tcp_syncache.c revision 253150
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 253150 2013-07-10 12:06:01Z andre $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_pcbgroup.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/md5.h>
51#include <sys/proc.h>		/* for proc0 declaration */
52#include <sys/random.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/syslog.h>
56#include <sys/ucred.h>
57
58#include <vm/uma.h>
59
60#include <net/if.h>
61#include <net/route.h>
62#include <net/vnet.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip_var.h>
70#include <netinet/ip_options.h>
71#ifdef INET6
72#include <netinet/ip6.h>
73#include <netinet/icmp6.h>
74#include <netinet6/nd6.h>
75#include <netinet6/ip6_var.h>
76#include <netinet6/in6_pcb.h>
77#endif
78#include <netinet/tcp.h>
79#include <netinet/tcp_fsm.h>
80#include <netinet/tcp_seq.h>
81#include <netinet/tcp_timer.h>
82#include <netinet/tcp_var.h>
83#include <netinet/tcp_syncache.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87#ifdef TCP_OFFLOAD
88#include <netinet/toecore.h>
89#endif
90
91#ifdef IPSEC
92#include <netipsec/ipsec.h>
93#ifdef INET6
94#include <netipsec/ipsec6.h>
95#endif
96#include <netipsec/key.h>
97#endif /*IPSEC*/
98
99#include <machine/in_cksum.h>
100
101#include <security/mac/mac_framework.h>
102
103static VNET_DEFINE(int, tcp_syncookies) = 1;
104#define	V_tcp_syncookies		VNET(tcp_syncookies)
105SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
106    &VNET_NAME(tcp_syncookies), 0,
107    "Use TCP SYN cookies if the syncache overflows");
108
109static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
110#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
111SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
112    &VNET_NAME(tcp_syncookiesonly), 0,
113    "Use only TCP SYN cookies");
114
115#ifdef TCP_OFFLOAD
116#define ADDED_BY_TOE(sc) ((sc)->sc_tod != NULL)
117#endif
118
119static void	 syncache_drop(struct syncache *, struct syncache_head *);
120static void	 syncache_free(struct syncache *);
121static void	 syncache_insert(struct syncache *, struct syncache_head *);
122struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
123static int	 syncache_respond(struct syncache *);
124static struct	 socket *syncache_socket(struct syncache *, struct socket *,
125		    struct mbuf *m);
126static int	 syncache_sysctl_count(SYSCTL_HANDLER_ARGS);
127static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
128		    int docallout);
129static void	 syncache_timer(void *);
130static void	 syncookie_generate(struct syncache_head *, struct syncache *,
131		    u_int32_t *);
132static struct syncache
133		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
134		    struct syncache *, struct tcpopt *, struct tcphdr *,
135		    struct socket *);
136
137/*
138 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
139 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
140 * the odds are that the user has given up attempting to connect by then.
141 */
142#define SYNCACHE_MAXREXMTS		3
143
144/* Arbitrary values */
145#define TCP_SYNCACHE_HASHSIZE		512
146#define TCP_SYNCACHE_BUCKETLIMIT	30
147
148static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
149#define	V_tcp_syncache			VNET(tcp_syncache)
150
151static SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0,
152    "TCP SYN cache");
153
154SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
155    &VNET_NAME(tcp_syncache.bucket_limit), 0,
156    "Per-bucket hash limit for syncache");
157
158SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
159    &VNET_NAME(tcp_syncache.cache_limit), 0,
160    "Overall entry limit for syncache");
161
162SYSCTL_VNET_PROC(_net_inet_tcp_syncache, OID_AUTO, count, (CTLTYPE_UINT|CTLFLAG_RD),
163    NULL, 0, &syncache_sysctl_count, "IU",
164    "Current number of entries in syncache");
165
166SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
167    &VNET_NAME(tcp_syncache.hashsize), 0,
168    "Size of TCP syncache hashtable");
169
170SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
171    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
172    "Limit on SYN/ACK retransmissions");
173
174VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
175SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
176    CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
177    "Send reset on socket allocation failure");
178
179static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
180
181#define SYNCACHE_HASH(inc, mask)					\
182	((V_tcp_syncache.hash_secret ^					\
183	  (inc)->inc_faddr.s_addr ^					\
184	  ((inc)->inc_faddr.s_addr >> 16) ^				\
185	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
186
187#define SYNCACHE_HASH6(inc, mask)					\
188	((V_tcp_syncache.hash_secret ^					\
189	  (inc)->inc6_faddr.s6_addr32[0] ^				\
190	  (inc)->inc6_faddr.s6_addr32[3] ^				\
191	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
192
193#define ENDPTS_EQ(a, b) (						\
194	(a)->ie_fport == (b)->ie_fport &&				\
195	(a)->ie_lport == (b)->ie_lport &&				\
196	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
197	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
198)
199
200#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
201
202#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
203#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
204#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
205
206/*
207 * Requires the syncache entry to be already removed from the bucket list.
208 */
209static void
210syncache_free(struct syncache *sc)
211{
212
213	if (sc->sc_ipopts)
214		(void) m_free(sc->sc_ipopts);
215	if (sc->sc_cred)
216		crfree(sc->sc_cred);
217#ifdef MAC
218	mac_syncache_destroy(&sc->sc_label);
219#endif
220
221	uma_zfree(V_tcp_syncache.zone, sc);
222}
223
224void
225syncache_init(void)
226{
227	int i;
228
229	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
230	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
231	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
232	V_tcp_syncache.hash_secret = arc4random();
233
234	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
235	    &V_tcp_syncache.hashsize);
236	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
237	    &V_tcp_syncache.bucket_limit);
238	if (!powerof2(V_tcp_syncache.hashsize) ||
239	    V_tcp_syncache.hashsize == 0) {
240		printf("WARNING: syncache hash size is not a power of 2.\n");
241		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
242	}
243	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
244
245	/* Set limits. */
246	V_tcp_syncache.cache_limit =
247	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
248	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
249	    &V_tcp_syncache.cache_limit);
250
251	/* Allocate the hash table. */
252	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
253	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
254
255	/* Initialize the hash buckets. */
256	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
257#ifdef VIMAGE
258		V_tcp_syncache.hashbase[i].sch_vnet = curvnet;
259#endif
260		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
261		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
262			 NULL, MTX_DEF);
263		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
264			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
265		V_tcp_syncache.hashbase[i].sch_length = 0;
266	}
267
268	/* Create the syncache entry zone. */
269	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
270	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
271	V_tcp_syncache.cache_limit = uma_zone_set_max(V_tcp_syncache.zone,
272	    V_tcp_syncache.cache_limit);
273}
274
275#ifdef VIMAGE
276void
277syncache_destroy(void)
278{
279	struct syncache_head *sch;
280	struct syncache *sc, *nsc;
281	int i;
282
283	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
284	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
285
286		sch = &V_tcp_syncache.hashbase[i];
287		callout_drain(&sch->sch_timer);
288
289		SCH_LOCK(sch);
290		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
291			syncache_drop(sc, sch);
292		SCH_UNLOCK(sch);
293		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
294		    ("%s: sch->sch_bucket not empty", __func__));
295		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
296		    __func__, sch->sch_length));
297		mtx_destroy(&sch->sch_mtx);
298	}
299
300	KASSERT(uma_zone_get_cur(V_tcp_syncache.zone) == 0,
301	    ("%s: cache_count not 0", __func__));
302
303	/* Free the allocated global resources. */
304	uma_zdestroy(V_tcp_syncache.zone);
305	free(V_tcp_syncache.hashbase, M_SYNCACHE);
306}
307#endif
308
309static int
310syncache_sysctl_count(SYSCTL_HANDLER_ARGS)
311{
312	int count;
313
314	count = uma_zone_get_cur(V_tcp_syncache.zone);
315	return (sysctl_handle_int(oidp, &count, 0, req));
316}
317
318/*
319 * Inserts a syncache entry into the specified bucket row.
