tcp_syncache.c revision 298769
1218887Sdim/*-
2218887Sdim * Copyright (c) 2001 McAfee, Inc.
3218887Sdim * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4218887Sdim * All rights reserved.
5218887Sdim *
6218887Sdim * This software was developed for the FreeBSD Project by Jonathan Lemon
7218887Sdim * and McAfee Research, the Security Research Division of McAfee, Inc. under
8218887Sdim * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9218887Sdim * DARPA CHATS research program. [2001 McAfee, Inc.]
10218887Sdim *
11218887Sdim * Redistribution and use in source and binary forms, with or without
12218887Sdim * modification, are permitted provided that the following conditions
13218887Sdim * are met:
14218887Sdim * 1. Redistributions of source code must retain the above copyright
15221345Sdim *    notice, this list of conditions and the following disclaimer.
16249423Sdim * 2. Redistributions in binary form must reproduce the above copyright
17221345Sdim *    notice, this list of conditions and the following disclaimer in the
18221345Sdim *    documentation and/or other materials provided with the distribution.
19221345Sdim *
20218887Sdim * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21218887Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22218887Sdim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23218887Sdim * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24218887Sdim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25218887Sdim * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26221345Sdim * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27234353Sdim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28218887Sdim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29218887Sdim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30234353Sdim * SUCH DAMAGE.
31234353Sdim */
32218887Sdim
33234353Sdim#include <sys/cdefs.h>
34234353Sdim__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 298769 2016-04-29 07:23:08Z sephe $");
35218887Sdim
36226633Sdim#include "opt_inet.h"
37218887Sdim#include "opt_inet6.h"
38218887Sdim#include "opt_ipsec.h"
39218887Sdim#include "opt_pcbgroup.h"
40218887Sdim
41218887Sdim#include <sys/param.h>
42226633Sdim#include <sys/systm.h>
43226633Sdim#include <sys/hash.h>
44218887Sdim#include <sys/refcount.h>
45218887Sdim#include <sys/kernel.h>
46218887Sdim#include <sys/sysctl.h>
47218887Sdim#include <sys/limits.h>
48218887Sdim#include <sys/lock.h>
49218887Sdim#include <sys/mutex.h>
50234353Sdim#include <sys/malloc.h>
51234353Sdim#include <sys/mbuf.h>
52234353Sdim#include <sys/proc.h>		/* for proc0 declaration */
53218887Sdim#include <sys/random.h>
54218887Sdim#include <sys/socket.h>
55218887Sdim#include <sys/socketvar.h>
56234353Sdim#include <sys/syslog.h>
57218887Sdim#include <sys/ucred.h>
58218887Sdim
59218887Sdim#include <sys/md5.h>
60218887Sdim#include <crypto/siphash/siphash.h>
61221345Sdim
62234353Sdim#include <vm/uma.h>
63234353Sdim
64218887Sdim#include <net/if.h>
65234353Sdim#include <net/if_var.h>
66234353Sdim#include <net/route.h>
67234353Sdim#include <net/vnet.h>
68218887Sdim
69218887Sdim#include <netinet/in.h>
70221345Sdim#include <netinet/in_systm.h>
71221345Sdim#include <netinet/ip.h>
72218887Sdim#include <netinet/in_var.h>
73218887Sdim#include <netinet/in_pcb.h>
74218887Sdim#include <netinet/ip_var.h>
75218887Sdim#include <netinet/ip_options.h>
76218887Sdim#ifdef INET6
77218887Sdim#include <netinet/ip6.h>
78218887Sdim#include <netinet/icmp6.h>
79218887Sdim#include <netinet6/nd6.h>
80218887Sdim#include <netinet6/ip6_var.h>
81218887Sdim#include <netinet6/in6_pcb.h>
82218887Sdim#endif
83218887Sdim#include <netinet/tcp.h>
84218887Sdim#ifdef TCP_RFC7413
85218887Sdim#include <netinet/tcp_fastopen.h>
86218887Sdim#endif
87226633Sdim#include <netinet/tcp_fsm.h>
88226633Sdim#include <netinet/tcp_seq.h>
89218887Sdim#include <netinet/tcp_timer.h>
90218887Sdim#include <netinet/tcp_var.h>
91234353Sdim#include <netinet/tcp_syncache.h>
92218887Sdim#ifdef INET6
93249423Sdim#include <netinet6/tcp6_var.h>
94218887Sdim#endif
95218887Sdim#ifdef TCP_OFFLOAD
96218887Sdim#include <netinet/toecore.h>
97234353Sdim#endif
98218887Sdim
99218887Sdim#ifdef IPSEC
100218887Sdim#include <netipsec/ipsec.h>
101226633Sdim#ifdef INET6
102243830Sdim#include <netipsec/ipsec6.h>
103218887Sdim#endif
104218887Sdim#include <netipsec/key.h>
105243830Sdim#endif /*IPSEC*/
106218887Sdim
107218887Sdim#include <machine/in_cksum.h>
108218887Sdim
109221345Sdim#include <security/mac/mac_framework.h>
110221345Sdim
111221345Sdimstatic VNET_DEFINE(int, tcp_syncookies) = 1;
112221345Sdim#define	V_tcp_syncookies		VNET(tcp_syncookies)
113SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
114    &VNET_NAME(tcp_syncookies), 0,
115    "Use TCP SYN cookies if the syncache overflows");
116
117static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
118#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
119SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
120    &VNET_NAME(tcp_syncookiesonly), 0,
121    "Use only TCP SYN cookies");
122
123#ifdef TCP_OFFLOAD
124#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
125#endif
126
127static void	 syncache_drop(struct syncache *, struct syncache_head *);
128static void	 syncache_free(struct syncache *);
129static void	 syncache_insert(struct syncache *, struct syncache_head *);
130static int	 syncache_respond(struct syncache *, struct syncache_head *, int,
131		    const struct mbuf *);
132static struct	 socket *syncache_socket(struct syncache *, struct socket *,
133		    struct mbuf *m);
134static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
135		    int docallout);
136static void	 syncache_timer(void *);
137
138static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
139		    uint8_t *, uintptr_t);
140static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
141static struct syncache
142		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
143		    struct syncache *, struct tcphdr *, struct tcpopt *,
144		    struct socket *);
145static void	 syncookie_reseed(void *);
146#ifdef INVARIANTS
147static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
148		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
149		    struct socket *lso);
150#endif
151
152/*
153 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
154 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
155 * the odds are that the user has given up attempting to connect by then.
156 */
157#define SYNCACHE_MAXREXMTS		3
158
159/* Arbitrary values */
160#define TCP_SYNCACHE_HASHSIZE		512
161#define TCP_SYNCACHE_BUCKETLIMIT	30
162
163static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
164#define	V_tcp_syncache			VNET(tcp_syncache)
165
166static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
167    "TCP SYN cache");
168
169SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
170    &VNET_NAME(tcp_syncache.bucket_limit), 0,
171    "Per-bucket hash limit for syncache");
172
173SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
174    &VNET_NAME(tcp_syncache.cache_limit), 0,
175    "Overall entry limit for syncache");
176
177SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
178    &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
179
180SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
181    &VNET_NAME(tcp_syncache.hashsize), 0,
182    "Size of TCP syncache hashtable");
183
184SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_VNET | CTLFLAG_RW,
185    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
186    "Limit on SYN/ACK retransmissions");
187
188VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
189SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
190    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
191    "Send reset on socket allocation failure");
192
193static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
194
195#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
196#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
197#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
198
199/*
200 * Requires the syncache entry to be already removed from the bucket list.
201 */
202static void
203syncache_free(struct syncache *sc)
204{
205
206	if (sc->sc_ipopts)
207		(void) m_free(sc->sc_ipopts);
208	if (sc->sc_cred)
209		crfree(sc->sc_cred);
210#ifdef MAC
211	mac_syncache_destroy(&sc->sc_label);
212#endif
213
214	uma_zfree(V_tcp_syncache.zone, sc);
215}
216
217void
218syncache_init(void)
219{
220	int i;
221
222	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
223	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
224	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
225	V_tcp_syncache.hash_secret = arc4random();
226
227	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
228	    &V_tcp_syncache.hashsize);
229	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
230	    &V_tcp_syncache.bucket_limit);
231	if (!powerof2(V_tcp_syncache.hashsize) ||
232	    V_tcp_syncache.hashsize == 0) {
233		printf("WARNING: syncache hash size is not a power of 2.\n");
234		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
235	}
236	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
237
238	/* Set limits. */
239	V_tcp_syncache.cache_limit =
240	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
241	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
242	    &V_tcp_syncache.cache_limit);
243
244	/* Allocate the hash table. */
245	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
246	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
247
248#ifdef VIMAGE
249	V_tcp_syncache.vnet = curvnet;
250#endif
251
252	/* Initialize the hash buckets. */
253	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
254		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
255		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
256			 NULL, MTX_DEF);
257		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
258			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
259		V_tcp_syncache.hashbase[i].sch_length = 0;
260		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
261	}
262
263	/* Create the syncache entry zone. */
264	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
265	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
266	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
267	    V_tcp_syncache.cache_limit);
268
269	/* Start the SYN cookie reseeder callout. */
270	callout_init(&V_tcp_syncache.secret.reseed, 1);
271	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
272	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
273	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
274	    syncookie_reseed, &V_tcp_syncache);
275}
276
277#ifdef VIMAGE
278void
279syncache_destroy(void)
280{
281	struct syncache_head *sch;
282	struct syncache *sc, *nsc;
283	int i;
284
285	/*
286	 * Stop the re-seed timer before freeing resources.  No need to
287	 * possibly schedule it another time.
