tcp_syncache.c revision 221023
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 221023 2011-04-25 17:13:40Z attilio $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/sysctl.h>
44#include <sys/limits.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/md5.h>
50#include <sys/proc.h>		/* for proc0 declaration */
51#include <sys/random.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/syslog.h>
55#include <sys/ucred.h>
56
57#include <vm/uma.h>
58
59#include <net/if.h>
60#include <net/route.h>
61#include <net/vnet.h>
62
63#include <netinet/in.h>
64#include <netinet/in_systm.h>
65#include <netinet/ip.h>
66#include <netinet/in_var.h>
67#include <netinet/in_pcb.h>
68#include <netinet/ip_var.h>
69#include <netinet/ip_options.h>
70#ifdef INET6
71#include <netinet/ip6.h>
72#include <netinet/icmp6.h>
73#include <netinet6/nd6.h>
74#include <netinet6/ip6_var.h>
75#include <netinet6/in6_pcb.h>
76#endif
77#include <netinet/tcp.h>
78#include <netinet/tcp_fsm.h>
79#include <netinet/tcp_seq.h>
80#include <netinet/tcp_timer.h>
81#include <netinet/tcp_var.h>
82#include <netinet/tcp_syncache.h>
83#include <netinet/tcp_offload.h>
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87
88#ifdef IPSEC
89#include <netipsec/ipsec.h>
90#ifdef INET6
91#include <netipsec/ipsec6.h>
92#endif
93#include <netipsec/key.h>
94#endif /*IPSEC*/
95
96#include <machine/in_cksum.h>
97
98#include <security/mac/mac_framework.h>
99
100static VNET_DEFINE(int, tcp_syncookies) = 1;
101#define	V_tcp_syncookies		VNET(tcp_syncookies)
102SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
103    &VNET_NAME(tcp_syncookies), 0,
104    "Use TCP SYN cookies if the syncache overflows");
105
106static VNET_DEFINE(int, tcp_syncookiesonly) = 0;
107#define	V_tcp_syncookiesonly		VNET(tcp_syncookiesonly)
108SYSCTL_VNET_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
109    &VNET_NAME(tcp_syncookiesonly), 0,
110    "Use only TCP SYN cookies");
111
112#ifdef TCP_OFFLOAD_DISABLE
113#define TOEPCB_ISSET(sc) (0)
114#else
115#define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
116#endif
117
118static void	 syncache_drop(struct syncache *, struct syncache_head *);
119static void	 syncache_free(struct syncache *);
120static void	 syncache_insert(struct syncache *, struct syncache_head *);
121struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
122static int	 syncache_respond(struct syncache *);
123static struct	 socket *syncache_socket(struct syncache *, struct socket *,
124		    struct mbuf *m);
125static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
126		    int docallout);
127static void	 syncache_timer(void *);
128static void	 syncookie_generate(struct syncache_head *, struct syncache *,
129		    u_int32_t *);
130static struct syncache
131		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
132		    struct syncache *, struct tcpopt *, struct tcphdr *,
133		    struct socket *);
134
135/*
136 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
137 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
138 * the odds are that the user has given up attempting to connect by then.
139 */
140#define SYNCACHE_MAXREXMTS		3
141
142/* Arbitrary values */
143#define TCP_SYNCACHE_HASHSIZE		512
144#define TCP_SYNCACHE_BUCKETLIMIT	30
145
146static VNET_DEFINE(struct tcp_syncache, tcp_syncache);
147#define	V_tcp_syncache			VNET(tcp_syncache)
148
149SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
150
151SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
152    &VNET_NAME(tcp_syncache.bucket_limit), 0,
153    "Per-bucket hash limit for syncache");
154
155SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
156    &VNET_NAME(tcp_syncache.cache_limit), 0,
157    "Overall entry limit for syncache");
158
159SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
160    &VNET_NAME(tcp_syncache.cache_count), 0,
161    "Current number of entries in syncache");
162
163SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
164    &VNET_NAME(tcp_syncache.hashsize), 0,
165    "Size of TCP syncache hashtable");
166
167SYSCTL_VNET_UINT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
168    &VNET_NAME(tcp_syncache.rexmt_limit), 0,
169    "Limit on SYN/ACK retransmissions");
170
171VNET_DEFINE(int, tcp_sc_rst_sock_fail) = 1;
172SYSCTL_VNET_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail,
173    CTLFLAG_RW, &VNET_NAME(tcp_sc_rst_sock_fail), 0,
174    "Send reset on socket allocation failure");
175
176static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
177
178#define SYNCACHE_HASH(inc, mask)					\
179	((V_tcp_syncache.hash_secret ^					\
180	  (inc)->inc_faddr.s_addr ^					\
181	  ((inc)->inc_faddr.s_addr >> 16) ^				\
182	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
183
184#define SYNCACHE_HASH6(inc, mask)					\
185	((V_tcp_syncache.hash_secret ^					\
186	  (inc)->inc6_faddr.s6_addr32[0] ^				\
187	  (inc)->inc6_faddr.s6_addr32[3] ^				\
188	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
189
190#define ENDPTS_EQ(a, b) (						\
191	(a)->ie_fport == (b)->ie_fport &&				\
192	(a)->ie_lport == (b)->ie_lport &&				\
193	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
194	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
195)
196
197#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
198
199#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
200#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
201#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
202
203/*
204 * Requires the syncache entry to be already removed from the bucket list.
205 */
206static void
207syncache_free(struct syncache *sc)
208{
209
210	if (sc->sc_ipopts)
211		(void) m_free(sc->sc_ipopts);
212	if (sc->sc_cred)
213		crfree(sc->sc_cred);
214#ifdef MAC
215	mac_syncache_destroy(&sc->sc_label);
216#endif
217
218	uma_zfree(V_tcp_syncache.zone, sc);
219}
220
221void
222syncache_init(void)
223{
224	int i;
225
226	V_tcp_syncache.cache_count = 0;
227	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
228	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
229	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
230	V_tcp_syncache.hash_secret = arc4random();
231
232	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
233	    &V_tcp_syncache.hashsize);
234	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
235	    &V_tcp_syncache.bucket_limit);
236	if (!powerof2(V_tcp_syncache.hashsize) ||
237	    V_tcp_syncache.hashsize == 0) {
238		printf("WARNING: syncache hash size is not a power of 2.\n");
239		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
240	}
241	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
242
243	/* Set limits. */
244	V_tcp_syncache.cache_limit =
245	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
246	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
247	    &V_tcp_syncache.cache_limit);
248
249	/* Allocate the hash table. */
250	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
251	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
252
253	/* Initialize the hash buckets. */
254	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
255#ifdef VIMAGE
256		V_tcp_syncache.hashbase[i].sch_vnet = curvnet;
257#endif
258		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
259		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
260			 NULL, MTX_DEF);
261		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
262			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
263		V_tcp_syncache.hashbase[i].sch_length = 0;
264	}
265
266	/* Create the syncache entry zone. */
267	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
268	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
269	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
270}
271
272#ifdef VIMAGE
273void
274syncache_destroy(void)
275{
276	struct syncache_head *sch;
277	struct syncache *sc, *nsc;
278	int i;
279
280	/* Cleanup hash buckets: stop timers, free entries, destroy locks. */
281	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
282
283		sch = &V_tcp_syncache.hashbase[i];
284		callout_drain(&sch->sch_timer);
285
286		SCH_LOCK(sch);
287		TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc)
288			syncache_drop(sc, sch);
289		SCH_UNLOCK(sch);
290		KASSERT(TAILQ_EMPTY(&sch->sch_bucket),
291		    ("%s: sch->sch_bucket not empty", __func__));
292		KASSERT(sch->sch_length == 0, ("%s: sch->sch_length %d not 0",
293		    __func__, sch->sch_length));
294		mtx_destroy(&sch->sch_mtx);
295	}
296
297	KASSERT(V_tcp_syncache.cache_count == 0, ("%s: cache_count %d not 0",
298	    __func__, V_tcp_syncache.cache_count));
299
300	/* Free the allocated global resources. */
301	uma_zdestroy(V_tcp_syncache.zone);
302	free(V_tcp_syncache.hashbase, M_SYNCACHE);
303}
304#endif
305
306/*
307 * Inserts a syncache entry into the specified bucket row.