320 * Locks and unlocks the syncache_head autonomously.
321 */
322static void
323syncache_insert(struct syncache *sc, struct syncache_head *sch)
324{
325	struct syncache *sc2;
326
327	SCH_LOCK(sch);
328
329	/*
330	 * Make sure that we don't overflow the per-bucket limit.
331	 * If the bucket is full, toss the oldest element.
332	 */
333	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
334		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
335			("sch->sch_length incorrect"));
336		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
337		syncache_drop(sc2, sch);
338		TCPSTAT_INC(tcps_sc_bucketoverflow);
339	}
340
341	/* Put it into the bucket. */
342	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
343	sch->sch_length++;
344
345#ifdef TCP_OFFLOAD
346	if (ADDED_BY_TOE(sc)) {
347		struct toedev *tod = sc->sc_tod;
348
349		tod->tod_syncache_added(tod, sc->sc_todctx);
350	}
351#endif
352
353	/* Reinitialize the bucket row's timer. */
354	if (sch->sch_length == 1)
355		sch->sch_nextc = ticks + INT_MAX;
356	syncache_timeout(sc, sch, 1);
357
358	SCH_UNLOCK(sch);
359
360	TCPSTAT_INC(tcps_sc_added);
361}
362
363/*
364 * Remove and free entry from syncache bucket row.
365 * Expects locked syncache head.
366 */
367static void
368syncache_drop(struct syncache *sc, struct syncache_head *sch)
369{
370
371	SCH_LOCK_ASSERT(sch);
372
373	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
374	sch->sch_length--;
375
376#ifdef TCP_OFFLOAD
377	if (ADDED_BY_TOE(sc)) {
378		struct toedev *tod = sc->sc_tod;
379
380		tod->tod_syncache_removed(tod, sc->sc_todctx);
381	}
382#endif
383
384	syncache_free(sc);
385}
386
387/*
388 * Engage/reengage time on bucket row.
389 */
390static void
391syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
392{
393	sc->sc_rxttime = ticks +
394		TCPTV_RTOBASE * (tcp_syn_backoff[sc->sc_rxmits]);
395	sc->sc_rxmits++;
396	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
397		sch->sch_nextc = sc->sc_rxttime;
398		if (docallout)
399			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
400			    syncache_timer, (void *)sch);
401	}
402}
403
404/*
405 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
406 * If we have retransmitted an entry the maximum number of times, expire it.
407 * One separate timer for each bucket row.
408 */
409static void
410syncache_timer(void *xsch)
411{
412	struct syncache_head *sch = (struct syncache_head *)xsch;
413	struct syncache *sc, *nsc;
414	int tick = ticks;
415	char *s;
416
417	CURVNET_SET(sch->sch_vnet);
418
419	/* NB: syncache_head has already been locked by the callout. */
420	SCH_LOCK_ASSERT(sch);
421
422	/*
423	 * In the following cycle we may remove some entries and/or
424	 * advance some timeouts, so re-initialize the bucket timer.
425	 */
426	sch->sch_nextc = tick + INT_MAX;
427
428	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
429		/*
430		 * We do not check if the listen socket still exists
431		 * and accept the case where the listen socket may be
432		 * gone by the time we resend the SYN/ACK.  We do
433		 * not expect this to happens often. If it does,
434		 * then the RST will be sent by the time the remote
435		 * host does the SYN/ACK->ACK.
436		 */
437		if (TSTMP_GT(sc->sc_rxttime, tick)) {
438			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
439				sch->sch_nextc = sc->sc_rxttime;
440			continue;
441		}
442		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
443			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
444				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
445				    "giving up and removing syncache entry\n",
446				    s, __func__);
447				free(s, M_TCPLOG);
448			}
449			syncache_drop(sc, sch);
450			TCPSTAT_INC(tcps_sc_stale);
451			continue;
452		}
453		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
454			log(LOG_DEBUG, "%s; %s: Response timeout, "
455			    "retransmitting (%u) SYN|ACK\n",
456			    s, __func__, sc->sc_rxmits);
457			free(s, M_TCPLOG);
458		}
459
460		(void) syncache_respond(sc);
461		TCPSTAT_INC(tcps_sc_retransmitted);
462		syncache_timeout(sc, sch, 0);
463	}
464	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
465		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
466			syncache_timer, (void *)(sch));
467	CURVNET_RESTORE();
468}
469
470/*
471 * Find an entry in the syncache.
472 * Returns always with locked syncache_head plus a matching entry or NULL.
473 */
474struct syncache *
475syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
476{
477	struct syncache *sc;
478	struct syncache_head *sch;
479
480#ifdef INET6
481	if (inc->inc_flags & INC_ISIPV6) {
482		sch = &V_tcp_syncache.hashbase[
483		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
484		*schp = sch;
485
486		SCH_LOCK(sch);
487
488		/* Circle through bucket row to find matching entry. */
489		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
490			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
491				return (sc);
492		}
493	} else
494#endif
495	{
496		sch = &V_tcp_syncache.hashbase[
497		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
498		*schp = sch;
499
500		SCH_LOCK(sch);
501
502		/* Circle through bucket row to find matching entry. */
503		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
504#ifdef INET6
505			if (sc->sc_inc.inc_flags & INC_ISIPV6)
506				continue;
507#endif
508			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
509				return (sc);
510		}
511	}
512	SCH_LOCK_ASSERT(*schp);
513	return (NULL);			/* always returns with locked sch */
514}
515
516/*
517 * This function is called when we get a RST for a
518 * non-existent connection, so that we can see if the
519 * connection is in the syn cache.  If it is, zap it.
520 */
521void
522syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
523{
524	struct syncache *sc;
525	struct syncache_head *sch;
526	char *s = NULL;
527
528	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
529	SCH_LOCK_ASSERT(sch);
530
531	/*
532	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
533	 * See RFC 793 page 65, section SEGMENT ARRIVES.
534	 */
535	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
536		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
537			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
538			    "FIN flag set, segment ignored\n", s, __func__);
539		TCPSTAT_INC(tcps_badrst);
540		goto done;
541	}
542
543	/*
544	 * No corresponding connection was found in syncache.
545	 * If syncookies are enabled and possibly exclusively
546	 * used, or we are under memory pressure, a valid RST
547	 * may not find a syncache entry.  In that case we're
548	 * done and no SYN|ACK retransmissions will happen.
549	 * Otherwise the RST was misdirected or spoofed.
550	 */
551	if (sc == NULL) {
552		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
553			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
554			    "syncache entry (possibly syncookie only), "
555			    "segment ignored\n", s, __func__);
556		TCPSTAT_INC(tcps_badrst);
557		goto done;
558	}
559
560	/*
561	 * If the RST bit is set, check the sequence number to see
562	 * if this is a valid reset segment.