288	 */
289	callout_drain(&V_tcp_syncache.secret.reseed);
290
291	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
292	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
293
294		sch = &V_tcp_syncache.hashbase[i];
295		callout_drain(&sch->sch_timer);
296
297		SCH_LOCK(sch);
298		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
299			syncache_drop(sc, sch);
300		SCH_UNLOCK(sch);
301		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
302		    ("%s: sch->sch_bucket not empty", __func__));
303		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
304		    __func__, sch->sch_length));
305		mtx_destroy(&sch->sch_mtx);
306	}
307
308	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
309	    ("%s: cache_count not 0", __func__));
310
311	/* Free the allocated global resources. */
312	uma_zdestroy(V_tcp_syncache.zone);
313	free(V_tcp_syncache.hashbase, M_SYNCACHE);
314}
315#endif
316
317/*
318 * Inserts a syncache entry into the specified bucket row.
319 * Locks and unlocks the syncache_head autonomously.
320 */
321static void
322syncache_insert(struct syncache *sc, struct syncache_head *sch)
323{
324	struct syncache *sc2;
325
326	SCH_LOCK(sch);
327
328	/*
329	 * Make sure that we don't overflow the per-bucket limit.
330	 * If the bucket is full, toss the oldest element.
331	 */
332	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
333		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
334			("sch->sch_length incorrect"));
335		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
336		syncache_drop(sc2, sch);
337		TCPSTAT_INC(tcps_sc_bucketoverflow);
338	}
339
340	/* Put it into the bucket. */
341	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
342	sch->sch_length++;
343
344#ifdef TCP_OFFLOAD
345	if (ADDED_BY_TOE(sc)) {
346		struct toedev *tod = sc->sc_tod;
347
348		tod->tod_syncache_added(tod, sc->sc_todctx);
349	}
350#endif
351
352	/* Reinitialize the bucket row's timer. */
353	if (sch->sch_length == 1)
354		sch->sch_nextc = ticks + INT_MAX;
355	syncache_timeout(sc, sch, 1);
356
357	SCH_UNLOCK(sch);
358
359	TCPSTATES_INC(TCPS_SYN_RECEIVED);
360	TCPSTAT_INC(tcps_sc_added);
361}
362
363/*
364 * Remove and free entry from syncache bucket row.
365 * Expects locked syncache head.
366 */
367static void
368syncache_drop(struct syncache *sc, struct syncache_head *sch)
369{
370
371	SCH_LOCK_ASSERT(sch);
372
373	TCPSTATES_DEC(TCPS_SYN_RECEIVED);
374	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
375	sch->sch_length--;
376
377#ifdef TCP_OFFLOAD
378	if (ADDED_BY_TOE(sc)) {
379		struct toedev *tod = sc->sc_tod;
380
381		tod->tod_syncache_removed(tod, sc->sc_todctx);
382	}
383#endif
384
385	syncache_free(sc);
386}
387
388/*
389 * Engage/reengage time on bucket row.
390 */
391static void
392syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
393{
394	sc->sc_rxttime = ticks +
395		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
396	sc->sc_rxmits++;
397	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
398		sch->sch_nextc = sc->sc_rxttime;
399		if (docallout)
400			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
401			    syncache_timer, (void *)sch);
402	}
403}
404
405/*
406 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
407 * If we have retransmitted an entry the maximum number of times, expire it.
408 * One separate timer for each bucket row.
409 */
410static void
411syncache_timer(void *xsch)
412{
413	struct syncache_head *sch = (struct syncache_head *)xsch;
414	struct syncache *sc, *nsc;
415	int tick = ticks;
416	char *s;
417
418	CURVNET_SET(sch->sch_sc->vnet);
419
420	/* NB: syncache_head has already been locked by the callout. */
421	SCH_LOCK_ASSERT(sch);
422
423	/*
424	 * In the following cycle we may remove some entries and/or
425	 * advance some timeouts, so re-initialize the bucket timer.
426	 */
427	sch->sch_nextc = tick + INT_MAX;
428
429	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
430		/*
431		 * We do not check if the listen socket still exists
432		 * and accept the case where the listen socket may be
433		 * gone by the time we resend the SYN/ACK.  We do
434		 * not expect this to happens often. If it does,
435		 * then the RST will be sent by the time the remote
436		 * host does the SYN/ACK->ACK.
437		 */
438		if (TSTMP_GT(sc->sc_rxttime, tick)) {
439			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
440				sch->sch_nextc = sc->sc_rxttime;
441			continue;
442		}
443		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
444			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
445				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
446				    "giving up and removing syncache entry\n",
447				    s, __func__);
448				free(s, M_TCPLOG);
449			}
450			syncache_drop(sc, sch);
451			TCPSTAT_INC(tcps_sc_stale);
452			continue;
453		}
454		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
455			log(LOG_DEBUG, "%s; %s: Response timeout, "
456			    "retransmitting (%u) SYN|ACK\n",
457			    s, __func__, sc->sc_rxmits);
458			free(s, M_TCPLOG);
459		}
460
461		syncache_respond(sc, sch, 1, NULL);
462		TCPSTAT_INC(tcps_sc_retransmitted);
463		syncache_timeout(sc, sch, 0);
464	}
465	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
466		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
467			syncache_timer, (void *)(sch));
468	CURVNET_RESTORE();
469}
470
471/*
472 * Find an entry in the syncache.
473 * Returns always with locked syncache_head plus a matching entry or NULL.
474 */
475static struct syncache *
476syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
477{
478	struct syncache *sc;
479	struct syncache_head *sch;
480	uint32_t hash;
481
482	/*
483	 * The hash is built on foreign port + local port + foreign address.
484	 * We rely on the fact that struct in_conninfo starts with 16 bits
485	 * of foreign port, then 16 bits of local port then followed by 128
486	 * bits of foreign address.  In case of IPv4 address, the first 3
487	 * 32-bit words of the address always are zeroes.
488	 */
489	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
490	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
491
492	sch = &V_tcp_syncache.hashbase[hash];
493	*schp = sch;
494	SCH_LOCK(sch);
495
496	/* Circle through bucket row to find matching entry. */
497	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
498		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
499		    sizeof(struct in_endpoints)) == 0)
500			break;
501
502	return (sc);	/* Always returns with locked sch. */
503}
504
505/*
506 * This function is called when we get a RST for a
507 * non-existent connection, so that we can see if the
508 * connection is in the syn cache.  If it is, zap it.
509 */
510void
511syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
512{
513	struct syncache *sc;
514	struct syncache_head *sch;
515	char *s = NULL;
516
517	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
518	SCH_LOCK_ASSERT(sch);
519
520	/*
521	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
522	 * See RFC 793 page 65, section SEGMENT ARRIVES.
523	 */
524	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
525		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
526			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
527			    "FIN flag set, segment ignored\n", s, __func__);
528		TCPSTAT_INC(tcps_badrst);
529		goto done;
530	}
531
532	/*
533	 * No corresponding connection was found in syncache.
534	 * If syncookies are enabled and possibly exclusively
535	 * used, or we are under memory pressure, a valid RST
536	 * may not find a syncache entry.  In that case we're
537	 * done and no SYN|ACK retransmissions will happen.
538	 * Otherwise the RST was misdirected or spoofed.
539	 */
540	if (sc == NULL) {
541		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
542			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
543			    "syncache entry (possibly syncookie only), "
544			    "segment ignored\n", s, __func__);
545		TCPSTAT_INC(tcps_badrst);
546		goto done;
547	}
548
549	/*
550	 * If the RST bit is set, check the sequence number to see
551	 * if this is a valid reset segment.
552	 * RFC 793 page 37:
553	 *   In all states except SYN-SENT, all reset (RST) segments
554	 *   are validated by checking their SEQ-fields.  A reset is
555	 *   valid if its sequence number is in the window.
556	 *
557	 *   The sequence number in the reset segment is normally an
558	 *   echo of our outgoing acknowlegement numbers, but some hosts
559	 *   send a reset with the sequence number at the rightmost edge
560	 *   of our receive window, and we have to handle this case.
