tcp_syncache.c revision 292309
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program. [2001 McAfee, Inc.]
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 292309 2015-12-16 00:56:45Z rrs $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_pcbgroup.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/hash.h>
44#include <sys/refcount.h>
45#include <sys/kernel.h>
46#include <sys/sysctl.h>
47#include <sys/limits.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/malloc.h>
51#include <sys/mbuf.h>
52#include <sys/proc.h>		/* for proc0 declaration */
53#include <sys/random.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/syslog.h>
57#include <sys/ucred.h>
58
59#include <sys/md5.h>
60#include <crypto/siphash/siphash.h>
61
62#include <vm/uma.h>
63
64#include <net/if.h>
65#include <net/if_var.h>
66#include <net/route.h>
67#include <net/vnet.h>
68
69#include <netinet/in.h>
70#include <netinet/in_systm.h>
71#include <netinet/ip.h>
72#include <netinet/in_var.h>
73#include <netinet/in_pcb.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_options.h>
76#ifdef INET6
77#include <netinet/ip6.h>
78#include <netinet/icmp6.h>
79#include <netinet6/nd6.h>
80#include <netinet6/ip6_var.h>
81#include <netinet6/in6_pcb.h>
82#endif
83#include <netinet/tcp.h>
84#include <netinet/tcp_fsm.h>
85#include <netinet/tcp_seq.h>
86#include <netinet/tcp_timer.h>
87#include <netinet/tcp_var.h>
88#include <netinet/tcp_syncache.h>
89#ifdef INET6
90#include <netinet6/tcp6_var.h>
91#endif
92#ifdef TCP_OFFLOAD
93#include <netinet/toecore.h>
94#endif
95
96#ifdef IPSEC
97#include <netipsec/ipsec.h>
98#ifdef INET6
99#include <netipsec/ipsec6.h>
100#endif
101#include <netipsec/key.h>
102#endif /*IPSEC*/
103
104#include <machine/in_cksum.h>
105
106#include <security/mac/mac_framework.h>
107
108static VNET_DEFINE(int, tcp_syncookies) = 1;
109#define	V_tcp_syncookies		VNET(tcp_syncookies)
110SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_VNET | CTLFLAG_RW,
111    &VNET_NAME(tcp_syncookies), 0,
112    "Use TCP SYN cookies if the syncache overflows");
113
114static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
115#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
116SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_VNET | CTLFLAG_RW,
117    &VNET_NAME(tcp_syncookiesonly), 0,
118    "Use only TCP SYN cookies");
119
120#ifdef TCP_OFFLOAD
121#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
122#endif
123
124static void	 syncache_drop(struct syncache *, struct syncache_head *);
125static void	 syncache_free(struct syncache *);
126static void	 syncache_insert(struct syncache *, struct syncache_head *);
127static int	 syncache_respond(struct syncache *, struct syncache_head *, int);
128static struct	 socket *syncache_socket(struct syncache *, struct socket *,
129		    struct mbuf *m);
130static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
131		    int docallout);
132static void	 syncache_timer(void *);
133
134static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
135		    uint8_t *, uintptr_t);
136static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
137static struct syncache
138		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
139		    struct syncache *, struct tcphdr *, struct tcpopt *,
140		    struct socket *);
141static void	 syncookie_reseed(void *);
142#ifdef INVARIANTS
143static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
144		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
145		    struct socket *lso);
146#endif
147
148/*
149 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
150 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
151 * the odds are that the user has given up attempting to connect by then.
152 */
153#define SYNCACHE_MAXREXMTS		3
154
155/* Arbitrary values */
156#define TCP_SYNCACHE_HASHSIZE		512
157#define TCP_SYNCACHE_BUCKETLIMIT	30
158
159static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
160#define	V_tcp_syncache			VNET(tcp_syncache)
161
162static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
163    "TCP SYN cache");
164
165SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
166    &VNET_NAME(tcp_syncache.bucket_limit), 0,
167    "Per-bucket hash limit for syncache");
168
169SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_VNET | CTLFLAG_RDTUN,
170    &VNET_NAME(tcp_syncache.cache_limit), 0,
171    "Overall entry limit for syncache");
172
173SYSCTL_UMA_CUR(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_VNET,
174    &VNET_NAME(tcp_syncache.zone), "Current number of entries in syncache");
175
176SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN,
177    &VNET_NAME(tcp_syncache.hashsize), 0,
178    "Size of TCP syncache hashtable");
179
180SYSCTL_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_VNET | CTLFLAG_RW,
181    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
182    "Limit on SYN/ACK retransmissions");
183
184VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
185SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
186    CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
187    "Send reset on socket allocation failure");
188
189static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
190
191#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
192#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
193#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
194
195/*
196 * Requires the syncache entry to be already removed from the bucket list.
197 */
198static void
199syncache_free(struct syncache *sc)
200{
201
202	if (sc->sc_ipopts)
203		(void) m_free(sc->sc_ipopts);
204	if (sc->sc_cred)
205		crfree(sc->sc_cred);
206#ifdef MAC
207	mac_syncache_destroy(&sc->sc_label);
208#endif
209
210	uma_zfree(V_tcp_syncache.zone, sc);
211}
212
213void
214syncache_init(void)
215{
216	int i;
217
218	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
219	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
220	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
221	V_tcp_syncache.hash_secret = arc4random();
222
223	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
224	    &V_tcp_syncache.hashsize);
225	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
226	    &V_tcp_syncache.bucket_limit);
227	if (!powerof2(V_tcp_syncache.hashsize) ||
228	    V_tcp_syncache.hashsize == 0) {
229		printf("WARNING: syncache hash size is not a power of 2.\n");
230		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
231	}
232	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
233
234	/* Set limits. */
235	V_tcp_syncache.cache_limit =
236	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
237	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
238	    &V_tcp_syncache.cache_limit);
239
240	/* Allocate the hash table. */
241	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
242	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
243
244#ifdef VIMAGE
245	V_tcp_syncache.vnet = curvnet;
246#endif
247
248	/* Initialize the hash buckets. */
249	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
250		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
251		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
252			 NULL, MTX_DEF);
253		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
254			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
255		V_tcp_syncache.hashbase[i].sch_length = 0;
256		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
257	}
258
259	/* Create the syncache entry zone. */
260	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
261	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
262	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
263	    V_tcp_syncache.cache_limit);
264
265	/* Start the SYN cookie reseeder callout. */
266	callout_init(&V_tcp_syncache.secret.reseed, 1);
267	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
268	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
269	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
270	    syncookie_reseed, &V_tcp_syncache);
271}
272
273#ifdef VIMAGE
274void
275syncache_destroy(void)
276{
277	struct syncache_head *sch;
278	struct syncache *sc, *nsc;
279	int i;
280
281	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
282	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
283
284		sch = &V_tcp_syncache.hashbase[i];
285		callout_drain(&sch->sch_timer);
286
287		SCH_LOCK(sch);
288		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
289			syncache_drop(sc, sch);
290		SCH_UNLOCK(sch);
291		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
292		    ("%s: sch->sch_bucket not empty", __func__));
293		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
294		    __func__, sch->sch_length));
295		mtx_destroy(&sch->sch_mtx);
296	}
297
298	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
299	    ("%s: cache_count not 0", __func__));
300
301	/* Free the allocated global resources. */
302	uma_zdestroy(V_tcp_syncache.zone);
303	free(V_tcp_syncache.hashbase, M_SYNCACHE);
304
305	callout_drain(&V_tcp_syncache.secret.reseed);
306}
307#endif
308
309/*
310 * Inserts a syncache entry into the specified bucket row.
311 * Locks and unlocks the syncache_head autonomously.
312 */
313static void
314syncache_insert(struct syncache *sc, struct syncache_head *sch)
315{
316	struct syncache *sc2;
317
318	SCH_LOCK(sch);
319
320	/*
321	 * Make sure that we don't overflow the per-bucket limit.
322	 * If the bucket is full, toss the oldest element.
