	 */
259	tcp_syncache.cache_limit -= 1;
260	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
261	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
262	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
263}
264
265static void
266syncache_insert(sc, sch)
267	struct syncache *sc;
268	struct syncache_head *sch;
269{
270	struct syncache *sc2;
271	int s, i;
272
273	/*
274	 * Make sure that we don't overflow the per-bucket
275	 * limit or the total cache size limit.
276	 */
277	s = splnet();
278	if (sch->sch_length >= tcp_syncache.bucket_limit) {
279		/*
280		 * The bucket is full, toss the oldest element.
281		 */
282		sc2 = TAILQ_FIRST(&sch->sch_bucket);
283		sc2->sc_tp->ts_recent = ticks;
284		syncache_drop(sc2, sch);
285		tcpstat.tcps_sc_bucketoverflow++;
286	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
287		/*
288		 * The cache is full.  Toss the oldest entry in the
289		 * entire cache.  This is the front entry in the
290		 * first non-empty timer queue with the largest
291		 * timeout value.
292		 */
293		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
294			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
295			if (sc2 != NULL)
296				break;
297		}
298		sc2->sc_tp->ts_recent = ticks;
299		syncache_drop(sc2, NULL);
300		tcpstat.tcps_sc_cacheoverflow++;
301	}
302
303	/* Initialize the entry's timer. */
304	SYNCACHE_TIMEOUT(sc, 0);
305
306	/* Put it into the bucket. */
307	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
308	sch->sch_length++;
309	tcp_syncache.cache_count++;
310	tcpstat.tcps_sc_added++;
311	splx(s);
312}
313
314static void
315syncache_drop(sc, sch)
316	struct syncache *sc;
317	struct syncache_head *sch;
318{
319	int s;
320
321	if (sch == NULL) {
322#ifdef INET6
323		if (sc->sc_inc.inc_isipv6) {
324			sch = &tcp_syncache.hashbase[
325			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
326		} else
327#endif
328		{
329			sch = &tcp_syncache.hashbase[
330			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
331		}
332	}
333
334	s = splnet();
335
336	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
337	sch->sch_length--;
338	tcp_syncache.cache_count--;
339
340	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
341	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
342		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
343	splx(s);
344
345	syncache_free(sc);
346}
347
348/*
349 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
350 * If we have retransmitted an entry the maximum number of times, expire it.
351 */
352static void
353syncache_timer(xslot)
354	void *xslot;
355{
356	intptr_t slot = (intptr_t)xslot;
357	struct syncache *sc, *nsc;
358	struct inpcb *inp;
359	int s;
360
361	s = splnet();
362        if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
363            !callout_active(&tcp_syncache.tt_timerq[slot])) {
364                splx(s);
365                return;
366        }
367        callout_deactivate(&tcp_syncache.tt_timerq[slot]);
368
369        nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
370	INP_INFO_RLOCK(&tcbinfo);
371	while (nsc != NULL) {
372		if (ticks < nsc->sc_rxttime)
373			break;
374		sc = nsc;
375		inp = sc->sc_tp->t_inpcb;
376		INP_LOCK(inp);
377		if (slot == SYNCACHE_MAXREXMTS ||
378		    slot >= tcp_syncache.rexmt_limit ||
379		    inp->inp_gencnt != sc->sc_inp_gencnt) {
380			nsc = TAILQ_NEXT(sc, sc_timerq);
381			syncache_drop(sc, NULL);
382			tcpstat.tcps_sc_stale++;
383			INP_UNLOCK(inp);
384			continue;
385		}
386		/*
387		 * syncache_respond() may call back into the syncache to
388		 * to modify another entry, so do not obtain the next
389		 * entry on the timer chain until it has completed.
390		 */
391		(void) syncache_respond(sc, NULL);
392		INP_UNLOCK(inp);
393		nsc = TAILQ_NEXT(sc, sc_timerq);
394		tcpstat.tcps_sc_retransmitted++;
395		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
396		SYNCACHE_TIMEOUT(sc, slot + 1);
397	}
398	INP_INFO_RUNLOCK(&tcbinfo);
399	if (nsc != NULL)
400		callout_reset(&tcp_syncache.tt_timerq[slot],
401		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
402	splx(s);
403}
404
405/*
406 * Find an entry in the syncache.