308 * Locks and unlocks the syncache_head autonomously.
309 */
310static void
311syncache_insert(struct syncache *sc, struct syncache_head *sch)
312{
313	struct syncache *sc2;
314
315	SCH_LOCK(sch);
316
317	/*
318	 * Make sure that we don't overflow the per-bucket limit.
319	 * If the bucket is full, toss the oldest element.
320	 */
321	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
322		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
323			("sch->sch_length incorrect"));
324		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
325		syncache_drop(sc2, sch);
326		TCPSTAT_INC(tcps_sc_bucketoverflow);
327	}
328
329	/* Put it into the bucket. */
330	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
331	sch->sch_length++;
332
333	/* Reinitialize the bucket row's timer. */
334	if (sch->sch_length == 1)
335		sch->sch_nextc = ticks + INT_MAX;
336	syncache_timeout(sc, sch, 1);
337
338	SCH_UNLOCK(sch);
339
340	V_tcp_syncache.cache_count++;
341	TCPSTAT_INC(tcps_sc_added);
342}
343
344/*
345 * Remove and free entry from syncache bucket row.
346 * Expects locked syncache head.
347 */
348static void
349syncache_drop(struct syncache *sc, struct syncache_head *sch)
350{
351
352	SCH_LOCK_ASSERT(sch);
353
354	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
355	sch->sch_length--;
356
357#ifndef TCP_OFFLOAD_DISABLE
358	if (sc->sc_tu)
359		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
360#endif
361	syncache_free(sc);
362	V_tcp_syncache.cache_count--;
363}
364
365/*
366 * Engage/reengage time on bucket row.
367 */
368static void
369syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
370{
371	sc->sc_rxttime = ticks +
372		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
373	sc->sc_rxmits++;
374	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
375		sch->sch_nextc = sc->sc_rxttime;
376		if (docallout)
377			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
378			    syncache_timer, (void *)sch);
379	}
380}
381
382/*
383 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
384 * If we have retransmitted an entry the maximum number of times, expire it.
385 * One separate timer for each bucket row.
386 */
387static void
388syncache_timer(void *xsch)
389{
390	struct syncache_head *sch = (struct syncache_head *)xsch;
391	struct syncache *sc, *nsc;
392	int tick = ticks;
393	char *s;
394
395	CURVNET_SET(sch->sch_vnet);
396
397	/* NB: syncache_head has already been locked by the callout. */
398	SCH_LOCK_ASSERT(sch);
399
400	/*
401	 * In the following cycle we may remove some entries and/or
402	 * advance some timeouts, so re-initialize the bucket timer.
403	 */
404	sch->sch_nextc = tick + INT_MAX;
405
406	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
407		/*
408		 * We do not check if the listen socket still exists
409		 * and accept the case where the listen socket may be
410		 * gone by the time we resend the SYN/ACK.  We do
411		 * not expect this to happens often. If it does,
412		 * then the RST will be sent by the time the remote
413		 * host does the SYN/ACK->ACK.
414		 */
415		if (TSTMP_GT(sc->sc_rxttime, tick)) {
416			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
417				sch->sch_nextc = sc->sc_rxttime;
418			continue;
419		}
420		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
421			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
422				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
423				    "giving up and removing syncache entry\n",
424				    s, __func__);
425				free(s, M_TCPLOG);
426			}
427			syncache_drop(sc, sch);
428			TCPSTAT_INC(tcps_sc_stale);
429			continue;
430		}
431		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
432			log(LOG_DEBUG, "%s; %s: Response timeout, "
433			    "retransmitting (%u) SYN|ACK\n",
434			    s, __func__, sc->sc_rxmits);
435			free(s, M_TCPLOG);
436		}
437
438		(void) syncache_respond(sc);
439		TCPSTAT_INC(tcps_sc_retransmitted);
440		syncache_timeout(sc, sch, 0);
441	}
442	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
443		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
444			syncache_timer, (void *)(sch));
445	CURVNET_RESTORE();
446}
447
448/*
449 * Find an entry in the syncache.
450 * Returns always with locked syncache_head plus a matching entry or NULL.
451 */
452struct syncache *
453syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
454{
455	struct syncache *sc;
456	struct syncache_head *sch;
457
458#ifdef INET6
459	if (inc->inc_flags & INC_ISIPV6) {
460		sch = &V_tcp_syncache.hashbase[
461		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
462		*schp = sch;
463
464		SCH_LOCK(sch);
465
466		/* Circle through bucket row to find matching entry. */
467		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
468			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
469				return (sc);
470		}
471	} else
472#endif
473	{
474		sch = &V_tcp_syncache.hashbase[
475		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
476		*schp = sch;
477
478		SCH_LOCK(sch);
479
480		/* Circle through bucket row to find matching entry. */
481		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
482#ifdef INET6
483			if (sc->sc_inc.inc_flags & INC_ISIPV6)
484				continue;
485#endif
486			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
487				return (sc);
488		}
489	}
490	SCH_LOCK_ASSERT(*schp);
491	return (NULL);			/* always returns with locked sch */
492}
493
494/*
495 * This function is called when we get a RST for a
496 * non-existent connection, so that we can see if the
497 * connection is in the syn cache.  If it is, zap it.
498 */
499void
500syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
501{
502	struct syncache *sc;
503	struct syncache_head *sch;
504	char *s = NULL;
505
506	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
507	SCH_LOCK_ASSERT(sch);
508
509	/*
510	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
511	 * See RFC 793 page 65, section SEGMENT ARRIVES.
512	 */
513	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
514		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
515			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
516			    "FIN flag set, segment ignored\n", s, __func__);
517		TCPSTAT_INC(tcps_badrst);
518		goto done;
519	}
520
521	/*
522	 * No corresponding connection was found in syncache.
523	 * If syncookies are enabled and possibly exclusively
524	 * used, or we are under memory pressure, a valid RST
525	 * may not find a syncache entry.  In that case we're
526	 * done and no SYN|ACK retransmissions will happen.
