tcp_syncache.c revision 222748
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 222748 2011-06-06 12:55:02Z rwatson $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_pcbgroup.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/md5.h>
51#include <sys/proc.h>		/* for proc0 declaration */
52#include <sys/random.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/syslog.h>
56#include <sys/ucred.h>
57
58#include <vm/uma.h>
59
60#include <net/if.h>
61#include <net/route.h>
62#include <net/vnet.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip_var.h>
70#include <netinet/ip_options.h>
71#ifdef INET6
72#include <netinet/ip6.h>
73#include <netinet/icmp6.h>
74#include <netinet6/nd6.h>
75#include <netinet6/ip6_var.h>
76#include <netinet6/in6_pcb.h>
77#endif
78#include <netinet/tcp.h>
79#include <netinet/tcp_fsm.h>
80#include <netinet/tcp_seq.h>
81#include <netinet/tcp_timer.h>
82#include <netinet/tcp_var.h>
83#include <netinet/tcp_syncache.h>
84#include <netinet/tcp_offload.h>
85#ifdef INET6
86#include <netinet6/tcp6_var.h>
87#endif
88
89#ifdef IPSEC
90#include <netipsec/ipsec.h>
91#ifdef INET6
92#include <netipsec/ipsec6.h>
93#endif
94#include <netipsec/key.h>
95#endif /*IPSEC*/
96
97#include <machine/in_cksum.h>
98
99#include <security/mac/mac_framework.h>
100
101static VNET_DEFINE(int, tcp_syncookies) = 1;
102#define	V_tcp_syncookies		VNET(tcp_syncookies)
103SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
104    &VNET_NAME(tcp_syncookies), 0,
105    "Use TCP SYN cookies if the syncache overflows");
106
107static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
108#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
109SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
110    &VNET_NAME(tcp_syncookiesonly), 0,
111    "Use only TCP SYN cookies");
112
113#ifdef TCP_OFFLOAD_DISABLE
114#define TOEPCB_ISSET(sc) (0)
115#else
116#define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
117#endif
118
119static void	 syncache_drop(struct syncache *, struct syncache_head *);
120static void	 syncache_free(struct syncache *);
121static void	 syncache_insert(struct syncache *, struct syncache_head *);
122struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
123static int	 syncache_respond(struct syncache *);
124static struct	 socket *syncache_socket(struct syncache *, struct socket *,
125		    struct mbuf *m);
126static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
127		    int docallout);
128static void	 syncache_timer(void *);
129static void	 syncookie_generate(struct syncache_head *, struct syncache *,
130		    u_int32_t *);
131static struct syncache
132		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
133		    struct syncache *, struct tcpopt *, struct tcphdr *,
134		    struct socket *);
135
136/*
137 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
138 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
139 * the odds are that the user has given up attempting to connect by then.
140 */
141#define SYNCACHE_MAXREXMTS		3
142
143/* Arbitrary values */
144#define TCP_SYNCACHE_HASHSIZE		512
145#define TCP_SYNCACHE_BUCKETLIMIT	30
146
147static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
148#define	V_tcp_syncache			VNET(tcp_syncache)
149
150SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
151
152SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
153    &VNET_NAME(tcp_syncache.bucket_limit), 0,
154    "Per-bucket hash limit for syncache");
155
156SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
157    &VNET_NAME(tcp_syncache.cache_limit), 0,
158    "Overall entry limit for syncache");
159
160SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
161    &VNET_NAME(tcp_syncache.cache_count), 0,
162    "Current number of entries in syncache");
163
164SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
165    &VNET_NAME(tcp_syncache.hashsize), 0,
166    "Size of TCP syncache hashtable");
167
168SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
169    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
170    "Limit on SYN/ACK retransmissions");
171
172VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
173SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
174    CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
175    "Send reset on socket allocation failure");
176
177static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
178
179#define SYNCACHE_HASH(inc, mask)					\
180	((V_tcp_syncache.hash_secret ^					\
181	  (inc)->inc_faddr.s_addr ^					\
182	  ((inc)->inc_faddr.s_addr >> 16) ^				\
183	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
184
185#define SYNCACHE_HASH6(inc, mask)					\
186	((V_tcp_syncache.hash_secret ^					\
187	  (inc)->inc6_faddr.s6_addr32[0] ^				\
188	  (inc)->inc6_faddr.s6_addr32[3] ^				\
189	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
190
191#define ENDPTS_EQ(a, b) (						\
192	(a)->ie_fport == (b)->ie_fport &&				\
193	(a)->ie_lport == (b)->ie_lport &&				\
194	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
195	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
196)
197
198#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
199
200#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
201#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
202#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
203
204/*
205 * Requires the syncache entry to be already removed from the bucket list.
206 */
207static void
208syncache_free(struct syncache *sc)
209{
210
211	if (sc->sc_ipopts)
212		(void) m_free(sc->sc_ipopts);
213	if (sc->sc_cred)
214		crfree(sc->sc_cred);
215#ifdef MAC
216	mac_syncache_destroy(&sc->sc_label);
217#endif
218
219	uma_zfree(V_tcp_syncache.zone, sc);
220}
221
222void
223syncache_init(void)
224{
225	int i;
226
227	V_tcp_syncache.cache_count = 0;
228	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
229	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
230	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
231	V_tcp_syncache.hash_secret = arc4random();
232
233	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
234	    &V_tcp_syncache.hashsize);
235	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
236	    &V_tcp_syncache.bucket_limit);
237	if (!powerof2(V_tcp_syncache.hashsize) ||
238	    V_tcp_syncache.hashsize == 0) {
239		printf("WARNING: syncache hash size is not a power of 2.\n");
240		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
241	}
242	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
243
244	/* Set limits. */
245	V_tcp_syncache.cache_limit =
246	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
247	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
248	    &V_tcp_syncache.cache_limit);
249
250	/* Allocate the hash table. */
251	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
252	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
253
254	/* Initialize the hash buckets. */
255	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
256#ifdef VIMAGE
257		V_tcp_syncache.hashbase[i].sch_vnet = curvnet;
258#endif
259		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
260		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
261			 NULL, MTX_DEF);
262		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
263			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
264		V_tcp_syncache.hashbase[i].sch_length = 0;
265	}
266
267	/* Create the syncache entry zone. */
268	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
269	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
270	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
271}
272
273#ifdef VIMAGE
274void
275syncache_destroy(void)
276{
277	struct syncache_head *sch;
278	struct syncache *sc, *nsc;
279	int i;
280
281	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
282	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
283
284		sch = &V_tcp_syncache.hashbase[i];
285		callout_drain(&sch->sch_timer);
286
287		SCH_LOCK(sch);
288		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
289			syncache_drop(sc, sch);
290		SCH_UNLOCK(sch);
291		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
292		    ("%s: sch->sch_bucket not empty", __func__));
293		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
294		    __func__, sch->sch_length));
295		mtx_destroy(&sch->sch_mtx);
296	}
297
298	KASSERT(V_tcp_syncache.cache_count == 0, ("%s: cache_count %d not 0",
299	    __func__, V_tcp_syncache.cache_count));
300
301	/* Free the allocated global resources. */
302	uma_zdestroy(V_tcp_syncache.zone);
303	free(V_tcp_syncache.hashbase, M_SYNCACHE);
304}
305#endif
306
307/*
308 * Inserts a syncache entry into the specified bucket row.