323	 */
324	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
325		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
326			("sch->sch_length incorrect"));
327		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
328		syncache_drop(sc2, sch);
329		TCPSTAT_INC(tcps_sc_bucketoverflow);
330	}
331
332	/* Put it into the bucket. */
333	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
334	sch->sch_length++;
335
336#ifdef TCP_OFFLOAD
337	if (ADDED_BY_TOE(sc)) {
338		struct toedev *tod = sc->sc_tod;
339
340		tod->tod_syncache_added(tod, sc->sc_todctx);
341	}
342#endif
343
344	/* Reinitialize the bucket row's timer. */
345	if (sch->sch_length == 1)
346		sch->sch_nextc = ticks + INT_MAX;
347	syncache_timeout(sc, sch, 1);
348
349	SCH_UNLOCK(sch);
350
351	TCPSTAT_INC(tcps_sc_added);
352}
353
354/*
355 * Remove and free entry from syncache bucket row.
356 * Expects locked syncache head.
357 */
358static void
359syncache_drop(struct syncache *sc, struct syncache_head *sch)
360{
361
362	SCH_LOCK_ASSERT(sch);
363
364	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
365	sch->sch_length--;
366
367#ifdef TCP_OFFLOAD
368	if (ADDED_BY_TOE(sc)) {
369		struct toedev *tod = sc->sc_tod;
370
371		tod->tod_syncache_removed(tod, sc->sc_todctx);
372	}
373#endif
374
375	syncache_free(sc);
376}
377
378/*
379 * Engage/reengage time on bucket row.
380 */
381static void
382syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
383{
384	sc->sc_rxttime = ticks +
385		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
386	sc->sc_rxmits++;
387	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
388		sch->sch_nextc = sc->sc_rxttime;
389		if (docallout)
390			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
391			    syncache_timer, (void *)sch);
392	}
393}
394
395/*
396 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
397 * If we have retransmitted an entry the maximum number of times, expire it.
398 * One separate timer for each bucket row.
399 */
400static void
401syncache_timer(void *xsch)
402{
403	struct syncache_head *sch = (struct syncache_head *)xsch;
404	struct syncache *sc, *nsc;
405	int tick = ticks;
406	char *s;
407
408	CURVNET_SET(sch->sch_sc->vnet);
409
410	/* NB: syncache_head has already been locked by the callout. */
411	SCH_LOCK_ASSERT(sch);
412
413	/*
414	 * In the following cycle we may remove some entries and/or
415	 * advance some timeouts, so re-initialize the bucket timer.
416	 */
417	sch->sch_nextc = tick + INT_MAX;
418
419	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
420		/*
421		 * We do not check if the listen socket still exists
422		 * and accept the case where the listen socket may be
423		 * gone by the time we resend the SYN/ACK.  We do
424		 * not expect this to happens often. If it does,
425		 * then the RST will be sent by the time the remote
426		 * host does the SYN/ACK->ACK.
427		 */
428		if (TSTMP_GT(sc->sc_rxttime, tick)) {
429			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
430				sch->sch_nextc = sc->sc_rxttime;
431			continue;
432		}
433		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
434			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
435				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
436				    "giving up and removing syncache entry\n",
437				    s, __func__);
438				free(s, M_TCPLOG);
439			}
440			syncache_drop(sc, sch);
441			TCPSTAT_INC(tcps_sc_stale);
442			continue;
443		}
444		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
445			log(LOG_DEBUG, "%s; %s: Response timeout, "
446			    "retransmitting (%u) SYN|ACK\n",
447			    s, __func__, sc->sc_rxmits);
448			free(s, M_TCPLOG);
449		}
450
451		syncache_respond(sc, sch, 1);
452		TCPSTAT_INC(tcps_sc_retransmitted);
453		syncache_timeout(sc, sch, 0);
454	}
455	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
456		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
457			syncache_timer, (void *)(sch));
458	CURVNET_RESTORE();
459}
460
461/*
462 * Find an entry in the syncache.
463 * Returns always with locked syncache_head plus a matching entry or NULL.
464 */
465static struct syncache *
466syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
467{
468	struct syncache *sc;
469	struct syncache_head *sch;
470	uint32_t hash;
471
472	/*
473	 * The hash is built on foreign port + local port + foreign address.
474	 * We rely on the fact that struct in_conninfo starts with 16 bits
475	 * of foreign port, then 16 bits of local port then followed by 128
476	 * bits of foreign address.  In case of IPv4 address, the first 3
477	 * 32-bit words of the address always are zeroes.
478	 */
479	hash = jenkins_hash32((uint32_t *)&inc->inc_ie, 5,
480	    V_tcp_syncache.hash_secret) & V_tcp_syncache.hashmask;
481
482	sch = &V_tcp_syncache.hashbase[hash];
483	*schp = sch;
484	SCH_LOCK(sch);
485
486	/* Circle through bucket row to find matching entry. */
487	TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash)
488		if (bcmp(&inc->inc_ie, &sc->sc_inc.inc_ie,
489		    sizeof(struct in_endpoints)) == 0)
490			break;
491
492	return (sc);	/* Always returns with locked sch. */
493}
494
495/*
496 * This function is called when we get a RST for a
497 * non-existent connection, so that we can see if the
498 * connection is in the syn cache.  If it is, zap it.
499 */
500void
501syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
502{
503	struct syncache *sc;
504	struct syncache_head *sch;
505	char *s = NULL;
506
507	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
508	SCH_LOCK_ASSERT(sch);
509
510	/*
511	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
512	 * See RFC 793 page 65, section SEGMENT ARRIVES.
513	 */
514	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
515		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
516			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
517			    "FIN flag set, segment ignored\n", s, __func__);
518		TCPSTAT_INC(tcps_badrst);
519		goto done;
520	}
521
522	/*
523	 * No corresponding connection was found in syncache.
524	 * If syncookies are enabled and possibly exclusively
525	 * used, or we are under memory pressure, a valid RST
526	 * may not find a syncache entry.  In that case we're
527	 * done and no SYN|ACK retransmissions will happen.
528	 * Otherwise the RST was misdirected or spoofed.
529	 */
530	if (sc == NULL) {
531		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
532			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
533			    "syncache entry (possibly syncookie only), "
534			    "segment ignored\n", s, __func__);
535		TCPSTAT_INC(tcps_badrst);
536		goto done;
537	}
538
539	/*
540	 * If the RST bit is set, check the sequence number to see
541	 * if this is a valid reset segment.
542	 * RFC 793 page 37:
543	 *   In all states except SYN-SENT, all reset (RST) segments
544	 *   are validated by checking their SEQ-fields.  A reset is
545	 *   valid if its sequence number is in the window.
546	 *
547	 *   The sequence number in the reset segment is normally an
548	 *   echo of our outgoing acknowlegement numbers, but some hosts
549	 *   send a reset with the sequence number at the rightmost edge
550	 *   of our receive window, and we have to handle this case.
551	 */
552	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
553	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
554		syncache_drop(sc, sch);
555		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
556			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
557			    "connection attempt aborted by remote endpoint\n",
558			    s, __func__);
559		TCPSTAT_INC(tcps_sc_reset);
560	} else {
561		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
562			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
563			    "IRS %u (+WND %u), segment ignored\n",
564			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
565		TCPSTAT_INC(tcps_badrst);
566	}
567
568done:
569	if (s != NULL)
570		free(s, M_TCPLOG);
571	SCH_UNLOCK(sch);
572}
573
574void
575syncache_badack(struct in_conninfo *inc)
576{
577	struct syncache *sc;
578	struct syncache_head *sch;
579
580	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
581	SCH_LOCK_ASSERT(sch);
582	if (sc != NULL) {
583		syncache_drop(sc, sch);
584		TCPSTAT_INC(tcps_sc_badack);
585	}
586	SCH_UNLOCK(sch);
587}
588
589void
590syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
591{
592	struct syncache *sc;
593	struct syncache_head *sch;
594
595	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
596	SCH_LOCK_ASSERT(sch);
597	if (sc == NULL)
598		goto done;
599
600	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
601	if (ntohl(th->th_seq) != sc->sc_iss)
602		goto done;
603
604	/*
605	 * If we've rertransmitted 3 times and this is our second error,
606	 * we remove the entry.  Otherwise, we allow it to continue on.