527	 * Otherwise the RST was misdirected or spoofed.
528	 */
529	if (sc == NULL) {
530		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
531			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
532			    "syncache entry (possibly syncookie only), "
533			    "segment ignored\n", s, __func__);
534		TCPSTAT_INC(tcps_badrst);
535		goto done;
536	}
537
538	/*
539	 * If the RST bit is set, check the sequence number to see
540	 * if this is a valid reset segment.
541	 * RFC 793 page 37:
542	 *   In all states except SYN-SENT, all reset (RST) segments
543	 *   are validated by checking their SEQ-fields.  A reset is
544	 *   valid if its sequence number is in the window.
545	 *
546	 *   The sequence number in the reset segment is normally an
547	 *   echo of our outgoing acknowlegement numbers, but some hosts
548	 *   send a reset with the sequence number at the rightmost edge
549	 *   of our receive window, and we have to handle this case.
550	 */
551	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
552	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
553		syncache_drop(sc, sch);
554		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
555			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
556			    "connection attempt aborted by remote endpoint\n",
557			    s, __func__);
558		TCPSTAT_INC(tcps_sc_reset);
559	} else {
560		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
561			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
562			    "IRS %u (+WND %u), segment ignored\n",
563			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
564		TCPSTAT_INC(tcps_badrst);
565	}
566
567done:
568	if (s != NULL)
569		free(s, M_TCPLOG);
570	SCH_UNLOCK(sch);
571}
572
573void
574syncache_badack(struct in_conninfo *inc)
575{
576	struct syncache *sc;
577	struct syncache_head *sch;
578
579	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
580	SCH_LOCK_ASSERT(sch);
581	if (sc != NULL) {
582		syncache_drop(sc, sch);
583		TCPSTAT_INC(tcps_sc_badack);
584	}
585	SCH_UNLOCK(sch);
586}
587
588void
589syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
590{
591	struct syncache *sc;
592	struct syncache_head *sch;
593
594	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
595	SCH_LOCK_ASSERT(sch);
596	if (sc == NULL)
597		goto done;
598
599	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
600	if (ntohl(th->th_seq) != sc->sc_iss)
601		goto done;
602
603	/*
604	 * If we've rertransmitted 3 times and this is our second error,
605	 * we remove the entry.  Otherwise, we allow it to continue on.
606	 * This prevents us from incorrectly nuking an entry during a
607	 * spurious network outage.
608	 *
609	 * See tcp_notify().
610	 */
611	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
612		sc->sc_flags |= SCF_UNREACH;
613		goto done;
614	}
615	syncache_drop(sc, sch);
616	TCPSTAT_INC(tcps_sc_unreach);
617done:
618	SCH_UNLOCK(sch);
619}
620
621/*
622 * Build a new TCP socket structure from a syncache entry.
623 */
624static struct socket *
625syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
626{
627	struct inpcb *inp = NULL;
628	struct socket *so;
629	struct tcpcb *tp;
630	int error;
631	char *s;
632
633	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
634
635	/*
636	 * Ok, create the full blown connection, and set things up
637	 * as they would have been set up if we had created the
638	 * connection when the SYN arrived.  If we can't create
639	 * the connection, abort it.
640	 */
641	so = sonewconn(lso, SS_ISCONNECTED);
642	if (so == NULL) {
643		/*
644		 * Drop the connection; we will either send a RST or
645		 * have the peer retransmit its SYN again after its
646		 * RTO and try again.
647		 */
648		TCPSTAT_INC(tcps_listendrop);
649		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
650			log(LOG_DEBUG, "%s; %s: Socket create failed "
651			    "due to limits or memory shortage\n",
652			    s, __func__);
653			free(s, M_TCPLOG);
654		}
655		goto abort2;
656	}
657#ifdef MAC
658	mac_socketpeer_set_from_mbuf(m, so);
659#endif
660
661	inp = sotoinpcb(so);
662	inp->inp_inc.inc_fibnum = so->so_fibnum;
663	INP_WLOCK(inp);
664
665	/* Insert new socket into PCB hash list. */
666	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
667#ifdef INET6
668	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
669		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
670	} else {
671		inp->inp_vflag &= ~INP_IPV6;
672		inp->inp_vflag |= INP_IPV4;
673#endif
674		inp->inp_laddr = sc->sc_inc.inc_laddr;
675#ifdef INET6
676	}
677#endif
678	inp->inp_lport = sc->sc_inc.inc_lport;
679	if ((error = in_pcbinshash(inp)) != 0) {
680		/*
681		 * Undo the assignments above if we failed to
682		 * put the PCB on the hash lists.
683		 */
684#ifdef INET6
685		if (sc->sc_inc.inc_flags & INC_ISIPV6)
686			inp->in6p_laddr = in6addr_any;
687		else
688#endif
689			inp->inp_laddr.s_addr = INADDR_ANY;
690		inp->inp_lport = 0;
691		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
692			log(LOG_DEBUG, "%s; %s: in_pcbinshash failed "
693			    "with error %i\n",
694			    s, __func__, error);
695			free(s, M_TCPLOG);
696		}
697		goto abort;
698	}
699#ifdef IPSEC
700	/* Copy old policy into new socket's. */
701	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
702		printf("syncache_socket: could not copy policy\n");
703#endif
704#ifdef INET6
705	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
706		struct inpcb *oinp = sotoinpcb(lso);
707		struct in6_addr laddr6;
708		struct sockaddr_in6 sin6;
709		/*
710		 * Inherit socket options from the listening socket.
711		 * Note that in6p_inputopts are not (and should not be)
712		 * copied, since it stores previously received options and is
713		 * used to detect if each new option is different than the
714		 * previous one and hence should be passed to a user.
715		 * If we copied in6p_inputopts, a user would not be able to
716		 * receive options just after calling the accept system call.