309 * Locks and unlocks the syncache_head autonomously.
310 */
311static void
312syncache_insert(struct syncache *sc, struct syncache_head *sch)
313{
314	struct syncache *sc2;
315
316	SCH_LOCK(sch);
317
318	/*
319	 * Make sure that we don't overflow the per-bucket limit.
320	 * If the bucket is full, toss the oldest element.
321	 */
322	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
323		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
324			("sch->sch_length incorrect"));
325		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
326		syncache_drop(sc2, sch);
327		TCPSTAT_INC(tcps_sc_bucketoverflow);
328	}
329
330	/* Put it into the bucket. */
331	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
332	sch->sch_length++;
333
334	/* Reinitialize the bucket row's timer. */
335	if (sch->sch_length == 1)
336		sch->sch_nextc = ticks + INT_MAX;
337	syncache_timeout(sc, sch, 1);
338
339	SCH_UNLOCK(sch);
340
341	V_tcp_syncache.cache_count++;
342	TCPSTAT_INC(tcps_sc_added);
343}
344
345/*
346 * Remove and free entry from syncache bucket row.
347 * Expects locked syncache head.
348 */
349static void
350syncache_drop(struct syncache *sc, struct syncache_head *sch)
351{
352
353	SCH_LOCK_ASSERT(sch);
354
355	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
356	sch->sch_length--;
357
358#ifndef TCP_OFFLOAD_DISABLE
359	if (sc->sc_tu)
360		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
361#endif
362	syncache_free(sc);
363	V_tcp_syncache.cache_count--;
364}
365
366/*
367 * Engage/reengage time on bucket row.
368 */
369static void
370syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
371{
372	sc->sc_rxttime = ticks +
373		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
374	sc->sc_rxmits++;
375	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
376		sch->sch_nextc = sc->sc_rxttime;
377		if (docallout)
378			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
379			    syncache_timer, (void *)sch);
380	}
381}
382
383/*
384 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
385 * If we have retransmitted an entry the maximum number of times, expire it.
386 * One separate timer for each bucket row.
387 */
388static void
389syncache_timer(void *xsch)
390{
391	struct syncache_head *sch = (struct syncache_head *)xsch;
392	struct syncache *sc, *nsc;
393	int tick = ticks;
394	char *s;
395
396	CURVNET_SET(sch->sch_vnet);
397
398	/* NB: syncache_head has already been locked by the callout. */
399	SCH_LOCK_ASSERT(sch);
400
401	/*
402	 * In the following cycle we may remove some entries and/or
403	 * advance some timeouts, so re-initialize the bucket timer.
404	 */
405	sch->sch_nextc = tick + INT_MAX;
406
407	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
408		/*
409		 * We do not check if the listen socket still exists
410		 * and accept the case where the listen socket may be
411		 * gone by the time we resend the SYN/ACK.  We do
412		 * not expect this to happens often. If it does,
413		 * then the RST will be sent by the time the remote
414		 * host does the SYN/ACK->ACK.
415		 */
416		if (TSTMP_GT(sc->sc_rxttime, tick)) {
417			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
418				sch->sch_nextc = sc->sc_rxttime;
419			continue;
420		}
421		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
422			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
423				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
424				    "giving up and removing syncache entry\n",
425				    s, __func__);
426				free(s, M_TCPLOG);
427			}
428			syncache_drop(sc, sch);
429			TCPSTAT_INC(tcps_sc_stale);
430			continue;
431		}
432		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
433			log(LOG_DEBUG, "%s; %s: Response timeout, "
434			    "retransmitting (%u) SYN|ACK\n",
435			    s, __func__, sc->sc_rxmits);
436			free(s, M_TCPLOG);
437		}
438
439		(void) syncache_respond(sc);
440		TCPSTAT_INC(tcps_sc_retransmitted);
441		syncache_timeout(sc, sch, 0);
442	}
443	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
444		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
445			syncache_timer, (void *)(sch));
446	CURVNET_RESTORE();
447}
448
449/*
450 * Find an entry in the syncache.
451 * Returns always with locked syncache_head plus a matching entry or NULL.
452 */
453struct syncache *
454syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
455{
456	struct syncache *sc;
457	struct syncache_head *sch;
458
459#ifdef INET6
460	if (inc->inc_flags & INC_ISIPV6) {
461		sch = &V_tcp_syncache.hashbase[
462		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
463		*schp = sch;
464
465		SCH_LOCK(sch);
466
467		/* Circle through bucket row to find matching entry. */
468		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
469			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
470				return (sc);
471		}
472	} else
473#endif
474	{
475		sch = &V_tcp_syncache.hashbase[
476		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
477		*schp = sch;
478
479		SCH_LOCK(sch);
480
481		/* Circle through bucket row to find matching entry. */
482		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
483#ifdef INET6
484			if (sc->sc_inc.inc_flags & INC_ISIPV6)
485				continue;
486#endif
487			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
488				return (sc);
489		}
490	}
491	SCH_LOCK_ASSERT(*schp);
492	return (NULL);			/* always returns with locked sch */
493}
494
495/*
496 * This function is called when we get a RST for a
497 * non-existent connection, so that we can see if the
498 * connection is in the syn cache.  If it is, zap it.
499 */
500void
501syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
502{
503	struct syncache *sc;
504	struct syncache_head *sch;
505	char *s = NULL;
506
507	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
508	SCH_LOCK_ASSERT(sch);
509
510	/*
511	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
512	 * See RFC 793 page 65, section SEGMENT ARRIVES.
513	 */
514	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
515		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
516			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
517			    "FIN flag set, segment ignored\n", s, __func__);
518		TCPSTAT_INC(tcps_badrst);
519		goto done;
520	}
521
522	/*
523	 * No corresponding connection was found in syncache.
524	 * If syncookies are enabled and possibly exclusively
525	 * used, or we are under memory pressure, a valid RST
526	 * may not find a syncache entry.  In that case we're
527	 * done and no SYN|ACK retransmissions will happen.
528	 * Otherwise the RST was misdirected or spoofed.
529	 */
530	if (sc == NULL) {
531		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
532			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
533			    "syncache entry (possibly syncookie only), "
534			    "segment ignored\n", s, __func__);
535		TCPSTAT_INC(tcps_badrst);
536		goto done;
537	}
538
539	/*
540	 * If the RST bit is set, check the sequence number to see
541	 * if this is a valid reset segment.
542	 * RFC 793 page 37:
543	 *   In all states except SYN-SENT, all reset (RST) segments
544	 *   are validated by checking their SEQ-fields.  A reset is
545	 *   valid if its sequence number is in the window.
546	 *
547	 *   The sequence number in the reset segment is normally an
548	 *   echo of our outgoing acknowlegement numbers, but some hosts
549	 *   send a reset with the sequence number at the rightmost edge
550	 *   of our receive window, and we have to handle this case.
