tcp_syncache.c revision 253210
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006,2013 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program. [2001 McAfee, Inc.]
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 253210 2013-07-11 15:29:25Z andre $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_pcbgroup.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/proc.h>		/* for proc0 declaration */
51#include <sys/random.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/syslog.h>
55#include <sys/ucred.h>
56
57#include <sys/md5.h>
58#include <crypto/siphash/siphash.h>
59
60#include <vm/uma.h>
61
62#include <net/if.h>
63#include <net/route.h>
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/in_var.h>
70#include <netinet/in_pcb.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_options.h>
73#ifdef INET6
74#include <netinet/ip6.h>
75#include <netinet/icmp6.h>
76#include <netinet6/nd6.h>
77#include <netinet6/ip6_var.h>
78#include <netinet6/in6_pcb.h>
79#endif
80#include <netinet/tcp.h>
81#include <netinet/tcp_fsm.h>
82#include <netinet/tcp_seq.h>
83#include <netinet/tcp_timer.h>
84#include <netinet/tcp_var.h>
85#include <netinet/tcp_syncache.h>
86#ifdef INET6
87#include <netinet6/tcp6_var.h>
88#endif
89#ifdef TCP_OFFLOAD
90#include <netinet/toecore.h>
91#endif
92
93#ifdef IPSEC
94#include <netipsec/ipsec.h>
95#ifdef INET6
96#include <netipsec/ipsec6.h>
97#endif
98#include <netipsec/key.h>
99#endif /*IPSEC*/
100
101#include <machine/in_cksum.h>
102
103#include <security/mac/mac_framework.h>
104
105static VNET_DEFINE(int, tcp_syncookies) = 1;
106#define	V_tcp_syncookies		VNET(tcp_syncookies)
107SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
108    &VNET_NAME(tcp_syncookies), 0,
109    "Use TCP SYN cookies if the syncache overflows");
110
111static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
112#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
113SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
114    &VNET_NAME(tcp_syncookiesonly), 0,
115    "Use only TCP SYN cookies");
116
117#ifdef TCP_OFFLOAD
118#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
119#endif
120
121static void	 syncache_drop(struct syncache *, struct syncache_head *);
122static void	 syncache_free(struct syncache *);
123static void	 syncache_insert(struct syncache *, struct syncache_head *);
124struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
125static int	 syncache_respond(struct syncache *);
126static struct	 socket *syncache_socket(struct syncache *, struct socket *,
127		    struct mbuf *m);
128static int	 syncache_sysctl_count(SYSCTL_HANDLER_ARGS);
129static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
130		    int docallout);
131static void	 syncache_timer(void *);
132
133static uint32_t	 syncookie_mac(struct in_conninfo *, tcp_seq, uint8_t,
134		    uint8_t *, uintptr_t);
135static tcp_seq	 syncookie_generate(struct syncache_head *, struct syncache *);
136static struct syncache
137		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
138		    struct syncache *, struct tcphdr *, struct tcpopt *,
139		    struct socket *);
140static void	 syncookie_reseed(void *);
141#ifdef INVARIANTS
142static int	 syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
143		    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
144		    struct socket *lso);
145#endif
146
147/*
148 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
149 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
150 * the odds are that the user has given up attempting to connect by then.
151 */
152#define SYNCACHE_MAXREXMTS		3
153
154/* Arbitrary values */
155#define TCP_SYNCACHE_HASHSIZE		512
156#define TCP_SYNCACHE_BUCKETLIMIT	30
157
158static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
159#define	V_tcp_syncache			VNET(tcp_syncache)
160
161static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
162    "TCP SYN cache");
163
164SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
165    &VNET_NAME(tcp_syncache.bucket_limit), 0,
166    "Per-bucket hash limit for syncache");
167
168SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
169    &VNET_NAME(tcp_syncache.cache_limit), 0,
170    "Overall entry limit for syncache");
171
172SYSCTL_VNET_PROC(_net_inet_tcp_syncache, OID_AUTO, count, (CTLTYPE_UINT|CTLFLAG_RD),
173    NULL, 0, &syncache_sysctl_count, "IU",
174    "Current number of entries in syncache");
175
176SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
177    &VNET_NAME(tcp_syncache.hashsize), 0,
178    "Size of TCP syncache hashtable");
179
180SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
181    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
182    "Limit on SYN/ACK retransmissions");
183
184VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
185SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
186    CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
187    "Send reset on socket allocation failure");
188
189static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
190
191#define SYNCACHE_HASH(inc, mask)					\
192	((V_tcp_syncache.hash_secret ^					\
193	  (inc)->inc_faddr.s_addr ^					\
194	  ((inc)->inc_faddr.s_addr >> 16) ^				\
195	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
196
197#define SYNCACHE_HASH6(inc, mask)					\
198	((V_tcp_syncache.hash_secret ^					\
199	  (inc)->inc6_faddr.s6_addr32[0] ^				\
200	  (inc)->inc6_faddr.s6_addr32[3] ^				\
201	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
202
203#define ENDPTS_EQ(a, b) (						\
204	(a)->ie_fport == (b)->ie_fport &&				\
205	(a)->ie_lport == (b)->ie_lport &&				\
206	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
207	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
208)
209
210#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
211
212#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
213#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
214#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
215
216/*
217 * Requires the syncache entry to be already removed from the bucket list.
218 */
219static void
220syncache_free(struct syncache *sc)
221{
222
223	if (sc->sc_ipopts)
224		(void) m_free(sc->sc_ipopts);
225	if (sc->sc_cred)
226		crfree(sc->sc_cred);
227#ifdef MAC
228	mac_syncache_destroy(&sc->sc_label);
229#endif
230
231	uma_zfree(V_tcp_syncache.zone, sc);
232}
233
234void
235syncache_init(void)
236{
237	int i;
238
239	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
240	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
241	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
242	V_tcp_syncache.hash_secret = arc4random();
243
244	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
245	    &V_tcp_syncache.hashsize);
246	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
247	    &V_tcp_syncache.bucket_limit);
248	if (!powerof2(V_tcp_syncache.hashsize) ||
249	    V_tcp_syncache.hashsize == 0) {
250		printf("WARNING: syncache hash size is not a power of 2.\n");
251		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
252	}
253	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
254
255	/* Set limits. */
256	V_tcp_syncache.cache_limit =
257	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
258	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
259	    &V_tcp_syncache.cache_limit);
260
261	/* Allocate the hash table. */
262	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
263	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
264
265#ifdef VIMAGE
266	V_tcp_syncache.vnet = curvnet;
267#endif
268
269	/* Initialize the hash buckets. */
270	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
271		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
272		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
273			 NULL, MTX_DEF);
274		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
275			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
276		V_tcp_syncache.hashbase[i].sch_length = 0;
277		V_tcp_syncache.hashbase[i].sch_sc = &V_tcp_syncache;
278	}
279
280	/* Create the syncache entry zone. */
281	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
282	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
283	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
284	    V_tcp_syncache.cache_limit);
285
286	/* Start the SYN cookie reseeder callout. */
287	callout_init(&V_tcp_syncache.secret.reseed, 1);
288	arc4rand(V_tcp_syncache.secret.key[0], SYNCOOKIE_SECRET_SIZE, 0);
289	arc4rand(V_tcp_syncache.secret.key[1], SYNCOOKIE_SECRET_SIZE, 0);
290	callout_reset(&V_tcp_syncache.secret.reseed, SYNCOOKIE_LIFETIME * hz,
291	    syncookie_reseed, &V_tcp_syncache);
292}
293
294#ifdef VIMAGE
295void
296syncache_destroy(void)
297{
298	struct syncache_head *sch;
299	struct syncache *sc, *nsc;
300	int i;
301
302	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
303	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
304
305		sch = &V_tcp_syncache.hashbase[i];
306		callout_drain(&sch->sch_timer);
307
308		SCH_LOCK(sch);
309		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
310			syncache_drop(sc, sch);
311		SCH_UNLOCK(sch);
312		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
313		    ("%s: sch->sch_bucket not empty", __func__));
314		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
315		    __func__, sch->sch_length));
316		mtx_destroy(&sch->sch_mtx);
317	}
318
319	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
320	    ("%s: cache_count not 0", __func__));
321
322	/* Free the allocated global resources. */
323	uma_zdestroy(V_tcp_syncache.zone);
324	free(V_tcp_syncache.hashbase, M_SYNCACHE);
325
326	callout_drain(&V_tcp_syncache.secret.reseed);
327}
328#endif
329
330static int
331syncache_sysctl_count(SYSCTL_HANDLER_ARGS)
332{
333	int count;
334
335	count = uma_zone_get_cur(V_tcp_syncache.zone);
336	return (sysctl_handle_int(oidp, &count, 0, req));
337}
338
339/*
340 * Inserts a syncache entry into the specified bucket row.