407 */
408struct syncache *
409syncache_lookup(inc, schp)
410	struct in_conninfo *inc;
411	struct syncache_head **schp;
412{
413	struct syncache *sc;
414	struct syncache_head *sch;
415	int s;
416
417#ifdef INET6
418	if (inc->inc_isipv6) {
419		sch = &tcp_syncache.hashbase[
420		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
421		*schp = sch;
422		s = splnet();
423		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
424			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
425				splx(s);
426				return (sc);
427			}
428		}
429		splx(s);
430	} else
431#endif
432	{
433		sch = &tcp_syncache.hashbase[
434		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
435		*schp = sch;
436		s = splnet();
437		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
438#ifdef INET6
439			if (sc->sc_inc.inc_isipv6)
440				continue;
441#endif
442			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
443				splx(s);
444				return (sc);
445			}
446		}
447		splx(s);
448	}
449	return (NULL);
450}
451
452/*
453 * This function is called when we get a RST for a
454 * non-existent connection, so that we can see if the
455 * connection is in the syn cache.  If it is, zap it.
456 */
457void
458syncache_chkrst(inc, th)
459	struct in_conninfo *inc;
460	struct tcphdr *th;
461{
462	struct syncache *sc;
463	struct syncache_head *sch;
464
465	sc = syncache_lookup(inc, &sch);
466	if (sc == NULL)
467		return;
468	/*
469	 * If the RST bit is set, check the sequence number to see
470	 * if this is a valid reset segment.
471	 * RFC 793 page 37:
472	 *   In all states except SYN-SENT, all reset (RST) segments
473	 *   are validated by checking their SEQ-fields.  A reset is
474	 *   valid if its sequence number is in the window.
475	 *
476	 *   The sequence number in the reset segment is normally an
477	 *   echo of our outgoing acknowlegement numbers, but some hosts
478	 *   send a reset with the sequence number at the rightmost edge
479	 *   of our receive window, and we have to handle this case.
480	 */
481	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
482	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
483		syncache_drop(sc, sch);
484		tcpstat.tcps_sc_reset++;
485	}
486}
487
488void
489syncache_badack(inc)
490	struct in_conninfo *inc;
491{
492	struct syncache *sc;
493	struct syncache_head *sch;
494
495	sc = syncache_lookup(inc, &sch);
496	if (sc != NULL) {
497		syncache_drop(sc, sch);
498		tcpstat.tcps_sc_badack++;
499	}
500}
501
502void
503syncache_unreach(inc, th)
504	struct in_conninfo *inc;
505	struct tcphdr *th;
506{
507	struct syncache *sc;
508	struct syncache_head *sch;
509
510	/* we are called at splnet() here */
511	sc = syncache_lookup(inc, &sch);
512	if (sc == NULL)
513		return;
514
515	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
516	if (ntohl(th->th_seq) != sc->sc_iss)
517		return;
518
519	/*
520	 * If we've rertransmitted 3 times and this is our second error,
521	 * we remove the entry.  Otherwise, we allow it to continue on.
522	 * This prevents us from incorrectly nuking an entry during a
523	 * spurious network outage.
524	 *
525	 * See tcp_notify().
526	 */
527	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
528		sc->sc_flags |= SCF_UNREACH;
529		return;
530	}
531	syncache_drop(sc, sch);
532	tcpstat.tcps_sc_unreach++;
533}
534
535/*
536 * Build a new TCP socket structure from a syncache entry.
537 */
538static struct socket *
539syncache_socket(sc, lso, m)
540	struct syncache *sc;
541	struct socket *lso;
542	struct mbuf *m;
543{
544	struct inpcb *inp = NULL;
545	struct socket *so;
546	struct tcpcb *tp;
547
548	/*
549	 * Ok, create the full blown connection, and set things up
550	 * as they would have been set up if we had created the
551	 * connection when the SYN arrived.  If we can't create
552	 * the connection, abort it.
553	 */
554	so = sonewconn(lso, SS_ISCONNECTED);
555	if (so == NULL) {
556		/*
557		 * Drop the connection; we will send a RST if the peer
558		 * retransmits the ACK,
559		 */
560		tcpstat.tcps_listendrop++;
561		goto abort;
562	}
563
564	inp = sotoinpcb(so);
565
566	/*
567	 * Insert new socket into hash list.
568	 */
569	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
570#ifdef INET6
571	if (sc->sc_inc.inc_isipv6) {
572		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
573	} else {
574		inp->inp_vflag &= ~INP_IPV6;
575		inp->inp_vflag |= INP_IPV4;
576#endif
577		inp->inp_laddr = sc->sc_inc.inc_laddr;
578#ifdef INET6
579	}
580#endif
581	inp->inp_lport = sc->sc_inc.inc_lport;
582	if (in_pcbinshash(inp) != 0) {
583		/*
584		 * Undo the assignments above if we failed to
585		 * put the PCB on the hash lists.