561	 */
562	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
563	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
564		syncache_drop(sc, sch);
565		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
566			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
567			    "connection attempt aborted by remote endpoint\n",
568			    s, __func__);
569		TCPSTAT_INC(tcps_sc_reset);
570	} else {
571		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
572			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
573			    "IRS %u (+WND %u), segment ignored\n",
574			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
575		TCPSTAT_INC(tcps_badrst);
576	}
577
578done:
579	if (s != NULL)
580		free(s, M_TCPLOG);
581	SCH_UNLOCK(sch);
582}
583
584void
585syncache_badack(struct in_conninfo *inc)
586{
587	struct syncache *sc;
588	struct syncache_head *sch;
589
590	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
591	SCH_LOCK_ASSERT(sch);
592	if (sc != NULL) {
593		syncache_drop(sc, sch);
594		TCPSTAT_INC(tcps_sc_badack);
595	}
596	SCH_UNLOCK(sch);
597}
598
599void
600syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
601{
602	struct syncache *sc;
603	struct syncache_head *sch;
604
605	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
606	SCH_LOCK_ASSERT(sch);
607	if (sc == NULL)
608		goto done;
609
610	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
611	if (ntohl(th->th_seq) != sc->sc_iss)
612		goto done;
613
614	/*
615	 * If we've rertransmitted 3 times and this is our second error,
616	 * we remove the entry.  Otherwise, we allow it to continue on.
617	 * This prevents us from incorrectly nuking an entry during a
618	 * spurious network outage.
619	 *
620	 * See tcp_notify().
621	 */
622	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
623		sc->sc_flags |= SCF_UNREACH;
624		goto done;
625	}
626	syncache_drop(sc, sch);
627	TCPSTAT_INC(tcps_sc_unreach);
628done:
629	SCH_UNLOCK(sch);
630}
631
632/*
633 * Build a new TCP socket structure from a syncache entry.
634 *
635 * On success return the newly created socket with its underlying inp locked.
636 */
637static struct socket *
638syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
639{
640	struct tcp_function_block *blk;
641	struct inpcb *inp = NULL;
642	struct socket *so;
643	struct tcpcb *tp;
644	int error;
645	char *s;
646
647	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
648
649	/*
650	 * Ok, create the full blown connection, and set things up
651	 * as they would have been set up if we had created the
652	 * connection when the SYN arrived.  If we can't create
653	 * the connection, abort it.
654	 */
655	so = sonewconn(lso, 0);
656	if (so == NULL) {
657		/*
658		 * Drop the connection; we will either send a RST or
659		 * have the peer retransmit its SYN again after its
660		 * RTO and try again.
661		 */
662		TCPSTAT_INC(tcps_listendrop);
663		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
664			log(LOG_DEBUG, "%s; %s: Socket create failed "
665			    "due to limits or memory shortage\n",
666			    s, __func__);
667			free(s, M_TCPLOG);
668		}
669		goto abort2;
670	}
671#ifdef MAC
672	mac_socketpeer_set_from_mbuf(m, so);
673#endif
674
675	inp = sotoinpcb(so);
676	inp->inp_inc.inc_fibnum = so->so_fibnum;
677	INP_WLOCK(inp);
678	/*
679	 * Exclusive pcbinfo lock is not required in syncache socket case even
680	 * if two inpcb locks can be acquired simultaneously:
681	 *  - the inpcb in LISTEN state,
682	 *  - the newly created inp.
683	 *
684	 * In this case, an inp cannot be at same time in LISTEN state and
685	 * just created by an accept() call.
686	 */
687	INP_HASH_WLOCK(&V_tcbinfo);
688
689	/* Insert new socket into PCB hash list. */
690	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
691#ifdef INET6
692	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
693		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
694	} else {
695		inp->inp_vflag &= ~INP_IPV6;
696		inp->inp_vflag |= INP_IPV4;
697#endif
698		inp->inp_laddr = sc->sc_inc.inc_laddr;
699#ifdef INET6
700	}
701#endif
702
703	/*
704	 * If there's an mbuf and it has a flowid, then let's initialise the
705	 * inp with that particular flowid.
706	 */
707	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
708		inp->inp_flowid = m->m_pkthdr.flowid;
709		inp->inp_flowtype = M_HASHTYPE_GET(m);
710	}
711
712	/*
713	 * Install in the reservation hash table for now, but don't yet
714	 * install a connection group since the full 4-tuple isn't yet
715	 * configured.
716	 */
717	inp->inp_lport = sc->sc_inc.inc_lport;
718	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
719		/*
720		 * Undo the assignments above if we failed to
721		 * put the PCB on the hash lists.
722		 */
723#ifdef INET6
724		if (sc->sc_inc.inc_flags & INC_ISIPV6)
725			inp->in6p_laddr = in6addr_any;
726		else
727#endif
728			inp->inp_laddr.s_addr = INADDR_ANY;
729		inp->inp_lport = 0;
730		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
731			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
732			    "with error %i\n",
733			    s, __func__, error);
734			free(s, M_TCPLOG);
735		}
736		INP_HASH_WUNLOCK(&V_tcbinfo);
737		goto abort;
738	}
739#ifdef IPSEC
740	/* Copy old policy into new socket's. */
741	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
742		printf("syncache_socket: could not copy policy\n");
743#endif
744#ifdef INET6
745	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
746		struct inpcb *oinp = sotoinpcb(lso);
747		struct in6_addr laddr6;
748		struct sockaddr_in6 sin6;
749		/*
750		 * Inherit socket options from the listening socket.
751		 * Note that in6p_inputopts are not (and should not be)
752		 * copied, since it stores previously received options and is
753		 * used to detect if each new option is different than the
754		 * previous one and hence should be passed to a user.
755		 * If we copied in6p_inputopts, a user would not be able to
756		 * receive options just after calling the accept system call.
757		 */
758		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
759		if (oinp->in6p_outputopts)
760			inp->in6p_outputopts =
761			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
762
763		sin6.sin6_family = AF_INET6;
764		sin6.sin6_len = sizeof(sin6);
765		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
766		sin6.sin6_port = sc->sc_inc.inc_fport;
767		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
768		laddr6 = inp->in6p_laddr;
769		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
770			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
771		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
772		    thread0.td_ucred, m)) != 0) {
773			inp->in6p_laddr = laddr6;
774			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
775				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
776				    "with error %i\n",
777				    s, __func__, error);
778				free(s, M_TCPLOG);
779			}
780			INP_HASH_WUNLOCK(&V_tcbinfo);
781			goto abort;
782		}
783		/* Override flowlabel from in6_pcbconnect. */
784		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
785		inp->inp_flow |= sc->sc_flowlabel;
786	}
787#endif /* INET6 */
788#if defined(INET) && defined(INET6)
789	else
790#endif
791#ifdef INET
792	{
793		struct in_addr laddr;
794		struct sockaddr_in sin;
795
796		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
797
798		if (inp->inp_options == NULL) {
799			inp->inp_options = sc->sc_ipopts;
800			sc->sc_ipopts = NULL;
801		}
802
803		sin.sin_family = AF_INET;
804		sin.sin_len = sizeof(sin);
805		sin.sin_addr = sc->sc_inc.inc_faddr;
806		sin.sin_port = sc->sc_inc.inc_fport;
807		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
808		laddr = inp->inp_laddr;
809		if (inp->inp_laddr.s_addr == INADDR_ANY)
810			inp->inp_laddr = sc->sc_inc.inc_laddr;
811		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
812		    thread0.td_ucred, m)) != 0) {
813			inp->inp_laddr = laddr;
814			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
815				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
816				    "with error %i\n",
817				    s, __func__, error);
818				free(s, M_TCPLOG);
819			}
820			INP_HASH_WUNLOCK(&V_tcbinfo);
821			goto abort;
822		}
823	}
824#endif /* INET */
825	INP_HASH_WUNLOCK(&V_tcbinfo);
826	tp = intotcpcb(inp);
827	tcp_state_change(tp, TCPS_SYN_RECEIVED);
828	tp->iss = sc->sc_iss;
829	tp->irs = sc->sc_irs;
830	tcp_rcvseqinit(tp);
831	tcp_sendseqinit(tp);
832	blk = sototcpcb(lso)->t_fb;
833	if (blk != tp->t_fb) {
834		/*
835		 * Our parents t_fb was not the default,
836		 * we need to release our ref on tp->t_fb and
837		 * pickup one on the new entry.