563	 * RFC 793 page 37:
564	 *   In all states except SYN-SENT, all reset (RST) segments
565	 *   are validated by checking their SEQ-fields.  A reset is
566	 *   valid if its sequence number is in the window.
567	 *
568	 *   The sequence number in the reset segment is normally an
569	 *   echo of our outgoing acknowlegement numbers, but some hosts
570	 *   send a reset with the sequence number at the rightmost edge
571	 *   of our receive window, and we have to handle this case.
572	 */
573	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
574	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
575		syncache_drop(sc, sch);
576		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
577			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
578			    "connection attempt aborted by remote endpoint\n",
579			    s, __func__);
580		TCPSTAT_INC(tcps_sc_reset);
581	} else {
582		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
583			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
584			    "IRS %u (+WND %u), segment ignored\n",
585			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
586		TCPSTAT_INC(tcps_badrst);
587	}
588
589done:
590	if (s != NULL)
591		free(s, M_TCPLOG);
592	SCH_UNLOCK(sch);
593}
594
595void
596syncache_badack(struct in_conninfo *inc)
597{
598	struct syncache *sc;
599	struct syncache_head *sch;
600
601	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
602	SCH_LOCK_ASSERT(sch);
603	if (sc != NULL) {
604		syncache_drop(sc, sch);
605		TCPSTAT_INC(tcps_sc_badack);
606	}
607	SCH_UNLOCK(sch);
608}
609
610void
611syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
612{
613	struct syncache *sc;
614	struct syncache_head *sch;
615
616	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
617	SCH_LOCK_ASSERT(sch);
618	if (sc == NULL)
619		goto done;
620
621	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
622	if (ntohl(th->th_seq) != sc->sc_iss)
623		goto done;
624
625	/*
626	 * If we've rertransmitted 3 times and this is our second error,
627	 * we remove the entry.  Otherwise, we allow it to continue on.
628	 * This prevents us from incorrectly nuking an entry during a
629	 * spurious network outage.
630	 *
631	 * See tcp_notify().
632	 */
633	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
634		sc->sc_flags |= SCF_UNREACH;
635		goto done;
636	}
637	syncache_drop(sc, sch);
638	TCPSTAT_INC(tcps_sc_unreach);
639done:
640	SCH_UNLOCK(sch);
641}
642
643/*
644 * Build a new TCP socket structure from a syncache entry.
645 */
646static struct socket *
647syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
648{
649	struct inpcb *inp = NULL;
650	struct socket *so;
651	struct tcpcb *tp;
652	int error;
653	char *s;
654
655	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
656
657	/*
658	 * Ok, create the full blown connection, and set things up
659	 * as they would have been set up if we had created the
660	 * connection when the SYN arrived.  If we can't create
661	 * the connection, abort it.
662	 */
663	so = sonewconn(lso, SS_ISCONNECTED);
664	if (so == NULL) {
665		/*
666		 * Drop the connection; we will either send a RST or
667		 * have the peer retransmit its SYN again after its
668		 * RTO and try again.
669		 */
670		TCPSTAT_INC(tcps_listendrop);
671		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
672			log(LOG_DEBUG, "%s; %s: Socket create failed "
673			    "due to limits or memory shortage\n",
674			    s, __func__);
675			free(s, M_TCPLOG);
676		}
677		goto abort2;
678	}
679#ifdef MAC
680	mac_socketpeer_set_from_mbuf(m, so);
681#endif
682
683	inp = sotoinpcb(so);
684	inp->inp_inc.inc_fibnum = so->so_fibnum;
685	INP_WLOCK(inp);
686	INP_HASH_WLOCK(&V_tcbinfo);
687
688	/* Insert new socket into PCB hash list. */
689	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
690#ifdef INET6
691	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
692		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
693	} else {
694		inp->inp_vflag &= ~INP_IPV6;
695		inp->inp_vflag |= INP_IPV4;
696#endif
697		inp->inp_laddr = sc->sc_inc.inc_laddr;
698#ifdef INET6
699	}
700#endif
701
702	/*
703	 * Install in the reservation hash table for now, but don't yet
704	 * install a connection group since the full 4-tuple isn't yet
705	 * configured.
706	 */
707	inp->inp_lport = sc->sc_inc.inc_lport;
708	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
709		/*
710		 * Undo the assignments above if we failed to
711		 * put the PCB on the hash lists.
712		 */
713#ifdef INET6
714		if (sc->sc_inc.inc_flags & INC_ISIPV6)
715			inp->in6p_laddr = in6addr_any;
716		else
717#endif
718			inp->inp_laddr.s_addr = INADDR_ANY;
719		inp->inp_lport = 0;
720		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
721			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
722			    "with error %i\n",
723			    s, __func__, error);
724			free(s, M_TCPLOG);
725		}
726		INP_HASH_WUNLOCK(&V_tcbinfo);
727		goto abort;
728	}
729#ifdef IPSEC
730	/* Copy old policy into new socket's. */
731	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
732		printf("syncache_socket: could not copy policy\n");
733#endif
734#ifdef INET6
735	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
736		struct inpcb *oinp = sotoinpcb(lso);
737		struct in6_addr laddr6;
738		struct sockaddr_in6 sin6;
739		/*
740		 * Inherit socket options from the listening socket.
741		 * Note that in6p_inputopts are not (and should not be)
742		 * copied, since it stores previously received options and is
743		 * used to detect if each new option is different than the
744		 * previous one and hence should be passed to a user.
745		 * If we copied in6p_inputopts, a user would not be able to
746		 * receive options just after calling the accept system call.