551	 */
552	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
553	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
554		syncache_drop(sc, sch);
555		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
556			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
557			    "connection attempt aborted by remote endpoint\n",
558			    s, __func__);
559		TCPSTAT_INC(tcps_sc_reset);
560	} else {
561		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
562			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
563			    "IRS %u (+WND %u), segment ignored\n",
564			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
565		TCPSTAT_INC(tcps_badrst);
566	}
567
568done:
569	if (s != NULL)
570		free(s, M_TCPLOG);
571	SCH_UNLOCK(sch);
572}
573
574void
575syncache_badack(struct in_conninfo *inc)
576{
577	struct syncache *sc;
578	struct syncache_head *sch;
579
580	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
581	SCH_LOCK_ASSERT(sch);
582	if (sc != NULL) {
583		syncache_drop(sc, sch);
584		TCPSTAT_INC(tcps_sc_badack);
585	}
586	SCH_UNLOCK(sch);
587}
588
589void
590syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
591{
592	struct syncache *sc;
593	struct syncache_head *sch;
594
595	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
596	SCH_LOCK_ASSERT(sch);
597	if (sc == NULL)
598		goto done;
599
600	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
601	if (ntohl(th->th_seq) != sc->sc_iss)
602		goto done;
603
604	/*
605	 * If we've rertransmitted 3 times and this is our second error,
606	 * we remove the entry.  Otherwise, we allow it to continue on.
607	 * This prevents us from incorrectly nuking an entry during a
608	 * spurious network outage.
609	 *
610	 * See tcp_notify().
611	 */
612	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
613		sc->sc_flags |= SCF_UNREACH;
614		goto done;
615	}
616	syncache_drop(sc, sch);
617	TCPSTAT_INC(tcps_sc_unreach);
618done:
619	SCH_UNLOCK(sch);
620}
621
622/*
623 * Build a new TCP socket structure from a syncache entry.
624 */
625static struct socket *
626syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
627{
628	struct inpcb *inp = NULL;
629	struct socket *so;
630	struct tcpcb *tp;
631	int error;
632	char *s;
633
634	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
635
636	/*
637	 * Ok, create the full blown connection, and set things up
638	 * as they would have been set up if we had created the
639	 * connection when the SYN arrived.  If we can't create
640	 * the connection, abort it.
641	 */
642	so = sonewconn(lso, SS_ISCONNECTED);
643	if (so == NULL) {
644		/*
645		 * Drop the connection; we will either send a RST or
646		 * have the peer retransmit its SYN again after its
647		 * RTO and try again.
648		 */
649		TCPSTAT_INC(tcps_listendrop);
650		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
651			log(LOG_DEBUG, "%s; %s: Socket create failed "
652			    "due to limits or memory shortage\n",
653			    s, __func__);
654			free(s, M_TCPLOG);
655		}
656		goto abort2;
657	}
658#ifdef MAC
659	mac_socketpeer_set_from_mbuf(m, so);
660#endif
661
662	inp = sotoinpcb(so);
663	inp->inp_inc.inc_fibnum = so->so_fibnum;
664	INP_WLOCK(inp);
665	INP_HASH_WLOCK(&V_tcbinfo);
666
667	/* Insert new socket into PCB hash list. */
668	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
669#ifdef INET6
670	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
671		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
672	} else {
673		inp->inp_vflag &= ~INP_IPV6;
674		inp->inp_vflag |= INP_IPV4;
675#endif
676		inp->inp_laddr = sc->sc_inc.inc_laddr;
677#ifdef INET6
678	}
679#endif
680
681	/*
682	 * Install in the reservation hash table for now, but don't yet
683	 * install a connection group since the full 4-tuple isn't yet
684	 * configured.
685	 */
686	inp->inp_lport = sc->sc_inc.inc_lport;
687	if ((error = in_pcbinshash_nopcbgroup(inp)) != 0) {
688		/*
689		 * Undo the assignments above if we failed to
690		 * put the PCB on the hash lists.
691		 */
692#ifdef INET6
693		if (sc->sc_inc.inc_flags & INC_ISIPV6)
694			inp->in6p_laddr = in6addr_any;
695		else
696#endif
697			inp->inp_laddr.s_addr = INADDR_ANY;
698		inp->inp_lport = 0;
699		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
700			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
701			    "with error %i\n",
702			    s, __func__, error);
703			free(s, M_TCPLOG);
704		}
705		INP_HASH_WUNLOCK(&V_tcbinfo);
706		goto abort;
707	}
708#ifdef IPSEC
709	/* Copy old policy into new socket's. */
710	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
711		printf("syncache_socket: could not copy policy\n");
712#endif
713#ifdef INET6
714	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
715		struct inpcb *oinp = sotoinpcb(lso);
716		struct in6_addr laddr6;
717		struct sockaddr_in6 sin6;
718		/*
719		 * Inherit socket options from the listening socket.
720		 * Note that in6p_inputopts are not (and should not be)
721		 * copied, since it stores previously received options and is
722		 * used to detect if each new option is different than the
723		 * previous one and hence should be passed to a user.
724		 * If we copied in6p_inputopts, a user would not be able to
725		 * receive options just after calling the accept system call.