607	 * This prevents us from incorrectly nuking an entry during a
608	 * spurious network outage.
609	 *
610	 * See tcp_notify().
611	 */
612	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
613		sc->sc_flags |= SCF_UNREACH;
614		goto done;
615	}
616	syncache_drop(sc, sch);
617	TCPSTAT_INC(tcps_sc_unreach);
618done:
619	SCH_UNLOCK(sch);
620}
621
622/*
623 * Build a new TCP socket structure from a syncache entry.
624 *
625 * On success return the newly created socket with its underlying inp locked.
626 */
627static struct socket *
628syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
629{
630	struct tcp_function_block *blk;
631	struct inpcb *inp = NULL;
632	struct socket *so;
633	struct tcpcb *tp;
634	int error;
635	char *s;
636
637	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
638
639	/*
640	 * Ok, create the full blown connection, and set things up
641	 * as they would have been set up if we had created the
642	 * connection when the SYN arrived.  If we can't create
643	 * the connection, abort it.
644	 */
645	so = sonewconn(lso, 0);
646	if (so == NULL) {
647		/*
648		 * Drop the connection; we will either send a RST or
649		 * have the peer retransmit its SYN again after its
650		 * RTO and try again.
651		 */
652		TCPSTAT_INC(tcps_listendrop);
653		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
654			log(LOG_DEBUG, "%s; %s: Socket create failed "
655			    "due to limits or memory shortage\n",
656			    s, __func__);
657			free(s, M_TCPLOG);
658		}
659		goto abort2;
660	}
661#ifdef MAC
662	mac_socketpeer_set_from_mbuf(m, so);
663#endif
664
665	inp = sotoinpcb(so);
666	inp->inp_inc.inc_fibnum = so->so_fibnum;
667	INP_WLOCK(inp);
668	/*
669	 * Exclusive pcbinfo lock is not required in syncache socket case even
670	 * if two inpcb locks can be acquired simultaneously:
671	 *  - the inpcb in LISTEN state,
672	 *  - the newly created inp.
673	 *
674	 * In this case, an inp cannot be at same time in LISTEN state and
675	 * just created by an accept() call.
676	 */
677	INP_HASH_WLOCK(&V_tcbinfo);
678
679	/* Insert new socket into PCB hash list. */
680	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
681#ifdef INET6
682	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
683		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
684	} else {
685		inp->inp_vflag &= ~INP_IPV6;
686		inp->inp_vflag |= INP_IPV4;
687#endif
688		inp->inp_laddr = sc->sc_inc.inc_laddr;
689#ifdef INET6
690	}
691#endif
692
693	/*
694	 * If there's an mbuf and it has a flowid, then let's initialise the
695	 * inp with that particular flowid.
696	 */
697	if (m != NULL && M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) {
698		inp->inp_flowid = m->m_pkthdr.flowid;
699		inp->inp_flowtype = M_HASHTYPE_GET(m);
700	}
701
702	/*
703	 * Install in the reservation hash table for now, but don't yet
704	 * install a connection group since the full 4-tuple isn't yet
705	 * configured.
706	 */
707	inp->inp_lport = sc->sc_inc.inc_lport;
708	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
709		/*
710		 * Undo the assignments above if we failed to
711		 * put the PCB on the hash lists.
712		 */
713#ifdef INET6
714		if (sc->sc_inc.inc_flags & INC_ISIPV6)
715			inp->in6p_laddr = in6addr_any;
716		else
717#endif
718			inp->inp_laddr.s_addr = INADDR_ANY;
719		inp->inp_lport = 0;
720		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
721			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
722			    "with error %i\n",
723			    s, __func__, error);
724			free(s, M_TCPLOG);
725		}
726		INP_HASH_WUNLOCK(&V_tcbinfo);
727		goto abort;
728	}
729#ifdef IPSEC
730	/* Copy old policy into new socket's. */
731	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
732		printf("syncache_socket: could not copy policy\n");
733#endif
734#ifdef INET6
735	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
736		struct inpcb *oinp = sotoinpcb(lso);
737		struct in6_addr laddr6;
738		struct sockaddr_in6 sin6;
739		/*
740		 * Inherit socket options from the listening socket.
741		 * Note that in6p_inputopts are not (and should not be)
742		 * copied, since it stores previously received options and is
743		 * used to detect if each new option is different than the
744		 * previous one and hence should be passed to a user.
745		 * If we copied in6p_inputopts, a user would not be able to
746		 * receive options just after calling the accept system call.
747		 */
748		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
749		if (oinp->in6p_outputopts)
750			inp->in6p_outputopts =
751			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
752
753		sin6.sin6_family = AF_INET6;
754		sin6.sin6_len = sizeof(sin6);
755		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
756		sin6.sin6_port = sc->sc_inc.inc_fport;
757		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
758		laddr6 = inp->in6p_laddr;
759		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
760			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
761		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
762		    thread0.td_ucred, m)) != 0) {
763			inp->in6p_laddr = laddr6;
764			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
765				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
766				    "with error %i\n",
767				    s, __func__, error);
768				free(s, M_TCPLOG);
769			}
770			INP_HASH_WUNLOCK(&V_tcbinfo);
771			goto abort;
772		}
773		/* Override flowlabel from in6_pcbconnect. */
774		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
775		inp->inp_flow |= sc->sc_flowlabel;
776	}
777#endif /* INET6 */
778#if defined(INET) && defined(INET6)
779	else
780#endif
781#ifdef INET
782	{
783		struct in_addr laddr;
784		struct sockaddr_in sin;
785
786		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
787
788		if (inp->inp_options == NULL) {
789			inp->inp_options = sc->sc_ipopts;
790			sc->sc_ipopts = NULL;
791		}
792
793		sin.sin_family = AF_INET;
794		sin.sin_len = sizeof(sin);
795		sin.sin_addr = sc->sc_inc.inc_faddr;
796		sin.sin_port = sc->sc_inc.inc_fport;
797		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
798		laddr = inp->inp_laddr;
799		if (inp->inp_laddr.s_addr == INADDR_ANY)
800			inp->inp_laddr = sc->sc_inc.inc_laddr;
801		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
802		    thread0.td_ucred, m)) != 0) {
803			inp->inp_laddr = laddr;
804			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
805				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
806				    "with error %i\n",
807				    s, __func__, error);
808				free(s, M_TCPLOG);
809			}
810			INP_HASH_WUNLOCK(&V_tcbinfo);
811			goto abort;
812		}
813	}
814#endif /* INET */
815	INP_HASH_WUNLOCK(&V_tcbinfo);
816	tp = intotcpcb(inp);
817	tcp_state_change(tp, TCPS_SYN_RECEIVED);
818	tp->iss = sc->sc_iss;
819	tp->irs = sc->sc_irs;
820	tcp_rcvseqinit(tp);
821	tcp_sendseqinit(tp);
822	blk = sototcpcb(lso)->t_fb;
823	if (blk != tp->t_fb) {
824		/*
825		 * Our parents t_fb was not the default,
826		 * we need to release our ref on tp->t_fb and
827		 * pickup one on the new entry.