341 * Locks and unlocks the syncache_head autonomously.
342 */
343static void
344syncache_insert(struct syncache *sc, struct syncache_head *sch)
345{
346	struct syncache *sc2;
347
348	SCH_LOCK(sch);
349
350	/*
351	 * Make sure that we don't overflow the per-bucket limit.
352	 * If the bucket is full, toss the oldest element.
353	 */
354	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
355		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
356			("sch->sch_length incorrect"));
357		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
358		syncache_drop(sc2, sch);
359		TCPSTAT_INC(tcps_sc_bucketoverflow);
360	}
361
362	/* Put it into the bucket. */
363	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
364	sch->sch_length++;
365
366#ifdef TCP_OFFLOAD
367	if (ADDED_BY_TOE(sc)) {
368		struct toedev *tod = sc->sc_tod;
369
370		tod->tod_syncache_added(tod, sc->sc_todctx);
371	}
372#endif
373
374	/* Reinitialize the bucket row's timer. */
375	if (sch->sch_length == 1)
376		sch->sch_nextc = ticks + INT_MAX;
377	syncache_timeout(sc, sch, 1);
378
379	SCH_UNLOCK(sch);
380
381	TCPSTAT_INC(tcps_sc_added);
382}
383
384/*
385 * Remove and free entry from syncache bucket row.
386 * Expects locked syncache head.
387 */
388static void
389syncache_drop(struct syncache *sc, struct syncache_head *sch)
390{
391
392	SCH_LOCK_ASSERT(sch);
393
394	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
395	sch->sch_length--;
396
397#ifdef TCP_OFFLOAD
398	if (ADDED_BY_TOE(sc)) {
399		struct toedev *tod = sc->sc_tod;
400
401		tod->tod_syncache_removed(tod, sc->sc_todctx);
402	}
403#endif
404
405	syncache_free(sc);
406}
407
408/*
409 * Engage/reengage time on bucket row.
410 */
411static void
412syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
413{
414	sc->sc_rxttime = ticks +
415		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
416	sc->sc_rxmits++;
417	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
418		sch->sch_nextc = sc->sc_rxttime;
419		if (docallout)
420			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
421			    syncache_timer, (void *)sch);
422	}
423}
424
425/*
426 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
427 * If we have retransmitted an entry the maximum number of times, expire it.
428 * One separate timer for each bucket row.
429 */
430static void
431syncache_timer(void *xsch)
432{
433	struct syncache_head *sch = (struct syncache_head *)xsch;
434	struct syncache *sc, *nsc;
435	int tick = ticks;
436	char *s;
437
438	CURVNET_SET(sch->sch_sc->vnet);
439
440	/* NB: syncache_head has already been locked by the callout. */
441	SCH_LOCK_ASSERT(sch);
442
443	/*
444	 * In the following cycle we may remove some entries and/or
445	 * advance some timeouts, so re-initialize the bucket timer.
446	 */
447	sch->sch_nextc = tick + INT_MAX;
448
449	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
450		/*
451		 * We do not check if the listen socket still exists
452		 * and accept the case where the listen socket may be
453		 * gone by the time we resend the SYN/ACK.  We do
454		 * not expect this to happens often. If it does,
455		 * then the RST will be sent by the time the remote
456		 * host does the SYN/ACK->ACK.
457		 */
458		if (TSTMP_GT(sc->sc_rxttime, tick)) {
459			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
460				sch->sch_nextc = sc->sc_rxttime;
461			continue;
462		}
463		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
464			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
465				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
466				    "giving up and removing syncache entry\n",
467				    s, __func__);
468				free(s, M_TCPLOG);
469			}
470			syncache_drop(sc, sch);
471			TCPSTAT_INC(tcps_sc_stale);
472			continue;
473		}
474		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
475			log(LOG_DEBUG, "%s; %s: Response timeout, "
476			    "retransmitting (%u) SYN|ACK\n",
477			    s, __func__, sc->sc_rxmits);
478			free(s, M_TCPLOG);
479		}
480
481		(void) syncache_respond(sc);
482		TCPSTAT_INC(tcps_sc_retransmitted);
483		syncache_timeout(sc, sch, 0);
484	}
485	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
486		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
487			syncache_timer, (void *)(sch));
488	CURVNET_RESTORE();
489}
490
491/*
492 * Find an entry in the syncache.
493 * Returns always with locked syncache_head plus a matching entry or NULL.
494 */
495struct syncache *
496syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
497{
498	struct syncache *sc;
499	struct syncache_head *sch;
500
501#ifdef INET6
502	if (inc->inc_flags & INC_ISIPV6) {
503		sch = &V_tcp_syncache.hashbase[
504		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
505		*schp = sch;
506
507		SCH_LOCK(sch);
508
509		/* Circle through bucket row to find matching entry. */
510		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
511			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
512				return (sc);
513		}
514	} else
515#endif
516	{
517		sch = &V_tcp_syncache.hashbase[
518		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
519		*schp = sch;
520
521		SCH_LOCK(sch);
522
523		/* Circle through bucket row to find matching entry. */
524		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
525#ifdef INET6
526			if (sc->sc_inc.inc_flags & INC_ISIPV6)
527				continue;
528#endif
529			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
530				return (sc);
531		}
532	}
533	SCH_LOCK_ASSERT(*schp);
534	return (NULL);			/* always returns with locked sch */
535}
536
537/*
538 * This function is called when we get a RST for a
539 * non-existent connection, so that we can see if the
540 * connection is in the syn cache.  If it is, zap it.
541 */
542void
543syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
544{
545	struct syncache *sc;
546	struct syncache_head *sch;
547	char *s = NULL;
548
549	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
550	SCH_LOCK_ASSERT(sch);
551
552	/*
553	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
554	 * See RFC 793 page 65, section SEGMENT ARRIVES.
555	 */
556	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
557		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
558			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
559			    "FIN flag set, segment ignored\n", s, __func__);
560		TCPSTAT_INC(tcps_badrst);
561		goto done;
562	}
563
564	/*
565	 * No corresponding connection was found in syncache.
566	 * If syncookies are enabled and possibly exclusively
567	 * used, or we are under memory pressure, a valid RST
568	 * may not find a syncache entry.  In that case we're
569	 * done and no SYN|ACK retransmissions will happen.
570	 * Otherwise the RST was misdirected or spoofed.
571	 */
572	if (sc == NULL) {
573		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
574			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
575			    "syncache entry (possibly syncookie only), "
576			    "segment ignored\n", s, __func__);
577		TCPSTAT_INC(tcps_badrst);
578		goto done;
579	}
580
581	/*
582	 * If the RST bit is set, check the sequence number to see
583	 * if this is a valid reset segment.
584	 * RFC 793 page 37:
585	 *   In all states except SYN-SENT, all reset (RST) segments
586	 *   are validated by checking their SEQ-fields.  A reset is
587	 *   valid if its sequence number is in the window.
588	 *
589	 *   The sequence number in the reset segment is normally an
590	 *   echo of our outgoing acknowlegement numbers, but some hosts
591	 *   send a reset with the sequence number at the rightmost edge
592	 *   of our receive window, and we have to handle this case.
593	 */
594	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
595	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
596		syncache_drop(sc, sch);
597		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
598			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
599			    "connection attempt aborted by remote endpoint\n",
600			    s, __func__);
601		TCPSTAT_INC(tcps_sc_reset);
602	} else {
603		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
604			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
605			    "IRS %u (+WND %u), segment ignored\n",
606			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
607		TCPSTAT_INC(tcps_badrst);
608	}
609
610done:
611	if (s != NULL)
612		free(s, M_TCPLOG);
613	SCH_UNLOCK(sch);
614}
615
616void
617syncache_badack(struct in_conninfo *inc)
618{
619	struct syncache *sc;
620	struct syncache_head *sch;
621
622	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
623	SCH_LOCK_ASSERT(sch);
624	if (sc != NULL) {
625		syncache_drop(sc, sch);
626		TCPSTAT_INC(tcps_sc_badack);
627	}
628	SCH_UNLOCK(sch);
629}
630
631void
632syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
633{
634	struct syncache *sc;
635	struct syncache_head *sch;
636
637	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
638	SCH_LOCK_ASSERT(sch);
639	if (sc == NULL)
640		goto done;
641
642	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
643	if (ntohl(th->th_seq) != sc->sc_iss)
644		goto done;
645
646	/*
647	 * If we've rertransmitted 3 times and this is our second error,
648	 * we remove the entry.  Otherwise, we allow it to continue on.