717		 */
718		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
719		if (oinp->in6p_outputopts)
720			inp->in6p_outputopts =
721			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
722
723		sin6.sin6_family = AF_INET6;
724		sin6.sin6_len = sizeof(sin6);
725		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
726		sin6.sin6_port = sc->sc_inc.inc_fport;
727		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
728		laddr6 = inp->in6p_laddr;
729		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
730			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
731		if ((error = in6_pcbconnect(inp, (struct sockaddr *)&sin6,
732		    thread0.td_ucred)) != 0) {
733			inp->in6p_laddr = laddr6;
734			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
735				log(LOG_DEBUG, "%s; %s: in6_pcbconnect failed "
736				    "with error %i\n",
737				    s, __func__, error);
738				free(s, M_TCPLOG);
739			}
740			goto abort;
741		}
742		/* Override flowlabel from in6_pcbconnect. */
743		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
744		inp->inp_flow |= sc->sc_flowlabel;
745	} else
746#endif
747	{
748		struct in_addr laddr;
749		struct sockaddr_in sin;
750
751		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
752
753		if (inp->inp_options == NULL) {
754			inp->inp_options = sc->sc_ipopts;
755			sc->sc_ipopts = NULL;
756		}
757
758		sin.sin_family = AF_INET;
759		sin.sin_len = sizeof(sin);
760		sin.sin_addr = sc->sc_inc.inc_faddr;
761		sin.sin_port = sc->sc_inc.inc_fport;
762		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
763		laddr = inp->inp_laddr;
764		if (inp->inp_laddr.s_addr == INADDR_ANY)
765			inp->inp_laddr = sc->sc_inc.inc_laddr;
766		if ((error = in_pcbconnect(inp, (struct sockaddr *)&sin,
767		    thread0.td_ucred)) != 0) {
768			inp->inp_laddr = laddr;
769			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
770				log(LOG_DEBUG, "%s; %s: in_pcbconnect failed "
771				    "with error %i\n",
772				    s, __func__, error);
773				free(s, M_TCPLOG);
774			}
775			goto abort;
776		}
777	}
778	tp = intotcpcb(inp);
779	tp->t_state = TCPS_SYN_RECEIVED;
780	tp->iss = sc->sc_iss;
781	tp->irs = sc->sc_irs;
782	tcp_rcvseqinit(tp);
783	tcp_sendseqinit(tp);
784	tp->snd_wl1 = sc->sc_irs;
785	tp->snd_max = tp->iss + 1;
786	tp->snd_nxt = tp->iss + 1;
787	tp->rcv_up = sc->sc_irs + 1;
788	tp->rcv_wnd = sc->sc_wnd;
789	tp->rcv_adv += tp->rcv_wnd;
790	tp->last_ack_sent = tp->rcv_nxt;
791
792	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
793	if (sc->sc_flags & SCF_NOOPT)
794		tp->t_flags |= TF_NOOPT;
795	else {
796		if (sc->sc_flags & SCF_WINSCALE) {
797			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
798			tp->snd_scale = sc->sc_requested_s_scale;
799			tp->request_r_scale = sc->sc_requested_r_scale;
800		}
801		if (sc->sc_flags & SCF_TIMESTAMP) {
802			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
803			tp->ts_recent = sc->sc_tsreflect;
804			tp->ts_recent_age = ticks;
805			tp->ts_offset = sc->sc_tsoff;
806		}
807#ifdef TCP_SIGNATURE
808		if (sc->sc_flags & SCF_SIGNATURE)
809			tp->t_flags |= TF_SIGNATURE;
810#endif
811		if (sc->sc_flags & SCF_SACK)
812			tp->t_flags |= TF_SACK_PERMIT;
813	}
814
815	if (sc->sc_flags & SCF_ECN)
816		tp->t_flags |= TF_ECN_PERMIT;
817
818	/*
819	 * Set up MSS and get cached values from tcp_hostcache.
820	 * This might overwrite some of the defaults we just set.
821	 */
822	tcp_mss(tp, sc->sc_peer_mss);
823
824	/*
825	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
826	 * NB: sc_rxmits counts all SYN,ACK transmits, not just retransmits.
827	 */
828	if (sc->sc_rxmits > 1)
829		tp->snd_cwnd = tp->t_maxseg;
830	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
831
832	INP_WUNLOCK(inp);
833
834	TCPSTAT_INC(tcps_accepts);
835	return (so);
836
837abort:
838	INP_WUNLOCK(inp);
839abort2:
840	if (so != NULL)
841		soabort(so);
842	return (NULL);
843}
844
845/*
846 * This function gets called when we receive an ACK for a
847 * socket in the LISTEN state.  We look up the connection
848 * in the syncache, and if its there, we pull it out of
849 * the cache and turn it into a full-blown connection in
850 * the SYN-RECEIVED state.
851 */
852int
853syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
854    struct socket **lsop, struct mbuf *m)
855{
856	struct syncache *sc;
857	struct syncache_head *sch;
858	struct syncache scs;
859	char *s;
860
861	/*
862	 * Global TCP locks are held because we manipulate the PCB lists
863	 * and create a new socket.
864	 */
865	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
866	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
867	    ("%s: can handle only ACK", __func__));
868
869	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
870	SCH_LOCK_ASSERT(sch);
871	if (sc == NULL) {
872		/*
873		 * There is no syncache entry, so see if this ACK is
874		 * a returning syncookie.  To do this, first:
875		 *  A. See if this socket has had a syncache entry dropped in
876		 *     the past.  We don't want to accept a bogus syncookie
877		 *     if we've never received a SYN.
878		 *  B. check that the syncookie is valid.  If it is, then
879		 *     cobble up a fake syncache entry, and return.
880		 */
881		if (!V_tcp_syncookies) {
882			SCH_UNLOCK(sch);
883			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
884				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
885				    "segment rejected (syncookies disabled)\n",
886				    s, __func__);
887			goto failed;
888		}
889		bzero(&scs, sizeof(scs));
890		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
891		SCH_UNLOCK(sch);
892		if (sc == NULL) {
893			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
894				log(LOG_DEBUG, "%s; %s: Segment failed "
895				    "SYNCOOKIE authentication, segment rejected "
896				    "(probably spoofed)\n", s, __func__);
897			goto failed;
898		}
899	} else {
900		/* Pull out the entry to unlock the bucket row. */
901		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
902		sch->sch_length--;
903		V_tcp_syncache.cache_count--;
904		SCH_UNLOCK(sch);
905	}
906
907	/*
908	 * Segment validation:
909	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
910	 */
911	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
912		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
913			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
914			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
915		goto failed;
916	}
917
918	/*
919	 * The SEQ must fall in the window starting at the received
920	 * initial receive sequence number + 1 (the SYN).
921	 */
922	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
923	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
924	    !TOEPCB_ISSET(sc)) {
925		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
926			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
927			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
928		goto failed;
929	}
930
931	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
932		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
933			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
934			    "segment rejected\n", s, __func__);
935		goto failed;
936	}
937	/*
938	 * If timestamps were negotiated the reflected timestamp
939	 * must be equal to what we actually sent in the SYN|ACK.
940	 */
941	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
942	    !TOEPCB_ISSET(sc)) {
943		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
944			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
945			    "segment rejected\n",
946			    s, __func__, to->to_tsecr, sc->sc_ts);
947		goto failed;
948	}
949
950	*lsop = syncache_socket(sc, *lsop, m);
951
952	if (*lsop == NULL)
953		TCPSTAT_INC(tcps_sc_aborted);
954	else
955		TCPSTAT_INC(tcps_sc_completed);
956
957/* how do we find the inp for the new socket? */
958	if (sc != &scs)
959		syncache_free(sc);
960	return (1);
961failed:
962	if (sc != NULL && sc != &scs)
963		syncache_free(sc);
964	if (s != NULL)
965		free(s, M_TCPLOG);
966	*lsop = NULL;
967	return (0);
968}
969
970int
971tcp_offload_syncache_expand(struct in_conninfo *inc, struct toeopt *toeo,
972    struct tcphdr *th, struct socket **lsop, struct mbuf *m)
973{
974	struct tcpopt to;
975	int rc;
976
977	bzero(&to, sizeof(struct tcpopt));
978	to.to_mss = toeo->to_mss;
979	to.to_wscale = toeo->to_wscale;
980	to.to_flags = toeo->to_flags;
981
982	INP_INFO_WLOCK(&V_tcbinfo);
983	rc = syncache_expand(inc, &to, th, lsop, m);
984	INP_INFO_WUNLOCK(&V_tcbinfo);
985
986	return (rc);
987}
988
989/*
990 * Given a LISTEN socket and an inbound SYN request, add
991 * this to the syn cache, and send back a segment:
992 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
993 * to the source.