838		 */
839		struct tcp_function_block *rblk;
840
841		rblk = find_and_ref_tcp_fb(blk);
842		KASSERT(rblk != NULL,
843		    ("cannot find blk %p out of syncache?", blk));
844		if (tp->t_fb->tfb_tcp_fb_fini)
845			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
846		refcount_release(&tp->t_fb->tfb_refcnt);
847		tp->t_fb = rblk;
848		if (tp->t_fb->tfb_tcp_fb_init) {
849			(*tp->t_fb->tfb_tcp_fb_init)(tp);
850		}
851	}
852	tp->snd_wl1 = sc->sc_irs;
853	tp->snd_max = tp->iss + 1;
854	tp->snd_nxt = tp->iss + 1;
855	tp->rcv_up = sc->sc_irs + 1;
856	tp->rcv_wnd = sc->sc_wnd;
857	tp->rcv_adv += tp->rcv_wnd;
858	tp->last_ack_sent = tp->rcv_nxt;
859
860	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
861	if (sc->sc_flags & SCF_NOOPT)
862		tp->t_flags |= TF_NOOPT;
863	else {
864		if (sc->sc_flags & SCF_WINSCALE) {
865			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
866			tp->snd_scale = sc->sc_requested_s_scale;
867			tp->request_r_scale = sc->sc_requested_r_scale;
868		}
869		if (sc->sc_flags & SCF_TIMESTAMP) {
870			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
871			tp->ts_recent = sc->sc_tsreflect;
872			tp->ts_recent_age = tcp_ts_getticks();
873			tp->ts_offset = sc->sc_tsoff;
874		}
875#ifdef TCP_SIGNATURE
876		if (sc->sc_flags & SCF_SIGNATURE)
877			tp->t_flags |= TF_SIGNATURE;
878#endif
879		if (sc->sc_flags & SCF_SACK)
880			tp->t_flags |= TF_SACK_PERMIT;
881	}
882
883	if (sc->sc_flags & SCF_ECN)
884		tp->t_flags |= TF_ECN_PERMIT;
885
886	/*
887	 * Set up MSS and get cached values from tcp_hostcache.
888	 * This might overwrite some of the defaults we just set.
889	 */
890	tcp_mss(tp, sc->sc_peer_mss);
891
892	/*
893	 * If the SYN,ACK was retransmitted, indicate that CWND to be
894	 * limited to one segment in cc_conn_init().
895	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
896	 */
897	if (sc->sc_rxmits > 1)
898		tp->snd_cwnd = 1;
899
900#ifdef TCP_OFFLOAD
901	/*
902	 * Allow a TOE driver to install its hooks.  Note that we hold the
903	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
904	 * new connection before the TOE driver has done its thing.
905	 */
906	if (ADDED_BY_TOE(sc)) {
907		struct toedev *tod = sc->sc_tod;
908
909		tod->tod_offload_socket(tod, sc->sc_todctx, so);
910	}
911#endif
912	/*
913	 * Copy and activate timers.
914	 */
915	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
916	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
917	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
918	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
919	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
920
921	soisconnected(so);
922
923	TCPSTAT_INC(tcps_accepts);
924	return (so);
925
926abort:
927	INP_WUNLOCK(inp);
928abort2:
929	if (so != NULL)
930		soabort(so);
931	return (NULL);
932}
933
934/*
935 * This function gets called when we receive an ACK for a
936 * socket in the LISTEN state.  We look up the connection
937 * in the syncache, and if its there, we pull it out of
938 * the cache and turn it into a full-blown connection in
939 * the SYN-RECEIVED state.
940 *
941 * On syncache_socket() success the newly created socket
942 * has its underlying inp locked.
943 */
944int
945syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
946    struct socket **lsop, struct mbuf *m)
947{
948	struct syncache *sc;
949	struct syncache_head *sch;
950	struct syncache scs;
951	char *s;
952
953	/*
954	 * Global TCP locks are held because we manipulate the PCB lists
955	 * and create a new socket.
956	 */
957	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
958	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
959	    ("%s: can handle only ACK", __func__));
960
961	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
962	SCH_LOCK_ASSERT(sch);
963
964#ifdef INVARIANTS
965	/*
966	 * Test code for syncookies comparing the syncache stored
967	 * values with the reconstructed values from the cookie.
968	 */
969	if (sc != NULL)
970		syncookie_cmp(inc, sch, sc, th, to, *lsop);
971#endif
972
973	if (sc == NULL) {
974		/*
975		 * There is no syncache entry, so see if this ACK is
976		 * a returning syncookie.  To do this, first:
977		 *  A. See if this socket has had a syncache entry dropped in
978		 *     the past.  We don't want to accept a bogus syncookie
979		 *     if we've never received a SYN.
980		 *  B. check that the syncookie is valid.  If it is, then
981		 *     cobble up a fake syncache entry, and return.
982		 */
983		if (!V_tcp_syncookies) {
984			SCH_UNLOCK(sch);
985			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
986				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
987				    "segment rejected (syncookies disabled)\n",
988				    s, __func__);
989			goto failed;
990		}
991		bzero(&scs, sizeof(scs));
992		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
993		SCH_UNLOCK(sch);
994		if (sc == NULL) {
995			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
996				log(LOG_DEBUG, "%s; %s: Segment failed "
997				    "SYNCOOKIE authentication, segment rejected "
998				    "(probably spoofed)\n", s, __func__);
999			goto failed;
1000		}
1001	} else {
1002		/*
1003		 * Pull out the entry to unlock the bucket row.
1004		 *
1005		 * NOTE: We must decrease TCPS_SYN_RECEIVED count here, not
1006		 * tcp_state_change().  The tcpcb is not existent at this
1007		 * moment.  A new one will be allocated via syncache_socket->
1008		 * sonewconn->tcp_usr_attach in TCPS_CLOSED state, then
1009		 * syncache_socket() will change it to TCPS_SYN_RECEIVED.
1010		 */
1011		TCPSTATES_DEC(TCPS_SYN_RECEIVED);
1012		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
1013		sch->sch_length--;
1014#ifdef TCP_OFFLOAD
1015		if (ADDED_BY_TOE(sc)) {
1016			struct toedev *tod = sc->sc_tod;
1017
1018			tod->tod_syncache_removed(tod, sc->sc_todctx);
1019		}
1020#endif
1021		SCH_UNLOCK(sch);
1022	}
1023
1024	/*
1025	 * Segment validation:
1026	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1027	 */
1028	if (th->th_ack != sc->sc_iss + 1) {
1029		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1030			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1031			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1032		goto failed;
1033	}
1034
1035	/*
1036	 * The SEQ must fall in the window starting at the received
1037	 * initial receive sequence number + 1 (the SYN).
1038	 */
1039	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1040	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1041		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1042			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1043			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1044		goto failed;
1045	}
1046
1047	/*
1048	 * If timestamps were not negotiated during SYN/ACK they
1049	 * must not appear on any segment during this session.
1050	 */
1051	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1052		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1053			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1054			    "segment rejected\n", s, __func__);
1055		goto failed;
1056	}
1057
1058	/*
1059	 * If timestamps were negotiated during SYN/ACK they should
1060	 * appear on every segment during this session.
1061	 * XXXAO: This is only informal as there have been unverified
1062	 * reports of non-compliants stacks.
1063	 */
1064	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1065		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1066			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1067			    "no action\n", s, __func__);
1068			free(s, M_TCPLOG);
1069			s = NULL;
1070		}
1071	}
1072
1073	/*
1074	 * If timestamps were negotiated the reflected timestamp
1075	 * must be equal to what we actually sent in the SYN|ACK.
1076	 */
1077	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1078		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1079			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1080			    "segment rejected\n",
1081			    s, __func__, to->to_tsecr, sc->sc_ts);
1082		goto failed;
1083	}
1084
1085	*lsop = syncache_socket(sc, *lsop, m);
1086
1087	if (*lsop == NULL)
1088		TCPSTAT_INC(tcps_sc_aborted);
1089	else
1090		TCPSTAT_INC(tcps_sc_completed);
1091
1092/* how do we find the inp for the new socket? */
1093	if (sc != &scs)
1094		syncache_free(sc);
1095	return (1);
1096failed:
1097	if (sc != NULL && sc != &scs)
1098		syncache_free(sc);
1099	if (s != NULL)
1100		free(s, M_TCPLOG);
1101	*lsop = NULL;
1102	return (0);
1103}
1104
1105#ifdef TCP_RFC7413
1106static void
1107syncache_tfo_expand(struct syncache *sc, struct socket **lsop, struct mbuf *m,
1108    uint64_t response_cookie)
1109{
1110	struct inpcb *inp;
1111	struct tcpcb *tp;
1112	unsigned int *pending_counter;
1113
1114	/*
1115	 * Global TCP locks are held because we manipulate the PCB lists
1116	 * and create a new socket.
1117	 */
1118	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
1119
1120	pending_counter = intotcpcb(sotoinpcb(*lsop))->t_tfo_pending;
1121	*lsop = syncache_socket(sc, *lsop, m);
1122	if (*lsop == NULL) {
1123		TCPSTAT_INC(tcps_sc_aborted);
1124		atomic_subtract_int(pending_counter, 1);
1125	} else {
1126		inp = sotoinpcb(*lsop);
1127		tp = intotcpcb(inp);
1128		tp->t_flags |= TF_FASTOPEN;
1129		tp->t_tfo_cookie = response_cookie;
1130		tp->snd_max = tp->iss;
1131		tp->snd_nxt = tp->iss;
1132		tp->t_tfo_pending = pending_counter;
1133		TCPSTAT_INC(tcps_sc_completed);
1134	}
1135}
1136#endif /* TCP_RFC7413 */
1137
1138/*
1139 * Given a LISTEN socket and an inbound SYN request, add
1140 * this to the syn cache, and send back a segment:
1141 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1142 * to the source.