586		 */
587#ifdef INET6
588		if (sc->sc_inc.inc_isipv6)
589			inp->in6p_laddr = in6addr_any;
590       		else
591#endif
592			inp->inp_laddr.s_addr = INADDR_ANY;
593		inp->inp_lport = 0;
594		goto abort;
595	}
596#ifdef IPSEC
597	/* copy old policy into new socket's */
598	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
599		printf("syncache_expand: could not copy policy\n");
600#endif
601#ifdef INET6
602	if (sc->sc_inc.inc_isipv6) {
603		struct inpcb *oinp = sotoinpcb(lso);
604		struct in6_addr laddr6;
605		struct sockaddr_in6 *sin6;
606		/*
607		 * Inherit socket options from the listening socket.
608		 * Note that in6p_inputopts are not (and should not be)
609		 * copied, since it stores previously received options and is
610		 * used to detect if each new option is different than the
611		 * previous one and hence should be passed to a user.
612                 * If we copied in6p_inputopts, a user would not be able to
613		 * receive options just after calling the accept system call.
614		 */
615		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
616		if (oinp->in6p_outputopts)
617			inp->in6p_outputopts =
618			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
619		inp->in6p_route = sc->sc_route6;
620		sc->sc_route6.ro_rt = NULL;
621
622		MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
623		    M_SONAME, M_NOWAIT | M_ZERO);
624		if (sin6 == NULL)
625			goto abort;
626		sin6->sin6_family = AF_INET6;
627		sin6->sin6_len = sizeof(*sin6);
628		sin6->sin6_addr = sc->sc_inc.inc6_faddr;
629		sin6->sin6_port = sc->sc_inc.inc_fport;
630		laddr6 = inp->in6p_laddr;
631		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
632			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
633		if (in6_pcbconnect(inp, (struct sockaddr *)sin6, &thread0)) {
634			inp->in6p_laddr = laddr6;
635			FREE(sin6, M_SONAME);
636			goto abort;
637		}
638		FREE(sin6, M_SONAME);
639	} else
640#endif
641	{
642		struct in_addr laddr;
643		struct sockaddr_in *sin;
644
645		inp->inp_options = ip_srcroute();
646		if (inp->inp_options == NULL) {
647			inp->inp_options = sc->sc_ipopts;
648			sc->sc_ipopts = NULL;
649		}
650		inp->inp_route = sc->sc_route;
651		sc->sc_route.ro_rt = NULL;
652
653		MALLOC(sin, struct sockaddr_in *, sizeof *sin,
654		    M_SONAME, M_NOWAIT | M_ZERO);
655		if (sin == NULL)
656			goto abort;
657		sin->sin_family = AF_INET;
658		sin->sin_len = sizeof(*sin);
659		sin->sin_addr = sc->sc_inc.inc_faddr;
660		sin->sin_port = sc->sc_inc.inc_fport;
661		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
662		laddr = inp->inp_laddr;
663		if (inp->inp_laddr.s_addr == INADDR_ANY)
664			inp->inp_laddr = sc->sc_inc.inc_laddr;
665		if (in_pcbconnect(inp, (struct sockaddr *)sin, &thread0)) {
666			inp->inp_laddr = laddr;
667			FREE(sin, M_SONAME);
668			goto abort;
669		}
670		FREE(sin, M_SONAME);
671	}
672
673	tp = intotcpcb(inp);
674	tp->t_state = TCPS_SYN_RECEIVED;
675	tp->iss = sc->sc_iss;
676	tp->irs = sc->sc_irs;
677	tcp_rcvseqinit(tp);
678	tcp_sendseqinit(tp);
679	tp->snd_wl1 = sc->sc_irs;
680	tp->rcv_up = sc->sc_irs + 1;
681	tp->rcv_wnd = sc->sc_wnd;
682	tp->rcv_adv += tp->rcv_wnd;
683
684	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
685	if (sc->sc_flags & SCF_NOOPT)
686		tp->t_flags |= TF_NOOPT;
687	if (sc->sc_flags & SCF_WINSCALE) {
688		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
689		tp->requested_s_scale = sc->sc_requested_s_scale;
690		tp->request_r_scale = sc->sc_request_r_scale;
691	}
692	if (sc->sc_flags & SCF_TIMESTAMP) {
693		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
694		tp->ts_recent = sc->sc_tsrecent;
695		tp->ts_recent_age = ticks;
696	}
697	if (sc->sc_flags & SCF_CC) {
698		/*
699		 * Initialization of the tcpcb for transaction;
700		 *   set SND.WND = SEG.WND,
701		 *   initialize CCsend and CCrecv.