994 *
995 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
996 * Doing so would require that we hold onto the data and deliver it
997 * to the application.  However, if we are the target of a SYN-flood
998 * DoS attack, an attacker could send data which would eventually
999 * consume all available buffer space if it were ACKed.  By not ACKing
1000 * the data, we avoid this DoS scenario.
1001 */
1002static void
1003_syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1004    struct inpcb *inp, struct socket **lsop, struct mbuf *m,
1005    struct toe_usrreqs *tu, void *toepcb)
1006{
1007	struct tcpcb *tp;
1008	struct socket *so;
1009	struct syncache *sc = NULL;
1010	struct syncache_head *sch;
1011	struct mbuf *ipopts = NULL;
1012	u_int32_t flowtmp;
1013	u_int ltflags;
1014	int win, sb_hiwat, ip_ttl, ip_tos;
1015	char *s;
1016#ifdef INET6
1017	int autoflowlabel = 0;
1018#endif
1019#ifdef MAC
1020	struct label *maclabel;
1021#endif
1022	struct syncache scs;
1023	struct ucred *cred;
1024
1025	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
1026	INP_WLOCK_ASSERT(inp);			/* listen socket */
1027	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
1028	    ("%s: unexpected tcp flags", __func__));
1029
1030	/*
1031	 * Combine all so/tp operations very early to drop the INP lock as
1032	 * soon as possible.
1033	 */
1034	so = *lsop;
1035	tp = sototcpcb(so);
1036	cred = crhold(so->so_cred);
1037
1038#ifdef INET6
1039	if ((inc->inc_flags & INC_ISIPV6) &&
1040	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
1041		autoflowlabel = 1;
1042#endif
1043	ip_ttl = inp->inp_ip_ttl;
1044	ip_tos = inp->inp_ip_tos;
1045	win = sbspace(&so->so_rcv);
1046	sb_hiwat = so->so_rcv.sb_hiwat;
1047	ltflags = (tp->t_flags & (TF_NOOPT | TF_SIGNATURE));
1048
1049	/* By the time we drop the lock these should no longer be used. */
1050	so = NULL;
1051	tp = NULL;
1052
1053#ifdef MAC
1054	if (mac_syncache_init(&maclabel) != 0) {
1055		INP_WUNLOCK(inp);
1056		INP_INFO_WUNLOCK(&V_tcbinfo);
1057		goto done;
1058	} else
1059		mac_syncache_create(maclabel, inp);
1060#endif
1061	INP_WUNLOCK(inp);
1062	INP_INFO_WUNLOCK(&V_tcbinfo);
1063
1064	/*
1065	 * Remember the IP options, if any.
1066	 */
1067#ifdef INET6
1068	if (!(inc->inc_flags & INC_ISIPV6))
1069#endif
1070		ipopts = (m) ? ip_srcroute(m) : NULL;
1071
1072	/*
1073	 * See if we already have an entry for this connection.
1074	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1075	 *
1076	 * XXX: should the syncache be re-initialized with the contents
1077	 * of the new SYN here (which may have different options?)
1078	 *
1079	 * XXX: We do not check the sequence number to see if this is a
1080	 * real retransmit or a new connection attempt.  The question is
1081	 * how to handle such a case; either ignore it as spoofed, or
1082	 * drop the current entry and create a new one?
1083	 */
1084	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1085	SCH_LOCK_ASSERT(sch);
1086	if (sc != NULL) {
1087#ifndef TCP_OFFLOAD_DISABLE
1088		if (sc->sc_tu)
1089			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1090			    sc->sc_toepcb);
1091#endif
1092		TCPSTAT_INC(tcps_sc_dupsyn);
1093		if (ipopts) {
1094			/*
1095			 * If we were remembering a previous source route,
1096			 * forget it and use the new one we've been given.
1097			 */
1098			if (sc->sc_ipopts)
1099				(void) m_free(sc->sc_ipopts);
1100			sc->sc_ipopts = ipopts;
1101		}
1102		/*
1103		 * Update timestamp if present.
1104		 */
1105		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1106			sc->sc_tsreflect = to->to_tsval;
1107		else
1108			sc->sc_flags &= ~SCF_TIMESTAMP;
1109#ifdef MAC
1110		/*
1111		 * Since we have already unconditionally allocated label
1112		 * storage, free it up.  The syncache entry will already
1113		 * have an initialized label we can use.
1114		 */
1115		mac_syncache_destroy(&maclabel);
1116#endif
1117		/* Retransmit SYN|ACK and reset retransmit count. */
1118		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1119			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1120			    "resetting timer and retransmitting SYN|ACK\n",
1121			    s, __func__);
1122			free(s, M_TCPLOG);
1123		}
1124		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1125			sc->sc_rxmits = 0;
1126			syncache_timeout(sc, sch, 1);
1127			TCPSTAT_INC(tcps_sndacks);
1128			TCPSTAT_INC(tcps_sndtotal);
1129		}
1130		SCH_UNLOCK(sch);
1131		goto done;
1132	}
1133
1134	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1135	if (sc == NULL) {
1136		/*
1137		 * The zone allocator couldn't provide more entries.
1138		 * Treat this as if the cache was full; drop the oldest
1139		 * entry and insert the new one.
1140		 */
1141		TCPSTAT_INC(tcps_sc_zonefail);
1142		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1143			syncache_drop(sc, sch);
1144		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1145		if (sc == NULL) {
1146			if (V_tcp_syncookies) {
1147				bzero(&scs, sizeof(scs));
1148				sc = &scs;
1149			} else {
1150				SCH_UNLOCK(sch);
1151				if (ipopts)
1152					(void) m_free(ipopts);
1153				goto done;
1154			}
1155		}
1156	}
1157
1158	/*
1159	 * Fill in the syncache values.
1160	 */
1161#ifdef MAC
1162	sc->sc_label = maclabel;
1163#endif
1164	sc->sc_cred = cred;
1165	cred = NULL;
1166	sc->sc_ipopts = ipopts;
1167	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1168#ifdef INET6
1169	if (!(inc->inc_flags & INC_ISIPV6))
1170#endif
1171	{
1172		sc->sc_ip_tos = ip_tos;
1173		sc->sc_ip_ttl = ip_ttl;
1174	}
1175#ifndef TCP_OFFLOAD_DISABLE
1176	sc->sc_tu = tu;
1177	sc->sc_toepcb = toepcb;
1178#endif
1179	sc->sc_irs = th->th_seq;
1180	sc->sc_iss = arc4random();
1181	sc->sc_flags = 0;
1182	sc->sc_flowlabel = 0;
1183
1184	/*
1185	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1186	 * win was derived from socket earlier in the function.