1143 *
1144 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1145 * Doing so would require that we hold onto the data and deliver it
1146 * to the application.  However, if we are the target of a SYN-flood
1147 * DoS attack, an attacker could send data which would eventually
1148 * consume all available buffer space if it were ACKed.  By not ACKing
1149 * the data, we avoid this DoS scenario.
1150 *
1151 * The exception to the above is when a SYN with a valid TCP Fast Open (TFO)
1152 * cookie is processed, V_tcp_fastopen_enabled set to true, and the
1153 * TCP_FASTOPEN socket option is set.  In this case, a new socket is created
1154 * and returned via lsop, the mbuf is not freed so that tcp_input() can
1155 * queue its data to the socket, and 1 is returned to indicate the
1156 * TFO-socket-creation path was taken.
1157 */
1158int
1159syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1160    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1161    void *todctx)
1162{
1163	struct tcpcb *tp;
1164	struct socket *so;
1165	struct syncache *sc = NULL;
1166	struct syncache_head *sch;
1167	struct mbuf *ipopts = NULL;
1168	u_int ltflags;
1169	int win, sb_hiwat, ip_ttl, ip_tos;
1170	char *s;
1171	int rv = 0;
1172#ifdef INET6
1173	int autoflowlabel = 0;
1174#endif
1175#ifdef MAC
1176	struct label *maclabel;
1177#endif
1178	struct syncache scs;
1179	struct ucred *cred;
1180#ifdef TCP_RFC7413
1181	uint64_t tfo_response_cookie;
1182	int tfo_cookie_valid = 0;
1183	int tfo_response_cookie_valid = 0;
1184#endif
1185
1186	INP_WLOCK_ASSERT(inp);			/* listen socket */
1187	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1188	    ("%s: unexpected tcp flags", __func__));
1189
1190	/*
1191	 * Combine all so/tp operations very early to drop the INP lock as
1192	 * soon as possible.
1193	 */
1194	so = *lsop;
1195	tp = sototcpcb(so);
1196	cred = crhold(so->so_cred);
1197
1198#ifdef INET6
1199	if ((inc->inc_flags & INC_ISIPV6) &&
1200	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1201		autoflowlabel = 1;
1202#endif
1203	ip_ttl = inp->inp_ip_ttl;
1204	ip_tos = inp->inp_ip_tos;
1205	win = sbspace(&so->so_rcv);
1206	sb_hiwat = so->so_rcv.sb_hiwat;
1207	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1208
1209#ifdef TCP_RFC7413
1210	if (V_tcp_fastopen_enabled && (tp->t_flags & TF_FASTOPEN) &&
1211	    (tp->t_tfo_pending != NULL) && (to->to_flags & TOF_FASTOPEN)) {
1212		/*
1213		 * Limit the number of pending TFO connections to
1214		 * approximately half of the queue limit.  This prevents TFO
1215		 * SYN floods from starving the service by filling the
1216		 * listen queue with bogus TFO connections.
1217		 */
1218		if (atomic_fetchadd_int(tp->t_tfo_pending, 1) <=
1219		    (so->so_qlimit / 2)) {
1220			int result;
1221
1222			result = tcp_fastopen_check_cookie(inc,
1223			    to->to_tfo_cookie, to->to_tfo_len,
1224			    &tfo_response_cookie);
1225			tfo_cookie_valid = (result > 0);
1226			tfo_response_cookie_valid = (result >= 0);
1227		} else
1228			atomic_subtract_int(tp->t_tfo_pending, 1);
1229	}
1230#endif
1231
1232	/* By the time we drop the lock these should no longer be used. */
1233	so = NULL;
1234	tp = NULL;
1235
1236#ifdef MAC
1237	if (mac_syncache_init(&maclabel) != 0) {
1238		INP_WUNLOCK(inp);
1239		goto done;
1240	} else
1241		mac_syncache_create(maclabel, inp);
1242#endif
1243#ifdef TCP_RFC7413
1244	if (!tfo_cookie_valid)
1245#endif
1246		INP_WUNLOCK(inp);
1247
1248	/*
1249	 * Remember the IP options, if any.
1250	 */
1251#ifdef INET6
1252	if (!(inc->inc_flags & INC_ISIPV6))
1253#endif
1254#ifdef INET
1255		ipopts = (m) ? ip_srcroute(m) : NULL;
1256#else
1257		ipopts = NULL;
1258#endif
1259
1260	/*
1261	 * See if we already have an entry for this connection.
1262	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1263	 *
1264	 * XXX: should the syncache be re-initialized with the contents
1265	 * of the new SYN here (which may have different options?)
1266	 *
1267	 * XXX: We do not check the sequence number to see if this is a
1268	 * real retransmit or a new connection attempt.  The question is
1269	 * how to handle such a case; either ignore it as spoofed, or
1270	 * drop the current entry and create a new one?
1271	 */
1272	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1273	SCH_LOCK_ASSERT(sch);
1274	if (sc != NULL) {
1275#ifdef TCP_RFC7413
1276		if (tfo_cookie_valid)
1277			INP_WUNLOCK(inp);
1278#endif
1279		TCPSTAT_INC(tcps_sc_dupsyn);
1280		if (ipopts) {
1281			/*
1282			 * If we were remembering a previous source route,
1283			 * forget it and use the new one we've been given.
1284			 */
1285			if (sc->sc_ipopts)
1286				(void) m_free(sc->sc_ipopts);
1287			sc->sc_ipopts = ipopts;
1288		}
1289		/*
1290		 * Update timestamp if present.
1291		 */
1292		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1293			sc->sc_tsreflect = to->to_tsval;
1294		else
1295			sc->sc_flags &= ~SCF_TIMESTAMP;
1296#ifdef MAC
1297		/*
1298		 * Since we have already unconditionally allocated label
1299		 * storage, free it up.  The syncache entry will already
1300		 * have an initialized label we can use.
1301		 */
1302		mac_syncache_destroy(&maclabel);
1303#endif
1304		/* Retransmit SYN|ACK and reset retransmit count. */
1305		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1306			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1307			    "resetting timer and retransmitting SYN|ACK\n",
1308			    s, __func__);
1309			free(s, M_TCPLOG);
1310		}
1311		if (syncache_respond(sc, sch, 1, m) == 0) {
1312			sc->sc_rxmits = 0;
1313			syncache_timeout(sc, sch, 1);
1314			TCPSTAT_INC(tcps_sndacks);
1315			TCPSTAT_INC(tcps_sndtotal);
1316		}
1317		SCH_UNLOCK(sch);
1318		goto done;
1319	}
1320
1321#ifdef TCP_RFC7413
1322	if (tfo_cookie_valid) {
1323		bzero(&scs, sizeof(scs));
1324		sc = &scs;
1325		goto skip_alloc;
1326	}
1327#endif
1328
1329	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1330	if (sc == NULL) {
1331		/*
1332		 * The zone allocator couldn't provide more entries.
1333		 * Treat this as if the cache was full; drop the oldest
1334		 * entry and insert the new one.
1335		 */
1336		TCPSTAT_INC(tcps_sc_zonefail);
1337		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1338			syncache_drop(sc, sch);
1339		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1340		if (sc == NULL) {
1341			if (V_tcp_syncookies) {
1342				bzero(&scs, sizeof(scs));
1343				sc = &scs;
1344			} else {
1345				SCH_UNLOCK(sch);
1346				if (ipopts)
1347					(void) m_free(ipopts);
1348				goto done;
1349			}
1350		}
1351	}
1352
1353#ifdef TCP_RFC7413
1354skip_alloc:
1355	if (!tfo_cookie_valid && tfo_response_cookie_valid)
1356		sc->sc_tfo_cookie = &tfo_response_cookie;
1357#endif
1358
1359	/*
1360	 * Fill in the syncache values.
1361	 */
1362#ifdef MAC
1363	sc->sc_label = maclabel;
1364#endif
1365	sc->sc_cred = cred;
1366	cred = NULL;
1367	sc->sc_ipopts = ipopts;
1368	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1369#ifdef INET6
1370	if (!(inc->inc_flags & INC_ISIPV6))
1371#endif
1372	{
1373		sc->sc_ip_tos = ip_tos;
1374		sc->sc_ip_ttl = ip_ttl;
1375	}
1376#ifdef TCP_OFFLOAD
1377	sc->sc_tod = tod;
1378	sc->sc_todctx = todctx;
1379#endif
1380	sc->sc_irs = th->th_seq;
1381	sc->sc_iss = arc4random();
1382	sc->sc_flags = 0;
1383	sc->sc_flowlabel = 0;
1384
1385	/*
1386	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1387	 * win was derived from socket earlier in the function.