649	 * This prevents us from incorrectly nuking an entry during a
650	 * spurious network outage.
651	 *
652	 * See tcp_notify().
653	 */
654	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
655		sc->sc_flags |= SCF_UNREACH;
656		goto done;
657	}
658	syncache_drop(sc, sch);
659	TCPSTAT_INC(tcps_sc_unreach);
660done:
661	SCH_UNLOCK(sch);
662}
663
664/*
665 * Build a new TCP socket structure from a syncache entry.
666 */
667static struct socket *
668syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
669{
670	struct inpcb *inp = NULL;
671	struct socket *so;
672	struct tcpcb *tp;
673	int error;
674	char *s;
675
676	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
677
678	/*
679	 * Ok, create the full blown connection, and set things up
680	 * as they would have been set up if we had created the
681	 * connection when the SYN arrived.  If we can't create
682	 * the connection, abort it.
683	 */
684	so = sonewconn(lso, SS_ISCONNECTED);
685	if (so == NULL) {
686		/*
687		 * Drop the connection; we will either send a RST or
688		 * have the peer retransmit its SYN again after its
689		 * RTO and try again.
690		 */
691		TCPSTAT_INC(tcps_listendrop);
692		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
693			log(LOG_DEBUG, "%s; %s: Socket create failed "
694			    "due to limits or memory shortage\n",
695			    s, __func__);
696			free(s, M_TCPLOG);
697		}
698		goto abort2;
699	}
700#ifdef MAC
701	mac_socketpeer_set_from_mbuf(m, so);
702#endif
703
704	inp = sotoinpcb(so);
705	inp->inp_inc.inc_fibnum = so->so_fibnum;
706	INP_WLOCK(inp);
707	INP_HASH_WLOCK(&V_tcbinfo);
708
709	/* Insert new socket into PCB hash list. */
710	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
711#ifdef INET6
712	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
713		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
714	} else {
715		inp->inp_vflag &= ~INP_IPV6;
716		inp->inp_vflag |= INP_IPV4;
717#endif
718		inp->inp_laddr = sc->sc_inc.inc_laddr;
719#ifdef INET6
720	}
721#endif
722
723	/*
724	 * Install in the reservation hash table for now, but don't yet
725	 * install a connection group since the full 4-tuple isn't yet
726	 * configured.
727	 */
728	inp->inp_lport = sc->sc_inc.inc_lport;
729	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
730		/*
731		 * Undo the assignments above if we failed to
732		 * put the PCB on the hash lists.
733		 */
734#ifdef INET6
735		if (sc->sc_inc.inc_flags & INC_ISIPV6)
736			inp->in6p_laddr = in6addr_any;
737		else
738#endif
739			inp->inp_laddr.s_addr = INADDR_ANY;
740		inp->inp_lport = 0;
741		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
742			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
743			    "with error %i\n",
744			    s, __func__, error);
745			free(s, M_TCPLOG);
746		}
747		INP_HASH_WUNLOCK(&V_tcbinfo);
748		goto abort;
749	}
750#ifdef IPSEC
751	/* Copy old policy into new socket's. */
752	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
753		printf("syncache_socket: could not copy policy\n");
754#endif
755#ifdef INET6
756	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
757		struct inpcb *oinp = sotoinpcb(lso);
758		struct in6_addr laddr6;
759		struct sockaddr_in6 sin6;
760		/*
761		 * Inherit socket options from the listening socket.
762		 * Note that in6p_inputopts are not (and should not be)
763		 * copied, since it stores previously received options and is
764		 * used to detect if each new option is different than the
765		 * previous one and hence should be passed to a user.
766		 * If we copied in6p_inputopts, a user would not be able to
767		 * receive options just after calling the accept system call.
768		 */
769		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
770		if (oinp->in6p_outputopts)
771			inp->in6p_outputopts =
772			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
773
774		sin6.sin6_family = AF_INET6;
775		sin6.sin6_len = sizeof(sin6);
776		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
777		sin6.sin6_port = sc->sc_inc.inc_fport;
778		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
779		laddr6 = inp->in6p_laddr;
780		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
781			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
782		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
783		    thread0.td_ucred, m)) != 0) {
784			inp->in6p_laddr = laddr6;
785			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
786				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
787				    "with error %i\n",
788				    s, __func__, error);
789				free(s, M_TCPLOG);
790			}
791			INP_HASH_WUNLOCK(&V_tcbinfo);
792			goto abort;
793		}
794		/* Override flowlabel from in6_pcbconnect. */
795		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
796		inp->inp_flow |= sc->sc_flowlabel;
797	}
798#endif /* INET6 */
799#if defined(INET) && defined(INET6)
800	else
801#endif
802#ifdef INET
803	{
804		struct in_addr laddr;
805		struct sockaddr_in sin;
806
807		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
808
809		if (inp->inp_options == NULL) {
810			inp->inp_options = sc->sc_ipopts;
811			sc->sc_ipopts = NULL;
812		}
813
814		sin.sin_family = AF_INET;
815		sin.sin_len = sizeof(sin);
816		sin.sin_addr = sc->sc_inc.inc_faddr;
817		sin.sin_port = sc->sc_inc.inc_fport;
818		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
819		laddr = inp->inp_laddr;
820		if (inp->inp_laddr.s_addr == INADDR_ANY)
821			inp->inp_laddr = sc->sc_inc.inc_laddr;
822		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
823		    thread0.td_ucred, m)) != 0) {
824			inp->inp_laddr = laddr;
825			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
826				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
827				    "with error %i\n",
828				    s, __func__, error);
829				free(s, M_TCPLOG);
830			}
831			INP_HASH_WUNLOCK(&V_tcbinfo);
832			goto abort;
833		}
834	}
835#endif /* INET */
836	INP_HASH_WUNLOCK(&V_tcbinfo);
837	tp = intotcpcb(inp);
838	tp->t_state = TCPS_SYN_RECEIVED;
839	tp->iss = sc->sc_iss;
840	tp->irs = sc->sc_irs;
841	tcp_rcvseqinit(tp);
842	tcp_sendseqinit(tp);
843	tp->snd_wl1 = sc->sc_irs;
844	tp->snd_max = tp->iss + 1;
845	tp->snd_nxt = tp->iss + 1;
846	tp->rcv_up = sc->sc_irs + 1;
847	tp->rcv_wnd = sc->sc_wnd;
848	tp->rcv_adv += tp->rcv_wnd;
849	tp->last_ack_sent = tp->rcv_nxt;
850
851	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
852	if (sc->sc_flags & SCF_NOOPT)
853		tp->t_flags |= TF_NOOPT;
854	else {
855		if (sc->sc_flags & SCF_WINSCALE) {
856			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
857			tp->snd_scale = sc->sc_requested_s_scale;
858			tp->request_r_scale = sc->sc_requested_r_scale;
859		}
860		if (sc->sc_flags & SCF_TIMESTAMP) {
861			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
862			tp->ts_recent = sc->sc_tsreflect;
863			tp->ts_recent_age = tcp_ts_getticks();
864			tp->ts_offset = sc->sc_tsoff;
865		}
866#ifdef TCP_SIGNATURE
867		if (sc->sc_flags & SCF_SIGNATURE)
868			tp->t_flags |= TF_SIGNATURE;
869#endif
870		if (sc->sc_flags & SCF_SACK)
871			tp->t_flags |= TF_SACK_PERMIT;
872	}
873
874	if (sc->sc_flags & SCF_ECN)
875		tp->t_flags |= TF_ECN_PERMIT;
876
877	/*
878	 * Set up MSS and get cached values from tcp_hostcache.
879	 * This might overwrite some of the defaults we just set.
880	 */
881	tcp_mss(tp, sc->sc_peer_mss);
882
883	/*
884	 * If the SYN,ACK was retransmitted, indicate that CWND to be
885	 * limited to one segment in cc_conn_init().