726		 */
727		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
728		if (oinp->in6p_outputopts)
729			inp->in6p_outputopts =
730			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
731
732		sin6.sin6_family = AF_INET6;
733		sin6.sin6_len = sizeof(sin6);
734		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
735		sin6.sin6_port = sc->sc_inc.inc_fport;
736		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
737		laddr6 = inp->in6p_laddr;
738		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
739			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
740		if ((error = in6_pcbconnect_mbuf(inp, (struct sockaddr *)&sin6,
741		    thread0.td_ucred, m)) != 0) {
742			inp->in6p_laddr = laddr6;
743			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
744				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
745				    "with error %i\n",
746				    s, __func__, error);
747				free(s, M_TCPLOG);
748			}
749			INP_HASH_WUNLOCK(&V_tcbinfo);
750			goto abort;
751		}
752		/* Override flowlabel from in6_pcbconnect. */
753		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
754		inp->inp_flow |= sc->sc_flowlabel;
755	}
756#endif /* INET6 */
757#if defined(INET) && defined(INET6)
758	else
759#endif
760#ifdef INET
761	{
762		struct in_addr laddr;
763		struct sockaddr_in sin;
764
765		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
766
767		if (inp->inp_options == NULL) {
768			inp->inp_options = sc->sc_ipopts;
769			sc->sc_ipopts = NULL;
770		}
771
772		sin.sin_family = AF_INET;
773		sin.sin_len = sizeof(sin);
774		sin.sin_addr = sc->sc_inc.inc_faddr;
775		sin.sin_port = sc->sc_inc.inc_fport;
776		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
777		laddr = inp->inp_laddr;
778		if (inp->inp_laddr.s_addr == INADDR_ANY)
779			inp->inp_laddr = sc->sc_inc.inc_laddr;
780		if ((error = in_pcbconnect_mbuf(inp, (struct sockaddr *)&sin,
781		    thread0.td_ucred, m)) != 0) {
782			inp->inp_laddr = laddr;
783			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
784				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
785				    "with error %i\n",
786				    s, __func__, error);
787				free(s, M_TCPLOG);
788			}
789			INP_HASH_WUNLOCK(&V_tcbinfo);
790			goto abort;
791		}
792	}
793#endif /* INET */
794	INP_HASH_WUNLOCK(&V_tcbinfo);
795	tp = intotcpcb(inp);
796	tp->t_state = TCPS_SYN_RECEIVED;
797	tp->iss = sc->sc_iss;
798	tp->irs = sc->sc_irs;
799	tcp_rcvseqinit(tp);
800	tcp_sendseqinit(tp);
801	tp->snd_wl1 = sc->sc_irs;
802	tp->snd_max = tp->iss + 1;
803	tp->snd_nxt = tp->iss + 1;
804	tp->rcv_up = sc->sc_irs + 1;
805	tp->rcv_wnd = sc->sc_wnd;
806	tp->rcv_adv += tp->rcv_wnd;
807	tp->last_ack_sent = tp->rcv_nxt;
808
809	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
810	if (sc->sc_flags & SCF_NOOPT)
811		tp->t_flags |= TF_NOOPT;
812	else {
813		if (sc->sc_flags & SCF_WINSCALE) {
814			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
815			tp->snd_scale = sc->sc_requested_s_scale;
816			tp->request_r_scale = sc->sc_requested_r_scale;
817		}
818		if (sc->sc_flags & SCF_TIMESTAMP) {
819			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
820			tp->ts_recent = sc->sc_tsreflect;
821			tp->ts_recent_age = ticks;
822			tp->ts_offset = sc->sc_tsoff;
823		}
824#ifdef TCP_SIGNATURE
825		if (sc->sc_flags & SCF_SIGNATURE)
826			tp->t_flags |= TF_SIGNATURE;
827#endif
828		if (sc->sc_flags & SCF_SACK)
829			tp->t_flags |= TF_SACK_PERMIT;
830	}
831
832	if (sc->sc_flags & SCF_ECN)
833		tp->t_flags |= TF_ECN_PERMIT;
834
835	/*
836	 * Set up MSS and get cached values from tcp_hostcache.
837	 * This might overwrite some of the defaults we just set.
838	 */
839	tcp_mss(tp, sc->sc_peer_mss);
840
841	/*
842	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
843	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
844	 */
845	if (sc->sc_rxmits > 1)
846		tp->snd_cwnd = tp->t_maxseg;
847	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
848
849	INP_WUNLOCK(inp);
850
851	TCPSTAT_INC(tcps_accepts);
852	return (so);
853
854abort:
855	INP_WUNLOCK(inp);
856abort2:
857	if (so != NULL)
858		soabort(so);
859	return (NULL);
860}
861
862/*
863 * This function gets called when we receive an ACK for a
864 * socket in the LISTEN state.  We look up the connection
865 * in the syncache, and if its there, we pull it out of
866 * the cache and turn it into a full-blown connection in
867 * the SYN-RECEIVED state.
868 */
869int
870syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
871    struct socket **lsop, struct mbuf *m)
872{
873	struct syncache *sc;
874	struct syncache_head *sch;
875	struct syncache scs;
876	char *s;
877
878	/*
879	 * Global TCP locks are held because we manipulate the PCB lists
880	 * and create a new socket.
881	 */
882	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
883	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
884	    ("%s: can handle only ACK", __func__));
885
886	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
887	SCH_LOCK_ASSERT(sch);
888	if (sc == NULL) {
889		/*
890		 * There is no syncache entry, so see if this ACK is
891		 * a returning syncookie.  To do this, first:
892		 *  A. See if this socket has had a syncache entry dropped in
893		 *     the past.  We don't want to accept a bogus syncookie
894		 *     if we've never received a SYN.
895		 *  B. check that the syncookie is valid.  If it is, then
896		 *     cobble up a fake syncache entry, and return.
897		 */
898		if (!V_tcp_syncookies) {
899			SCH_UNLOCK(sch);
900			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
901				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
902				    "segment rejected (syncookies disabled)\n",
903				    s, __func__);
904			goto failed;
905		}
906		bzero(&scs, sizeof(scs));
907		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
908		SCH_UNLOCK(sch);
909		if (sc == NULL) {
910			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
911				log(LOG_DEBUG, "%s; %s: Segment failed "
912				    "SYNCOOKIE authentication, segment rejected "
913				    "(probably spoofed)\n", s, __func__);
914			goto failed;
915		}
916	} else {
917		/* Pull out the entry to unlock the bucket row. */
918		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
919		sch->sch_length--;
920		V_tcp_syncache.cache_count--;
921		SCH_UNLOCK(sch);
922	}
923
924	/*
925	 * Segment validation:
926	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
927	 */
928	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
929		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
930			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
931			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
932		goto failed;
933	}
934
935	/*
936	 * The SEQ must fall in the window starting at the received
937	 * initial receive sequence number + 1 (the SYN).
938	 */
939	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
940	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
941	    !TOEPCB_ISSET(sc)) {
942		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
943			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
944			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
945		goto failed;
946	}
947
948	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
949		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
950			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
951			    "segment rejected\n", s, __func__);
952		goto failed;
953	}
954	/*
955	 * If timestamps were negotiated the reflected timestamp
956	 * must be equal to what we actually sent in the SYN|ACK.
957	 */
958	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
959	    !TOEPCB_ISSET(sc)) {
960		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
961			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
962			    "segment rejected\n",
963			    s, __func__, to->to_tsecr, sc->sc_ts);
964		goto failed;
965	}
966
967	*lsop = syncache_socket(sc, *lsop, m);
968
969	if (*lsop == NULL)
970		TCPSTAT_INC(tcps_sc_aborted);
971	else
972		TCPSTAT_INC(tcps_sc_completed);
973
974/* how do we find the inp for the new socket? */
975	if (sc != &scs)
976		syncache_free(sc);
977	return (1);
978failed:
979	if (sc != NULL && sc != &scs)
980		syncache_free(sc);
981	if (s != NULL)
982		free(s, M_TCPLOG);
983	*lsop = NULL;
984	return (0);
985}
986
987int
988tcp_offload_syncache_expand(struct in_conninfo *inc, struct toeopt *toeo,
989    struct tcphdr *th, struct socket **lsop, struct mbuf *m)
990{
991	struct tcpopt to;
992	int rc;
993
994	bzero(&to, sizeof(struct tcpopt));
995	to.to_mss = toeo->to_mss;
996	to.to_wscale = toeo->to_wscale;
997	to.to_flags = toeo->to_flags;
998
999	INP_INFO_WLOCK(&V_tcbinfo);
1000	rc = syncache_expand(inc, &to, th, lsop, m);
1001	INP_INFO_WUNLOCK(&V_tcbinfo);
1002
1003	return (rc);
1004}
1005
1006/*
1007 * Given a LISTEN socket and an inbound SYN request, add
1008 * this to the syn cache, and send back a segment:
1009 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1010 * to the source.