702		 */
703		tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
704		tp->cc_send = sc->sc_cc_send;
705		tp->cc_recv = sc->sc_cc_recv;
706	}
707
708	tcp_mss(tp, sc->sc_peer_mss);
709
710	/*
711	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
712	 */
713	if (sc->sc_rxtslot != 0)
714                tp->snd_cwnd = tp->t_maxseg;
715	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
716
717	tcpstat.tcps_accepts++;
718	return (so);
719
720abort:
721	if (so != NULL)
722		(void) soabort(so);
723	return (NULL);
724}
725
726/*
727 * This function gets called when we receive an ACK for a
728 * socket in the LISTEN state.  We look up the connection
729 * in the syncache, and if its there, we pull it out of
730 * the cache and turn it into a full-blown connection in
731 * the SYN-RECEIVED state.
732 */
733int
734syncache_expand(inc, th, sop, m)
735	struct in_conninfo *inc;
736	struct tcphdr *th;
737	struct socket **sop;
738	struct mbuf *m;
739{
740	struct syncache *sc;
741	struct syncache_head *sch;
742	struct socket *so;
743
744	sc = syncache_lookup(inc, &sch);
745	if (sc == NULL) {
746		/*
747		 * There is no syncache entry, so see if this ACK is
748		 * a returning syncookie.  To do this, first:
749		 *  A. See if this socket has had a syncache entry dropped in
750		 *     the past.  We don't want to accept a bogus syncookie
751 		 *     if we've never received a SYN.
752		 *  B. check that the syncookie is valid.  If it is, then
753		 *     cobble up a fake syncache entry, and return.
754		 */
755		if (!tcp_syncookies)
756			return (0);
757		sc = syncookie_lookup(inc, th, *sop);
758		if (sc == NULL)
759			return (0);
760		sch = NULL;
761		tcpstat.tcps_sc_recvcookie++;
762	}
763
764	/*
765	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
766	 */
767	if (th->th_ack != sc->sc_iss + 1)
768		return (0);
769
770	so = syncache_socket(sc, *sop, m);
771	if (so == NULL) {
772#if 0
773resetandabort:
774		/* XXXjlemon check this - is this correct? */
775		(void) tcp_respond(NULL, m, m, th,
776		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
777#endif
778		m_freem(m);			/* XXX only needed for above */
779		tcpstat.tcps_sc_aborted++;
780	} else {
781		sc->sc_flags |= SCF_KEEPROUTE;
782		tcpstat.tcps_sc_completed++;
783	}
784	if (sch == NULL)
785		syncache_free(sc);
786	else
787		syncache_drop(sc, sch);
788	*sop = so;
789	return (1);
790}
791
792/*
793 * Given a LISTEN socket and an inbound SYN request, add
794 * this to the syn cache, and send back a segment:
795 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
796 * to the source.
797 *
798 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
799 * Doing so would require that we hold onto the data and deliver it
800 * to the application.  However, if we are the target of a SYN-flood
801 * DoS attack, an attacker could send data which would eventually
802 * consume all available buffer space if it were ACKed.  By not ACKing
803 * the data, we avoid this DoS scenario.
804 */
805int
806syncache_add(inc, to, th, sop, m)
807	struct in_conninfo *inc;
808	struct tcpopt *to;
809	struct tcphdr *th;
810	struct socket **sop;
811	struct mbuf *m;
812{
813	struct tcpcb *tp;
814	struct socket *so;
815	struct syncache *sc = NULL;
816	struct syncache_head *sch;
817	struct mbuf *ipopts = NULL;
818	struct rmxp_tao *taop;
819	int i, s, win;
820
821	so = *sop;
822	tp = sototcpcb(so);
823
824	/*
825	 * Remember the IP options, if any.
826	 */
827#ifdef INET6
828	if (!inc->inc_isipv6)
829#endif
830		ipopts = ip_srcroute();
831
832	/*
833	 * See if we already have an entry for this connection.
834	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
835	 *
836	 * XXX
837	 * should the syncache be re-initialized with the contents
838	 * of the new SYN here (which may have different options?)
839	 */
840	sc = syncache_lookup(inc, &sch);
841	if (sc != NULL) {
842		tcpstat.tcps_sc_dupsyn++;
843		if (ipopts) {
844			/*
845			 * If we were remembering a previous source route,
846			 * forget it and use the new one we've been given.
847			 */
848			if (sc->sc_ipopts)
849				(void) m_free(sc->sc_ipopts);
850			sc->sc_ipopts = ipopts;
851		}
852		/*
853		 * Update timestamp if present.
854		 */
855		if (sc->sc_flags & SCF_TIMESTAMP)
856			sc->sc_tsrecent = to->to_tsval;
857		/*
858		 * PCB may have changed, pick up new values.