886	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
887	 */
888	if (sc->sc_rxmits > 1)
889		tp->snd_cwnd = 1;
890
891#ifdef TCP_OFFLOAD
892	/*
893	 * Allow a TOE driver to install its hooks.  Note that we hold the
894	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
895	 * new connection before the TOE driver has done its thing.
896	 */
897	if (ADDED_BY_TOE(sc)) {
898		struct toedev *tod = sc->sc_tod;
899
900		tod->tod_offload_socket(tod, sc->sc_todctx, so);
901	}
902#endif
903	/*
904	 * Copy and activate timers.
905	 */
906	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
907	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
908	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
909	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
910	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
911
912	INP_WUNLOCK(inp);
913
914	TCPSTAT_INC(tcps_accepts);
915	return (so);
916
917abort:
918	INP_WUNLOCK(inp);
919abort2:
920	if (so != NULL)
921		soabort(so);
922	return (NULL);
923}
924
925/*
926 * This function gets called when we receive an ACK for a
927 * socket in the LISTEN state.  We look up the connection
928 * in the syncache, and if its there, we pull it out of
929 * the cache and turn it into a full-blown connection in
930 * the SYN-RECEIVED state.
931 */
932int
933syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
934    struct socket **lsop, struct mbuf *m)
935{
936	struct syncache *sc;
937	struct syncache_head *sch;
938	struct syncache scs;
939	char *s;
940
941	/*
942	 * Global TCP locks are held because we manipulate the PCB lists
943	 * and create a new socket.
944	 */
945	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
946	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
947	    ("%s: can handle only ACK", __func__));
948
949	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
950	SCH_LOCK_ASSERT(sch);
951
952#ifdef INVARIANTS
953	/*
954	 * Test code for syncookies comparing the syncache stored
955	 * values with the reconstructed values from the cookie.
956	 */
957	if (sc != NULL)
958		syncookie_cmp(inc, sch, sc, th, to, *lsop);
959#endif
960
961	if (sc == NULL) {
962		/*
963		 * There is no syncache entry, so see if this ACK is
964		 * a returning syncookie.  To do this, first:
965		 *  A. See if this socket has had a syncache entry dropped in
966		 *     the past.  We don't want to accept a bogus syncookie
967		 *     if we've never received a SYN.
968		 *  B. check that the syncookie is valid.  If it is, then
969		 *     cobble up a fake syncache entry, and return.
970		 */
971		if (!V_tcp_syncookies) {
972			SCH_UNLOCK(sch);
973			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
974				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
975				    "segment rejected (syncookies disabled)\n",
976				    s, __func__);
977			goto failed;
978		}
979		bzero(&scs, sizeof(scs));
980		sc = syncookie_lookup(inc, sch, &scs, th, to, *lsop);
981		SCH_UNLOCK(sch);
982		if (sc == NULL) {
983			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
984				log(LOG_DEBUG, "%s; %s: Segment failed "
985				    "SYNCOOKIE authentication, segment rejected "
986				    "(probably spoofed)\n", s, __func__);
987			goto failed;
988		}
989	} else {
990		/* Pull out the entry to unlock the bucket row. */
991		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
992		sch->sch_length--;
993#ifdef TCP_OFFLOAD
994		if (ADDED_BY_TOE(sc)) {
995			struct toedev *tod = sc->sc_tod;
996
997			tod->tod_syncache_removed(tod, sc->sc_todctx);
998		}
999#endif
1000		SCH_UNLOCK(sch);
1001	}
1002
1003	/*
1004	 * Segment validation:
1005	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
1006	 */
1007	if (th->th_ack != sc->sc_iss + 1) {
1008		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1009			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
1010			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
1011		goto failed;
1012	}
1013
1014	/*
1015	 * The SEQ must fall in the window starting at the received
1016	 * initial receive sequence number + 1 (the SYN).
1017	 */
1018	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
1019	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
1020		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1021			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
1022			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
1023		goto failed;
1024	}
1025
1026	/*
1027	 * If timestamps were not negotiated during SYN/ACK they
1028	 * must not appear on any segment during this session.
1029	 */
1030	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1031		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1032			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1033			    "segment rejected\n", s, __func__);
1034		goto failed;
1035	}
1036
1037	/*
1038	 * If timestamps were negotiated during SYN/ACK they should
1039	 * appear on every segment during this session.
1040	 * XXXAO: This is only informal as there have been unverified
1041	 * reports of non-compliants stacks.
1042	 */
1043	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1044		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1045			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1046			    "no action\n", s, __func__);
1047	}
1048
1049	/*
1050	 * If timestamps were negotiated the reflected timestamp
1051	 * must be equal to what we actually sent in the SYN|ACK.
1052	 */
1053	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1054		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1055			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1056			    "segment rejected\n",
1057			    s, __func__, to->to_tsecr, sc->sc_ts);
1058		goto failed;
1059	}
1060
1061	*lsop = syncache_socket(sc, *lsop, m);
1062
1063	if (*lsop == NULL)
1064		TCPSTAT_INC(tcps_sc_aborted);
1065	else
1066		TCPSTAT_INC(tcps_sc_completed);
1067
1068/* how do we find the inp for the new socket? */
1069	if (sc != &scs)
1070		syncache_free(sc);
1071	return (1);
1072failed:
1073	if (sc != NULL && sc != &scs)
1074		syncache_free(sc);
1075	if (s != NULL)
1076		free(s, M_TCPLOG);
1077	*lsop = NULL;
1078	return (0);
1079}
1080
1081/*
1082 * Given a LISTEN socket and an inbound SYN request, add
1083 * this to the syn cache, and send back a segment:
1084 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1085 * to the source.
1086 *
1087 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1088 * Doing so would require that we hold onto the data and deliver it
1089 * to the application.  However, if we are the target of a SYN-flood
1090 * DoS attack, an attacker could send data which would eventually
1091 * consume all available buffer space if it were ACKed.  By not ACKing
1092 * the data, we avoid this DoS scenario.
1093 */
1094void
1095syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1096    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1097    void *todctx)
1098{
1099	struct tcpcb *tp;
1100	struct socket *so;
1101	struct syncache *sc = NULL;
1102	struct syncache_head *sch;
1103	struct mbuf *ipopts = NULL;
1104	u_int ltflags;
1105	int win, sb_hiwat, ip_ttl, ip_tos;
1106	char *s;
1107#ifdef INET6
1108	int autoflowlabel = 0;
1109#endif
1110#ifdef MAC
1111	struct label *maclabel;
1112#endif
1113	struct syncache scs;
1114	struct ucred *cred;
1115
1116	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1117	INP_WLOCK_ASSERT(inp);			/* listen socket */
1118	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1119	    ("%s: unexpected tcp flags", __func__));
1120
1121	/*
1122	 * Combine all so/tp operations very early to drop the INP lock as
1123	 * soon as possible.
1124	 */
1125	so = *lsop;
1126	tp = sototcpcb(so);
1127	cred = crhold(so->so_cred);
1128
1129#ifdef INET6
1130	if ((inc->inc_flags & INC_ISIPV6) &&
1131	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1132		autoflowlabel = 1;
1133#endif
1134	ip_ttl = inp->inp_ip_ttl;
1135	ip_tos = inp->inp_ip_tos;
1136	win = sbspace(&so->so_rcv);
1137	sb_hiwat = so->so_rcv.sb_hiwat;
1138	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1139
1140	/* By the time we drop the lock these should no longer be used. */
1141	so = NULL;
1142	tp = NULL;
1143
1144#ifdef MAC
1145	if (mac_syncache_init(&maclabel) != 0) {
1146		INP_WUNLOCK(inp);
1147		INP_INFO_WUNLOCK(&V_tcbinfo);
1148		goto done;
1149	} else
1150		mac_syncache_create(maclabel, inp);
1151#endif
1152	INP_WUNLOCK(inp);
1153	INP_INFO_WUNLOCK(&V_tcbinfo);
1154
1155	/*
1156	 * Remember the IP options, if any.
1157	 */
1158#ifdef INET6
1159	if (!(inc->inc_flags & INC_ISIPV6))
1160#endif
1161#ifdef INET
1162		ipopts = (m) ? ip_srcroute(m) : NULL;
1163#else
1164		ipopts = NULL;
1165#endif
1166
1167	/*
1168	 * See if we already have an entry for this connection.
1169	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1170	 *
1171	 * XXX: should the syncache be re-initialized with the contents
1172	 * of the new SYN here (which may have different options?)