1011 *
1012 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
1013 * Doing so would require that we hold onto the data and deliver it
1014 * to the application.  However, if we are the target of a SYN-flood
1015 * DoS attack, an attacker could send data which would eventually
1016 * consume all available buffer space if it were ACKed.  By not ACKing
1017 * the data, we avoid this DoS scenario.
1018 */
1019static void
1020_syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1021    struct inpcb *inp, struct socket **lsop, struct mbuf *m,
1022    struct toe_usrreqs *tu, void *toepcb)
1023{
1024	struct tcpcb *tp;
1025	struct socket *so;
1026	struct syncache *sc = NULL;
1027	struct syncache_head *sch;
1028	struct mbuf *ipopts = NULL;
1029	u_int32_t flowtmp;
1030	u_int ltflags;
1031	int win, sb_hiwat, ip_ttl, ip_tos;
1032	char *s;
1033#ifdef INET6
1034	int autoflowlabel = 0;
1035#endif
1036#ifdef MAC
1037	struct label *maclabel;
1038#endif
1039	struct syncache scs;
1040	struct ucred *cred;
1041
1042	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1043	INP_WLOCK_ASSERT(inp);			/* listen socket */
1044	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1045	    ("%s: unexpected tcp flags", __func__));
1046
1047	/*
1048	 * Combine all so/tp operations very early to drop the INP lock as
1049	 * soon as possible.
1050	 */
1051	so = *lsop;
1052	tp = sototcpcb(so);
1053	cred = crhold(so->so_cred);
1054
1055#ifdef INET6
1056	if ((inc->inc_flags & INC_ISIPV6) &&
1057	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1058		autoflowlabel = 1;
1059#endif
1060	ip_ttl = inp->inp_ip_ttl;
1061	ip_tos = inp->inp_ip_tos;
1062	win = sbspace(&so->so_rcv);
1063	sb_hiwat = so->so_rcv.sb_hiwat;
1064	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1065
1066	/* By the time we drop the lock these should no longer be used. */
1067	so = NULL;
1068	tp = NULL;
1069
1070#ifdef MAC
1071	if (mac_syncache_init(&maclabel) != 0) {
1072		INP_WUNLOCK(inp);
1073		INP_INFO_WUNLOCK(&V_tcbinfo);
1074		goto done;
1075	} else
1076		mac_syncache_create(maclabel, inp);
1077#endif
1078	INP_WUNLOCK(inp);
1079	INP_INFO_WUNLOCK(&V_tcbinfo);
1080
1081	/*
1082	 * Remember the IP options, if any.
1083	 */
1084#ifdef INET6
1085	if (!(inc->inc_flags & INC_ISIPV6))
1086#endif
1087#ifdef INET
1088		ipopts = (m) ? ip_srcroute(m) : NULL;
1089#else
1090		ipopts = NULL;
1091#endif
1092
1093	/*
1094	 * See if we already have an entry for this connection.
1095	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1096	 *
1097	 * XXX: should the syncache be re-initialized with the contents
1098	 * of the new SYN here (which may have different options?)
1099	 *
1100	 * XXX: We do not check the sequence number to see if this is a
1101	 * real retransmit or a new connection attempt.  The question is
1102	 * how to handle such a case; either ignore it as spoofed, or
1103	 * drop the current entry and create a new one?
1104	 */
1105	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1106	SCH_LOCK_ASSERT(sch);
1107	if (sc != NULL) {
1108#ifndef TCP_OFFLOAD_DISABLE
1109		if (sc->sc_tu)
1110			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1111			    sc->sc_toepcb);
1112#endif
1113		TCPSTAT_INC(tcps_sc_dupsyn);
1114		if (ipopts) {
1115			/*
1116			 * If we were remembering a previous source route,
1117			 * forget it and use the new one we've been given.
1118			 */
1119			if (sc->sc_ipopts)
1120				(void) m_free(sc->sc_ipopts);
1121			sc->sc_ipopts = ipopts;
1122		}
1123		/*
1124		 * Update timestamp if present.
1125		 */
1126		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1127			sc->sc_tsreflect = to->to_tsval;
1128		else
1129			sc->sc_flags &= ~SCF_TIMESTAMP;
1130#ifdef MAC
1131		/*
1132		 * Since we have already unconditionally allocated label
1133		 * storage, free it up.  The syncache entry will already
1134		 * have an initialized label we can use.
1135		 */
1136		mac_syncache_destroy(&maclabel);
1137#endif
1138		/* Retransmit SYN|ACK and reset retransmit count. */
1139		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1140			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1141			    "resetting timer and retransmitting SYN|ACK\n",
1142			    s, __func__);
1143			free(s, M_TCPLOG);
1144		}
1145		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1146			sc->sc_rxmits = 0;
1147			syncache_timeout(sc, sch, 1);
1148			TCPSTAT_INC(tcps_sndacks);
1149			TCPSTAT_INC(tcps_sndtotal);
1150		}
1151		SCH_UNLOCK(sch);
1152		goto done;
1153	}
1154
1155	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1156	if (sc == NULL) {
1157		/*
1158		 * The zone allocator couldn't provide more entries.
1159		 * Treat this as if the cache was full; drop the oldest
1160		 * entry and insert the new one.
1161		 */
1162		TCPSTAT_INC(tcps_sc_zonefail);
1163		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1164			syncache_drop(sc, sch);
1165		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1166		if (sc == NULL) {
1167			if (V_tcp_syncookies) {
1168				bzero(&scs, sizeof(scs));
1169				sc = &scs;
1170			} else {
1171				SCH_UNLOCK(sch);
1172				if (ipopts)
1173					(void) m_free(ipopts);
1174				goto done;
1175			}
1176		}
1177	}
1178
1179	/*
1180	 * Fill in the syncache values.
1181	 */
1182#ifdef MAC
1183	sc->sc_label = maclabel;
1184#endif
1185	sc->sc_cred = cred;
1186	cred = NULL;
1187	sc->sc_ipopts = ipopts;
1188	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1189#ifdef INET6
1190	if (!(inc->inc_flags & INC_ISIPV6))
1191#endif
1192	{
1193		sc->sc_ip_tos = ip_tos;
1194		sc->sc_ip_ttl = ip_ttl;
1195	}
1196#ifndef TCP_OFFLOAD_DISABLE
1197	sc->sc_tu = tu;
1198	sc->sc_toepcb = toepcb;
1199#endif
1200	sc->sc_irs = th->th_seq;
1201	sc->sc_iss = arc4random();
1202	sc->sc_flags = 0;
1203	sc->sc_flowlabel = 0;
1204
1205	/*
1206	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1207	 * win was derived from socket earlier in the function.
1208	 */
1209	win = imax(win, 0);
1210	win = imin(win, TCP_MAXWIN);
1211	sc->sc_wnd = win;
1212
1213	if (V_tcp_do_rfc1323) {
1214		/*
1215		 * A timestamp received in a SYN makes
1216		 * it ok to send timestamp requests and replies.