828		 */
829		struct tcp_function_block *rblk;
830
831		rblk = find_and_ref_tcp_fb(blk);
832		KASSERT(rblk != NULL,
833		    ("cannot find blk %p out of syncache?", blk));
834		if (tp->t_fb->tfb_tcp_fb_fini)
835			(*tp->t_fb->tfb_tcp_fb_fini)(tp);
836		refcount_release(&tp->t_fb->tfb_refcnt);
837		tp->t_fb = rblk;
838		if (tp->t_fb->tfb_tcp_fb_init) {
839			(*tp->t_fb->tfb_tcp_fb_init)(tp);
840		}
841	}
842	tp->snd_wl1 = sc->sc_irs;
843	tp->snd_max = tp->iss + 1;
844	tp->snd_nxt = tp->iss + 1;
845	tp->rcv_up = sc->sc_irs + 1;
846	tp->rcv_wnd = sc->sc_wnd;
847	tp->rcv_adv += tp->rcv_wnd;
848	tp->last_ack_sent = tp->rcv_nxt;
849
850	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
851	if (sc->sc_flags & SCF_NOOPT)
852		tp->t_flags |= TF_NOOPT;
853	else {
854		if (sc->sc_flags & SCF_WINSCALE) {
855			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
856			tp->snd_scale = sc->sc_requested_s_scale;
857			tp->request_r_scale = sc->sc_requested_r_scale;
858		}
859		if (sc->sc_flags & SCF_TIMESTAMP) {
860			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
861			tp->ts_recent = sc->sc_tsreflect;
862			tp->ts_recent_age = tcp_ts_getticks();
863			tp->ts_offset = sc->sc_tsoff;
864		}
865#ifdef TCP_SIGNATURE
866		if (sc->sc_flags & SCF_SIGNATURE)
867			tp->t_flags |= TF_SIGNATURE;
868#endif
869		if (sc->sc_flags & SCF_SACK)
870			tp->t_flags |= TF_SACK_PERMIT;
871	}
872
873	if (sc->sc_flags & SCF_ECN)
874		tp->t_flags |= TF_ECN_PERMIT;
875
876	/*
877	 * Set up MSS and get cached values from tcp_hostcache.
878	 * This might overwrite some of the defaults we just set.
879	 */
880	tcp_mss(tp, sc->sc_peer_mss);
881
882	/*
883	 * If the SYN,ACK was retransmitted, indicate that CWND to be
884	 * limited to one segment in cc_conn_init().
885	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
886	 */
887	if (sc->sc_rxmits > 1)
888		tp->snd_cwnd = 1;
889
890#ifdef TCP_OFFLOAD
891	/*
892	 * Allow a TOE driver to install its hooks.  Note that we hold the
893	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
894	 * new connection before the TOE driver has done its thing.
895	 */
896	if (ADDED_BY_TOE(sc)) {
897		struct toedev *tod = sc->sc_tod;
898
899		tod->tod_offload_socket(tod, sc->sc_todctx, so);
900	}
901#endif
902	/*
903	 * Copy and activate timers.
904	 */
905	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
906	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
907	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
908	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
909	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
910
911	soisconnected(so);
912
913	TCPSTAT_INC(tcps_accepts);
914	return (so);
915
916abort:
917	INP_WUNLOCK(inp);
918abort2:
919	if (so != NULL)
920		soabort(so);
921	return (NULL);
922}
923
924/*
925 * This function gets called when we receive an ACK for a
926 * socket in the LISTEN state.  We look up the connection
927 * in the syncache, and if its there, we pull it out of
928 * the cache and turn it into a full-blown connection in
929 * the SYN-RECEIVED state.
930 *
931 * On syncache_socket() success the newly created socket
932 * has its underlying inp locked.
933 */
934int
935syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
936    struct socket **lsop, struct mbuf *m)
937{
938	struct syncache *sc;
939	struct syncache_head *sch;
940	struct syncache scs;
941	char *s;
942
943	/*
944	 * Global TCP locks are held because we manipulate the PCB lists
945	 * and create a new socket.
946	 */
947	INP_INFO_RLOCK_ASSERT(&V_tcbinfo);
948	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
949	    ("%s: can handle only ACK", __func__));
950
951	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
952	SCH_LOCK_ASSERT(sch);
953
954#ifdef INVARIANTS
955	/*
956	 * Test code for syncookies comparing the syncache stored
957	 * values with the reconstructed values from the cookie.
958	 */
959	if (sc != NULL)
960		syncookie_cmp(inc, sch, sc, th, to, *lsop);
961#endif
962
963	if (sc == NULL) {
964		/*
965		 * There is no syncache entry, so see if this ACK is
966		 * a returning syncookie.  To do this, first:
967		 *  A. See if this socket has had a syncache entry dropped in
968		 *     the past.  We don't want to accept a bogus syncookie
969		 *     if we've never received a SYN.
970		 *  B. check that the syncookie is valid.  If it is, then
971		 *     cobble up a fake syncache entry, and return.
972		 */
973		if (!V_tcp_syncookies) {
974			SCH_UNLOCK(sch);
975			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
976				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
977				    "segment rejected (syncookies disabled)\n",
978				    s, __func__);
979			goto failed;
980		}
981		bzero(&scs, sizeof(scs));
982		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
983		SCH_UNLOCK(sch);
984		if (sc == NULL) {
985			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
986				log(LOG_DEBUG, "%s; %s: Segment failed "
987				    "SYNCOOKIE authentication, segment rejected "
988				    "(probably spoofed)\n", s, __func__);
989			goto failed;
990		}
991	} else {
992		/* Pull out the entry to unlock the bucket row. */
993		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
994		sch->sch_length--;
995#ifdef TCP_OFFLOAD
996		if (ADDED_BY_TOE(sc)) {
997			struct toedev *tod = sc->sc_tod;
998
999			tod->tod_syncache_removed(tod, sc->sc_todctx);
1000		}
1001#endif
1002		SCH_UNLOCK(sch);
1003	}
1004
1005	/*
1006	 * Segment validation:
1007	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1008	 */
1009	if (th->th_ack != sc->sc_iss + 1) {
1010		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1011			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1012			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1013		goto failed;
1014	}
1015
1016	/*
1017	 * The SEQ must fall in the window starting at the received
1018	 * initial receive sequence number + 1 (the SYN).
1019	 */
1020	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1021	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1022		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1023			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1024			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1025		goto failed;
1026	}
1027
1028	/*
1029	 * If timestamps were not negotiated during SYN/ACK they
1030	 * must not appear on any segment during this session.
1031	 */
1032	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1033		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1034			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1035			    "segment rejected\n", s, __func__);
1036		goto failed;
1037	}
1038
1039	/*
1040	 * If timestamps were negotiated during SYN/ACK they should
1041	 * appear on every segment during this session.
1042	 * XXXAO: This is only informal as there have been unverified
1043	 * reports of non-compliants stacks.
1044	 */
1045	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1046		if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
1047			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1048			    "no action\n", s, __func__);
1049			free(s, M_TCPLOG);
1050			s = NULL;
1051		}
1052	}
1053
1054	/*
1055	 * If timestamps were negotiated the reflected timestamp
1056	 * must be equal to what we actually sent in the SYN|ACK.
1057	 */
1058	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1059		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1060			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1061			    "segment rejected\n",
1062			    s, __func__, to->to_tsecr, sc->sc_ts);
1063		goto failed;
1064	}
1065
1066	*lsop = syncache_socket(sc, *lsop, m);
1067
1068	if (*lsop == NULL)
1069		TCPSTAT_INC(tcps_sc_aborted);
1070	else
1071		TCPSTAT_INC(tcps_sc_completed);
1072
1073/* how do we find the inp for the new socket? */
1074	if (sc != &scs)
1075		syncache_free(sc);
1076	return (1);
1077failed:
1078	if (sc != NULL && sc != &scs)
1079		syncache_free(sc);
1080	if (s != NULL)
1081		free(s, M_TCPLOG);
1082	*lsop = NULL;
1083	return (0);
1084}
1085
1086/*
1087 * Given a LISTEN socket and an inbound SYN request, add
1088 * this to the syn cache, and send back a segment:
1089 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1090 * to the source.
1091 *
1092 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1093 * Doing so would require that we hold onto the data and deliver it
1094 * to the application.  However, if we are the target of a SYN-flood
1095 * DoS attack, an attacker could send data which would eventually
1096 * consume all available buffer space if it were ACKed.  By not ACKing
1097 * the data, we avoid this DoS scenario.
