tcp_syncache.c revision 193332
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 193332 2009-06-02 18:26:17Z rwatson $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/md5.h>
51#include <sys/proc.h>		/* for proc0 declaration */
52#include <sys/random.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/syslog.h>
56#include <sys/ucred.h>
57#include <sys/vimage.h>
58
59#include <vm/uma.h>
60
61#include <net/if.h>
62#include <net/route.h>
63
64#include <netinet/in.h>
65#include <netinet/in_systm.h>
66#include <netinet/ip.h>
67#include <netinet/in_var.h>
68#include <netinet/in_pcb.h>
69#include <netinet/ip_var.h>
70#include <netinet/ip_options.h>
71#ifdef INET6
72#include <netinet/ip6.h>
73#include <netinet/icmp6.h>
74#include <netinet6/nd6.h>
75#include <netinet6/ip6_var.h>
76#include <netinet6/in6_pcb.h>
77#endif
78#include <netinet/tcp.h>
79#include <netinet/tcp_fsm.h>
80#include <netinet/tcp_seq.h>
81#include <netinet/tcp_timer.h>
82#include <netinet/tcp_var.h>
83#include <netinet/tcp_syncache.h>
84#include <netinet/tcp_offload.h>
85#ifdef INET6
86#include <netinet6/tcp6_var.h>
87#endif
88#include <netinet/vinet.h>
89
90#ifdef IPSEC
91#include <netipsec/ipsec.h>
92#ifdef INET6
93#include <netipsec/ipsec6.h>
94#endif
95#include <netipsec/key.h>
96#endif /*IPSEC*/
97
98#include <machine/in_cksum.h>
99
100#include <security/mac/mac_framework.h>
101
102#ifdef VIMAGE_GLOBALS
103static struct tcp_syncache tcp_syncache;
104static int tcp_syncookies;
105static int tcp_syncookiesonly;
106int tcp_sc_rst_sock_fail;
107#endif
108
109SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, syncookies,
110    CTLFLAG_RW, tcp_syncookies, 0,
111    "Use TCP SYN cookies if the syncache overflows");
112
113SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, syncookies_only,
114    CTLFLAG_RW, tcp_syncookiesonly, 0,
115    "Use only TCP SYN cookies");
116
117#ifdef TCP_OFFLOAD_DISABLE
118#define TOEPCB_ISSET(sc) (0)
119#else
120#define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
121#endif
122
123static void	 syncache_drop(struct syncache *, struct syncache_head *);
124static void	 syncache_free(struct syncache *);
125static void	 syncache_insert(struct syncache *, struct syncache_head *);
126struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
127static int	 syncache_respond(struct syncache *);
128static struct	 socket *syncache_socket(struct syncache *, struct socket *,
129		    struct mbuf *m);
130static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
131		    int docallout);
132static void	 syncache_timer(void *);
133static void	 syncookie_generate(struct syncache_head *, struct syncache *,
134		    u_int32_t *);
135static struct syncache
136		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
137		    struct syncache *, struct tcpopt *, struct tcphdr *,
138		    struct socket *);
139
140/*
141 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
142 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
143 * the odds are that the user has given up attempting to connect by then.
144 */
145#define SYNCACHE_MAXREXMTS		3
146
147/* Arbitrary values */
148#define TCP_SYNCACHE_HASHSIZE		512
149#define TCP_SYNCACHE_BUCKETLIMIT	30
150
151SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
152
153SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
154    bucketlimit, CTLFLAG_RDTUN,
155    tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
156
157SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
158    cachelimit, CTLFLAG_RDTUN,
159    tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
160
161SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
162    count, CTLFLAG_RD,
163    tcp_syncache.cache_count, 0, "Current number of entries in syncache");
164
165SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
166    hashsize, CTLFLAG_RDTUN,
167    tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
168
169SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
170    rexmtlimit, CTLFLAG_RW,
171    tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
172
173SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
174     rst_on_sock_fail, CTLFLAG_RW,
175     tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
176
177static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
178
179#define SYNCACHE_HASH(inc, mask)					\
180	((V_tcp_syncache.hash_secret ^					\
181	  (inc)->inc_faddr.s_addr ^					\
182	  ((inc)->inc_faddr.s_addr >> 16) ^				\
183	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
184
185#define SYNCACHE_HASH6(inc, mask)					\
186	((V_tcp_syncache.hash_secret ^					\
187	  (inc)->inc6_faddr.s6_addr32[0] ^				\
188	  (inc)->inc6_faddr.s6_addr32[3] ^				\
189	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
190
191#define ENDPTS_EQ(a, b) (						\
192	(a)->ie_fport == (b)->ie_fport &&				\
193	(a)->ie_lport == (b)->ie_lport &&				\
194	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
195	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
196)
197
198#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
199
200#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
201#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
202#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
203
204/*
205 * Requires the syncache entry to be already removed from the bucket list.