1217		 */
1218		if (to->to_flags & TOF_TS) {
1219			sc->sc_tsreflect = to->to_tsval;
1220			sc->sc_ts = ticks;
1221			sc->sc_flags |= SCF_TIMESTAMP;
1222		}
1223		if (to->to_flags & TOF_SCALE) {
1224			int wscale = 0;
1225
1226			/*
1227			 * Pick the smallest possible scaling factor that
1228			 * will still allow us to scale up to sb_max, aka
1229			 * kern.ipc.maxsockbuf.
1230			 *
1231			 * We do this because there are broken firewalls that
1232			 * will corrupt the window scale option, leading to
1233			 * the other endpoint believing that our advertised
1234			 * window is unscaled.  At scale factors larger than
1235			 * 5 the unscaled window will drop below 1500 bytes,
1236			 * leading to serious problems when traversing these
1237			 * broken firewalls.
1238			 *
1239			 * With the default maxsockbuf of 256K, a scale factor
1240			 * of 3 will be chosen by this algorithm.  Those who
1241			 * choose a larger maxsockbuf should watch out
1242			 * for the compatiblity problems mentioned above.
1243			 *
1244			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1245			 * or <SYN,ACK>) segment itself is never scaled.
1246			 */
1247			while (wscale < TCP_MAX_WINSHIFT &&
1248			    (TCP_MAXWIN << wscale) < sb_max)
1249				wscale++;
1250			sc->sc_requested_r_scale = wscale;
1251			sc->sc_requested_s_scale = to->to_wscale;
1252			sc->sc_flags |= SCF_WINSCALE;
1253		}
1254	}
1255#ifdef TCP_SIGNATURE
1256	/*
1257	 * If listening socket requested TCP digests, and received SYN
1258	 * contains the option, flag this in the syncache so that
1259	 * syncache_respond() will do the right thing with the SYN+ACK.
1260	 * XXX: Currently we always record the option by default and will
1261	 * attempt to use it in syncache_respond().
1262	 */
1263	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1264		sc->sc_flags |= SCF_SIGNATURE;
1265#endif
1266	if (to->to_flags & TOF_SACKPERM)
1267		sc->sc_flags |= SCF_SACK;
1268	if (to->to_flags & TOF_MSS)
1269		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1270	if (ltflags & TF_NOOPT)
1271		sc->sc_flags |= SCF_NOOPT;
1272	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1273		sc->sc_flags |= SCF_ECN;
1274
1275	if (V_tcp_syncookies) {
1276		syncookie_generate(sch, sc, &flowtmp);
1277#ifdef INET6
1278		if (autoflowlabel)
1279			sc->sc_flowlabel = flowtmp;
1280#endif
1281	} else {
1282#ifdef INET6
1283		if (autoflowlabel)
1284			sc->sc_flowlabel =
1285			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1286#endif
1287	}
1288	SCH_UNLOCK(sch);
1289
1290	/*
1291	 * Do a standard 3-way handshake.
1292	 */
1293	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1294		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1295			syncache_free(sc);
1296		else if (sc != &scs)
1297			syncache_insert(sc, sch);   /* locks and unlocks sch */
1298		TCPSTAT_INC(tcps_sndacks);
1299		TCPSTAT_INC(tcps_sndtotal);
1300	} else {
1301		if (sc != &scs)
1302			syncache_free(sc);
1303		TCPSTAT_INC(tcps_sc_dropped);
1304	}
1305
1306done:
1307	if (cred != NULL)
1308		crfree(cred);
1309#ifdef MAC
1310	if (sc == &scs)
1311		mac_syncache_destroy(&maclabel);
1312#endif
1313	if (m) {
1314
1315		*lsop = NULL;
1316		m_freem(m);
1317	}
1318}
1319
1320static int
1321syncache_respond(struct syncache *sc)
1322{
1323	struct ip *ip = NULL;
1324	struct mbuf *m;
1325	struct tcphdr *th = NULL;
1326	int optlen, error = 0;	/* Make compiler happy */
1327	u_int16_t hlen, tlen, mssopt;
1328	struct tcpopt to;
1329#ifdef INET6
1330	struct ip6_hdr *ip6 = NULL;
1331#endif
1332
1333	hlen =
1334#ifdef INET6
1335	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1336#endif
1337		sizeof(struct ip);
1338	tlen = hlen + sizeof(struct tcphdr);
1339
1340	/* Determine MSS we advertize to other end of connection. */
1341	mssopt = tcp_mssopt(&sc->sc_inc);
1342	if (sc->sc_peer_mss)
1343		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1344
1345	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1346	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1347	    ("syncache: mbuf too small"));
1348
1349	/* Create the IP+TCP header from scratch. */
1350	m = m_gethdr(M_DONTWAIT, MT_DATA);
1351	if (m == NULL)
1352		return (ENOBUFS);
1353#ifdef MAC
1354	mac_syncache_create_mbuf(sc->sc_label, m);
1355#endif
1356	m->m_data += max_linkhdr;
1357	m->m_len = tlen;
1358	m->m_pkthdr.len = tlen;
1359	m->m_pkthdr.rcvif = NULL;
1360
1361#ifdef INET6
1362	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1363		ip6 = mtod(m, struct ip6_hdr *);
1364		ip6->ip6_vfc = IPV6_VERSION;
1365		ip6->ip6_nxt = IPPROTO_TCP;
1366		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1367		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1368		ip6->ip6_plen = htons(tlen - hlen);
1369		/* ip6_hlim is set after checksum */
1370		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1371		ip6->ip6_flow |= sc->sc_flowlabel;
1372
1373		th = (struct tcphdr *)(ip6 + 1);
1374	}
1375#endif
1376#if defined(INET6) && defined(INET)
1377	else
1378#endif
1379#ifdef INET
1380	{
1381		ip = mtod(m, struct ip *);
1382		ip->ip_v = IPVERSION;
1383		ip->ip_hl = sizeof(struct ip) >> 2;
1384		ip->ip_len = tlen;
1385		ip->ip_id = 0;
1386		ip->ip_off = 0;
1387		ip->ip_sum = 0;
1388		ip->ip_p = IPPROTO_TCP;
1389		ip->ip_src = sc->sc_inc.inc_laddr;
1390		ip->ip_dst = sc->sc_inc.inc_faddr;
1391		ip->ip_ttl = sc->sc_ip_ttl;
1392		ip->ip_tos = sc->sc_ip_tos;
1393
1394		/*
1395		 * See if we should do MTU discovery.  Route lookups are
1396		 * expensive, so we will only unset the DF bit if:
1397		 *
1398		 *	1) path_mtu_discovery is disabled
1399		 *	2) the SCF_UNREACH flag has been set
1400		 */
1401		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1402		       ip->ip_off |= IP_DF;
1403
1404		th = (struct tcphdr *)(ip + 1);
1405	}
1406#endif /* INET */
1407	th->th_sport = sc->sc_inc.inc_lport;
1408	th->th_dport = sc->sc_inc.inc_fport;
1409
1410	th->th_seq = htonl(sc->sc_iss);
1411	th->th_ack = htonl(sc->sc_irs + 1);
1412	th->th_off = sizeof(struct tcphdr) >> 2;
1413	th->th_x2 = 0;
1414	th->th_flags = TH_SYN|TH_ACK;
1415	th->th_win = htons(sc->sc_wnd);
1416	th->th_urp = 0;
1417
1418	if (sc->sc_flags & SCF_ECN) {
1419		th->th_flags |= TH_ECE;
1420		TCPSTAT_INC(tcps_ecn_shs);
1421	}
1422
1423	/* Tack on the TCP options. */
1424	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1425		to.to_flags = 0;
1426
1427		to.to_mss = mssopt;
1428		to.to_flags = TOF_MSS;
1429		if (sc->sc_flags & SCF_WINSCALE) {
1430			to.to_wscale = sc->sc_requested_r_scale;
1431			to.to_flags |= TOF_SCALE;
1432		}
1433		if (sc->sc_flags & SCF_TIMESTAMP) {
1434			/* Virgin timestamp or TCP cookie enhanced one. */
1435			to.to_tsval = sc->sc_ts;
1436			to.to_tsecr = sc->sc_tsreflect;
1437			to.to_flags |= TOF_TS;