859		 */
860		sc->sc_tp = tp;
861		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
862		if (syncache_respond(sc, m) == 0) {
863		        s = splnet();
864			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
865			    sc, sc_timerq);
866			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
867		        splx(s);
868		 	tcpstat.tcps_sndacks++;
869			tcpstat.tcps_sndtotal++;
870		}
871		*sop = NULL;
872		return (1);
873	}
874
875	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
876	if (sc == NULL) {
877		/*
878		 * The zone allocator couldn't provide more entries.
879		 * Treat this as if the cache was full; drop the oldest
880		 * entry and insert the new one.
881		 */
882		s = splnet();
883		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
884			sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
885			if (sc != NULL)
886				break;
887		}
888		sc->sc_tp->ts_recent = ticks;
889		syncache_drop(sc, NULL);
890		splx(s);
891		tcpstat.tcps_sc_zonefail++;
892		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
893		if (sc == NULL) {
894			if (ipopts)
895				(void) m_free(ipopts);
896			return (0);
897		}
898	}
899
900	/*
901	 * Fill in the syncache values.
902	 */
903	bzero(sc, sizeof(*sc));
904	sc->sc_tp = tp;
905	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
906	sc->sc_ipopts = ipopts;
907	sc->sc_inc.inc_fport = inc->inc_fport;
908	sc->sc_inc.inc_lport = inc->inc_lport;
909#ifdef INET6
910	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
911	if (inc->inc_isipv6) {
912		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
913		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
914		sc->sc_route6.ro_rt = NULL;
915	} else
916#endif
917	{
918		sc->sc_inc.inc_faddr = inc->inc_faddr;
919		sc->sc_inc.inc_laddr = inc->inc_laddr;
920		sc->sc_route.ro_rt = NULL;
921	}
922	sc->sc_irs = th->th_seq;
923	if (tcp_syncookies)
924		sc->sc_iss = syncookie_generate(sc);
925	else
926		sc->sc_iss = arc4random();
927
928	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
929	win = sbspace(&so->so_rcv);
930	win = imax(win, 0);
931	win = imin(win, TCP_MAXWIN);
932	sc->sc_wnd = win;
933
934	sc->sc_flags = 0;
935	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
936	if (tcp_do_rfc1323) {
937		/*
938		 * A timestamp received in a SYN makes
939		 * it ok to send timestamp requests and replies.
940		 */
941		if (to->to_flags & TOF_TS) {
942			sc->sc_tsrecent = to->to_tsval;
943			sc->sc_flags |= SCF_TIMESTAMP;
944		}
945		if (to->to_flags & TOF_SCALE) {
946			int wscale = 0;
947
948			/* Compute proper scaling value from buffer space */
949			while (wscale < TCP_MAX_WINSHIFT &&
950			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
951				wscale++;
952			sc->sc_request_r_scale = wscale;
953			sc->sc_requested_s_scale = to->to_requested_s_scale;
954			sc->sc_flags |= SCF_WINSCALE;
955		}
956	}
957	if (tcp_do_rfc1644) {
958		/*
959		 * A CC or CC.new option received in a SYN makes
960		 * it ok to send CC in subsequent segments.
961		 */
962		if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
963			sc->sc_cc_recv = to->to_cc;
964			sc->sc_cc_send = CC_INC(tcp_ccgen);
965			sc->sc_flags |= SCF_CC;
966		}
967	}
968	if (tp->t_flags & TF_NOOPT)
969		sc->sc_flags = SCF_NOOPT;
970
971	/*
972	 * XXX
973	 * We have the option here of not doing TAO (even if the segment
974	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
975	 * This allows us to apply synflood protection to TAO-qualifying SYNs
976	 * also. However, there should be a hueristic to determine when to
977	 * do this, and is not present at the moment.
978	 */
979
980	/*
981	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
982	 * - compare SEG.CC against cached CC from the same host, if any.
983	 * - if SEG.CC > chached value, SYN must be new and is accepted
984	 *	immediately: save new CC in the cache, mark the socket
985	 *	connected, enter ESTABLISHED state, turn on flag to
986	 *	send a SYN in the next segment.
987	 *	A virtual advertised window is set in rcv_adv to
988	 *	initialize SWS prevention.  Then enter normal segment
989	 *	processing: drop SYN, process data and FIN.
990	 * - otherwise do a normal 3-way handshake.