1173	 *
1174	 * XXX: We do not check the sequence number to see if this is a
1175	 * real retransmit or a new connection attempt.  The question is
1176	 * how to handle such a case; either ignore it as spoofed, or
1177	 * drop the current entry and create a new one?
1178	 */
1179	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1180	SCH_LOCK_ASSERT(sch);
1181	if (sc != NULL) {
1182		TCPSTAT_INC(tcps_sc_dupsyn);
1183		if (ipopts) {
1184			/*
1185			 * If we were remembering a previous source route,
1186			 * forget it and use the new one we've been given.
1187			 */
1188			if (sc->sc_ipopts)
1189				(void) m_free(sc->sc_ipopts);
1190			sc->sc_ipopts = ipopts;
1191		}
1192		/*
1193		 * Update timestamp if present.
1194		 */
1195		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1196			sc->sc_tsreflect = to->to_tsval;
1197		else
1198			sc->sc_flags &= ~SCF_TIMESTAMP;
1199#ifdef MAC
1200		/*
1201		 * Since we have already unconditionally allocated label
1202		 * storage, free it up.  The syncache entry will already
1203		 * have an initialized label we can use.
1204		 */
1205		mac_syncache_destroy(&maclabel);
1206#endif
1207		/* Retransmit SYN|ACK and reset retransmit count. */
1208		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1209			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1210			    "resetting timer and retransmitting SYN|ACK\n",
1211			    s, __func__);
1212			free(s, M_TCPLOG);
1213		}
1214		if (syncache_respond(sc) == 0) {
1215			sc->sc_rxmits = 0;
1216			syncache_timeout(sc, sch, 1);
1217			TCPSTAT_INC(tcps_sndacks);
1218			TCPSTAT_INC(tcps_sndtotal);
1219		}
1220		SCH_UNLOCK(sch);
1221		goto done;
1222	}
1223
1224	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1225	if (sc == NULL) {
1226		/*
1227		 * The zone allocator couldn't provide more entries.
1228		 * Treat this as if the cache was full; drop the oldest
1229		 * entry and insert the new one.
1230		 */
1231		TCPSTAT_INC(tcps_sc_zonefail);
1232		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1233			syncache_drop(sc, sch);
1234		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1235		if (sc == NULL) {
1236			if (V_tcp_syncookies) {
1237				bzero(&scs, sizeof(scs));
1238				sc = &scs;
1239			} else {
1240				SCH_UNLOCK(sch);
1241				if (ipopts)
1242					(void) m_free(ipopts);
1243				goto done;
1244			}
1245		}
1246	}
1247
1248	/*
1249	 * Fill in the syncache values.
1250	 */
1251#ifdef MAC
1252	sc->sc_label = maclabel;
1253#endif
1254	sc->sc_cred = cred;
1255	cred = NULL;
1256	sc->sc_ipopts = ipopts;
1257	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1258#ifdef INET6
1259	if (!(inc->inc_flags & INC_ISIPV6))
1260#endif
1261	{
1262		sc->sc_ip_tos = ip_tos;
1263		sc->sc_ip_ttl = ip_ttl;
1264	}
1265#ifdef TCP_OFFLOAD
1266	sc->sc_tod = tod;
1267	sc->sc_todctx = todctx;
1268#endif
1269	sc->sc_irs = th->th_seq;
1270	sc->sc_iss = arc4random();
1271	sc->sc_flags = 0;
1272	sc->sc_flowlabel = 0;
1273
1274	/*
1275	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1276	 * win was derived from socket earlier in the function.
1277	 */
1278	win = imax(win, 0);
1279	win = imin(win, TCP_MAXWIN);
1280	sc->sc_wnd = win;
1281
1282	if (V_tcp_do_rfc1323) {
1283		/*
1284		 * A timestamp received in a SYN makes
1285		 * it ok to send timestamp requests and replies.
1286		 */
1287		if (to->to_flags & TOF_TS) {
1288			sc->sc_tsreflect = to->to_tsval;
1289			sc->sc_ts = tcp_ts_getticks();
1290			sc->sc_flags |= SCF_TIMESTAMP;
1291		}
1292		if (to->to_flags & TOF_SCALE) {
1293			int wscale = 0;
1294
1295			/*
1296			 * Pick the smallest possible scaling factor that
1297			 * will still allow us to scale up to sb_max, aka
1298			 * kern.ipc.maxsockbuf.
1299			 *
1300			 * We do this because there are broken firewalls that
1301			 * will corrupt the window scale option, leading to
1302			 * the other endpoint believing that our advertised
1303			 * window is unscaled.  At scale factors larger than
1304			 * 5 the unscaled window will drop below 1500 bytes,
1305			 * leading to serious problems when traversing these
1306			 * broken firewalls.
1307			 *
1308			 * With the default maxsockbuf of 256K, a scale factor
1309			 * of 3 will be chosen by this algorithm.  Those who
1310			 * choose a larger maxsockbuf should watch out
1311			 * for the compatiblity problems mentioned above.
1312			 *
1313			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1314			 * or <SYN,ACK>) segment itself is never scaled.
1315			 */
1316			while (wscale < TCP_MAX_WINSHIFT &&
1317			    (TCP_MAXWIN << wscale) < sb_max)
1318				wscale++;
1319			sc->sc_requested_r_scale = wscale;
1320			sc->sc_requested_s_scale = to->to_wscale;
1321			sc->sc_flags |= SCF_WINSCALE;
1322		}
1323	}
1324#ifdef TCP_SIGNATURE
1325	/*
1326	 * If listening socket requested TCP digests, and received SYN
1327	 * contains the option, flag this in the syncache so that
1328	 * syncache_respond() will do the right thing with the SYN+ACK.
1329	 * XXX: Currently we always record the option by default and will
1330	 * attempt to use it in syncache_respond().
1331	 */
1332	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1333		sc->sc_flags |= SCF_SIGNATURE;
1334#endif
1335	if (to->to_flags & TOF_SACKPERM)
1336		sc->sc_flags |= SCF_SACK;
1337	if (to->to_flags & TOF_MSS)
1338		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1339	if (ltflags & TF_NOOPT)
1340		sc->sc_flags |= SCF_NOOPT;
1341	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1342		sc->sc_flags |= SCF_ECN;
1343
1344	if (V_tcp_syncookies)
1345		sc->sc_iss = syncookie_generate(sch, sc);
1346#ifdef INET6
1347	if (autoflowlabel) {
1348		if (V_tcp_syncookies)
1349			sc->sc_flowlabel = sc->sc_iss;
1350		else
1351			sc->sc_flowlabel = ip6_randomflowlabel();
1352		sc->sc_flowlabel = htonl(sc->sc_flowlabel) & IPV6_FLOWLABEL_MASK;
1353	}
1354#endif
1355	SCH_UNLOCK(sch);
1356
1357	/*
1358	 * Do a standard 3-way handshake.