1438		}
1439		if (sc->sc_flags & SCF_SACK)
1440			to.to_flags |= TOF_SACKPERM;
1441#ifdef TCP_SIGNATURE
1442		if (sc->sc_flags & SCF_SIGNATURE)
1443			to.to_flags |= TOF_SIGNATURE;
1444#endif
1445		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1446
1447		/* Adjust headers by option size. */
1448		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1449		m->m_len += optlen;
1450		m->m_pkthdr.len += optlen;
1451
1452#ifdef TCP_SIGNATURE
1453		if (sc->sc_flags & SCF_SIGNATURE)
1454			tcp_signature_compute(m, 0, 0, optlen,
1455			    to.to_signature, IPSEC_DIR_OUTBOUND);
1456#endif
1457#ifdef INET6
1458		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1459			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1460		else
1461#endif
1462			ip->ip_len += optlen;
1463	} else
1464		optlen = 0;
1465
1466	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1467#ifdef INET6
1468	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1469		th->th_sum = 0;
1470		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1471				       tlen + optlen - hlen);
1472		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1473		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1474	}
1475#endif
1476#if defined(INET6) && defined(INET)
1477	else
1478#endif
1479#ifdef INET
1480	{
1481		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1482		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1483		m->m_pkthdr.csum_flags = CSUM_TCP;
1484		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1485		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1486	}
1487#endif
1488	return (error);
1489}
1490
1491void
1492syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1493    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1494{
1495	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1496}
1497
1498void
1499tcp_offload_syncache_add(struct in_conninfo *inc, struct toeopt *toeo,
1500    struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1501    struct toe_usrreqs *tu, void *toepcb)
1502{
1503	struct tcpopt to;
1504
1505	bzero(&to, sizeof(struct tcpopt));
1506	to.to_mss = toeo->to_mss;
1507	to.to_wscale = toeo->to_wscale;
1508	to.to_flags = toeo->to_flags;
1509
1510	INP_INFO_WLOCK(&V_tcbinfo);
1511	INP_WLOCK(inp);
1512
1513	_syncache_add(inc, &to, th, inp, lsop, NULL, tu, toepcb);
1514}
1515
1516/*
1517 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1518 * receive and to be able to handle SYN floods from bogus source addresses
1519 * (where we will never receive any reply).  SYN floods try to exhaust all
1520 * our memory and available slots in the SYN cache table to cause a denial
1521 * of service to legitimate users of the local host.
1522 *
1523 * The idea of SYN cookies is to encode and include all necessary information
1524 * about the connection setup state within the SYN-ACK we send back and thus
1525 * to get along without keeping any local state until the ACK to the SYN-ACK
1526 * arrives (if ever).  Everything we need to know should be available from
1527 * the information we encoded in the SYN-ACK.
1528 *
1529 * More information about the theory behind SYN cookies and its first
1530 * discussion and specification can be found at:
1531 *  http://cr.yp.to/syncookies.html    (overview)
1532 *  http://cr.yp.to/syncookies/archive (gory details)
1533 *
1534 * This implementation extends the orginal idea and first implementation
1535 * of FreeBSD by using not only the initial sequence number field to store
1536 * information but also the timestamp field if present.  This way we can
1537 * keep track of the entire state we need to know to recreate the session in
1538 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1539 * these days.  For those that do not we still have to live with the known
1540 * shortcomings of the ISN only SYN cookies.
1541 *
1542 * Cookie layers:
1543 *
1544 * Initial sequence number we send:
1545 * 31|................................|0
1546 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1547 *    D = MD5 Digest (first dword)
1548 *    M = MSS index
1549 *    R = Rotation of secret
1550 *    P = Odd or Even secret
1551 *
1552 * The MD5 Digest is computed with over following parameters:
1553 *  a) randomly rotated secret
1554 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1555 *  c) the received initial sequence number from remote host
1556 *  d) the rotation offset and odd/even bit
1557 *
1558 * Timestamp we send:
1559 * 31|................................|0
1560 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1561 *    D = MD5 Digest (third dword) (only as filler)
1562 *    S = Requested send window scale
1563 *    R = Requested receive window scale
1564 *    A = SACK allowed
1565 *    5 = TCP-MD5 enabled (not implemented yet)
1566 *    XORed with MD5 Digest (forth dword)
1567 *
1568 * The timestamp isn't cryptographically secure and doesn't need to be.
1569 * The double use of the MD5 digest dwords ties it to a specific remote/
1570 * local host/port, remote initial sequence number and our local time
1571 * limited secret.  A received timestamp is reverted (XORed) and then
1572 * the contained MD5 dword is compared to the computed one to ensure the
1573 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1574 * have been tampered with but this isn't different from supplying bogus
1575 * values in the SYN in the first place.
1576 *
1577 * Some problems with SYN cookies remain however:
1578 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1579 * original SYN was accepted, the connection is established.  The second
1580 * SYN is inflight, and if it arrives with an ISN that falls within the
1581 * receive window, the connection is killed.
1582 *
1583 * Notes:
1584 * A heuristic to determine when to accept syn cookies is not necessary.
1585 * An ACK flood would cause the syncookie verification to be attempted,
1586 * but a SYN flood causes syncookies to be generated.  Both are of equal
1587 * cost, so there's no point in trying to optimize the ACK flood case.
1588 * Also, if you don't process certain ACKs for some reason, then all someone
1589 * would have to do is launch a SYN and ACK flood at the same time, which
1590 * would stop cookie verification and defeat the entire purpose of syncookies.
1591 */
1592static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1593
1594static void
1595syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1596    u_int32_t *flowlabel)
1597{
1598	MD5_CTX ctx;
1599	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1600	u_int32_t data;
1601	u_int32_t *secbits;
1602	u_int off, pmss, mss;
1603	int i;
1604
1605	SCH_LOCK_ASSERT(sch);
1606
1607	/* Which of the two secrets to use. */
1608	secbits = sch->sch_oddeven ?