1098 */
1099void
1100syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1101    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1102    void *todctx)
1103{
1104	struct tcpcb *tp;
1105	struct socket *so;
1106	struct syncache *sc = NULL;
1107	struct syncache_head *sch;
1108	struct mbuf *ipopts = NULL;
1109	u_int ltflags;
1110	int win, sb_hiwat, ip_ttl, ip_tos;
1111	char *s;
1112#ifdef INET6
1113	int autoflowlabel = 0;
1114#endif
1115#ifdef MAC
1116	struct label *maclabel;
1117#endif
1118	struct syncache scs;
1119	struct ucred *cred;
1120
1121	INP_WLOCK_ASSERT(inp);			/* listen socket */
1122	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1123	    ("%s: unexpected tcp flags", __func__));
1124
1125	/*
1126	 * Combine all so/tp operations very early to drop the INP lock as
1127	 * soon as possible.
1128	 */
1129	so = *lsop;
1130	tp = sototcpcb(so);
1131	cred = crhold(so->so_cred);
1132
1133#ifdef INET6
1134	if ((inc->inc_flags & INC_ISIPV6) &&
1135	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1136		autoflowlabel = 1;
1137#endif
1138	ip_ttl = inp->inp_ip_ttl;
1139	ip_tos = inp->inp_ip_tos;
1140	win = sbspace(&so->so_rcv);
1141	sb_hiwat = so->so_rcv.sb_hiwat;
1142	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1143
1144	/* By the time we drop the lock these should no longer be used. */
1145	so = NULL;
1146	tp = NULL;
1147
1148#ifdef MAC
1149	if (mac_syncache_init(&maclabel) != 0) {
1150		INP_WUNLOCK(inp);
1151		goto done;
1152	} else
1153		mac_syncache_create(maclabel, inp);
1154#endif
1155	INP_WUNLOCK(inp);
1156
1157	/*
1158	 * Remember the IP options, if any.
1159	 */
1160#ifdef INET6
1161	if (!(inc->inc_flags & INC_ISIPV6))
1162#endif
1163#ifdef INET
1164		ipopts = (m) ? ip_srcroute(m) : NULL;
1165#else
1166		ipopts = NULL;
1167#endif
1168
1169	/*
1170	 * See if we already have an entry for this connection.
1171	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1172	 *
1173	 * XXX: should the syncache be re-initialized with the contents
1174	 * of the new SYN here (which may have different options?)
1175	 *
1176	 * XXX: We do not check the sequence number to see if this is a
1177	 * real retransmit or a new connection attempt.  The question is
1178	 * how to handle such a case; either ignore it as spoofed, or
1179	 * drop the current entry and create a new one?
1180	 */
1181	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1182	SCH_LOCK_ASSERT(sch);
1183	if (sc != NULL) {
1184		TCPSTAT_INC(tcps_sc_dupsyn);
1185		if (ipopts) {
1186			/*
1187			 * If we were remembering a previous source route,
1188			 * forget it and use the new one we've been given.
1189			 */
1190			if (sc->sc_ipopts)
1191				(void) m_free(sc->sc_ipopts);
1192			sc->sc_ipopts = ipopts;
1193		}
1194		/*
1195		 * Update timestamp if present.
1196		 */
1197		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1198			sc->sc_tsreflect = to->to_tsval;
1199		else
1200			sc->sc_flags &= ~SCF_TIMESTAMP;
1201#ifdef MAC
1202		/*
1203		 * Since we have already unconditionally allocated label
1204		 * storage, free it up.  The syncache entry will already
1205		 * have an initialized label we can use.
1206		 */
1207		mac_syncache_destroy(&maclabel);
1208#endif
1209		/* Retransmit SYN|ACK and reset retransmit count. */
1210		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1211			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1212			    "resetting timer and retransmitting SYN|ACK\n",
1213			    s, __func__);
1214			free(s, M_TCPLOG);
1215		}
1216		if (syncache_respond(sc, sch, 1) == 0) {
1217			sc->sc_rxmits = 0;
1218			syncache_timeout(sc, sch, 1);
1219			TCPSTAT_INC(tcps_sndacks);
1220			TCPSTAT_INC(tcps_sndtotal);
1221		}
1222		SCH_UNLOCK(sch);
1223		goto done;
1224	}
1225
1226	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1227	if (sc == NULL) {
1228		/*
1229		 * The zone allocator couldn't provide more entries.
1230		 * Treat this as if the cache was full; drop the oldest
1231		 * entry and insert the new one.
1232		 */
1233		TCPSTAT_INC(tcps_sc_zonefail);
1234		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1235			syncache_drop(sc, sch);
1236		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1237		if (sc == NULL) {
1238			if (V_tcp_syncookies) {
1239				bzero(&scs, sizeof(scs));
1240				sc = &scs;
1241			} else {
1242				SCH_UNLOCK(sch);
1243				if (ipopts)
1244					(void) m_free(ipopts);
1245				goto done;
1246			}
1247		}
1248	}
1249
1250	/*
1251	 * Fill in the syncache values.
1252	 */
1253#ifdef MAC
1254	sc->sc_label = maclabel;
1255#endif
1256	sc->sc_cred = cred;
1257	cred = NULL;
1258	sc->sc_ipopts = ipopts;
1259	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1260#ifdef INET6
1261	if (!(inc->inc_flags & INC_ISIPV6))
1262#endif
1263	{
1264		sc->sc_ip_tos = ip_tos;
1265		sc->sc_ip_ttl = ip_ttl;
1266	}
1267#ifdef TCP_OFFLOAD
1268	sc->sc_tod = tod;
1269	sc->sc_todctx = todctx;
1270#endif
1271	sc->sc_irs = th->th_seq;
1272	sc->sc_iss = arc4random();
1273	sc->sc_flags = 0;
1274	sc->sc_flowlabel = 0;
1275
1276	/*
1277	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1278	 * win was derived from socket earlier in the function.
1279	 */
1280	win = imax(win, 0);
1281	win = imin(win, TCP_MAXWIN);
1282	sc->sc_wnd = win;
1283
1284	if (V_tcp_do_rfc1323) {
1285		/*
1286		 * A timestamp received in a SYN makes
1287		 * it ok to send timestamp requests and replies.
1288		 */
1289		if (to->to_flags & TOF_TS) {
1290			sc->sc_tsreflect = to->to_tsval;
1291			sc->sc_ts = tcp_ts_getticks();
1292			sc->sc_flags |= SCF_TIMESTAMP;
1293		}
1294		if (to->to_flags & TOF_SCALE) {
1295			int wscale = 0;
1296
1297			/*
1298			 * Pick the smallest possible scaling factor that
1299			 * will still allow us to scale up to sb_max, aka
1300			 * kern.ipc.maxsockbuf.
1301			 *
1302			 * We do this because there are broken firewalls that
1303			 * will corrupt the window scale option, leading to
1304			 * the other endpoint believing that our advertised
1305			 * window is unscaled.  At scale factors larger than
1306			 * 5 the unscaled window will drop below 1500 bytes,
1307			 * leading to serious problems when traversing these
1308			 * broken firewalls.
1309			 *
1310			 * With the default maxsockbuf of 256K, a scale factor
1311			 * of 3 will be chosen by this algorithm.  Those who
1312			 * choose a larger maxsockbuf should watch out
1313			 * for the compatiblity problems mentioned above.
1314			 *
1315			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1316			 * or <SYN,ACK>) segment itself is never scaled.
1317			 */
1318			while (wscale < TCP_MAX_WINSHIFT &&
1319			    (TCP_MAXWIN << wscale) < sb_max)
1320				wscale++;
1321			sc->sc_requested_r_scale = wscale;
1322			sc->sc_requested_s_scale = to->to_wscale;
1323			sc->sc_flags |= SCF_WINSCALE;
1324		}
1325	}
1326#ifdef TCP_SIGNATURE
1327	/*
1328	 * If listening socket requested TCP digests, OR received SYN
1329	 * contains the option, flag this in the syncache so that
1330	 * syncache_respond() will do the right thing with the SYN+ACK.