1187	 */
1188	win = imax(win, 0);
1189	win = imin(win, TCP_MAXWIN);
1190	sc->sc_wnd = win;
1191
1192	if (V_tcp_do_rfc1323) {
1193		/*
1194		 * A timestamp received in a SYN makes
1195		 * it ok to send timestamp requests and replies.
1196		 */
1197		if (to->to_flags & TOF_TS) {
1198			sc->sc_tsreflect = to->to_tsval;
1199			sc->sc_ts = ticks;
1200			sc->sc_flags |= SCF_TIMESTAMP;
1201		}
1202		if (to->to_flags & TOF_SCALE) {
1203			int wscale = 0;
1204
1205			/*
1206			 * Pick the smallest possible scaling factor that
1207			 * will still allow us to scale up to sb_max, aka
1208			 * kern.ipc.maxsockbuf.
1209			 *
1210			 * We do this because there are broken firewalls that
1211			 * will corrupt the window scale option, leading to
1212			 * the other endpoint believing that our advertised
1213			 * window is unscaled.  At scale factors larger than
1214			 * 5 the unscaled window will drop below 1500 bytes,
1215			 * leading to serious problems when traversing these
1216			 * broken firewalls.
1217			 *
1218			 * With the default maxsockbuf of 256K, a scale factor
1219			 * of 3 will be chosen by this algorithm.  Those who
1220			 * choose a larger maxsockbuf should watch out
1221			 * for the compatiblity problems mentioned above.
1222			 *
1223			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1224			 * or <SYN,ACK>) segment itself is never scaled.
1225			 */
1226			while (wscale < TCP_MAX_WINSHIFT &&
1227			    (TCP_MAXWIN << wscale) < sb_max)
1228				wscale++;
1229			sc->sc_requested_r_scale = wscale;
1230			sc->sc_requested_s_scale = to->to_wscale;
1231			sc->sc_flags |= SCF_WINSCALE;
1232		}
1233	}
1234#ifdef TCP_SIGNATURE
1235	/*
1236	 * If listening socket requested TCP digests, and received SYN
1237	 * contains the option, flag this in the syncache so that
1238	 * syncache_respond() will do the right thing with the SYN+ACK.
1239	 * XXX: Currently we always record the option by default and will
1240	 * attempt to use it in syncache_respond().
1241	 */
1242	if (to->to_flags & TOF_SIGNATURE || ltflags & TF_SIGNATURE)
1243		sc->sc_flags |= SCF_SIGNATURE;
1244#endif
1245	if (to->to_flags & TOF_SACKPERM)
1246		sc->sc_flags |= SCF_SACK;
1247	if (to->to_flags & TOF_MSS)
1248		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1249	if (ltflags & TF_NOOPT)
1250		sc->sc_flags |= SCF_NOOPT;
1251	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1252		sc->sc_flags |= SCF_ECN;
1253
1254	if (V_tcp_syncookies) {
1255		syncookie_generate(sch, sc, &flowtmp);
1256#ifdef INET6
1257		if (autoflowlabel)
1258			sc->sc_flowlabel = flowtmp;
1259#endif
1260	} else {
1261#ifdef INET6
1262		if (autoflowlabel)
1263			sc->sc_flowlabel =
1264			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1265#endif
1266	}
1267	SCH_UNLOCK(sch);
1268
1269	/*
1270	 * Do a standard 3-way handshake.
1271	 */
1272	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1273		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1274			syncache_free(sc);
1275		else if (sc != &scs)
1276			syncache_insert(sc, sch);   /* locks and unlocks sch */
1277		TCPSTAT_INC(tcps_sndacks);
1278		TCPSTAT_INC(tcps_sndtotal);
1279	} else {
1280		if (sc != &scs)
1281			syncache_free(sc);
1282		TCPSTAT_INC(tcps_sc_dropped);
1283	}
1284
1285done:
1286	if (cred != NULL)
1287		crfree(cred);
1288#ifdef MAC
1289	if (sc == &scs)
1290		mac_syncache_destroy(&maclabel);
1291#endif
1292	if (m) {
1293
1294		*lsop = NULL;
1295		m_freem(m);
1296	}
1297}
1298
1299static int
1300syncache_respond(struct syncache *sc)
1301{
1302	struct ip *ip = NULL;
1303	struct mbuf *m;
1304	struct tcphdr *th;
1305	int optlen, error;
1306	u_int16_t hlen, tlen, mssopt;
1307	struct tcpopt to;
1308#ifdef INET6
1309	struct ip6_hdr *ip6 = NULL;
1310#endif
1311
1312	hlen =
1313#ifdef INET6
1314	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1315#endif
1316		sizeof(struct ip);
1317	tlen = hlen + sizeof(struct tcphdr);
1318
1319	/* Determine MSS we advertize to other end of connection. */
1320	mssopt = tcp_mssopt(&sc->sc_inc);
1321	if (sc->sc_peer_mss)
1322		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1323
1324	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1325	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1326	    ("syncache: mbuf too small"));
1327
1328	/* Create the IP+TCP header from scratch. */
1329	m = m_gethdr(M_DONTWAIT, MT_DATA);
1330	if (m == NULL)
1331		return (ENOBUFS);
1332#ifdef MAC
1333	mac_syncache_create_mbuf(sc->sc_label, m);
1334#endif
1335	m->m_data += max_linkhdr;
1336	m->m_len = tlen;
1337	m->m_pkthdr.len = tlen;
1338	m->m_pkthdr.rcvif = NULL;
1339
1340#ifdef INET6
1341	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1342		ip6 = mtod(m, struct ip6_hdr *);
1343		ip6->ip6_vfc = IPV6_VERSION;
1344		ip6->ip6_nxt = IPPROTO_TCP;
1345		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1346		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1347		ip6->ip6_plen = htons(tlen - hlen);
1348		/* ip6_hlim is set after checksum */
1349		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1350		ip6->ip6_flow |= sc->sc_flowlabel;
1351
1352		th = (struct tcphdr *)(ip6 + 1);
1353	} else
1354#endif
1355	{
1356		ip = mtod(m, struct ip *);
1357		ip->ip_v = IPVERSION;
1358		ip->ip_hl = sizeof(struct ip) >> 2;
1359		ip->ip_len = tlen;
1360		ip->ip_id = 0;
1361		ip->ip_off = 0;
1362		ip->ip_sum = 0;
1363		ip->ip_p = IPPROTO_TCP;
1364		ip->ip_src = sc->sc_inc.inc_laddr;
1365		ip->ip_dst = sc->sc_inc.inc_faddr;
1366		ip->ip_ttl = sc->sc_ip_ttl;
1367		ip->ip_tos = sc->sc_ip_tos;
1368
1369		/*
1370		 * See if we should do MTU discovery.  Route lookups are
1371		 * expensive, so we will only unset the DF bit if:
1372		 *
1373		 *	1) path_mtu_discovery is disabled
1374		 *	2) the SCF_UNREACH flag has been set
1375		 */
1376		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1377		       ip->ip_off |= IP_DF;
1378
1379		th = (struct tcphdr *)(ip + 1);
1380	}
1381	th->th_sport = sc->sc_inc.inc_lport;
1382	th->th_dport = sc->sc_inc.inc_fport;
1383
1384	th->th_seq = htonl(sc->sc_iss);
1385	th->th_ack = htonl(sc->sc_irs + 1);
1386	th->th_off = sizeof(struct tcphdr) >> 2;
1387	th->th_x2 = 0;
1388	th->th_flags = TH_SYN|TH_ACK;
1389	th->th_win = htons(sc->sc_wnd);
1390	th->th_urp = 0;
1391
1392	if (sc->sc_flags & SCF_ECN) {
1393		th->th_flags |= TH_ECE;
1394		TCPSTAT_INC(tcps_ecn_shs);
1395	}
1396
1397	/* Tack on the TCP options. */
1398	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1399		to.to_flags = 0;
1400
1401		to.to_mss = mssopt;
1402		to.to_flags = TOF_MSS;
1403		if (sc->sc_flags & SCF_WINSCALE) {
1404			to.to_wscale = sc->sc_requested_r_scale;
1405			to.to_flags |= TOF_SCALE;
1406		}
1407		if (sc->sc_flags & SCF_TIMESTAMP) {
1408			/* Virgin timestamp or TCP cookie enhanced one. */