1609			sch->sch_secbits_odd : sch->sch_secbits_even;
1610
1611	/* Reseed secret if too old. */
1612	if (sch->sch_reseed < time_uptime) {
1613		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1614		secbits = sch->sch_oddeven ?
1615				sch->sch_secbits_odd : sch->sch_secbits_even;
1616		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1617			secbits[i] = arc4random();
1618		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1619	}
1620
1621	/* Secret rotation offset. */
1622	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1623
1624	/* Maximum segment size calculation. */
1625	pmss =
1626	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1627	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1628		if (tcp_sc_msstab[mss] <= pmss)
1629			break;
1630
1631	/* Fold parameters and MD5 digest into the ISN we will send. */
1632	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1633	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1634	data |= mss << 4;	/* mss, 3 bits */
1635
1636	MD5Init(&ctx);
1637	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1638	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1639	MD5Update(&ctx, secbits, off);
1640	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1641	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1642	MD5Update(&ctx, &data, sizeof(data));
1643	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1644
1645	data |= (md5_buffer[0] << 7);
1646	sc->sc_iss = data;
1647
1648#ifdef INET6
1649	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1650#endif
1651
1652	/* Additional parameters are stored in the timestamp if present. */
1653	if (sc->sc_flags & SCF_TIMESTAMP) {
1654		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1655		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1656		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1657		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1658		data |= md5_buffer[2] << 10;		/* more digest bits */
1659		data ^= md5_buffer[3];
1660		sc->sc_ts = data;
1661		sc->sc_tsoff = data - ticks;		/* after XOR */
1662	}
1663
1664	TCPSTAT_INC(tcps_sc_sendcookie);
1665}
1666
1667static struct syncache *
1668syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1669    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1670    struct socket *so)
1671{
1672	MD5_CTX ctx;
1673	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1674	u_int32_t data = 0;
1675	u_int32_t *secbits;
1676	tcp_seq ack, seq;
1677	int off, mss, wnd, flags;
1678
1679	SCH_LOCK_ASSERT(sch);
1680
1681	/*
1682	 * Pull information out of SYN-ACK/ACK and
1683	 * revert sequence number advances.
1684	 */
1685	ack = th->th_ack - 1;
1686	seq = th->th_seq - 1;
1687	off = (ack >> 1) & 0x7;
1688	mss = (ack >> 4) & 0x7;
1689	flags = ack & 0x7f;
1690
1691	/* Which of the two secrets to use. */
1692	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1693
1694	/*
1695	 * The secret wasn't updated for the lifetime of a syncookie,
1696	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1697	 */
1698	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1699		return (NULL);
1700	}
1701
1702	/* Recompute the digest so we can compare it. */
1703	MD5Init(&ctx);
1704	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1705	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1706	MD5Update(&ctx, secbits, off);
1707	MD5Update(&ctx, inc, sizeof(*inc));
1708	MD5Update(&ctx, &seq, sizeof(seq));
1709	MD5Update(&ctx, &flags, sizeof(flags));
1710	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1711
1712	/* Does the digest part of or ACK'ed ISS match? */
1713	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1714		return (NULL);
1715
1716	/* Does the digest part of our reflected timestamp match? */
1717	if (to->to_flags & TOF_TS) {
1718		data = md5_buffer[3] ^ to->to_tsecr;
1719		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1720			return (NULL);
1721	}
1722
1723	/* Fill in the syncache values. */
1724	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1725	sc->sc_ipopts = NULL;
1726
1727	sc->sc_irs = seq;
1728	sc->sc_iss = ack;
1729
1730#ifdef INET6
1731	if (inc->inc_flags & INC_ISIPV6) {
1732		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1733			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1734	} else
1735#endif
1736	{
1737		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1738		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1739	}
1740
1741	/* Additional parameters that were encoded in the timestamp. */
1742	if (data) {
1743		sc->sc_flags |= SCF_TIMESTAMP;
1744		sc->sc_tsreflect = to->to_tsval;
1745		sc->sc_ts = to->to_tsecr;
1746		sc->sc_tsoff = to->to_tsecr - ticks;
1747		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1748		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1749		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1750		    TCP_MAX_WINSHIFT);
1751		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1752		    TCP_MAX_WINSHIFT);
1753		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1754			sc->sc_flags |= SCF_WINSCALE;
1755	} else
1756		sc->sc_flags |= SCF_NOOPT;
1757
1758	wnd = sbspace(&so->so_rcv);
1759	wnd = imax(wnd, 0);
1760	wnd = imin(wnd, TCP_MAXWIN);
1761	sc->sc_wnd = wnd;
1762
1763	sc->sc_rxmits = 0;
1764	sc->sc_peer_mss = tcp_sc_msstab[mss];
1765
1766	TCPSTAT_INC(tcps_sc_recvcookie);
1767	return (sc);
1768}
1769
1770/*
1771 * Returns the current number of syncache entries.  This number
1772 * will probably change before you get around to calling
1773 * syncache_pcblist.
1774 */
1775
1776int
1777syncache_pcbcount(void)
1778{
1779	struct syncache_head *sch;
1780	int count, i;
1781
1782	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1783		/* No need to lock for a read. */
1784		sch = &V_tcp_syncache.hashbase[i];
1785		count += sch->sch_length;
1786	}
1787	return count;
1788}
1789
1790/*
1791 * Exports the syncache entries to userland so that netstat can display
1792 * them alongside the other sockets.  This function is intended to be
1793 * called only from tcp_pcblist.
1794 *
1795 * Due to concurrency on an active system, the number of pcbs exported
1796 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1797 * amount of space the caller allocated for this function to use.
1798 */
1799int
1800syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1801{
1802	struct xtcpcb xt;
1803	struct syncache *sc;
1804	struct syncache_head *sch;
1805	int count, error, i;
1806
1807	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1808		sch = &V_tcp_syncache.hashbase[i];
1809		SCH_LOCK(sch);
1810		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1811			if (count >= max_pcbs) {
1812				SCH_UNLOCK(sch);
1813				goto exit;
1814			}
1815			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1816				continue;
1817			bzero(&xt, sizeof(xt));
1818			xt.xt_len = sizeof(xt);
1819			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1820				xt.xt_inp.inp_vflag = INP_IPV6;
1821			else
1822				xt.xt_inp.inp_vflag = INP_IPV4;
1823			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1824			xt.xt_tp.t_inpcb = &xt.xt_inp;
1825			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1826			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1827			xt.xt_socket.xso_len = sizeof (struct xsocket);
1828			xt.xt_socket.so_type = SOCK_STREAM;
1829			xt.xt_socket.so_state = SS_ISCONNECTING;
1830			error = SYSCTL_OUT(req, &xt, sizeof xt);
1831			if (error) {
1832				SCH_UNLOCK(sch);
1833				goto exit;
1834			}
1835			count++;
1836		}
1837		SCH_UNLOCK(sch);
1838	}
1839exit:
1840	*pcbs_exported = count;
1841	return error;
1842}
1843