1388	 */
1389	win = imax(win, 0);
1390	win = imin(win, TCP_MAXWIN);
1391	sc->sc_wnd = win;
1392
1393	if (V_tcp_do_rfc1323) {
1394		/*
1395		 * A timestamp received in a SYN makes
1396		 * it ok to send timestamp requests and replies.
1397		 */
1398		if (to->to_flags & TOF_TS) {
1399			sc->sc_tsreflect = to->to_tsval;
1400			sc->sc_ts = tcp_ts_getticks();
1401			sc->sc_flags |= SCF_TIMESTAMP;
1402		}
1403		if (to->to_flags & TOF_SCALE) {
1404			int wscale = 0;
1405
1406			/*
1407			 * Pick the smallest possible scaling factor that
1408			 * will still allow us to scale up to sb_max, aka
1409			 * kern.ipc.maxsockbuf.
1410			 *
1411			 * We do this because there are broken firewalls that
1412			 * will corrupt the window scale option, leading to
1413			 * the other endpoint believing that our advertised
1414			 * window is unscaled.  At scale factors larger than
1415			 * 5 the unscaled window will drop below 1500 bytes,
1416			 * leading to serious problems when traversing these
1417			 * broken firewalls.
1418			 *
1419			 * With the default maxsockbuf of 256K, a scale factor
1420			 * of 3 will be chosen by this algorithm.  Those who
1421			 * choose a larger maxsockbuf should watch out
1422			 * for the compatiblity problems mentioned above.
1423			 *
1424			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1425			 * or <SYN,ACK>) segment itself is never scaled.
1426			 */
1427			while (wscale < TCP_MAX_WINSHIFT &&
1428			    (TCP_MAXWIN << wscale) < sb_max)
1429				wscale++;
1430			sc->sc_requested_r_scale = wscale;
1431			sc->sc_requested_s_scale = to->to_wscale;
1432			sc->sc_flags |= SCF_WINSCALE;
1433		}
1434	}
1435#ifdef TCP_SIGNATURE
1436	/*
1437	 * If listening socket requested TCP digests, OR received SYN
1438	 * contains the option, flag this in the syncache so that
1439	 * syncache_respond() will do the right thing with the SYN+ACK.
1440	 */
1441	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1442		sc->sc_flags |= SCF_SIGNATURE;
1443#endif
1444	if (to->to_flags & TOF_SACKPERM)
1445		sc->sc_flags |= SCF_SACK;
1446	if (to->to_flags & TOF_MSS)
1447		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1448	if (ltflags & TF_NOOPT)
1449		sc->sc_flags |= SCF_NOOPT;
1450	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1451		sc->sc_flags |= SCF_ECN;
1452
1453	if (V_tcp_syncookies)
1454		sc->sc_iss = syncookie_generate(sch, sc);
1455#ifdef INET6
1456	if (autoflowlabel) {
1457		if (V_tcp_syncookies)
1458			sc->sc_flowlabel = sc->sc_iss;
1459		else
1460			sc->sc_flowlabel = ip6_randomflowlabel();
1461		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1462	}
1463#endif
1464	SCH_UNLOCK(sch);
1465
1466#ifdef TCP_RFC7413
1467	if (tfo_cookie_valid) {
1468		syncache_tfo_expand(sc, lsop, m, tfo_response_cookie);
1469		/* INP_WUNLOCK(inp) will be performed by the called */
1470		rv = 1;
1471		goto tfo_done;
1472	}
1473#endif
1474
1475	/*
1476	 * Do a standard 3-way handshake.
1477	 */
1478	if (syncache_respond(sc, sch, 0, m) == 0) {
1479		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1480			syncache_free(sc);
1481		else if (sc != &scs)
1482			syncache_insert(sc, sch);   /* locks and unlocks sch */
1483		TCPSTAT_INC(tcps_sndacks);
1484		TCPSTAT_INC(tcps_sndtotal);
1485	} else {
1486		if (sc != &scs)
1487			syncache_free(sc);
1488		TCPSTAT_INC(tcps_sc_dropped);
1489	}
1490
1491done:
1492	if (m) {
1493		*lsop = NULL;
1494		m_freem(m);
1495	}
1496#ifdef TCP_RFC7413
1497tfo_done:
1498#endif
1499	if (cred != NULL)
1500		crfree(cred);
1501#ifdef MAC
1502	if (sc == &scs)
1503		mac_syncache_destroy(&maclabel);
1504#endif
1505	return (rv);
1506}
1507
1508static int
1509syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked,
1510    const struct mbuf *m0)
1511{
1512	struct ip *ip = NULL;
1513	struct mbuf *m;
1514	struct tcphdr *th = NULL;
1515	int optlen, error = 0;	/* Make compiler happy */
1516	u_int16_t hlen, tlen, mssopt;
1517	struct tcpopt to;
1518#ifdef INET6
1519	struct ip6_hdr *ip6 = NULL;
1520#endif
1521#ifdef TCP_SIGNATURE
1522	struct secasvar *sav;
1523#endif
1524
1525	hlen =
1526#ifdef INET6
1527	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1528#endif
1529		sizeof(struct ip);
1530	tlen = hlen + sizeof(struct tcphdr);
1531
1532	/* Determine MSS we advertize to other end of connection. */
1533	mssopt = tcp_mssopt(&sc->sc_inc);
1534	if (sc->sc_peer_mss)
1535		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1536
1537	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1538	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1539	    ("syncache: mbuf too small"));
1540
1541	/* Create the IP+TCP header from scratch. */
1542	m = m_gethdr(M_NOWAIT, MT_DATA);
1543	if (m == NULL)
1544		return (ENOBUFS);
1545#ifdef MAC
1546	mac_syncache_create_mbuf(sc->sc_label, m);
1547#endif
1548	m->m_data += max_linkhdr;
1549	m->m_len = tlen;
1550	m->m_pkthdr.len = tlen;
1551	m->m_pkthdr.rcvif = NULL;
1552
1553#ifdef INET6
1554	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1555		ip6 = mtod(m, struct ip6_hdr *);
1556		ip6->ip6_vfc = IPV6_VERSION;
1557		ip6->ip6_nxt = IPPROTO_TCP;
1558		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1559		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1560		ip6->ip6_plen = htons(tlen - hlen);
1561		/* ip6_hlim is set after checksum */
1562		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1563		ip6->ip6_flow |= sc->sc_flowlabel;
1564
1565		th = (struct tcphdr *)(ip6 + 1);
1566	}
1567#endif
1568#if defined(INET6) && defined(INET)
1569	else
1570#endif
1571#ifdef INET
1572	{
1573		ip = mtod(m, struct ip *);
1574		ip->ip_v = IPVERSION;
1575		ip->ip_hl = sizeof(struct ip) >> 2;
1576		ip->ip_len = htons(tlen);
1577		ip->ip_id = 0;
1578		ip->ip_off = 0;
1579		ip->ip_sum = 0;
1580		ip->ip_p = IPPROTO_TCP;
1581		ip->ip_src = sc->sc_inc.inc_laddr;
1582		ip->ip_dst = sc->sc_inc.inc_faddr;
1583		ip->ip_ttl = sc->sc_ip_ttl;
1584		ip->ip_tos = sc->sc_ip_tos;
1585
1586		/*
1587		 * See if we should do MTU discovery.  Route lookups are
1588		 * expensive, so we will only unset the DF bit if:
1589		 *
1590		 *	1) path_mtu_discovery is disabled
1591		 *	2) the SCF_UNREACH flag has been set
1592		 */
1593		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1594		       ip->ip_off |= htons(IP_DF);
1595
1596		th = (struct tcphdr *)(ip + 1);
1597	}
1598#endif /* INET */
1599	th->th_sport = sc->sc_inc.inc_lport;
1600	th->th_dport = sc->sc_inc.inc_fport;
1601
1602	th->th_seq = htonl(sc->sc_iss);
1603	th->th_ack = htonl(sc->sc_irs + 1);
1604	th->th_off = sizeof(struct tcphdr) >> 2;
1605	th->th_x2 = 0;
1606	th->th_flags = TH_SYN|TH_ACK;
1607	th->th_win = htons(sc->sc_wnd);
1608	th->th_urp = 0;
1609
1610	if (sc->sc_flags & SCF_ECN) {
1611		th->th_flags |= TH_ECE;
1612		TCPSTAT_INC(tcps_ecn_shs);
1613	}
1614
1615	/* Tack on the TCP options. */
1616	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1617		to.to_flags = 0;
1618
1619		to.to_mss = mssopt;
1620		to.to_flags = TOF_MSS;
1621		if (sc->sc_flags & SCF_WINSCALE) {
1622			to.to_wscale = sc->sc_requested_r_scale;
1623			to.to_flags |= TOF_SCALE;
1624		}
1625		if (sc->sc_flags & SCF_TIMESTAMP) {
1626			/* Virgin timestamp or TCP cookie enhanced one. */
1627			to.to_tsval = sc->sc_ts;
1628			to.to_tsecr = sc->sc_tsreflect;
1629			to.to_flags |= TOF_TS;
1630		}
1631		if (sc->sc_flags & SCF_SACK)
1632			to.to_flags |= TOF_SACKPERM;
1633#ifdef TCP_SIGNATURE
1634		sav = NULL;
1635		if (sc->sc_flags & SCF_SIGNATURE) {
1636			sav = tcp_get_sav(m, IPSEC_DIR_OUTBOUND);
1637			if (sav != NULL)
1638				to.to_flags |= TOF_SIGNATURE;
1639			else {
1640
1641				/*
1642				 * We've got SCF_SIGNATURE flag
1643				 * inherited from listening socket,
1644				 * but no SADB key for given source
1645				 * address. Assume signature is not
1646				 * required and remove signature flag
1647				 * instead of silently dropping
1648				 * connection.