1409			to.to_tsval = sc->sc_ts;
1410			to.to_tsecr = sc->sc_tsreflect;
1411			to.to_flags |= TOF_TS;
1412		}
1413		if (sc->sc_flags & SCF_SACK)
1414			to.to_flags |= TOF_SACKPERM;
1415#ifdef TCP_SIGNATURE
1416		if (sc->sc_flags & SCF_SIGNATURE)
1417			to.to_flags |= TOF_SIGNATURE;
1418#endif
1419		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1420
1421		/* Adjust headers by option size. */
1422		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1423		m->m_len += optlen;
1424		m->m_pkthdr.len += optlen;
1425
1426#ifdef TCP_SIGNATURE
1427		if (sc->sc_flags & SCF_SIGNATURE)
1428			tcp_signature_compute(m, 0, 0, optlen,
1429			    to.to_signature, IPSEC_DIR_OUTBOUND);
1430#endif
1431#ifdef INET6
1432		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1433			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1434		else
1435#endif
1436			ip->ip_len += optlen;
1437	} else
1438		optlen = 0;
1439
1440	M_SETFIB(m, sc->sc_inc.inc_fibnum);
1441#ifdef INET6
1442	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1443		th->th_sum = 0;
1444		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1445				       tlen + optlen - hlen);
1446		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1447		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1448	} else
1449#endif
1450	{
1451		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1452		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1453		m->m_pkthdr.csum_flags = CSUM_TCP;
1454		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1455		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1456	}
1457	return (error);
1458}
1459
1460void
1461syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1462    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1463{
1464	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1465}
1466
1467void
1468tcp_offload_syncache_add(struct in_conninfo *inc, struct toeopt *toeo,
1469    struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1470    struct toe_usrreqs *tu, void *toepcb)
1471{
1472	struct tcpopt to;
1473
1474	bzero(&to, sizeof(struct tcpopt));
1475	to.to_mss = toeo->to_mss;
1476	to.to_wscale = toeo->to_wscale;
1477	to.to_flags = toeo->to_flags;
1478
1479	INP_INFO_WLOCK(&V_tcbinfo);
1480	INP_WLOCK(inp);
1481
1482	_syncache_add(inc, &to, th, inp, lsop, NULL, tu, toepcb);
1483}
1484
1485/*
1486 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1487 * receive and to be able to handle SYN floods from bogus source addresses
1488 * (where we will never receive any reply).  SYN floods try to exhaust all
1489 * our memory and available slots in the SYN cache table to cause a denial
1490 * of service to legitimate users of the local host.
1491 *
1492 * The idea of SYN cookies is to encode and include all necessary information
1493 * about the connection setup state within the SYN-ACK we send back and thus
1494 * to get along without keeping any local state until the ACK to the SYN-ACK
1495 * arrives (if ever).  Everything we need to know should be available from
1496 * the information we encoded in the SYN-ACK.
1497 *
1498 * More information about the theory behind SYN cookies and its first
1499 * discussion and specification can be found at:
1500 *  http://cr.yp.to/syncookies.html    (overview)
1501 *  http://cr.yp.to/syncookies/archive (gory details)
1502 *
1503 * This implementation extends the orginal idea and first implementation
1504 * of FreeBSD by using not only the initial sequence number field to store
1505 * information but also the timestamp field if present.  This way we can
1506 * keep track of the entire state we need to know to recreate the session in
1507 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1508 * these days.  For those that do not we still have to live with the known
1509 * shortcomings of the ISN only SYN cookies.
1510 *
1511 * Cookie layers:
1512 *
1513 * Initial sequence number we send:
1514 * 31|................................|0
1515 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1516 *    D = MD5 Digest (first dword)
1517 *    M = MSS index
1518 *    R = Rotation of secret
1519 *    P = Odd or Even secret
1520 *
1521 * The MD5 Digest is computed with over following parameters:
1522 *  a) randomly rotated secret
1523 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1524 *  c) the received initial sequence number from remote host
1525 *  d) the rotation offset and odd/even bit
1526 *
1527 * Timestamp we send:
1528 * 31|................................|0
1529 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1530 *    D = MD5 Digest (third dword) (only as filler)
1531 *    S = Requested send window scale
1532 *    R = Requested receive window scale
1533 *    A = SACK allowed
1534 *    5 = TCP-MD5 enabled (not implemented yet)
1535 *    XORed with MD5 Digest (forth dword)
1536 *
1537 * The timestamp isn't cryptographically secure and doesn't need to be.
1538 * The double use of the MD5 digest dwords ties it to a specific remote/
1539 * local host/port, remote initial sequence number and our local time
1540 * limited secret.  A received timestamp is reverted (XORed) and then
1541 * the contained MD5 dword is compared to the computed one to ensure the
1542 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1543 * have been tampered with but this isn't different from supplying bogus
1544 * values in the SYN in the first place.
1545 *
1546 * Some problems with SYN cookies remain however:
1547 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1548 * original SYN was accepted, the connection is established.  The second
1549 * SYN is inflight, and if it arrives with an ISN that falls within the
1550 * receive window, the connection is killed.
1551 *
1552 * Notes:
1553 * A heuristic to determine when to accept syn cookies is not necessary.
1554 * An ACK flood would cause the syncookie verification to be attempted,
1555 * but a SYN flood causes syncookies to be generated.  Both are of equal
1556 * cost, so there's no point in trying to optimize the ACK flood case.
1557 * Also, if you don't process certain ACKs for some reason, then all someone
1558 * would have to do is launch a SYN and ACK flood at the same time, which
1559 * would stop cookie verification and defeat the entire purpose of syncookies.
1560 */
1561static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1562
1563static void
1564syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1565    u_int32_t *flowlabel)
1566{
1567	MD5_CTX ctx;
1568	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1569	u_int32_t data;
1570	u_int32_t *secbits;
1571	u_int off, pmss, mss;
1572	int i;
1573
1574	SCH_LOCK_ASSERT(sch);
1575
1576	/* Which of the two secrets to use. */
1577	secbits = sch->sch_oddeven ?