991	 */
992	taop = tcp_gettaocache(&sc->sc_inc);
993	if ((to->to_flags & TOF_CC) != 0) {
994		if (((tp->t_flags & TF_NOPUSH) != 0) &&
995		    sc->sc_flags & SCF_CC &&
996		    taop != NULL && taop->tao_cc != 0 &&
997		    CC_GT(to->to_cc, taop->tao_cc)) {
998			sc->sc_rxtslot = 0;
999			so = syncache_socket(sc, *sop, m);
1000			if (so != NULL) {
1001				sc->sc_flags |= SCF_KEEPROUTE;
1002				taop->tao_cc = to->to_cc;
1003				*sop = so;
1004			}
1005			syncache_free(sc);
1006			return (so != NULL);
1007		}
1008	} else {
1009		/*
1010		 * No CC option, but maybe CC.NEW: invalidate cached value.
1011		 */
1012		if (taop != NULL)
1013			taop->tao_cc = 0;
1014	}
1015	/*
1016	 * TAO test failed or there was no CC option,
1017	 *    do a standard 3-way handshake.
1018	 */
1019	if (syncache_respond(sc, m) == 0) {
1020		syncache_insert(sc, sch);
1021		tcpstat.tcps_sndacks++;
1022		tcpstat.tcps_sndtotal++;
1023	} else {
1024		syncache_free(sc);
1025		tcpstat.tcps_sc_dropped++;
1026	}
1027	*sop = NULL;
1028	return (1);
1029}
1030
1031static int
1032syncache_respond(sc, m)
1033	struct syncache *sc;
1034	struct mbuf *m;
1035{
1036	u_int8_t *optp;
1037	int optlen, error;
1038	u_int16_t tlen, hlen, mssopt;
1039	struct ip *ip = NULL;
1040	struct rtentry *rt;
1041	struct tcphdr *th;
1042#ifdef INET6
1043	struct ip6_hdr *ip6 = NULL;
1044#endif
1045
1046#ifdef INET6
1047	if (sc->sc_inc.inc_isipv6) {
1048		rt = tcp_rtlookup6(&sc->sc_inc);
1049		if (rt != NULL)
1050			mssopt = rt->rt_ifp->if_mtu -
1051			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1052		else
1053			mssopt = tcp_v6mssdflt;
1054		hlen = sizeof(struct ip6_hdr);
1055	} else
1056#endif
1057	{
1058		rt = tcp_rtlookup(&sc->sc_inc);
1059		if (rt != NULL)
1060			mssopt = rt->rt_ifp->if_mtu -
1061			     (sizeof(struct ip) + sizeof(struct tcphdr));
1062		else
1063			mssopt = tcp_mssdflt;
1064		hlen = sizeof(struct ip);
1065	}
1066
1067	/* Compute the size of the TCP options. */
1068	if (sc->sc_flags & SCF_NOOPT) {
1069		optlen = 0;
1070	} else {
1071		optlen = TCPOLEN_MAXSEG +
1072		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1073		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1074		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1075	}
1076	tlen = hlen + sizeof(struct tcphdr) + optlen;
1077
1078	/*
1079	 * XXX
1080	 * assume that the entire packet will fit in a header mbuf
1081	 */
1082	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1083
1084	/*
1085	 * XXX shouldn't this reuse the mbuf if possible ?
1086	 * Create the IP+TCP header from scratch.
1087	 */
1088	if (m)
1089		m_freem(m);
1090
1091	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1092	if (m == NULL)
1093		return (ENOBUFS);
1094	m->m_data += max_linkhdr;
1095	m->m_len = tlen;
1096	m->m_pkthdr.len = tlen;
1097	m->m_pkthdr.rcvif = NULL;
1098
1099#ifdef IPSEC
1100	/* use IPsec policy on listening socket to send SYN,ACK */
1101	if (ipsec_setsocket(m, sc->sc_tp->t_inpcb->inp_socket) != 0) {
1102		m_freem(m);
1103		return (ENOBUFS);
1104	}
1105#endif
1106
1107#ifdef INET6
1108	if (sc->sc_inc.inc_isipv6) {
1109		ip6 = mtod(m, struct ip6_hdr *);
1110		ip6->ip6_vfc = IPV6_VERSION;
1111		ip6->ip6_nxt = IPPROTO_TCP;
1112		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1113		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1114		ip6->ip6_plen = htons(tlen - hlen);
1115		/* ip6_hlim is set after checksum */
1116		/* ip6_flow = ??? */
1117
1118		th = (struct tcphdr *)(ip6 + 1);
1119	} else
1120#endif
1121	{
1122		ip = mtod(m, struct ip *);
1123		ip->ip_v = IPVERSION;
1124		ip->ip_hl = sizeof(struct ip) >> 2;
1125		ip->ip_len = tlen;
1126		ip->ip_id = 0;
1127		ip->ip_off = 0;
1128		ip->ip_sum = 0;
1129		ip->ip_p = IPPROTO_TCP;
1130		ip->ip_src = sc->sc_inc.inc_laddr;
1131		ip->ip_dst = sc->sc_inc.inc_faddr;
1132		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1133		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1134
1135		/*
1136		 * See if we should do MTU discovery.  We do it only if the following
1137		 * are true:
1138		 *      1) we have a valid route to the destination
1139		 *      2) the MTU is not locked (if it is, then discovery has been
1140		 *         disabled)