1649				 */
1650				if (locked == 0)
1651					SCH_LOCK(sch);
1652				sc->sc_flags &= ~SCF_SIGNATURE;
1653				if (locked == 0)
1654					SCH_UNLOCK(sch);
1655			}
1656		}
1657#endif
1658
1659#ifdef TCP_RFC7413
1660		if (sc->sc_tfo_cookie) {
1661			to.to_flags |= TOF_FASTOPEN;
1662			to.to_tfo_len = TCP_FASTOPEN_COOKIE_LEN;
1663			to.to_tfo_cookie = sc->sc_tfo_cookie;
1664			/* don't send cookie again when retransmitting response */
1665			sc->sc_tfo_cookie = NULL;
1666		}
1667#endif
1668		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1669
1670		/* Adjust headers by option size. */
1671		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1672		m->m_len += optlen;
1673		m->m_pkthdr.len += optlen;
1674
1675#ifdef TCP_SIGNATURE
1676		if (sc->sc_flags & SCF_SIGNATURE)
1677			tcp_signature_do_compute(m, 0, optlen,
1678			    to.to_signature, sav);
1679#endif
1680#ifdef INET6
1681		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1682			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1683		else
1684#endif
1685			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1686	} else
1687		optlen = 0;
1688
1689	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1690	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1691	if (m0 != NULL && M_HASHTYPE_GET(m0) != M_HASHTYPE_NONE) {
1692		m->m_pkthdr.flowid = m0->m_pkthdr.flowid;
1693		M_HASHTYPE_SET(m, M_HASHTYPE_GET(m0));
1694	}
1695#ifdef INET6
1696	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1697		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1698		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1699		    IPPROTO_TCP, 0);
1700		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1701#ifdef TCP_OFFLOAD
1702		if (ADDED_BY_TOE(sc)) {
1703			struct toedev *tod = sc->sc_tod;
1704
1705			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1706
1707			return (error);
1708		}
1709#endif
1710		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1711	}
1712#endif
1713#if defined(INET6) && defined(INET)
1714	else
1715#endif
1716#ifdef INET
1717	{
1718		m->m_pkthdr.csum_flags = CSUM_TCP;
1719		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1720		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1721#ifdef TCP_OFFLOAD
1722		if (ADDED_BY_TOE(sc)) {
1723			struct toedev *tod = sc->sc_tod;
1724
1725			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1726
1727			return (error);
1728		}
1729#endif
1730		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1731	}
1732#endif
1733	return (error);
1734}
1735
1736/*
1737 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1738 * that exceed the capacity of the syncache by avoiding the storage of any
1739 * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1740 * attacks where the attacker does not have access to our responses.
1741 *
1742 * Syncookies encode and include all necessary information about the
1743 * connection setup within the SYN|ACK that we send back.  That way we
1744 * can avoid keeping any local state until the ACK to our SYN|ACK returns
1745 * (if ever).  Normally the syncache and syncookies are running in parallel
1746 * with the latter taking over when the former is exhausted.  When matching
1747 * syncache entry is found the syncookie is ignored.
1748 *
1749 * The only reliable information persisting the 3WHS is our inital sequence
1750 * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1751 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1752 * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1753 * returns and signifies a legitimate connection if it matches the ACK.
1754 *
1755 * The available space of 32 bits to store the hash and to encode the SYN
1756 * option information is very tight and we should have at least 24 bits for
1757 * the MAC to keep the number of guesses by blind spoofing reasonably high.
1758 *
1759 * SYN option information we have to encode to fully restore a connection:
1760 * MSS: is imporant to chose an optimal segment size to avoid IP level
1761 *   fragmentation along the path.  The common MSS values can be encoded
1762 *   in a 3-bit table.  Uncommon values are captured by the next lower value
1763 *   in the table leading to a slight increase in packetization overhead.
1764 * WSCALE: is necessary to allow large windows to be used for high delay-
1765 *   bandwidth product links.  Not scaling the window when it was initially
1766 *   negotiated is bad for performance as lack of scaling further decreases
1767 *   the apparent available send window.  We only need to encode the WSCALE
1768 *   we received from the remote end.  Our end can be recalculated at any
1769 *   time.  The common WSCALE values can be encoded in a 3-bit table.
1770 *   Uncommon values are captured by the next lower value in the table
1771 *   making us under-estimate the available window size halving our
1772 *   theoretically possible maximum throughput for that connection.
1773 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1774 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1775 *   that are included in all segments on a connection.  We enable them when
1776 *   the ACK has them.
1777 *
1778 * Security of syncookies and attack vectors:
1779 *
1780 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1781 * together with the gloabl secret to make it unique per connection attempt.
1782 * Thus any change of any of those parameters results in a different MAC output
1783 * in an unpredictable way unless a collision is encountered.  24 bits of the
1784 * MAC are embedded into the ISS.
1785 *
1786 * To prevent replay attacks two rotating global secrets are updated with a
1787 * new random value every 15 seconds.  The life-time of a syncookie is thus
1788 * 15-30 seconds.
1789 *
1790 * Vector 1: Attacking the secret.  This requires finding a weakness in the
1791 * MAC itself or the way it is used here.  The attacker can do a chosen plain
1792 * text attack by varying and testing the all parameters under his control.
1793 * The strength depends on the size and randomness of the secret, and the
1794 * cryptographic security of the MAC function.  Due to the constant updating
1795 * of the secret the attacker has at most 29.999 seconds to find the secret
1796 * and launch spoofed connections.  After that he has to start all over again.
1797 *
1798 * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1799 * size an average of 4,823 attempts are required for a 50% chance of success
1800 * to spoof a single syncookie (birthday collision paradox).  However the
1801 * attacker is blind and doesn't know if one of his attempts succeeded unless
1802 * he has a side channel to interfere success from.  A single connection setup
1803 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1804 * This many attempts are required for each one blind spoofed connection.  For
1805 * every additional spoofed connection he has to launch another N attempts.
1806 * Thus for a sustained rate 100 spoofed connections per second approximately
1807 * 1,800,000 packets per second would have to be sent.
1808 *
1809 * NB: The MAC function should be fast so that it doesn't become a CPU
1810 * exhaustion attack vector itself.
1811 *
1812 * References:
1813 *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1814 *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1815 *   http://cr.yp.to/syncookies.html    (overview)
1816 *   http://cr.yp.to/syncookies/archive (details)
1817 *
1818 *
1819 * Schematic construction of a syncookie enabled Initial Sequence Number:
1820 *  0        1         2         3
1821 *  12345678901234567890123456789012
1822 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1823 *
1824 *  x 24 MAC (truncated)
1825 *  W  3 Send Window Scale index
1826 *  M  3 MSS index
1827 *  S  1 SACK permitted
1828 *  P  1 Odd/even secret
1829 */
1830
1831/*
1832 * Distribution and probability of certain MSS values.  Those in between are
1833 * rounded down to the next lower one.
1834 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1835 *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1836 */
1837static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1838
1839/*
1840 * Distribution and probability of certain WSCALE values.  We have to map the
1841 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1842 * bits based on prevalence of certain values.  Where we don't have an exact
1843 * match for are rounded down to the next lower one letting us under-estimate
1844 * the true available window.  At the moment this would happen only for the
1845 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1846 * and window size).  The absence of the WSCALE option (no scaling in either
1847 * direction) is encoded with index zero.
1848 * [WSCALE values histograms, Allman, 2012]
1849 *                            X 10 10 35  5  6 14 10%   by host
1850 *                            X 11  4  5  5 18 49  3%   by connections
1851 */
1852static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1853
1854/*
1855 * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1856 * and good cryptographic properties.