747		 */
748		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
749		if (oinp->in6p_outputopts)
750			inp->in6p_outputopts =
751			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
752
753		sin6.sin6_family = AF_INET6;
754		sin6.sin6_len = sizeof(sin6);
755		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
756		sin6.sin6_port = sc->sc_inc.inc_fport;
757		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
758		laddr6 = inp->in6p_laddr;
759		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
760			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
761		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
762		    thread0.td_ucred, m)) != 0) {
763			inp->in6p_laddr = laddr6;
764			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
765				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
766				    "with error %i\n",
767				    s, __func__, error);
768				free(s, M_TCPLOG);
769			}
770			INP_HASH_WUNLOCK(&V_tcbinfo);
771			goto abort;
772		}
773		/* Override flowlabel from in6_pcbconnect. */
774		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
775		inp->inp_flow |= sc->sc_flowlabel;
776	}
777#endif /* INET6 */
778#if defined(INET) && defined(INET6)
779	else
780#endif
781#ifdef INET
782	{
783		struct in_addr laddr;
784		struct sockaddr_in sin;
785
786		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
787
788		if (inp->inp_options == NULL) {
789			inp->inp_options = sc->sc_ipopts;
790			sc->sc_ipopts = NULL;
791		}
792
793		sin.sin_family = AF_INET;
794		sin.sin_len = sizeof(sin);
795		sin.sin_addr = sc->sc_inc.inc_faddr;
796		sin.sin_port = sc->sc_inc.inc_fport;
797		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
798		laddr = inp->inp_laddr;
799		if (inp->inp_laddr.s_addr == INADDR_ANY)
800			inp->inp_laddr = sc->sc_inc.inc_laddr;
801		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
802		    thread0.td_ucred, m)) != 0) {
803			inp->inp_laddr = laddr;
804			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
805				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
806				    "with error %i\n",
807				    s, __func__, error);
808				free(s, M_TCPLOG);
809			}
810			INP_HASH_WUNLOCK(&V_tcbinfo);
811			goto abort;
812		}
813	}
814#endif /* INET */
815	INP_HASH_WUNLOCK(&V_tcbinfo);
816	tp = intotcpcb(inp);
817	tp->t_state = TCPS_SYN_RECEIVED;
818	tp->iss = sc->sc_iss;
819	tp->irs = sc->sc_irs;
820	tcp_rcvseqinit(tp);
821	tcp_sendseqinit(tp);
822	tp->snd_wl1 = sc->sc_irs;
823	tp->snd_max = tp->iss + 1;
824	tp->snd_nxt = tp->iss + 1;
825	tp->rcv_up = sc->sc_irs + 1;
826	tp->rcv_wnd = sc->sc_wnd;
827	tp->rcv_adv += tp->rcv_wnd;
828	tp->last_ack_sent = tp->rcv_nxt;
829
830	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
831	if (sc->sc_flags & SCF_NOOPT)
832		tp->t_flags |= TF_NOOPT;
833	else {
834		if (sc->sc_flags & SCF_WINSCALE) {
835			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
836			tp->snd_scale = sc->sc_requested_s_scale;
837			tp->request_r_scale = sc->sc_requested_r_scale;
838		}
839		if (sc->sc_flags & SCF_TIMESTAMP) {
840			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
841			tp->ts_recent = sc->sc_tsreflect;
842			tp->ts_recent_age = tcp_ts_getticks();
843			tp->ts_offset = sc->sc_tsoff;
844		}
845#ifdef TCP_SIGNATURE
846		if (sc->sc_flags & SCF_SIGNATURE)
847			tp->t_flags |= TF_SIGNATURE;
848#endif
849		if (sc->sc_flags & SCF_SACK)
850			tp->t_flags |= TF_SACK_PERMIT;
851	}
852
853	if (sc->sc_flags & SCF_ECN)
854		tp->t_flags |= TF_ECN_PERMIT;
855
856	/*
857	 * Set up MSS and get cached values from tcp_hostcache.
858	 * This might overwrite some of the defaults we just set.
859	 */
860	tcp_mss(tp, sc->sc_peer_mss);
861
862	/*
863	 * If the SYN,ACK was retransmitted, indicate that CWND to be
864	 * limited to one segment in cc_conn_init().
865	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
866	 */
867	if (sc->sc_rxmits > 1)
868		tp->snd_cwnd = 1;
869
870#ifdef TCP_OFFLOAD
871	/*
872	 * Allow a TOE driver to install its hooks.  Note that we hold the
873	 * pcbinfo lock too and that prevents tcp_usr_accept from accepting a
874	 * new connection before the TOE driver has done its thing.
875	 */
876	if (ADDED_BY_TOE(sc)) {
877		struct toedev *tod = sc->sc_tod;
878
879		tod->tod_offload_socket(tod, sc->sc_todctx, so);
880	}
881#endif
882	/*
883	 * Copy and activate timers.
884	 */
885	tp->t_keepinit = sototcpcb(lso)->t_keepinit;
886	tp->t_keepidle = sototcpcb(lso)->t_keepidle;
887	tp->t_keepintvl = sototcpcb(lso)->t_keepintvl;
888	tp->t_keepcnt = sototcpcb(lso)->t_keepcnt;
889	tcp_timer_activate(tp, TT_KEEP, TP_KEEPINIT(tp));
890
891	INP_WUNLOCK(inp);
892
893	TCPSTAT_INC(tcps_accepts);
894	return (so);
895
896abort:
897	INP_WUNLOCK(inp);
898abort2:
899	if (so != NULL)
900		soabort(so);
901	return (NULL);
902}
903
904/*
905 * This function gets called when we receive an ACK for a
906 * socket in the LISTEN state.  We look up the connection
907 * in the syncache, and if its there, we pull it out of
908 * the cache and turn it into a full-blown connection in
909 * the SYN-RECEIVED state.
910 */
911int
912syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
913    struct socket **lsop, struct mbuf *m)
914{
915	struct syncache *sc;
916	struct syncache_head *sch;
917	struct syncache scs;
918	char *s;
919
920	/*
921	 * Global TCP locks are held because we manipulate the PCB lists
922	 * and create a new socket.
923	 */
924	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
925	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
926	    ("%s: can handle only ACK", __func__));
927
928	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
929	SCH_LOCK_ASSERT(sch);
930	if (sc == NULL) {
931		/*
932		 * There is no syncache entry, so see if this ACK is
933		 * a returning syncookie.  To do this, first:
934		 *  A. See if this socket has had a syncache entry dropped in
935		 *     the past.  We don't want to accept a bogus syncookie
936		 *     if we've never received a SYN.
937		 *  B. check that the syncookie is valid.  If it is, then
938		 *     cobble up a fake syncache entry, and return.
939		 */
940		if (!V_tcp_syncookies) {
941			SCH_UNLOCK(sch);
942			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
943				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
944				    "segment rejected (syncookies disabled)\n",
945				    s, __func__);
946			goto failed;
947		}
948		bzero(&scs, sizeof(scs));
949		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
950		SCH_UNLOCK(sch);
951		if (sc == NULL) {
952			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
953				log(LOG_DEBUG, "%s; %s: Segment failed "
954				    "SYNCOOKIE authentication, segment rejected "
955				    "(probably spoofed)\n", s, __func__);
956			goto failed;
957		}
958	} else {
959		/* Pull out the entry to unlock the bucket row. */
960		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
961		sch->sch_length--;
962#ifdef TCP_OFFLOAD
963		if (ADDED_BY_TOE(sc)) {
964			struct toedev *tod = sc->sc_tod;
965
966			tod->tod_syncache_removed(tod, sc->sc_todctx);
967		}
968#endif
969		SCH_UNLOCK(sch);
970	}
971
972	/*
973	 * Segment validation:
974	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
975	 */
976	if (th->th_ack != sc->sc_iss + 1) {
977		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
978			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
979			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
980		goto failed;
981	}
982
983	/*
984	 * The SEQ must fall in the window starting at the received
985	 * initial receive sequence number + 1 (the SYN).
986	 */
987	if (SEQ_LEQ(th->th_seq, sc->sc_irs) ||
988	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
989		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
990			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
991			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
992		goto failed;
993	}
994
995	/*
996	 * If timestamps were not negotiated during SYN/ACK they
997	 * must not appear on any segment during this session.
998	 */
999	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
1000		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1001			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
1002			    "segment rejected\n", s, __func__);
1003		goto failed;
1004	}
1005
1006	/*
1007	 * If timestamps were negotiated during SYN/ACK they should
1008	 * appear on every segment during this session.
1009	 * XXXAO: This is only informal as there have been unverified
1010	 * reports of non-compliants stacks.
1011	 */
1012	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
1013		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1014			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
1015			    "no action\n", s, __func__);
1016	}
1017
1018	/*
1019	 * If timestamps were negotiated the reflected timestamp
1020	 * must be equal to what we actually sent in the SYN|ACK.