1578			sch->sch_secbits_odd : sch->sch_secbits_even;
1579
1580	/* Reseed secret if too old. */
1581	if (sch->sch_reseed < time_uptime) {
1582		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1583		secbits = sch->sch_oddeven ?
1584				sch->sch_secbits_odd : sch->sch_secbits_even;
1585		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1586			secbits[i] = arc4random();
1587		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1588	}
1589
1590	/* Secret rotation offset. */
1591	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1592
1593	/* Maximum segment size calculation. */
1594	pmss =
1595	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1596	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1597		if (tcp_sc_msstab[mss] <= pmss)
1598			break;
1599
1600	/* Fold parameters and MD5 digest into the ISN we will send. */
1601	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1602	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1603	data |= mss << 4;	/* mss, 3 bits */
1604
1605	MD5Init(&ctx);
1606	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1607	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1608	MD5Update(&ctx, secbits, off);
1609	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1610	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1611	MD5Update(&ctx, &data, sizeof(data));
1612	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1613
1614	data |= (md5_buffer[0] << 7);
1615	sc->sc_iss = data;
1616
1617#ifdef INET6
1618	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1619#endif
1620
1621	/* Additional parameters are stored in the timestamp if present. */
1622	if (sc->sc_flags & SCF_TIMESTAMP) {
1623		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1624		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1625		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1626		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1627		data |= md5_buffer[2] << 10;		/* more digest bits */
1628		data ^= md5_buffer[3];
1629		sc->sc_ts = data;
1630		sc->sc_tsoff = data - ticks;		/* after XOR */
1631	}
1632
1633	TCPSTAT_INC(tcps_sc_sendcookie);
1634}
1635
1636static struct syncache *
1637syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1638    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1639    struct socket *so)
1640{
1641	MD5_CTX ctx;
1642	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1643	u_int32_t data = 0;
1644	u_int32_t *secbits;
1645	tcp_seq ack, seq;
1646	int off, mss, wnd, flags;
1647
1648	SCH_LOCK_ASSERT(sch);
1649
1650	/*
1651	 * Pull information out of SYN-ACK/ACK and
1652	 * revert sequence number advances.
1653	 */
1654	ack = th->th_ack - 1;
1655	seq = th->th_seq - 1;
1656	off = (ack >> 1) & 0x7;
1657	mss = (ack >> 4) & 0x7;
1658	flags = ack & 0x7f;
1659
1660	/* Which of the two secrets to use. */
1661	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1662
1663	/*
1664	 * The secret wasn't updated for the lifetime of a syncookie,
1665	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1666	 */
1667	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1668		return (NULL);
1669	}
1670
1671	/* Recompute the digest so we can compare it. */
1672	MD5Init(&ctx);
1673	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1674	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1675	MD5Update(&ctx, secbits, off);
1676	MD5Update(&ctx, inc, sizeof(*inc));
1677	MD5Update(&ctx, &seq, sizeof(seq));
1678	MD5Update(&ctx, &flags, sizeof(flags));
1679	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1680
1681	/* Does the digest part of or ACK'ed ISS match? */
1682	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1683		return (NULL);
1684
1685	/* Does the digest part of our reflected timestamp match? */
1686	if (to->to_flags & TOF_TS) {
1687		data = md5_buffer[3] ^ to->to_tsecr;
1688		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1689			return (NULL);
1690	}
1691
1692	/* Fill in the syncache values. */
1693	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1694	sc->sc_ipopts = NULL;
1695
1696	sc->sc_irs = seq;
1697	sc->sc_iss = ack;
1698
1699#ifdef INET6
1700	if (inc->inc_flags & INC_ISIPV6) {
1701		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1702			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1703	} else
1704#endif
1705	{
1706		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1707		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1708	}
1709
1710	/* Additional parameters that were encoded in the timestamp. */
1711	if (data) {
1712		sc->sc_flags |= SCF_TIMESTAMP;
1713		sc->sc_tsreflect = to->to_tsval;
1714		sc->sc_ts = to->to_tsecr;
1715		sc->sc_tsoff = to->to_tsecr - ticks;
1716		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1717		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1718		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1719		    TCP_MAX_WINSHIFT);
1720		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1721		    TCP_MAX_WINSHIFT);
1722		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1723			sc->sc_flags |= SCF_WINSCALE;
1724	} else
1725		sc->sc_flags |= SCF_NOOPT;
1726
1727	wnd = sbspace(&so->so_rcv);
1728	wnd = imax(wnd, 0);
1729	wnd = imin(wnd, TCP_MAXWIN);
1730	sc->sc_wnd = wnd;
1731
1732	sc->sc_rxmits = 0;
1733	sc->sc_peer_mss = tcp_sc_msstab[mss];
1734
1735	TCPSTAT_INC(tcps_sc_recvcookie);
1736	return (sc);
1737}
1738
1739/*
1740 * Returns the current number of syncache entries.  This number
1741 * will probably change before you get around to calling
1742 * syncache_pcblist.
1743 */
1744
1745int
1746syncache_pcbcount(void)
1747{
1748	struct syncache_head *sch;
1749	int count, i;
1750
1751	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1752		/* No need to lock for a read. */
1753		sch = &V_tcp_syncache.hashbase[i];
1754		count += sch->sch_length;
1755	}
1756	return count;
1757}
1758
1759/*
1760 * Exports the syncache entries to userland so that netstat can display
1761 * them alongside the other sockets.  This function is intended to be
1762 * called only from tcp_pcblist.
1763 *
1764 * Due to concurrency on an active system, the number of pcbs exported
1765 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1766 * amount of space the caller allocated for this function to use.
1767 */
1768int
1769syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1770{
1771	struct xtcpcb xt;
1772	struct syncache *sc;
1773	struct syncache_head *sch;
1774	int count, error, i;
1775
1776	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1777		sch = &V_tcp_syncache.hashbase[i];
1778		SCH_LOCK(sch);
1779		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1780			if (count >= max_pcbs) {
1781				SCH_UNLOCK(sch);
1782				goto exit;
1783			}
1784			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1785				continue;
1786			bzero(&xt, sizeof(xt));
1787			xt.xt_len = sizeof(xt);
1788			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1789				xt.xt_inp.inp_vflag = INP_IPV6;
1790			else
1791				xt.xt_inp.inp_vflag = INP_IPV4;
1792			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1793			xt.xt_tp.t_inpcb = &xt.xt_inp;
1794			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1795			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1796			xt.xt_socket.xso_len = sizeof (struct xsocket);
1797			xt.xt_socket.so_type = SOCK_STREAM;
1798			xt.xt_socket.so_state = SS_ISCONNECTING;
1799			error = SYSCTL_OUT(req, &xt, sizeof xt);
1800			if (error) {
1801				SCH_UNLOCK(sch);
1802				goto exit;
1803			}
1804			count++;
1805		}
1806		SCH_UNLOCK(sch);
1807	}
1808exit:
1809	*pcbs_exported = count;
1810	return error;
1811}
1812