1359	 */
1360	if (syncache_respond(sc) == 0) {
1361		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1362			syncache_free(sc);
1363		else if (sc != &scs)
1364			syncache_insert(sc, sch);   /* locks and unlocks sch */
1365		TCPSTAT_INC(tcps_sndacks);
1366		TCPSTAT_INC(tcps_sndtotal);
1367	} else {
1368		if (sc != &scs)
1369			syncache_free(sc);
1370		TCPSTAT_INC(tcps_sc_dropped);
1371	}
1372
1373done:
1374	if (cred != NULL)
1375		crfree(cred);
1376#ifdef MAC
1377	if (sc == &scs)
1378		mac_syncache_destroy(&maclabel);
1379#endif
1380	if (m) {
1381
1382		*lsop = NULL;
1383		m_freem(m);
1384	}
1385}
1386
1387static int
1388syncache_respond(struct syncache *sc)
1389{
1390	struct ip *ip = NULL;
1391	struct mbuf *m;
1392	struct tcphdr *th = NULL;
1393	int optlen, error = 0;	/* Make compiler happy */
1394	u_int16_t hlen, tlen, mssopt;
1395	struct tcpopt to;
1396#ifdef INET6
1397	struct ip6_hdr *ip6 = NULL;
1398#endif
1399
1400	hlen =
1401#ifdef INET6
1402	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1403#endif
1404		sizeof(struct ip);
1405	tlen = hlen + sizeof(struct tcphdr);
1406
1407	/* Determine MSS we advertize to other end of connection. */
1408	mssopt = tcp_mssopt(&sc->sc_inc);
1409	if (sc->sc_peer_mss)
1410		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1411
1412	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1413	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1414	    ("syncache: mbuf too small"));
1415
1416	/* Create the IP+TCP header from scratch. */
1417	m = m_gethdr(M_NOWAIT, MT_DATA);
1418	if (m == NULL)
1419		return (ENOBUFS);
1420#ifdef MAC
1421	mac_syncache_create_mbuf(sc->sc_label, m);
1422#endif
1423	m->m_data += max_linkhdr;
1424	m->m_len = tlen;
1425	m->m_pkthdr.len = tlen;
1426	m->m_pkthdr.rcvif = NULL;
1427
1428#ifdef INET6
1429	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1430		ip6 = mtod(m, struct ip6_hdr *);
1431		ip6->ip6_vfc = IPV6_VERSION;
1432		ip6->ip6_nxt = IPPROTO_TCP;
1433		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1434		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1435		ip6->ip6_plen = htons(tlen - hlen);
1436		/* ip6_hlim is set after checksum */
1437		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1438		ip6->ip6_flow |= sc->sc_flowlabel;
1439
1440		th = (struct tcphdr *)(ip6 + 1);
1441	}
1442#endif
1443#if defined(INET6) && defined(INET)
1444	else
1445#endif
1446#ifdef INET
1447	{
1448		ip = mtod(m, struct ip *);
1449		ip->ip_v = IPVERSION;
1450		ip->ip_hl = sizeof(struct ip) >> 2;
1451		ip->ip_len = htons(tlen);
1452		ip->ip_id = 0;
1453		ip->ip_off = 0;
1454		ip->ip_sum = 0;
1455		ip->ip_p = IPPROTO_TCP;
1456		ip->ip_src = sc->sc_inc.inc_laddr;
1457		ip->ip_dst = sc->sc_inc.inc_faddr;
1458		ip->ip_ttl = sc->sc_ip_ttl;
1459		ip->ip_tos = sc->sc_ip_tos;
1460
1461		/*
1462		 * See if we should do MTU discovery.  Route lookups are
1463		 * expensive, so we will only unset the DF bit if:
1464		 *
1465		 *	1) path_mtu_discovery is disabled
1466		 *	2) the SCF_UNREACH flag has been set
1467		 */
1468		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1469		       ip->ip_off |= htons(IP_DF);
1470
1471		th = (struct tcphdr *)(ip + 1);
1472	}
1473#endif /* INET */
1474	th->th_sport = sc->sc_inc.inc_lport;
1475	th->th_dport = sc->sc_inc.inc_fport;
1476
1477	th->th_seq = htonl(sc->sc_iss);
1478	th->th_ack = htonl(sc->sc_irs + 1);
1479	th->th_off = sizeof(struct tcphdr) >> 2;
1480	th->th_x2 = 0;
1481	th->th_flags = TH_SYN|TH_ACK;
1482	th->th_win = htons(sc->sc_wnd);
1483	th->th_urp = 0;
1484
1485	if (sc->sc_flags & SCF_ECN) {
1486		th->th_flags |= TH_ECE;
1487		TCPSTAT_INC(tcps_ecn_shs);
1488	}
1489
1490	/* Tack on the TCP options. */
1491	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1492		to.to_flags = 0;
1493
1494		to.to_mss = mssopt;
1495		to.to_flags = TOF_MSS;
1496		if (sc->sc_flags & SCF_WINSCALE) {
1497			to.to_wscale = sc->sc_requested_r_scale;
1498			to.to_flags |= TOF_SCALE;
1499		}
1500		if (sc->sc_flags & SCF_TIMESTAMP) {
1501			/* Virgin timestamp or TCP cookie enhanced one. */
1502			to.to_tsval = sc->sc_ts;
1503			to.to_tsecr = sc->sc_tsreflect;
1504			to.to_flags |= TOF_TS;
1505		}
1506		if (sc->sc_flags & SCF_SACK)
1507			to.to_flags |= TOF_SACKPERM;
1508#ifdef TCP_SIGNATURE
1509		if (sc->sc_flags & SCF_SIGNATURE)
1510			to.to_flags |= TOF_SIGNATURE;
1511#endif
1512		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1513
1514		/* Adjust headers by option size. */
1515		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1516		m->m_len += optlen;
1517		m->m_pkthdr.len += optlen;
1518
1519#ifdef TCP_SIGNATURE
1520		if (sc->sc_flags & SCF_SIGNATURE)
1521			tcp_signature_compute(m, 0, 0, optlen,
1522			    to.to_signature, IPSEC_DIR_OUTBOUND);
1523#endif
1524#ifdef INET6
1525		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1526			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1527		else
1528#endif
1529			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1530	} else
1531		optlen = 0;
1532
1533	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1534	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1535#ifdef INET6
1536	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1537		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1538		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1539		    IPPROTO_TCP, 0);
1540		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1541#ifdef TCP_OFFLOAD
1542		if (ADDED_BY_TOE(sc)) {
1543			struct toedev *tod = sc->sc_tod;
1544
1545			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1546
1547			return (error);
1548		}
1549#endif
1550		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1551	}
1552#endif
1553#if defined(INET6) && defined(INET)
1554	else
1555#endif
1556#ifdef INET
1557	{
1558		m->m_pkthdr.csum_flags = CSUM_TCP;
1559		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1560		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1561#ifdef TCP_OFFLOAD
1562		if (ADDED_BY_TOE(sc)) {
1563			struct toedev *tod = sc->sc_tod;
1564
1565			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1566
1567			return (error);
1568		}
1569#endif
1570		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1571	}
1572#endif
1573	return (error);
1574}
1575
1576/*
1577 * The purpose of syncookies is to handle spoofed SYN flooding DoS attacks
1578 * that exceed the capacity of the syncache by avoiding the storage of any
1579 * of the SYNs we receive.  Syncookies defend against blind SYN flooding
1580 * attacks where the attacker does not have access to our responses.
1581 *
1582 * Syncookies encode and include all necessary information about the
1583 * connection setup within the SYN|ACK that we send back.  That way we
1584 * can avoid keeping any local state until the ACK to our SYN|ACK returns
1585 * (if ever).  Normally the syncache and syncookies are running in parallel
1586 * with the latter taking over when the former is exhausted.  When matching
1587 * syncache entry is found the syncookie is ignored.
1588 *
1589 * The only reliable information persisting the 3WHS is our inital sequence
1590 * number ISS of 32 bits.  Syncookies embed a cryptographically sufficient
1591 * strong hash (MAC) value and a few bits of TCP SYN options in the ISS
1592 * of our SYN|ACK.  The MAC can be recomputed when the ACK to our SYN|ACK
1593 * returns and signifies a legitimate connection if it matches the ACK.
1594 *
1595 * The available space of 32 bits to store the hash and to encode the SYN
1596 * option information is very tight and we should have at least 24 bits for
1597 * the MAC to keep the number of guesses by blind spoofing reasonably high.
1598 *
1599 * SYN option information we have to encode to fully restore a connection:
1600 * MSS: is imporant to chose an optimal segment size to avoid IP level
1601 *   fragmentation along the path.  The common MSS values can be encoded
1602 *   in a 3-bit table.  Uncommon values are captured by the next lower value
1603 *   in the table leading to a slight increase in packetization overhead.
1604 * WSCALE: is necessary to allow large windows to be used for high delay-
1605 *   bandwidth product links.  Not scaling the window when it was initially
1606 *   negotiated is bad for performance as lack of scaling further decreases
1607 *   the apparent available send window.  We only need to encode the WSCALE
1608 *   we received from the remote end.  Our end can be recalculated at any
1609 *   time.  The common WSCALE values can be encoded in a 3-bit table.
1610 *   Uncommon values are captured by the next lower value in the table
1611 *   making us under-estimate the available window size halving our
1612 *   theoretically possible maximum throughput for that connection.
1613 * SACK: Greatly assists in packet loss recovery and requires 1 bit.
1614 * TIMESTAMP and SIGNATURE is not encoded because they are permanent options
1615 *   that are included in all segments on a connection.  We enable them when
1616 *   the ACK has them.
1617 *
1618 * Security of syncookies and attack vectors:
1619 *
1620 * The MAC is computed over (faddr||laddr||fport||lport||irs||flags||secmod)
1621 * together with the gloabl secret to make it unique per connection attempt.
1622 * Thus any change of any of those parameters results in a different MAC output
1623 * in an unpredictable way unless a collision is encountered.  24 bits of the
1624 * MAC are embedded into the ISS.