1021	 */
1022	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
1023		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
1024			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
1025			    "segment rejected\n",
1026			    s, __func__, to->to_tsecr, sc->sc_ts);
1027		goto failed;
1028	}
1029
1030	*lsop = syncache_socket(sc, *lsop, m);
1031
1032	if (*lsop == NULL)
1033		TCPSTAT_INC(tcps_sc_aborted);
1034	else
1035		TCPSTAT_INC(tcps_sc_completed);
1036
1037/* how do we find the inp for the new socket? */
1038	if (sc != &scs)
1039		syncache_free(sc);
1040	return (1);
1041failed:
1042	if (sc != NULL && sc != &scs)
1043		syncache_free(sc);
1044	if (s != NULL)
1045		free(s, M_TCPLOG);
1046	*lsop = NULL;
1047	return (0);
1048}
1049
1050/*
1051 * Given a LISTEN socket and an inbound SYN request, add
1052 * this to the syn cache, and send back a segment:
1053 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1054 * to the source.
1055 *
1056 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1057 * Doing so would require that we hold onto the data and deliver it
1058 * to the application.  However, if we are the target of a SYN-flood
1059 * DoS attack, an attacker could send data which would eventually
1060 * consume all available buffer space if it were ACKed.  By not ACKing
1061 * the data, we avoid this DoS scenario.
1062 */
1063void
1064syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1065    struct inpcb *inp, struct socket **lsop, struct mbuf *m, void *tod,
1066    void *todctx)
1067{
1068	struct tcpcb *tp;
1069	struct socket *so;
1070	struct syncache *sc = NULL;
1071	struct syncache_head *sch;
1072	struct mbuf *ipopts = NULL;
1073	u_int32_t flowtmp;
1074	u_int ltflags;
1075	int win, sb_hiwat, ip_ttl, ip_tos;
1076	char *s;
1077#ifdef INET6
1078	int autoflowlabel = 0;
1079#endif
1080#ifdef MAC
1081	struct label *maclabel;
1082#endif
1083	struct syncache scs;
1084	struct ucred *cred;
1085
1086	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1087	INP_WLOCK_ASSERT(inp);			/* listen socket */
1088	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1089	    ("%s: unexpected tcp flags", __func__));
1090
1091	/*
1092	 * Combine all so/tp operations very early to drop the INP lock as
1093	 * soon as possible.
1094	 */
1095	so = *lsop;
1096	tp = sototcpcb(so);
1097	cred = crhold(so->so_cred);
1098
1099#ifdef INET6
1100	if ((inc->inc_flags & INC_ISIPV6) &&
1101	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1102		autoflowlabel = 1;
1103#endif
1104	ip_ttl = inp->inp_ip_ttl;
1105	ip_tos = inp->inp_ip_tos;
1106	win = sbspace(&so->so_rcv);
1107	sb_hiwat = so->so_rcv.sb_hiwat;
1108	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1109
1110	/* By the time we drop the lock these should no longer be used. */
1111	so = NULL;
1112	tp = NULL;
1113
1114#ifdef MAC
1115	if (mac_syncache_init(&maclabel) != 0) {
1116		INP_WUNLOCK(inp);
1117		INP_INFO_WUNLOCK(&V_tcbinfo);
1118		goto done;
1119	} else
1120		mac_syncache_create(maclabel, inp);
1121#endif
1122	INP_WUNLOCK(inp);
1123	INP_INFO_WUNLOCK(&V_tcbinfo);
1124
1125	/*
1126	 * Remember the IP options, if any.
1127	 */
1128#ifdef INET6
1129	if (!(inc->inc_flags & INC_ISIPV6))
1130#endif
1131#ifdef INET
1132		ipopts = (m) ? ip_srcroute(m) : NULL;
1133#else
1134		ipopts = NULL;
1135#endif
1136
1137	/*
1138	 * See if we already have an entry for this connection.
1139	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1140	 *
1141	 * XXX: should the syncache be re-initialized with the contents
1142	 * of the new SYN here (which may have different options?)
1143	 *
1144	 * XXX: We do not check the sequence number to see if this is a
1145	 * real retransmit or a new connection attempt.  The question is
1146	 * how to handle such a case; either ignore it as spoofed, or
1147	 * drop the current entry and create a new one?
1148	 */
1149	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1150	SCH_LOCK_ASSERT(sch);
1151	if (sc != NULL) {
1152		TCPSTAT_INC(tcps_sc_dupsyn);
1153		if (ipopts) {
1154			/*
1155			 * If we were remembering a previous source route,
1156			 * forget it and use the new one we've been given.
1157			 */
1158			if (sc->sc_ipopts)
1159				(void) m_free(sc->sc_ipopts);
1160			sc->sc_ipopts = ipopts;
1161		}
1162		/*
1163		 * Update timestamp if present.
1164		 */
1165		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1166			sc->sc_tsreflect = to->to_tsval;
1167		else
1168			sc->sc_flags &= ~SCF_TIMESTAMP;
1169#ifdef MAC
1170		/*
1171		 * Since we have already unconditionally allocated label
1172		 * storage, free it up.  The syncache entry will already
1173		 * have an initialized label we can use.
1174		 */
1175		mac_syncache_destroy(&maclabel);
1176#endif
1177		/* Retransmit SYN|ACK and reset retransmit count. */
1178		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1179			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1180			    "resetting timer and retransmitting SYN|ACK\n",
1181			    s, __func__);
1182			free(s, M_TCPLOG);
1183		}
1184		if (syncache_respond(sc) == 0) {
1185			sc->sc_rxmits = 0;
1186			syncache_timeout(sc, sch, 1);
1187			TCPSTAT_INC(tcps_sndacks);
1188			TCPSTAT_INC(tcps_sndtotal);
1189		}
1190		SCH_UNLOCK(sch);
1191		goto done;
1192	}
1193
1194	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1195	if (sc == NULL) {
1196		/*
1197		 * The zone allocator couldn't provide more entries.
1198		 * Treat this as if the cache was full; drop the oldest
1199		 * entry and insert the new one.
1200		 */
1201		TCPSTAT_INC(tcps_sc_zonefail);
1202		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1203			syncache_drop(sc, sch);
1204		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1205		if (sc == NULL) {
1206			if (V_tcp_syncookies) {
1207				bzero(&scs, sizeof(scs));
1208				sc = &scs;
1209			} else {
1210				SCH_UNLOCK(sch);
1211				if (ipopts)
1212					(void) m_free(ipopts);
1213				goto done;
1214			}
1215		}
1216	}
1217
1218	/*
1219	 * Fill in the syncache values.
1220	 */
1221#ifdef MAC
1222	sc->sc_label = maclabel;
1223#endif
1224	sc->sc_cred = cred;
1225	cred = NULL;
1226	sc->sc_ipopts = ipopts;
1227	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1228#ifdef INET6
1229	if (!(inc->inc_flags & INC_ISIPV6))
1230#endif
1231	{
1232		sc->sc_ip_tos = ip_tos;
1233		sc->sc_ip_ttl = ip_ttl;
1234	}
1235#ifdef TCP_OFFLOAD
1236	sc->sc_tod = tod;
1237	sc->sc_todctx = todctx;
1238#endif
1239	sc->sc_irs = th->th_seq;
1240	sc->sc_iss = arc4random();
1241	sc->sc_flags = 0;
1242	sc->sc_flowlabel = 0;
1243
1244	/*
1245	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1246	 * win was derived from socket earlier in the function.