1141		 */
1142		if (path_mtu_discovery
1143		    && (rt != NULL)
1144		    && rt->rt_flags & RTF_UP
1145		    && !(rt->rt_rmx.rmx_locks & RTV_MTU)) {
1146		       ip->ip_off |= IP_DF;
1147		}
1148
1149		th = (struct tcphdr *)(ip + 1);
1150	}
1151	th->th_sport = sc->sc_inc.inc_lport;
1152	th->th_dport = sc->sc_inc.inc_fport;
1153
1154	th->th_seq = htonl(sc->sc_iss);
1155	th->th_ack = htonl(sc->sc_irs + 1);
1156	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1157	th->th_x2 = 0;
1158	th->th_flags = TH_SYN|TH_ACK;
1159	th->th_win = htons(sc->sc_wnd);
1160	th->th_urp = 0;
1161
1162	/* Tack on the TCP options. */
1163	if (optlen == 0)
1164		goto no_options;
1165	optp = (u_int8_t *)(th + 1);
1166	*optp++ = TCPOPT_MAXSEG;
1167	*optp++ = TCPOLEN_MAXSEG;
1168	*optp++ = (mssopt >> 8) & 0xff;
1169	*optp++ = mssopt & 0xff;
1170
1171	if (sc->sc_flags & SCF_WINSCALE) {
1172		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1173		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1174		    sc->sc_request_r_scale);
1175		optp += 4;
1176	}
1177
1178	if (sc->sc_flags & SCF_TIMESTAMP) {
1179		u_int32_t *lp = (u_int32_t *)(optp);
1180
1181		/* Form timestamp option as shown in appendix A of RFC 1323. */
1182		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1183		*lp++ = htonl(ticks);
1184		*lp   = htonl(sc->sc_tsrecent);
1185		optp += TCPOLEN_TSTAMP_APPA;
1186	}
1187
1188	/*
1189         * Send CC and CC.echo if we received CC from our peer.
1190         */
1191        if (sc->sc_flags & SCF_CC) {
1192		u_int32_t *lp = (u_int32_t *)(optp);
1193
1194		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1195		*lp++ = htonl(sc->sc_cc_send);
1196		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1197		*lp   = htonl(sc->sc_cc_recv);
1198		optp += TCPOLEN_CC_APPA * 2;
1199	}
1200no_options:
1201
1202#ifdef INET6
1203	if (sc->sc_inc.inc_isipv6) {
1204		struct route_in6 *ro6 = &sc->sc_route6;
1205
1206		th->th_sum = 0;
1207		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1208		ip6->ip6_hlim = in6_selecthlim(NULL,
1209		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1210		error = ip6_output(m, NULL, ro6, 0, NULL, NULL);
1211	} else
1212#endif
1213	{
1214        	th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1215		    htons(tlen - hlen + IPPROTO_TCP));
1216		m->m_pkthdr.csum_flags = CSUM_TCP;
1217		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1218		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL);
1219	}
1220	return (error);
1221}
1222
1223/*
1224 * cookie layers:
1225 *
1226 *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1227 *	| peer iss                                                      |
1228 *	| MD5(laddr,faddr,lport,fport,secret)             |. . . . . . .|
1229 *	|                     0                       |(A)|             |
1230 * (A): peer mss index
1231 */
1232
1233/*
1234 * The values below are chosen to minimize the size of the tcp_secret
1235 * table, as well as providing roughly a 4 second lifetime for the cookie.
1236 */
1237
1238#define SYNCOOKIE_HASHSHIFT	2	/* log2(# of 32bit words from hash) */
1239#define SYNCOOKIE_WNDBITS	7	/* exposed bits for window indexing */
1240#define SYNCOOKIE_TIMESHIFT	5	/* scale ticks to window time units */
1241
1242#define SYNCOOKIE_HASHMASK	((1 << SYNCOOKIE_HASHSHIFT) - 1)
1243#define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1244#define SYNCOOKIE_NSECRETS	(1 << (SYNCOOKIE_WNDBITS - SYNCOOKIE_HASHSHIFT))
1245#define SYNCOOKIE_TIMEOUT \
1246    (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1247#define SYNCOOKIE_DATAMASK 	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1248
1249static struct {
1250	u_int32_t	ts_secbits;
1251	u_int		ts_expire;
1252} tcp_secret[SYNCOOKIE_NSECRETS];
1253
1254static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1255
1256static MD5_CTX syn_ctx;
1257
1258#define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1259
1260/*
1261 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1262 * original SYN was accepted, the connection is established.  The second
1263 * SYN is inflight, and if it arrives with an ISN that falls within the
1264 * receive window, the connection is killed.