1331	 */
1332	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1333		sc->sc_flags |= SCF_SIGNATURE;
1334#endif
1335	if (to->to_flags & TOF_SACKPERM)
1336		sc->sc_flags |= SCF_SACK;
1337	if (to->to_flags & TOF_MSS)
1338		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1339	if (ltflags & TF_NOOPT)
1340		sc->sc_flags |= SCF_NOOPT;
1341	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1342		sc->sc_flags |= SCF_ECN;
1343
1344	if (V_tcp_syncookies)
1345		sc->sc_iss = syncookie_generate(sch, sc);
1346#ifdef INET6
1347	if (autoflowlabel) {
1348		if (V_tcp_syncookies)
1349			sc->sc_flowlabel = sc->sc_iss;
1350		else
1351			sc->sc_flowlabel = ip6_randomflowlabel();
1352		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1353	}
1354#endif
1355	SCH_UNLOCK(sch);
1356
1357	/*
1358	 * Do a standard 3-way handshake.
1359	 */
1360	if (syncache_respond(sc, sch, 0) == 0) {
1361		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1362			syncache_free(sc);
1363		else if (sc != &scs)
1364			syncache_insert(sc, sch);   /* locks and unlocks sch */
1365		TCPSTAT_INC(tcps_sndacks);
1366		TCPSTAT_INC(tcps_sndtotal);
1367	} else {
1368		if (sc != &scs)
1369			syncache_free(sc);
1370		TCPSTAT_INC(tcps_sc_dropped);
1371	}
1372
1373done:
1374	if (cred != NULL)
1375		crfree(cred);
1376#ifdef MAC
1377	if (sc == &scs)
1378		mac_syncache_destroy(&maclabel);
1379#endif
1380	if (m) {
1381
1382		*lsop = NULL;
1383		m_freem(m);
1384	}
1385}
1386
1387static int
1388syncache_respond(struct syncache *sc, struct syncache_head *sch, int locked)
1389{
1390	struct ip *ip = NULL;
1391	struct mbuf *m;
1392	struct tcphdr *th = NULL;
1393	int optlen, error = 0;	/* Make compiler happy */
1394	u_int16_t hlen, tlen, mssopt;
1395	struct tcpopt to;
1396#ifdef INET6
1397	struct ip6_hdr *ip6 = NULL;
1398#endif
1399#ifdef TCP_SIGNATURE
1400	struct secasvar *sav;
1401#endif
1402
1403	hlen =
1404#ifdef INET6
1405	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1406#endif
1407		sizeof(struct ip);
1408	tlen = hlen + sizeof(struct tcphdr);
1409
1410	/* Determine MSS we advertize to other end of connection. */
1411	mssopt = tcp_mssopt(&sc->sc_inc);
1412	if (sc->sc_peer_mss)
1413		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1414
1415	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1416	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1417	    ("syncache: mbuf too small"));
1418
1419	/* Create the IP+TCP header from scratch. */
1420	m = m_gethdr(M_NOWAIT, MT_DATA);
1421	if (m == NULL)
1422		return (ENOBUFS);
1423#ifdef MAC
1424	mac_syncache_create_mbuf(sc->sc_label, m);
1425#endif
1426	m->m_data += max_linkhdr;
1427	m->m_len = tlen;
1428	m->m_pkthdr.len = tlen;
1429	m->m_pkthdr.rcvif = NULL;
1430
1431#ifdef INET6
1432	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1433		ip6 = mtod(m, struct ip6_hdr *);
1434		ip6->ip6_vfc = IPV6_VERSION;
1435		ip6->ip6_nxt = IPPROTO_TCP;
1436		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1437		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1438		ip6->ip6_plen = htons(tlen - hlen);
1439		/* ip6_hlim is set after checksum */
1440		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1441		ip6->ip6_flow |= sc->sc_flowlabel;
1442
1443		th = (struct tcphdr *)(ip6 + 1);
1444	}
1445#endif
1446#if defined(INET6) && defined(INET)
1447	else
1448#endif
1449#ifdef INET
1450	{
1451		ip = mtod(m, struct ip *);
1452		ip->ip_v = IPVERSION;
1453		ip->ip_hl = sizeof(struct ip) >> 2;
1454		ip->ip_len = htons(tlen);
1455		ip->ip_id = 0;
1456		ip->ip_off = 0;
1457		ip->ip_sum = 0;
1458		ip->ip_p = IPPROTO_TCP;
1459		ip->ip_src = sc->sc_inc.inc_laddr;
1460		ip->ip_dst = sc->sc_inc.inc_faddr;
1461		ip->ip_ttl = sc->sc_ip_ttl;
1462		ip->ip_tos = sc->sc_ip_tos;
1463
1464		/*
1465		 * See if we should do MTU discovery.  Route lookups are
1466		 * expensive, so we will only unset the DF bit if:
1467		 *
1468		 *	1) path_mtu_discovery is disabled
1469		 *	2) the SCF_UNREACH flag has been set
1470		 */
1471		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1472		       ip->ip_off |= htons(IP_DF);
1473
1474		th = (struct tcphdr *)(ip + 1);
1475	}
1476#endif /* INET */
1477	th->th_sport = sc->sc_inc.inc_lport;
1478	th->th_dport = sc->sc_inc.inc_fport;
1479
1480	th->th_seq = htonl(sc->sc_iss);
1481	th->th_ack = htonl(sc->sc_irs + 1);
1482	th->th_off = sizeof(struct tcphdr) >> 2;
1483	th->th_x2 = 0;
1484	th->th_flags = TH_SYN|TH_ACK;
1485	th->th_win = htons(sc->sc_wnd);
1486	th->th_urp = 0;
1487
1488	if (sc->sc_flags & SCF_ECN) {
1489		th->th_flags |= TH_ECE;
1490		TCPSTAT_INC(tcps_ecn_shs);
1491	}
1492
1493	/* Tack on the TCP options. */
1494	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1495		to.to_flags = 0;
1496
1497		to.to_mss = mssopt;
1498		to.to_flags = TOF_MSS;
1499		if (sc->sc_flags & SCF_WINSCALE) {
1500			to.to_wscale = sc->sc_requested_r_scale;
1501			to.to_flags |= TOF_SCALE;
1502		}
1503		if (sc->sc_flags & SCF_TIMESTAMP) {
1504			/* Virgin timestamp or TCP cookie enhanced one. */
1505			to.to_tsval = sc->sc_ts;
1506			to.to_tsecr = sc->sc_tsreflect;
1507			to.to_flags |= TOF_TS;
1508		}
1509		if (sc->sc_flags & SCF_SACK)
1510			to.to_flags |= TOF_SACKPERM;
1511#ifdef TCP_SIGNATURE
1512		sav = NULL;
1513		if (sc->sc_flags & SCF_SIGNATURE) {
1514			sav = tcp_get_sav(m, IPSEC_DIR_OUTBOUND);
1515			if (sav != NULL)
1516				to.to_flags |= TOF_SIGNATURE;
1517			else {
1518
1519				/*
1520				 * We've got SCF_SIGNATURE flag
1521				 * inherited from listening socket,
1522				 * but no SADB key for given source
1523				 * address. Assume signature is not
1524				 * required and remove signature flag
1525				 * instead of silently dropping
1526				 * connection.