1247	 */
1248	win = imax(win, 0);
1249	win = imin(win, TCP_MAXWIN);
1250	sc->sc_wnd = win;
1251
1252	if (V_tcp_do_rfc1323) {
1253		/*
1254		 * A timestamp received in a SYN makes
1255		 * it ok to send timestamp requests and replies.
1256		 */
1257		if (to->to_flags & TOF_TS) {
1258			sc->sc_tsreflect = to->to_tsval;
1259			sc->sc_ts = tcp_ts_getticks();
1260			sc->sc_flags |= SCF_TIMESTAMP;
1261		}
1262		if (to->to_flags & TOF_SCALE) {
1263			int wscale = 0;
1264
1265			/*
1266			 * Pick the smallest possible scaling factor that
1267			 * will still allow us to scale up to sb_max, aka
1268			 * kern.ipc.maxsockbuf.
1269			 *
1270			 * We do this because there are broken firewalls that
1271			 * will corrupt the window scale option, leading to
1272			 * the other endpoint believing that our advertised
1273			 * window is unscaled.  At scale factors larger than
1274			 * 5 the unscaled window will drop below 1500 bytes,
1275			 * leading to serious problems when traversing these
1276			 * broken firewalls.
1277			 *
1278			 * With the default maxsockbuf of 256K, a scale factor
1279			 * of 3 will be chosen by this algorithm.  Those who
1280			 * choose a larger maxsockbuf should watch out
1281			 * for the compatiblity problems mentioned above.
1282			 *
1283			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1284			 * or <SYN,ACK>) segment itself is never scaled.
1285			 */
1286			while (wscale < TCP_MAX_WINSHIFT &&
1287			    (TCP_MAXWIN << wscale) < sb_max)
1288				wscale++;
1289			sc->sc_requested_r_scale = wscale;
1290			sc->sc_requested_s_scale = to->to_wscale;
1291			sc->sc_flags |= SCF_WINSCALE;
1292		}
1293	}
1294#ifdef TCP_SIGNATURE
1295	/*
1296	 * If listening socket requested TCP digests, and received SYN
1297	 * contains the option, flag this in the syncache so that
1298	 * syncache_respond() will do the right thing with the SYN+ACK.
1299	 * XXX: Currently we always record the option by default and will
1300	 * attempt to use it in syncache_respond().
1301	 */
1302	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1303		sc->sc_flags |= SCF_SIGNATURE;
1304#endif
1305	if (to->to_flags & TOF_SACKPERM)
1306		sc->sc_flags |= SCF_SACK;
1307	if (to->to_flags & TOF_MSS)
1308		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1309	if (ltflags & TF_NOOPT)
1310		sc->sc_flags |= SCF_NOOPT;
1311	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1312		sc->sc_flags |= SCF_ECN;
1313
1314	if (V_tcp_syncookies) {
1315		syncookie_generate(sch, sc, &flowtmp);
1316#ifdef INET6
1317		if (autoflowlabel)
1318			sc->sc_flowlabel = flowtmp;
1319#endif
1320	} else {
1321#ifdef INET6
1322		if (autoflowlabel)
1323			sc->sc_flowlabel =
1324			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1325#endif
1326	}
1327	SCH_UNLOCK(sch);
1328
1329	/*
1330	 * Do a standard 3-way handshake.
1331	 */
1332	if (syncache_respond(sc) == 0) {
1333		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1334			syncache_free(sc);
1335		else if (sc != &scs)
1336			syncache_insert(sc, sch);   /* locks and unlocks sch */
1337		TCPSTAT_INC(tcps_sndacks);
1338		TCPSTAT_INC(tcps_sndtotal);
1339	} else {
1340		if (sc != &scs)
1341			syncache_free(sc);
1342		TCPSTAT_INC(tcps_sc_dropped);
1343	}
1344
1345done:
1346	if (cred != NULL)
1347		crfree(cred);
1348#ifdef MAC
1349	if (sc == &scs)
1350		mac_syncache_destroy(&maclabel);
1351#endif
1352	if (m) {
1353
1354		*lsop = NULL;
1355		m_freem(m);
1356	}
1357}
1358
1359static int
1360syncache_respond(struct syncache *sc)
1361{
1362	struct ip *ip = NULL;
1363	struct mbuf *m;
1364	struct tcphdr *th = NULL;
1365	int optlen, error = 0;	/* Make compiler happy */
1366	u_int16_t hlen, tlen, mssopt;
1367	struct tcpopt to;
1368#ifdef INET6
1369	struct ip6_hdr *ip6 = NULL;
1370#endif
1371
1372	hlen =
1373#ifdef INET6
1374	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1375#endif
1376		sizeof(struct ip);
1377	tlen = hlen + sizeof(struct tcphdr);
1378
1379	/* Determine MSS we advertize to other end of connection. */
1380	mssopt = tcp_mssopt(&sc->sc_inc);
1381	if (sc->sc_peer_mss)
1382		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1383
1384	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1385	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1386	    ("syncache: mbuf too small"));
1387
1388	/* Create the IP+TCP header from scratch. */
1389	m = m_gethdr(M_NOWAIT, MT_DATA);
1390	if (m == NULL)
1391		return (ENOBUFS);
1392#ifdef MAC
1393	mac_syncache_create_mbuf(sc->sc_label, m);
1394#endif
1395	m->m_data += max_linkhdr;
1396	m->m_len = tlen;
1397	m->m_pkthdr.len = tlen;
1398	m->m_pkthdr.rcvif = NULL;
1399
1400#ifdef INET6
1401	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1402		ip6 = mtod(m, struct ip6_hdr *);
1403		ip6->ip6_vfc = IPV6_VERSION;
1404		ip6->ip6_nxt = IPPROTO_TCP;
1405		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1406		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1407		ip6->ip6_plen = htons(tlen - hlen);
1408		/* ip6_hlim is set after checksum */
1409		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1410		ip6->ip6_flow |= sc->sc_flowlabel;
1411
1412		th = (struct tcphdr *)(ip6 + 1);
1413	}
1414#endif
1415#if defined(INET6) && defined(INET)
1416	else
1417#endif
1418#ifdef INET
1419	{
1420		ip = mtod(m, struct ip *);
1421		ip->ip_v = IPVERSION;
1422		ip->ip_hl = sizeof(struct ip) >> 2;
1423		ip->ip_len = htons(tlen);
1424		ip->ip_id = 0;
1425		ip->ip_off = 0;
1426		ip->ip_sum = 0;
1427		ip->ip_p = IPPROTO_TCP;
1428		ip->ip_src = sc->sc_inc.inc_laddr;
1429		ip->ip_dst = sc->sc_inc.inc_faddr;
1430		ip->ip_ttl = sc->sc_ip_ttl;
1431		ip->ip_tos = sc->sc_ip_tos;
1432
1433		/*
1434		 * See if we should do MTU discovery.  Route lookups are
1435		 * expensive, so we will only unset the DF bit if:
1436		 *
1437		 *	1) path_mtu_discovery is disabled
1438		 *	2) the SCF_UNREACH flag has been set
1439		 */
1440		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1441		       ip->ip_off |= htons(IP_DF);
1442
1443		th = (struct tcphdr *)(ip + 1);
1444	}
1445#endif /* INET */
1446	th->th_sport = sc->sc_inc.inc_lport;
1447	th->th_dport = sc->sc_inc.inc_fport;
1448
1449	th->th_seq = htonl(sc->sc_iss);
1450	th->th_ack = htonl(sc->sc_irs + 1);
1451	th->th_off = sizeof(struct tcphdr) >> 2;
1452	th->th_x2 = 0;
1453	th->th_flags = TH_SYN|TH_ACK;
1454	th->th_win = htons(sc->sc_wnd);
1455	th->th_urp = 0;
1456
1457	if (sc->sc_flags & SCF_ECN) {
1458		th->th_flags |= TH_ECE;
1459		TCPSTAT_INC(tcps_ecn_shs);
1460	}
1461
1462	/* Tack on the TCP options. */