1265 *
1266 * However, since cookies have other problems, this may not be worth
1267 * worrying about.
1268 */
1269
1270static u_int32_t
1271syncookie_generate(struct syncache *sc)
1272{
1273	u_int32_t md5_buffer[4];
1274	u_int32_t data;
1275	int wnd, idx;
1276
1277	wnd = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1278	idx = wnd >> SYNCOOKIE_HASHSHIFT;
1279	if (tcp_secret[idx].ts_expire < ticks) {
1280		tcp_secret[idx].ts_secbits = arc4random();
1281		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1282	}
1283	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1284		if (tcp_msstab[data] <= sc->sc_peer_mss)
1285			break;
1286	data = (data << SYNCOOKIE_WNDBITS) | wnd;
1287	data ^= sc->sc_irs;				/* peer's iss */
1288	MD5Init(&syn_ctx);
1289#ifdef INET6
1290	if (sc->sc_inc.inc_isipv6) {
1291		MD5Add(sc->sc_inc.inc6_laddr);
1292		MD5Add(sc->sc_inc.inc6_faddr);
1293	} else
1294#endif
1295	{
1296		MD5Add(sc->sc_inc.inc_laddr);
1297		MD5Add(sc->sc_inc.inc_faddr);
1298	}
1299	MD5Add(sc->sc_inc.inc_lport);
1300	MD5Add(sc->sc_inc.inc_fport);
1301	MD5Add(tcp_secret[idx].ts_secbits);
1302	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1303	data ^= (md5_buffer[wnd & SYNCOOKIE_HASHMASK] & ~SYNCOOKIE_WNDMASK);
1304	return (data);
1305}
1306
1307static struct syncache *
1308syncookie_lookup(inc, th, so)
1309	struct in_conninfo *inc;
1310	struct tcphdr *th;
1311	struct socket *so;
1312{
1313	u_int32_t md5_buffer[4];
1314	struct syncache *sc;
1315	u_int32_t data;
1316	int wnd, idx;
1317
1318	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1319	wnd = data & SYNCOOKIE_WNDMASK;
1320	idx = wnd >> SYNCOOKIE_HASHSHIFT;
1321	if (tcp_secret[idx].ts_expire < ticks ||
1322	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1323		return (NULL);
1324	MD5Init(&syn_ctx);
1325#ifdef INET6
1326	if (inc->inc_isipv6) {
1327		MD5Add(inc->inc6_laddr);
1328		MD5Add(inc->inc6_faddr);
1329	} else
1330#endif
1331	{
1332		MD5Add(inc->inc_laddr);
1333		MD5Add(inc->inc_faddr);
1334	}
1335	MD5Add(inc->inc_lport);
1336	MD5Add(inc->inc_fport);
1337	MD5Add(tcp_secret[idx].ts_secbits);
1338	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1339	data ^= md5_buffer[wnd & SYNCOOKIE_HASHMASK];
1340	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1341		return (NULL);
1342	data = data >> SYNCOOKIE_WNDBITS;
1343
1344	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1345	if (sc == NULL)
1346		return (NULL);
1347	/*
1348	 * Fill in the syncache values.
1349	 * XXX duplicate code from syncache_add
1350	 */
1351	sc->sc_ipopts = NULL;
1352	sc->sc_inc.inc_fport = inc->inc_fport;
1353	sc->sc_inc.inc_lport = inc->inc_lport;
1354#ifdef INET6
1355	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1356	if (inc->inc_isipv6) {
1357		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1358		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1359		sc->sc_route6.ro_rt = NULL;
1360	} else
1361#endif
1362	{
1363		sc->sc_inc.inc_faddr = inc->inc_faddr;
1364		sc->sc_inc.inc_laddr = inc->inc_laddr;
1365		sc->sc_route.ro_rt = NULL;
1366	}
1367	sc->sc_irs = th->th_seq - 1;
1368	sc->sc_iss = th->th_ack - 1;
1369	wnd = sbspace(&so->so_rcv);
1370	wnd = imax(wnd, 0);
1371	wnd = imin(wnd, TCP_MAXWIN);
1372	sc->sc_wnd = wnd;
1373	sc->sc_flags = 0;
1374	sc->sc_rxtslot = 0;
1375	sc->sc_peer_mss = tcp_msstab[data];
1376	return (sc);
1377}
1378