1857 */
1858static uint32_t
1859syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1860    uint8_t *secbits, uintptr_t secmod)
1861{
1862	SIPHASH_CTX ctx;
1863	uint32_t siphash[2];
1864
1865	SipHash24_Init(&ctx);
1866	SipHash_SetKey(&ctx, secbits);
1867	switch (inc->inc_flags & INC_ISIPV6) {
1868#ifdef INET
1869	case 0:
1870		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1871		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1872		break;
1873#endif
1874#ifdef INET6
1875	case INC_ISIPV6:
1876		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1877		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1878		break;
1879#endif
1880	}
1881	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1882	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1883	SipHash_Update(&ctx, &irs, sizeof(irs));
1884	SipHash_Update(&ctx, &flags, sizeof(flags));
1885	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1886	SipHash_Final((u_int8_t *)&siphash, &ctx);
1887
1888	return (siphash[0] ^ siphash[1]);
1889}
1890
1891static tcp_seq
1892syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1893{
1894	u_int i, mss, secbit, wscale;
1895	uint32_t iss, hash;
1896	uint8_t *secbits;
1897	union syncookie cookie;
1898
1899	SCH_LOCK_ASSERT(sch);
1900
1901	cookie.cookie = 0;
1902
1903	/* Map our computed MSS into the 3-bit index. */
1904	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1905	for (i = nitems(tcp_sc_msstab) - 1; tcp_sc_msstab[i] > mss && i > 0;
1906	     i--)
1907		;
1908	cookie.flags.mss_idx = i;
1909
1910	/*
1911	 * Map the send window scale into the 3-bit index but only if
1912	 * the wscale option was received.
1913	 */
1914	if (sc->sc_flags & SCF_WINSCALE) {
1915		wscale = sc->sc_requested_s_scale;
1916		for (i = nitems(tcp_sc_wstab) - 1;
1917		    tcp_sc_wstab[i] > wscale && i > 0;
1918		     i--)
1919			;
1920		cookie.flags.wscale_idx = i;
1921	}
1922
1923	/* Can we do SACK? */
1924	if (sc->sc_flags & SCF_SACK)
1925		cookie.flags.sack_ok = 1;
1926
1927	/* Which of the two secrets to use. */
1928	secbit = sch->sch_sc->secret.oddeven & 0x1;
1929	cookie.flags.odd_even = secbit;
1930
1931	secbits = sch->sch_sc->secret.key[secbit];
1932	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1933	    (uintptr_t)sch);
1934
1935	/*
1936	 * Put the flags into the hash and XOR them to get better ISS number
1937	 * variance.  This doesn't enhance the cryptographic strength and is
1938	 * done to prevent the 8 cookie bits from showing up directly on the
1939	 * wire.
1940	 */
1941	iss = hash & ~0xff;
1942	iss |= cookie.cookie ^ (hash >> 24);
1943
1944	/* Randomize the timestamp. */
1945	if (sc->sc_flags & SCF_TIMESTAMP) {
1946		sc->sc_ts = arc4random();
1947		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1948	}
1949
1950	TCPSTAT_INC(tcps_sc_sendcookie);
1951	return (iss);
1952}
1953
1954static struct syncache *
1955syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1956    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1957    struct socket *lso)
1958{
1959	uint32_t hash;
1960	uint8_t *secbits;
1961	tcp_seq ack, seq;
1962	int wnd, wscale = 0;
1963	union syncookie cookie;
1964
1965	SCH_LOCK_ASSERT(sch);
1966
1967	/*
1968	 * Pull information out of SYN-ACK/ACK and revert sequence number
1969	 * advances.
1970	 */
1971	ack = th->th_ack - 1;
1972	seq = th->th_seq - 1;
1973
1974	/*
1975	 * Unpack the flags containing enough information to restore the
1976	 * connection.
1977	 */
1978	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
1979
1980	/* Which of the two secrets to use. */
1981	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
1982
1983	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
1984
1985	/* The recomputed hash matches the ACK if this was a genuine cookie. */
1986	if ((ack & ~0xff) != (hash & ~0xff))
1987		return (NULL);
1988
1989	/* Fill in the syncache values. */
1990	sc->sc_flags = 0;
1991	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1992	sc->sc_ipopts = NULL;
1993
1994	sc->sc_irs = seq;
1995	sc->sc_iss = ack;
1996
1997	switch (inc->inc_flags & INC_ISIPV6) {
1998#ifdef INET
1999	case 0:
2000		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
2001		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
2002		break;
2003#endif
2004#ifdef INET6
2005	case INC_ISIPV6:
2006		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
2007			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
2008		break;
2009#endif
2010	}
2011
2012	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
2013
2014	/* We can simply recompute receive window scale we sent earlier. */
2015	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
2016		wscale++;
2017
2018	/* Only use wscale if it was enabled in the orignal SYN. */
2019	if (cookie.flags.wscale_idx > 0) {
2020		sc->sc_requested_r_scale = wscale;
2021		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
2022		sc->sc_flags |= SCF_WINSCALE;
2023	}
2024
2025	wnd = sbspace(&lso->so_rcv);
2026	wnd = imax(wnd, 0);
2027	wnd = imin(wnd, TCP_MAXWIN);
2028	sc->sc_wnd = wnd;
2029
2030	if (cookie.flags.sack_ok)
2031		sc->sc_flags |= SCF_SACK;
2032
2033	if (to->to_flags & TOF_TS) {
2034		sc->sc_flags |= SCF_TIMESTAMP;
2035		sc->sc_tsreflect = to->to_tsval;
2036		sc->sc_ts = to->to_tsecr;
2037		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
2038	}
2039
2040	if (to->to_flags & TOF_SIGNATURE)
2041		sc->sc_flags |= SCF_SIGNATURE;
2042
2043	sc->sc_rxmits = 0;
2044
2045	TCPSTAT_INC(tcps_sc_recvcookie);
2046	return (sc);
2047}
2048
2049#ifdef INVARIANTS
2050static int
2051syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
2052    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
2053    struct socket *lso)
2054{
2055	struct syncache scs, *scx;
2056	char *s;
2057
2058	bzero(&scs, sizeof(scs));
2059	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
2060
2061	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
2062		return (0);
2063
2064	if (scx != NULL) {
2065		if (sc->sc_peer_mss != scx->sc_peer_mss)
2066			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
2067			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
2068
2069		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
2070			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
2071			    s, __func__, sc->sc_requested_r_scale,
2072			    scx->sc_requested_r_scale);
2073
2074		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
2075			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
2076			    s, __func__, sc->sc_requested_s_scale,
2077			    scx->sc_requested_s_scale);
2078
2079		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
2080			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
2081	}
2082
2083	if (s != NULL)
2084		free(s, M_TCPLOG);
2085	return (0);
2086}
2087#endif /* INVARIANTS */
2088
2089static void
2090syncookie_reseed(void *arg)
2091{
2092	struct tcp_syncache *sc = arg;
2093	uint8_t *secbits;
2094	int secbit;
2095
2096	/*
2097	 * Reseeding the secret doesn't have to be protected by a lock.
2098	 * It only must be ensured that the new random values are visible
2099	 * to all CPUs in a SMP environment.  The atomic with release
2100	 * semantics ensures that.
2101	 */
2102	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
2103	secbits = sc->secret.key[secbit];
2104	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
2105	atomic_add_rel_int(&sc->secret.oddeven, 1);
2106
2107	/* Reschedule ourself. */
2108	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
2109}
2110
2111/*
2112 * Exports the syncache entries to userland so that netstat can display
2113 * them alongside the other sockets.  This function is intended to be
2114 * called only from tcp_pcblist.
2115 *
2116 * Due to concurrency on an active system, the number of pcbs exported
2117 * may have no relation to max_pcbs.  max_pcbs merely indicates the
2118 * amount of space the caller allocated for this function to use.
2119 */
2120int
2121syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2122{
2123	struct xtcpcb xt;
2124	struct syncache *sc;
2125	struct syncache_head *sch;
2126	int count, error, i;
2127
2128	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2129		sch = &V_tcp_syncache.hashbase[i];
2130		SCH_LOCK(sch);
2131		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2132			if (count >= max_pcbs) {
2133				SCH_UNLOCK(sch);
2134				goto exit;
2135			}
2136			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2137				continue;
2138			bzero(&xt, sizeof(xt));
2139			xt.xt_len = sizeof(xt);
2140			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2141				xt.xt_inp.inp_vflag = INP_IPV6;
2142			else
2143				xt.xt_inp.inp_vflag = INP_IPV4;
2144			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2145			xt.xt_tp.t_inpcb = &xt.xt_inp;
2146			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2147			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2148			xt.xt_socket.xso_len = sizeof (struct xsocket);
2149			xt.xt_socket.so_type = SOCK_STREAM;
2150			xt.xt_socket.so_state = SS_ISCONNECTING;
2151			error = SYSCTL_OUT(req, &xt, sizeof xt);
2152			if (error) {
2153				SCH_UNLOCK(sch);
2154				goto exit;
2155			}
2156			count++;
2157		}
2158		SCH_UNLOCK(sch);
2159	}
2160exit:
2161	*pcbs_exported = count;
2162	return error;
2163}
2164