1463	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1464		to.to_flags = 0;
1465
1466		to.to_mss = mssopt;
1467		to.to_flags = TOF_MSS;
1468		if (sc->sc_flags & SCF_WINSCALE) {
1469			to.to_wscale = sc->sc_requested_r_scale;
1470			to.to_flags |= TOF_SCALE;
1471		}
1472		if (sc->sc_flags & SCF_TIMESTAMP) {
1473			/* Virgin timestamp or TCP cookie enhanced one. */
1474			to.to_tsval = sc->sc_ts;
1475			to.to_tsecr = sc->sc_tsreflect;
1476			to.to_flags |= TOF_TS;
1477		}
1478		if (sc->sc_flags & SCF_SACK)
1479			to.to_flags |= TOF_SACKPERM;
1480#ifdef TCP_SIGNATURE
1481		if (sc->sc_flags & SCF_SIGNATURE)
1482			to.to_flags |= TOF_SIGNATURE;
1483#endif
1484		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1485
1486		/* Adjust headers by option size. */
1487		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1488		m->m_len += optlen;
1489		m->m_pkthdr.len += optlen;
1490
1491#ifdef TCP_SIGNATURE
1492		if (sc->sc_flags & SCF_SIGNATURE)
1493			tcp_signature_compute(m, 0, 0, optlen,
1494			    to.to_signature, IPSEC_DIR_OUTBOUND);
1495#endif
1496#ifdef INET6
1497		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1498			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1499		else
1500#endif
1501			ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
1502	} else
1503		optlen = 0;
1504
1505	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1506	m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1507#ifdef INET6
1508	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1509		m->m_pkthdr.csum_flags = CSUM_TCP_IPV6;
1510		th->th_sum = in6_cksum_pseudo(ip6, tlen + optlen - hlen,
1511		    IPPROTO_TCP, 0);
1512		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1513#ifdef TCP_OFFLOAD
1514		if (ADDED_BY_TOE(sc)) {
1515			struct toedev *tod = sc->sc_tod;
1516
1517			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1518
1519			return (error);
1520		}
1521#endif
1522		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1523	}
1524#endif
1525#if defined(INET6) && defined(INET)
1526	else
1527#endif
1528#ifdef INET
1529	{
1530		m->m_pkthdr.csum_flags = CSUM_TCP;
1531		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1532		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1533#ifdef TCP_OFFLOAD
1534		if (ADDED_BY_TOE(sc)) {
1535			struct toedev *tod = sc->sc_tod;
1536
1537			error = tod->tod_syncache_respond(tod, sc->sc_todctx, m);
1538
1539			return (error);
1540		}
1541#endif
1542		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1543	}
1544#endif
1545	return (error);
1546}
1547
1548/*
1549 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1550 * receive and to be able to handle SYN floods from bogus source addresses
1551 * (where we will never receive any reply).  SYN floods try to exhaust all
1552 * our memory and available slots in the SYN cache table to cause a denial
1553 * of service to legitimate users of the local host.
1554 *
1555 * The idea of SYN cookies is to encode and include all necessary information
1556 * about the connection setup state within the SYN-ACK we send back and thus
1557 * to get along without keeping any local state until the ACK to the SYN-ACK
1558 * arrives (if ever).  Everything we need to know should be available from
1559 * the information we encoded in the SYN-ACK.
1560 *
1561 * More information about the theory behind SYN cookies and its first
1562 * discussion and specification can be found at:
1563 *  http://cr.yp.to/syncookies.html    (overview)
1564 *  http://cr.yp.to/syncookies/archive (gory details)
1565 *
1566 * This implementation extends the orginal idea and first implementation
1567 * of FreeBSD by using not only the initial sequence number field to store
1568 * information but also the timestamp field if present.  This way we can
1569 * keep track of the entire state we need to know to recreate the session in
1570 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1571 * these days.  For those that do not we still have to live with the known
1572 * shortcomings of the ISN only SYN cookies.
1573 *
1574 * Cookie layers:
1575 *
1576 * Initial sequence number we send:
1577 * 31|................................|0
1578 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1579 *    D = MD5 Digest (first dword)
1580 *    M = MSS index
1581 *    R = Rotation of secret
1582 *    P = Odd or Even secret
1583 *
1584 * The MD5 Digest is computed with over following parameters:
1585 *  a) randomly rotated secret
1586 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1587 *  c) the received initial sequence number from remote host
1588 *  d) the rotation offset and odd/even bit
1589 *
1590 * Timestamp we send:
1591 * 31|................................|0
1592 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1593 *    D = MD5 Digest (third dword) (only as filler)
1594 *    S = Requested send window scale
1595 *    R = Requested receive window scale
1596 *    A = SACK allowed
1597 *    5 = TCP-MD5 enabled (not implemented yet)
1598 *    XORed with MD5 Digest (forth dword)
1599 *
1600 * The timestamp isn't cryptographically secure and doesn't need to be.
1601 * The double use of the MD5 digest dwords ties it to a specific remote/
1602 * local host/port, remote initial sequence number and our local time
1603 * limited secret.  A received timestamp is reverted (XORed) and then
1604 * the contained MD5 dword is compared to the computed one to ensure the
1605 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1606 * have been tampered with but this isn't different from supplying bogus
1607 * values in the SYN in the first place.
1608 *
1609 * Some problems with SYN cookies remain however:
1610 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1611 * original SYN was accepted, the connection is established.  The second
1612 * SYN is inflight, and if it arrives with an ISN that falls within the
1613 * receive window, the connection is killed.
1614 *
1615 * Notes:
1616 * A heuristic to determine when to accept syn cookies is not necessary.
1617 * An ACK flood would cause the syncookie verification to be attempted,
1618 * but a SYN flood causes syncookies to be generated.  Both are of equal
1619 * cost, so there's no point in trying to optimize the ACK flood case.
1620 * Also, if you don't process certain ACKs for some reason, then all someone
1621 * would have to do is launch a SYN and ACK flood at the same time, which
1622 * would stop cookie verification and defeat the entire purpose of syncookies.