1625 *
1626 * To prevent replay attacks two rotating global secrets are updated with a
1627 * new random value every 15 seconds.  The life-time of a syncookie is thus
1628 * 15-30 seconds.
1629 *
1630 * Vector 1: Attacking the secret.  This requires finding a weakness in the
1631 * MAC itself or the way it is used here.  The attacker can do a chosen plain
1632 * text attack by varying and testing the all parameters under his control.
1633 * The strength depends on the size and randomness of the secret, and the
1634 * cryptographic security of the MAC function.  Due to the constant updating
1635 * of the secret the attacker has at most 29.999 seconds to find the secret
1636 * and launch spoofed connections.  After that he has to start all over again.
1637 *
1638 * Vector 2: Collision attack on the MAC of a single ACK.  With a 24 bit MAC
1639 * size an average of 4,823 attempts are required for a 50% chance of success
1640 * to spoof a single syncookie (birthday collision paradox).  However the
1641 * attacker is blind and doesn't know if one of his attempts succeeded unless
1642 * he has a side channel to interfere success from.  A single connection setup
1643 * success average of 90% requires 8,790 packets, 99.99% requires 17,578 packets.
1644 * This many attempts are required for each one blind spoofed connection.  For
1645 * every additional spoofed connection he has to launch another N attempts.
1646 * Thus for a sustained rate 100 spoofed connections per second approximately
1647 * 1,800,000 packets per second would have to be sent.
1648 *
1649 * NB: The MAC function should be fast so that it doesn't become a CPU
1650 * exhaustion attack vector itself.
1651 *
1652 * References:
1653 *  RFC4987 TCP SYN Flooding Attacks and Common Mitigations
1654 *  SYN cookies were first proposed by cryptographer Dan J. Bernstein in 1996
1655 *   http://cr.yp.to/syncookies.html    (overview)
1656 *   http://cr.yp.to/syncookies/archive (details)
1657 *
1658 *
1659 * Schematic construction of a syncookie enabled Initial Sequence Number:
1660 *  0        1         2         3
1661 *  12345678901234567890123456789012
1662 * |xxxxxxxxxxxxxxxxxxxxxxxxWWWMMMSP|
1663 *
1664 *  x 24 MAC (truncated)
1665 *  W  3 Send Window Scale index
1666 *  M  3 MSS index
1667 *  S  1 SACK permitted
1668 *  P  1 Odd/even secret
1669 */
1670
1671/*
1672 * Distribution and probability of certain MSS values.  Those in between are
1673 * rounded down to the next lower one.
1674 * [An Analysis of TCP Maximum Segment Sizes, S. Alcock and R. Nelson, 2011]
1675 *                            .2%  .3%   5%    7%    7%    20%   15%   45%
1676 */
1677static int tcp_sc_msstab[] = { 216, 536, 1200, 1360, 1400, 1440, 1452, 1460 };
1678
1679/*
1680 * Distribution and probability of certain WSCALE values.  We have to map the
1681 * (send) window scale (shift) option with a range of 0-14 from 4 bits into 3
1682 * bits based on prevalence of certain values.  Where we don't have an exact
1683 * match for are rounded down to the next lower one letting us under-estimate
1684 * the true available window.  At the moment this would happen only for the
1685 * very uncommon values 3, 5 and those above 8 (more than 16MB socket buffer
1686 * and window size).  The absence of the WSCALE option (no scaling in either
1687 * direction) is encoded with index zero.
1688 * [WSCALE values histograms, Allman, 2012]
1689 *                            X 10 10 35  5  6 14 10%   by host
1690 *                            X 11  4  5  5 18 49  3%   by connections
1691 */
1692static int tcp_sc_wstab[] = { 0, 0, 1, 2, 4, 6, 7, 8 };
1693
1694/*
1695 * Compute the MAC for the SYN cookie.  SIPHASH-2-4 is chosen for its speed
1696 * and good cryptographic properties.
1697 */
1698static uint32_t
1699syncookie_mac(struct in_conninfo *inc, tcp_seq irs, uint8_t flags,
1700    uint8_t *secbits, uintptr_t secmod)
1701{
1702	SIPHASH_CTX ctx;
1703	uint32_t siphash[2];
1704
1705	SipHash24_Init(&ctx);
1706	SipHash_SetKey(&ctx, secbits);
1707	switch (inc->inc_flags & INC_ISIPV6) {
1708#ifdef INET
1709	case 0:
1710		SipHash_Update(&ctx, &inc->inc_faddr, sizeof(inc->inc_faddr));
1711		SipHash_Update(&ctx, &inc->inc_laddr, sizeof(inc->inc_laddr));
1712		break;
1713#endif
1714#ifdef INET6
1715	case INC_ISIPV6:
1716		SipHash_Update(&ctx, &inc->inc6_faddr, sizeof(inc->inc6_faddr));
1717		SipHash_Update(&ctx, &inc->inc6_laddr, sizeof(inc->inc6_laddr));
1718		break;
1719#endif
1720	}
1721	SipHash_Update(&ctx, &inc->inc_fport, sizeof(inc->inc_fport));
1722	SipHash_Update(&ctx, &inc->inc_lport, sizeof(inc->inc_lport));
1723	SipHash_Update(&ctx, &flags, sizeof(flags));
1724	SipHash_Update(&ctx, &secmod, sizeof(secmod));
1725	SipHash_Final((u_int8_t *)&siphash, &ctx);
1726
1727	return (siphash[0] ^ siphash[1]);
1728}
1729
1730static tcp_seq
1731syncookie_generate(struct syncache_head *sch, struct syncache *sc)
1732{
1733	u_int i, mss, secbit, wscale;
1734	uint32_t iss, hash;
1735	uint8_t *secbits;
1736	union syncookie cookie;
1737
1738	SCH_LOCK_ASSERT(sch);
1739
1740	cookie.cookie = 0;
1741
1742	/* Map our computed MSS into the 3-bit index. */
1743	mss = min(tcp_mssopt(&sc->sc_inc), max(sc->sc_peer_mss, V_tcp_minmss));
1744	for (i = sizeof(tcp_sc_msstab) / sizeof(*tcp_sc_msstab) - 1;
1745	     tcp_sc_msstab[i] > mss && i > 0;
1746	     i--)
1747		;
1748	cookie.flags.mss_idx = i;
1749
1750	/*
1751	 * Map the send window scale into the 3-bit index but only if
1752	 * the wscale option was received.
1753	 */
1754	if (sc->sc_flags & SCF_WINSCALE) {
1755		wscale = sc->sc_requested_s_scale;
1756		for (i = sizeof(tcp_sc_wstab) / sizeof(*tcp_sc_wstab) - 1;
1757		     tcp_sc_wstab[i] > wscale && i > 0;
1758		     i--)
1759			;
1760		cookie.flags.wscale_idx = i;
1761	}
1762
1763	/* Can we do SACK? */
1764	if (sc->sc_flags & SCF_SACK)
1765		cookie.flags.sack_ok = 1;
1766
1767	/* Which of the two secrets to use. */
1768	secbit = sch->sch_sc->secret.oddeven & 0x1;
1769	cookie.flags.odd_even = secbit;
1770
1771	secbits = sch->sch_sc->secret.key[secbit];
1772	hash = syncookie_mac(&sc->sc_inc, sc->sc_irs, cookie.cookie, secbits,
1773	    (uintptr_t)sch);
1774
1775	/*
1776	 * Put the flags into the hash and XOR them to get better ISS number
1777	 * variance.  This doesn't enhance the cryptographic strength and is
1778	 * done to prevent the 8 cookie bits from showing up directly on the
1779	 * wire.
1780	 */
1781	iss = hash & ~0xff;
1782	iss |= cookie.cookie ^ (hash >> 24);
1783
1784	/* Randomize the timestamp. */
1785	if (sc->sc_flags & SCF_TIMESTAMP) {
1786		sc->sc_ts = arc4random();
1787		sc->sc_tsoff = sc->sc_ts - tcp_ts_getticks();
1788	}
1789
1790	TCPSTAT_INC(tcps_sc_sendcookie);
1791	return (iss);
1792}
1793
1794static struct syncache *
1795syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1796    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1797    struct socket *lso)
1798{
1799	uint32_t hash;
1800	uint8_t *secbits;
1801	tcp_seq ack, seq;
1802	int wnd, wscale = 0;
1803	union syncookie cookie;
1804
1805	SCH_LOCK_ASSERT(sch);
1806
1807	/*
1808	 * Pull information out of SYN-ACK/ACK and revert sequence number
1809	 * advances.