1527				 */
1528				if (locked == 0)
1529					SCH_LOCK(sch);
1530				sc->sc_flags &= ~SCF_SIGNATURE;
1531				if (locked == 0)
1532					SCH_UNLOCK(sch);
1533			}
1534		}
1535#endif
1536		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1537
1538		/* Adjust headers by option size. */
1539		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1540		m->m_len += optlen;
1541		m->m_pkthdr.len += optlen;
1542
1543#ifdef TCP_SIGNATURE
1544		if (sc->sc_flags & SCF_SIGNATURE)
1545			tcp_signature_do_compute(m, 0, optlen,
1546			    to.to_signature, sav);
1547#endif
1548#ifdef INET6
1549		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1550			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1551		else
1552#endif
1553			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1554	} else
1555		optlen = 0;
1556
1557	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1558	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1559#ifdef INET6
1560	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1561		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1562		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1563		    IPPROTO_TCP, 0);
1564		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1565#ifdef TCP_OFFLOAD
1566		if (ADDED_BY_TOE(sc)) {
1567			struct toedev *tod = sc->sc_tod;
1568
1569			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1570
1571			return (error);
1572		}
1573#endif
1574		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1575	}
1576#endif
1577#if defined(INET6) && defined(INET)
1578	else
1579#endif
1580#ifdef INET
1581	{
1582		m->m_pkthdr.csum_flags = CSUM_TCP;
1583		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1584		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1585#ifdef TCP_OFFLOAD
1586		if (ADDED_BY_TOE(sc)) {
1587			struct toedev *tod = sc->sc_tod;
1588
1589			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1590
1591			return (error);
1592		}
1593#endif
1594		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1595	}
1596#endif
1597	return (error);
1598}
1599
1600/*
1601 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1602 * that exceed the capacity of the syncache by avoiding the storage of any
1603 * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1604 * attacks where the attacker does not have access to our responses.
1605 *
1606 * Syncookies encode and include all necessary information about the
1607 * connection setup within the SYN|ACK that we send back.  That way we
1608 * can avoid keeping any local state until the ACK to our SYN|ACK returns
1609 * (if ever).  Normally the syncache and syncookies are running in parallel
1610 * with the latter taking over when the former is exhausted.  When matching
1611 * syncache entry is found the syncookie is ignored.
1612 *
1613 * The only reliable information persisting the 3WHS is our inital sequence
1614 * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1615 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1616 * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1617 * returns and signifies a legitimate connection if it matches the ACK.
1618 *
1619 * The available space of 32 bits to store the hash and to encode the SYN
1620 * option information is very tight and we should have at least 24 bits for
1621 * the MAC to keep the number of guesses by blind spoofing reasonably high.
1622 *
1623 * SYN option information we have to encode to fully restore a connection:
1624 * MSS: is imporant to chose an optimal segment size to avoid IP level
1625 *   fragmentation along the path.  The common MSS values can be encoded
1626 *   in a 3-bit table.  Uncommon values are captured by the next lower value
1627 *   in the table leading to a slight increase in packetization overhead.
1628 * WSCALE: is necessary to allow large windows to be used for high delay-
1629 *   bandwidth product links.  Not scaling the window when it was initially
1630 *   negotiated is bad for performance as lack of scaling further decreases
1631 *   the apparent available send window.  We only need to encode the WSCALE
1632 *   we received from the remote end.  Our end can be recalculated at any
1633 *   time.  The common WSCALE values can be encoded in a 3-bit table.
1634 *   Uncommon values are captured by the next lower value in the table
1635 *   making us under-estimate the available window size halving our
1636 *   theoretically possible maximum throughput for that connection.
1637 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1638 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1639 *   that are included in all segments on a connection.  We enable them when
1640 *   the ACK has them.
1641 *
1642 * Security of syncookies and attack vectors:
1643 *
1644 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1645 * together with the gloabl secret to make it unique per connection attempt.
1646 * Thus any change of any of those parameters results in a different MAC output
1647 * in an unpredictable way unless a collision is encountered.  24 bits of the
1648 * MAC are embedded into the ISS.
1649 *
1650 * To prevent replay attacks two rotating global secrets are updated with a
1651 * new random value every 15 seconds.  The life-time of a syncookie is thus
1652 * 15-30 seconds.
1653 *
1654 * Vector 1: Attacking the secret.  This requires finding a weakness in the
1655 * MAC itself or the way it is used here.  The attacker can do a chosen plain
1656 * text attack by varying and testing the all parameters under his control.
1657 * The strength depends on the size and randomness of the secret, and the
1658 * cryptographic security of the MAC function.  Due to the constant updating
1659 * of the secret the attacker has at most 29.999 seconds to find the secret
1660 * and launch spoofed connections.  After that he has to start all over again.
1661 *
1662 * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1663 * size an average of 4,823 attempts are required for a 50% chance of success
1664 * to spoof a single syncookie (birthday collision paradox).  However the
1665 * attacker is blind and doesn't know if one of his attempts succeeded unless
1666 * he has a side channel to interfere success from.  A single connection setup
1667 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1668 * This many attempts are required for each one blind spoofed connection.  For
1669 * every additional spoofed connection he has to launch another N attempts.
1670 * Thus for a sustained rate 100 spoofed connections per second approximately
1671 * 1,800,000 packets per second would have to be sent.
1672 *
1673 * NB: The MAC function should be fast so that it doesn't become a CPU
1674 * exhaustion attack vector itself.
1675 *
1676 * References:
1677 *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1678 *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1679 *   http://cr.yp.to/syncookies.html    (overview)
1680 *   http://cr.yp.to/syncookies/archive (details)
1681 *
1682 *
1683 * Schematic construction of a syncookie enabled Initial Sequence Number:
1684 *  0        1         2         3
1685 *  12345678901234567890123456789012
1686 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1687 *
1688 *  x 24 MAC (truncated)
1689 *  W  3 Send Window Scale index
1690 *  M  3 MSS index
1691 *  S  1 SACK permitted
1692 *  P  1 Odd/even secret
1693 */
1694
1695/*
1696 * Distribution and probability of certain MSS values.  Those in between are
1697 * rounded down to the next lower one.
1698 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1699 *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1700 */
1701static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1702
1703/*
1704 * Distribution and probability of certain WSCALE values.  We have to map the
1705 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1706 * bits based on prevalence of certain values.  Where we don't have an exact
1707 * match for are rounded down to the next lower one letting us under-estimate
1708 * the true available window.  At the moment this would happen only for the
1709 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1710 * and window size).  The absence of the WSCALE option (no scaling in either
1711 * direction) is encoded with index zero.
1712 * [WSCALE values histograms, Allman, 2012]
1713 *                            X 10 10 35  5  6 14 10%   by host
1714 *                            X 11  4  5  5 18 49  3%   by connections
1715 */
1716static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1717
1718/*
1719 * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1720 * and good cryptographic properties.
1721 */
1722static uint32_t
1723syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1724    uint8_t *secbits, uintptr_t secmod)
1725{
1726	SIPHASH_CTX ctx;
1727	uint32_t siphash[2];
1728
1729	SipHash24_Init(&ctx);
1730	SipHash_SetKey(&ctx, secbits);
1731	switch (inc->inc_flags & INC_ISIPV6) {
1732#ifdef INET
1733	case 0:
1734		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1735		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1736		break;
1737#endif
1738#ifdef INET6
1739	case INC_ISIPV6:
1740		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1741		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1742		break;
1743#endif
1744	}
1745	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1746	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1747	SipHash_Update(&ctx, &irs, sizeof(irs));
1748	SipHash_Update(&ctx, &flags, sizeof(flags));
1749	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1750	SipHash_Final((u_int8_t *)&siphash, &ctx);
1751
1752	return (siphash[0] ^ siphash[1]);
1753}
1754
1755static tcp_seq
1756syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1757{
1758	u_int i, mss, secbit, wscale;
1759	uint32_t iss, hash;
1760	uint8_t *secbits;
1761	union syncookie cookie;
1762
1763	SCH_LOCK_ASSERT(sch);
1764
1765	cookie.cookie = 0;
1766
1767	/* Map our computed MSS into the 3-bit index. */
1768	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1769	for (i = sizeof(tcp_sc_msstab) / sizeof(*tcp_sc_msstab) - 1;
1770	     tcp_sc_msstab[i] > mss && i > 0;
1771	     i--)
1772		;
1773	cookie.flags.mss_idx = i;
1774
1775	/*
1776	 * Map the send window scale into the 3-bit index but only if
1777	 * the wscale option was received.