1623 */
1624static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1625
1626static void
1627syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1628    u_int32_t *flowlabel)
1629{
1630	MD5_CTX ctx;
1631	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1632	u_int32_t data;
1633	u_int32_t *secbits;
1634	u_int off, pmss, mss;
1635	int i;
1636
1637	SCH_LOCK_ASSERT(sch);
1638
1639	/* Which of the two secrets to use. */
1640	secbits = sch->sch_oddeven ?
1641			sch->sch_secbits_odd : sch->sch_secbits_even;
1642
1643	/* Reseed secret if too old. */
1644	if (sch->sch_reseed < time_uptime) {
1645		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1646		secbits = sch->sch_oddeven ?
1647				sch->sch_secbits_odd : sch->sch_secbits_even;
1648		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1649			secbits[i] = arc4random();
1650		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1651	}
1652
1653	/* Secret rotation offset. */
1654	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1655
1656	/* Maximum segment size calculation. */
1657	pmss =
1658	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1659	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1660		if (tcp_sc_msstab[mss] <= pmss)
1661			break;
1662
1663	/* Fold parameters and MD5 digest into the ISN we will send. */
1664	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1665	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1666	data |= mss << 4;	/* mss, 3 bits */
1667
1668	MD5Init(&ctx);
1669	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1670	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1671	MD5Update(&ctx, secbits, off);
1672	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1673	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1674	MD5Update(&ctx, &data, sizeof(data));
1675	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1676
1677	data |= (md5_buffer[0] << 7);
1678	sc->sc_iss = data;
1679
1680#ifdef INET6
1681	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1682#endif
1683
1684	/* Additional parameters are stored in the timestamp if present. */
1685	if (sc->sc_flags & SCF_TIMESTAMP) {
1686		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1687		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1688		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1689		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1690		data |= md5_buffer[2] << 10;		/* more digest bits */
1691		data ^= md5_buffer[3];
1692		sc->sc_ts = data;
1693		sc->sc_tsoff = data - tcp_ts_getticks();	/* after XOR */
1694	}
1695
1696	TCPSTAT_INC(tcps_sc_sendcookie);
1697}
1698
1699static struct syncache *
1700syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1701    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1702    struct socket *so)
1703{
1704	MD5_CTX ctx;
1705	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1706	u_int32_t data = 0;
1707	u_int32_t *secbits;
1708	tcp_seq ack, seq;
1709	int off, mss, wnd, flags;
1710
1711	SCH_LOCK_ASSERT(sch);
1712
1713	/*
1714	 * Pull information out of SYN-ACK/ACK and
1715	 * revert sequence number advances.
1716	 */
1717	ack = th->th_ack - 1;
1718	seq = th->th_seq - 1;
1719	off = (ack >> 1) & 0x7;
1720	mss = (ack >> 4) & 0x7;
1721	flags = ack & 0x7f;
1722
1723	/* Which of the two secrets to use. */
1724	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1725
1726	/*
1727	 * The secret wasn't updated for the lifetime of a syncookie,
1728	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1729	 */
1730	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1731		return (NULL);
1732	}
1733
1734	/* Recompute the digest so we can compare it. */
1735	MD5Init(&ctx);
1736	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1737	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1738	MD5Update(&ctx, secbits, off);
1739	MD5Update(&ctx, inc, sizeof(*inc));
1740	MD5Update(&ctx, &seq, sizeof(seq));
1741	MD5Update(&ctx, &flags, sizeof(flags));
1742	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1743
1744	/* Does the digest part of or ACK'ed ISS match? */
1745	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1746		return (NULL);
1747
1748	/* Does the digest part of our reflected timestamp match? */
1749	if (to->to_flags & TOF_TS) {
1750		data = md5_buffer[3] ^ to->to_tsecr;
1751		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1752			return (NULL);
1753	}
1754
1755	/* Fill in the syncache values. */
1756	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1757	sc->sc_ipopts = NULL;
1758
1759	sc->sc_irs = seq;
1760	sc->sc_iss = ack;
1761
1762#ifdef INET6
1763	if (inc->inc_flags & INC_ISIPV6) {
1764		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1765			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1766	} else
1767#endif
1768	{
1769		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1770		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1771	}
1772
1773	/* Additional parameters that were encoded in the timestamp. */
1774	if (data) {
1775		sc->sc_flags |= SCF_TIMESTAMP;
1776		sc->sc_tsreflect = to->to_tsval;
1777		sc->sc_ts = to->to_tsecr;
1778		sc->sc_tsoff = to->to_tsecr - tcp_ts_getticks();
1779		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1780		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1781		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1782		    TCP_MAX_WINSHIFT);
1783		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1784		    TCP_MAX_WINSHIFT);
1785		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1786			sc->sc_flags |= SCF_WINSCALE;
1787	} else
1788		sc->sc_flags |= SCF_NOOPT;
1789
1790	wnd = sbspace(&so->so_rcv);
1791	wnd = imax(wnd, 0);
1792	wnd = imin(wnd, TCP_MAXWIN);
1793	sc->sc_wnd = wnd;
1794
1795	sc->sc_rxmits = 0;
1796	sc->sc_peer_mss = tcp_sc_msstab[mss];
1797
1798	TCPSTAT_INC(tcps_sc_recvcookie);
1799	return (sc);
1800}
1801
1802/*
1803 * Returns the current number of syncache entries.  This number
1804 * will probably change before you get around to calling
1805 * syncache_pcblist.
1806 */
1807
1808int
1809syncache_pcbcount(void)
1810{
1811	struct syncache_head *sch;
1812	int count, i;
1813
1814	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1815		/* No need to lock for a read. */
1816		sch = &V_tcp_syncache.hashbase[i];
1817		count += sch->sch_length;
1818	}
1819	return count;
1820}
1821
1822/*
1823 * Exports the syncache entries to userland so that netstat can display
1824 * them alongside the other sockets.  This function is intended to be
1825 * called only from tcp_pcblist.
1826 *
1827 * Due to concurrency on an active system, the number of pcbs exported
1828 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1829 * amount of space the caller allocated for this function to use.
1830 */
1831int
1832syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1833{
1834	struct xtcpcb xt;
1835	struct syncache *sc;
1836	struct syncache_head *sch;
1837	int count, error, i;
1838
1839	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1840		sch = &V_tcp_syncache.hashbase[i];
1841		SCH_LOCK(sch);
1842		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1843			if (count >= max_pcbs) {
1844				SCH_UNLOCK(sch);
1845				goto exit;
1846			}
1847			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1848				continue;
1849			bzero(&xt, sizeof(xt));
1850			xt.xt_len = sizeof(xt);
1851			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1852				xt.xt_inp.inp_vflag = INP_IPV6;
1853			else
1854				xt.xt_inp.inp_vflag = INP_IPV4;
1855			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1856			xt.xt_tp.t_inpcb = &xt.xt_inp;
1857			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1858			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1859			xt.xt_socket.xso_len = sizeof (struct xsocket);
1860			xt.xt_socket.so_type = SOCK_STREAM;
1861			xt.xt_socket.so_state = SS_ISCONNECTING;
1862			error = SYSCTL_OUT(req, &xt, sizeof xt);
1863			if (error) {
1864				SCH_UNLOCK(sch);
1865				goto exit;
1866			}
1867			count++;
1868		}
1869		SCH_UNLOCK(sch);
1870	}
1871exit:
1872	*pcbs_exported = count;
1873	return error;
1874}
1875