1810	 */
1811	ack = th->th_ack - 1;
1812	seq = th->th_seq - 1;
1813
1814	/*
1815	 * Unpack the flags containing enough information to restore the
1816	 * connection.
1817	 */
1818	cookie.cookie = (ack & 0xff) ^ (ack >> 24);
1819
1820	/* Which of the two secrets to use. */
1821	secbits = sch->sch_sc->secret.key[cookie.flags.odd_even];
1822
1823	hash = syncookie_mac(inc, seq, cookie.cookie, secbits, (uintptr_t)sch);
1824
1825	/* The recomputed hash matches the ACK if this was a genuine cookie. */
1826	if ((ack & ~0xff) != (hash & ~0xff))
1827		return (NULL);
1828
1829	/* Fill in the syncache values. */
1830	sc->sc_flags = 0;
1831	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1832	sc->sc_ipopts = NULL;
1833
1834	sc->sc_irs = seq;
1835	sc->sc_iss = ack;
1836
1837	switch (inc->inc_flags & INC_ISIPV6) {
1838#ifdef INET
1839	case 0:
1840		sc->sc_ip_ttl = sotoinpcb(lso)->inp_ip_ttl;
1841		sc->sc_ip_tos = sotoinpcb(lso)->inp_ip_tos;
1842		break;
1843#endif
1844#ifdef INET6
1845	case INC_ISIPV6:
1846		if (sotoinpcb(lso)->inp_flags & IN6P_AUTOFLOWLABEL)
1847			sc->sc_flowlabel = sc->sc_iss & IPV6_FLOWLABEL_MASK;
1848		break;
1849#endif
1850	}
1851
1852	sc->sc_peer_mss = tcp_sc_msstab[cookie.flags.mss_idx];
1853
1854	/* We can simply recompute receive window scale we sent earlier. */
1855	while (wscale < TCP_MAX_WINSHIFT && (TCP_MAXWIN << wscale) < sb_max)
1856		wscale++;
1857
1858	/* Only use wscale if it was enabled in the orignal SYN. */
1859	if (cookie.flags.wscale_idx > 0) {
1860		sc->sc_requested_r_scale = wscale;
1861		sc->sc_requested_s_scale = tcp_sc_wstab[cookie.flags.wscale_idx];
1862		sc->sc_flags |= SCF_WINSCALE;
1863	}
1864
1865	wnd = sbspace(&lso->so_rcv);
1866	wnd = imax(wnd, 0);
1867	wnd = imin(wnd, TCP_MAXWIN);
1868	sc->sc_wnd = wnd;
1869
1870	if (cookie.flags.sack_ok)
1871		sc->sc_flags |= SCF_SACK;
1872
1873	if (to->to_flags & TOF_TS) {
1874		sc->sc_flags |= SCF_TIMESTAMP;
1875		sc->sc_tsreflect = to->to_tsval;
1876		sc->sc_ts = to->to_tsecr;
1877		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
1878	}
1879
1880	if (to->to_flags & TOF_SIGNATURE)
1881		sc->sc_flags |= SCF_SIGNATURE;
1882
1883	sc->sc_rxmits = 0;
1884
1885	TCPSTAT_INC(tcps_sc_recvcookie);
1886	return (sc);
1887}
1888
1889#ifdef INVARIANTS
1890static int
1891syncookie_cmp(struct in_conninfo *inc, struct syncache_head *sch,
1892    struct syncache *sc, struct tcphdr *th, struct tcpopt *to,
1893    struct socket *lso)
1894{
1895	struct syncache scs, *scx;
1896	char *s;
1897
1898	bzero(&scs, sizeof(scs));
1899	scx = syncookie_lookup(inc, sch, &scs, th, to, lso);
1900
1901	if ((s = tcp_log_addrs(inc, th, NULL, NULL)) == NULL)
1902		return (0);
1903
1904	if (scx != NULL) {
1905		if (sc->sc_peer_mss != scx->sc_peer_mss)
1906			log(LOG_DEBUG, "%s; %s: mss different %i vs %i\n",
1907			    s, __func__, sc->sc_peer_mss, scx->sc_peer_mss);
1908
1909		if (sc->sc_requested_r_scale != scx->sc_requested_r_scale)
1910			log(LOG_DEBUG, "%s; %s: rwscale different %i vs %i\n",
1911			    s, __func__, sc->sc_requested_r_scale,
1912			    scx->sc_requested_r_scale);
1913
1914		if (sc->sc_requested_s_scale != scx->sc_requested_s_scale)
1915			log(LOG_DEBUG, "%s; %s: swscale different %i vs %i\n",
1916			    s, __func__, sc->sc_requested_s_scale,
1917			    scx->sc_requested_s_scale);
1918
1919		if ((sc->sc_flags & SCF_SACK) != (scx->sc_flags & SCF_SACK))
1920			log(LOG_DEBUG, "%s; %s: SACK different\n", s, __func__);
1921	}
1922
1923	if (s != NULL)
1924		free(s, M_TCPLOG);
1925	return (0);
1926}
1927#endif /* INVARIANTS */
1928
1929static void
1930syncookie_reseed(void *arg)
1931{
1932	struct tcp_syncache *sc = arg;
1933	uint8_t *secbits;
1934	int secbit;
1935
1936	/*
1937	 * Reseeding the secret doesn't have to be protected by a lock.
1938	 * It only must be ensured that the new random values are visible
1939	 * to all CPUs in a SMP environment.  The atomic with release
1940	 * semantics ensures that.
1941	 */
1942	secbit = (sc->secret.oddeven & 0x1) ? 0 : 1;
1943	secbits = sc->secret.key[secbit];
1944	arc4rand(secbits, SYNCOOKIE_SECRET_SIZE, 0);
1945	atomic_add_rel_int(&sc->secret.oddeven, 1);
1946
1947	/* Reschedule ourself. */
1948	callout_schedule(&sc->secret.reseed, SYNCOOKIE_LIFETIME * hz);
1949}
1950
1951/*
1952 * Returns the current number of syncache entries.  This number
1953 * will probably change before you get around to calling
1954 * syncache_pcblist.
1955 */
1956int
1957syncache_pcbcount(void)
1958{
1959	struct syncache_head *sch;
1960	int count, i;
1961
1962	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1963		/* No need to lock for a read. */
1964		sch = &V_tcp_syncache.hashbase[i];
1965		count += sch->sch_length;
1966	}
1967	return count;
1968}
1969
1970/*
1971 * Exports the syncache entries to userland so that netstat can display
1972 * them alongside the other sockets.  This function is intended to be
1973 * called only from tcp_pcblist.
1974 *
1975 * Due to concurrency on an active system, the number of pcbs exported
1976 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1977 * amount of space the caller allocated for this function to use.
1978 */
1979int
1980syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1981{
1982	struct xtcpcb xt;
1983	struct syncache *sc;
1984	struct syncache_head *sch;
1985	int count, error, i;
1986
1987	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1988		sch = &V_tcp_syncache.hashbase[i];
1989		SCH_LOCK(sch);
1990		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1991			if (count >= max_pcbs) {
1992				SCH_UNLOCK(sch);
1993				goto exit;
1994			}
1995			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1996				continue;
1997			bzero(&xt, sizeof(xt));
1998			xt.xt_len = sizeof(xt);
1999			if (sc->sc_inc.inc_flags & INC_ISIPV6)
2000				xt.xt_inp.inp_vflag = INP_IPV6;
2001			else
2002				xt.xt_inp.inp_vflag = INP_IPV4;
2003			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
2004			xt.xt_tp.t_inpcb = &xt.xt_inp;
2005			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
2006			xt.xt_socket.xso_protocol = IPPROTO_TCP;
2007			xt.xt_socket.xso_len = sizeof (struct xsocket);
2008			xt.xt_socket.so_type = SOCK_STREAM;
2009			xt.xt_socket.so_state = SS_ISCONNECTING;
2010			error = SYSCTL_OUT(req, &xt, sizeof xt);
2011			if (error) {
2012				SCH_UNLOCK(sch);
2013				goto exit;
2014			}
2015			count++;
2016		}
2017		SCH_UNLOCK(sch);
2018	}
2019exit:
2020	*pcbs_exported = count;
2021	return error;
2022}
2023