1778	 */
1779	if (sc->sc_flags & SCF_WINSCALE) {
1780		wscale = sc->sc_requested_s_scale;
1781		for (i = sizeof(tcp_sc_wstab) / sizeof(*tcp_sc_wstab) - 1;
1782		     tcp_sc_wstab[i] > wscale && i > 0;
1783		     i--)
1784			;
1785		cookie.flags.wscale_idx = i;
1786	}
1787
1788	/* Can we do SACK? */
1789	if (sc->sc_flags & SCF_SACK)
1790		cookie.flags.sack_ok = 1;
1791
1792	/* Which of the two secrets to use. */
1793	secbit = sch->sch_sc->secret.oddeven & 0x1;
1794	cookie.flags.odd_even = secbit;
1795
1796	secbits = sch->sch_sc->secret.key[secbit];
1797	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1798	    (uintptr_t)sch);
1799
1800	/*
1801	 * Put the flags into the hash and XOR them to get better ISS number
1802	 * variance.  This doesn't enhance the cryptographic strength and is
1803	 * done to prevent the 8 cookie bits from showing up directly on the
1804	 * wire.
1805	 */
1806	iss = hash & ~0xff;
1807	iss |= cookie.cookie ^ (hash >> 24);
1808
1809	/* Randomize the timestamp. */
1810	if (sc->sc_flags & SCF_TIMESTAMP) {
1811		sc->sc_ts = arc4random();
1812		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1813	}
1814
1815	TCPSTAT_INC(tcps_sc_sendcookie);
1816	return (iss);
1817}
1818
1819static struct syncache *
1820syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1821    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1822    struct socket *lso)
1823{
1824	uint32_t hash;
1825	uint8_t *secbits;
1826	tcp_seq ack, seq;
1827	int wnd, wscale = 0;
1828	union syncookie cookie;
1829
1830	SCH_LOCK_ASSERT(sch);
1831
1832	/*
1833	 * Pull information out of SYN-ACK/ACK and revert sequence number
1834	 * advances.
1835	 */
1836	ack = th->th_ack - 1;
1837	seq = th->th_seq - 1;
1838
1839	/*
1840	 * Unpack the flags containing enough information to restore the
1841	 * connection.
1842	 */
1843	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
1844
1845	/* Which of the two secrets to use. */
1846	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
1847
1848	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
1849
1850	/* The recomputed hash matches the ACK if this was a genuine cookie. */
1851	if ((ack & ~0xff) != (hash & ~0xff))
1852		return (NULL);
1853
1854	/* Fill in the syncache values. */
1855	sc->sc_flags = 0;
1856	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1857	sc->sc_ipopts = NULL;
1858
1859	sc->sc_irs = seq;
1860	sc->sc_iss = ack;
1861
1862	switch (inc->inc_flags & INC_ISIPV6) {
1863#ifdef INET
1864	case 0:
1865		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
1866		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
1867		break;
1868#endif
1869#ifdef INET6
1870	case INC_ISIPV6:
1871		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
1872			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
1873		break;
1874#endif
1875	}
1876
1877	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
1878
1879	/* We can simply recompute receive window scale we sent earlier. */
1880	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
1881		wscale++;
1882
1883	/* Only use wscale if it was enabled in the orignal SYN. */
1884	if (cookie.flags.wscale_idx > 0) {
1885		sc->sc_requested_r_scale = wscale;
1886		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
1887		sc->sc_flags |= SCF_WINSCALE;
1888	}
1889
1890	wnd = sbspace(&lso->so_rcv);
1891	wnd = imax(wnd, 0);
1892	wnd = imin(wnd, TCP_MAXWIN);
1893	sc->sc_wnd = wnd;
1894
1895	if (cookie.flags.sack_ok)
1896		sc->sc_flags |= SCF_SACK;
1897
1898	if (to->to_flags & TOF_TS) {
1899		sc->sc_flags |= SCF_TIMESTAMP;
1900		sc->sc_tsreflect = to->to_tsval;
1901		sc->sc_ts = to->to_tsecr;
1902		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
1903	}
1904
1905	if (to->to_flags & TOF_SIGNATURE)
1906		sc->sc_flags |= SCF_SIGNATURE;
1907
1908	sc->sc_rxmits = 0;
1909
1910	TCPSTAT_INC(tcps_sc_recvcookie);
1911	return (sc);
1912}
1913
1914#ifdef INVARIANTS
1915static int
1916syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
1917    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1918    struct socket *lso)
1919{
1920	struct syncache scs, *scx;
1921	char *s;
1922
1923	bzero(&scs, sizeof(scs));
1924	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
1925
1926	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
1927		return (0);
1928
1929	if (scx != NULL) {
1930		if (sc->sc_peer_mss != scx->sc_peer_mss)
1931			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
1932			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
1933
1934		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
1935			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
1936			    s, __func__, sc->sc_requested_r_scale,
1937			    scx->sc_requested_r_scale);
1938
1939		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
1940			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
1941			    s, __func__, sc->sc_requested_s_scale,
1942			    scx->sc_requested_s_scale);
1943
1944		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
1945			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
1946	}
1947
1948	if (s != NULL)
1949		free(s, M_TCPLOG);
1950	return (0);
1951}
1952#endif /* INVARIANTS */
1953
1954static void
1955syncookie_reseed(void *arg)
1956{
1957	struct tcp_syncache *sc = arg;
1958	uint8_t *secbits;
1959	int secbit;
1960
1961	/*
1962	 * Reseeding the secret doesn't have to be protected by a lock.
1963	 * It only must be ensured that the new random values are visible
1964	 * to all CPUs in a SMP environment.  The atomic with release
1965	 * semantics ensures that.
1966	 */
1967	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
1968	secbits = sc->secret.key[secbit];
1969	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
1970	atomic_add_rel_int(&sc->secret.oddeven, 1);
1971
1972	/* Reschedule ourself. */
1973	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
1974}
1975
1976/*
1977 * Returns the current number of syncache entries.  This number
1978 * will probably change before you get around to calling
1979 * syncache_pcblist.
1980 */
1981int
1982syncache_pcbcount(void)
1983{
1984	struct syncache_head *sch;
1985	int count, i;
1986
1987	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1988		/* No need to lock for a read. */
1989		sch = &V_tcp_syncache.hashbase[i];
1990		count += sch->sch_length;
1991	}
1992	return count;
1993}
1994
1995/*
1996 * Exports the syncache entries to userland so that netstat can display
1997 * them alongside the other sockets.  This function is intended to be
1998 * called only from tcp_pcblist.
1999 *
2000 * Due to concurrency on an active system, the number of pcbs exported
2001 * may have no relation to max_pcbs.  max_pcbs merely indicates the
2002 * amount of space the caller allocated for this function to use.
2003 */
2004int
2005syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
2006{
2007	struct xtcpcb xt;
2008	struct syncache *sc;
2009	struct syncache_head *sch;
2010	int count, error, i;
2011
2012	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
2013		sch = &V_tcp_syncache.hashbase[i];
2014		SCH_LOCK(sch);
2015		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
2016			if (count >= max_pcbs) {
2017				SCH_UNLOCK(sch);
2018				goto exit;
2019			}
2020			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
2021				continue;
2022			bzero(&xt, sizeof(xt));
2023			xt.xt_len = sizeof(xt);
2024			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2025				xt.xt_inp.inp_vflag = INP_IPV6;
2026			else
2027				xt.xt_inp.inp_vflag = INP_IPV4;
2028			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2029			xt.xt_tp.t_inpcb = &xt.xt_inp;
2030			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2031			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2032			xt.xt_socket.xso_len = sizeof (struct xsocket);
2033			xt.xt_socket.so_type = SOCK_STREAM;
2034			xt.xt_socket.so_state = SS_ISCONNECTING;
2035			error = SYSCTL_OUT(req, &xt, sizeof xt);
2036			if (error) {
2037				SCH_UNLOCK(sch);
2038				goto exit;
2039			}
2040			count++;
2041		}
2042		SCH_UNLOCK(sch);
2043	}
2044exit:
2045	*pcbs_exported = count;
2046	return error;
2047}
2048