206 */
207static void
208syncache_free(struct syncache *sc)
209{
210	INIT_VNET_INET(curvnet);
211
212	if (sc->sc_ipopts)
213		(void) m_free(sc->sc_ipopts);
214	if (sc->sc_cred)
215		crfree(sc->sc_cred);
216#ifdef MAC
217	mac_syncache_destroy(&sc->sc_label);
218#endif
219
220	uma_zfree(V_tcp_syncache.zone, sc);
221}
222
223void
224syncache_init(void)
225{
226	INIT_VNET_INET(curvnet);
227	int i;
228
229	V_tcp_syncookies = 1;
230	V_tcp_syncookiesonly = 0;
231	V_tcp_sc_rst_sock_fail = 1;
232
233	V_tcp_syncache.cache_count = 0;
234	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
235	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
236	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
237	V_tcp_syncache.hash_secret = arc4random();
238
239	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
240	    &V_tcp_syncache.hashsize);
241	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
242	    &V_tcp_syncache.bucket_limit);
243	if (!powerof2(V_tcp_syncache.hashsize) ||
244	    V_tcp_syncache.hashsize == 0) {
245		printf("WARNING: syncache hash size is not a power of 2.\n");
246		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
247	}
248	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
249
250	/* Set limits. */
251	V_tcp_syncache.cache_limit =
252	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
253	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
254	    &V_tcp_syncache.cache_limit);
255
256	/* Allocate the hash table. */
257	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
258	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
259
260	/* Initialize the hash buckets. */
261	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
262#ifdef VIMAGE
263		V_tcp_syncache.hashbase[i].sch_vnet = curvnet;
264#endif
265		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
266		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
267			 NULL, MTX_DEF);
268		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
269			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
270		V_tcp_syncache.hashbase[i].sch_length = 0;
271	}
272
273	/* Create the syncache entry zone. */
274	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
275	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
276	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
277}
278
279/*
280 * Inserts a syncache entry into the specified bucket row.
281 * Locks and unlocks the syncache_head autonomously.
282 */
283static void
284syncache_insert(struct syncache *sc, struct syncache_head *sch)
285{
286	INIT_VNET_INET(sch->sch_vnet);
287	struct syncache *sc2;
288
289	SCH_LOCK(sch);
290
291	/*
292	 * Make sure that we don't overflow the per-bucket limit.
293	 * If the bucket is full, toss the oldest element.
294	 */
295	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
296		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
297			("sch->sch_length incorrect"));
298		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
299		syncache_drop(sc2, sch);
300		TCPSTAT_INC(tcps_sc_bucketoverflow);
301	}
302
303	/* Put it into the bucket. */
304	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
305	sch->sch_length++;
306
307	/* Reinitialize the bucket row's timer. */
308	if (sch->sch_length == 1)
309		sch->sch_nextc = ticks + INT_MAX;
310	syncache_timeout(sc, sch, 1);
311
312	SCH_UNLOCK(sch);
313
314	V_tcp_syncache.cache_count++;
315	TCPSTAT_INC(tcps_sc_added);
316}
317
318/*
319 * Remove and free entry from syncache bucket row.
320 * Expects locked syncache head.
321 */
322static void
323syncache_drop(struct syncache *sc, struct syncache_head *sch)
324{
325	INIT_VNET_INET(sch->sch_vnet);
326
327	SCH_LOCK_ASSERT(sch);
328
329	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
330	sch->sch_length--;
331
332#ifndef TCP_OFFLOAD_DISABLE
333	if (sc->sc_tu)
334		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
335#endif
336	syncache_free(sc);
337	V_tcp_syncache.cache_count--;
338}
339
340/*
341 * Engage/reengage time on bucket row.
342 */
343static void
344syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
345{
346	sc->sc_rxttime = ticks +
347		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
348	sc->sc_rxmits++;
349	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
350		sch->sch_nextc = sc->sc_rxttime;
351		if (docallout)
352			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
353			    syncache_timer, (void *)sch);
354	}
355}
356
357/*
358 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
359 * If we have retransmitted an entry the maximum number of times, expire it.
360 * One separate timer for each bucket row.
361 */
362static void
363syncache_timer(void *xsch)
364{
365	struct syncache_head *sch = (struct syncache_head *)xsch;
366	struct syncache *sc, *nsc;
367	int tick = ticks;
368	char *s;
369
370	CURVNET_SET(sch->sch_vnet);
371	INIT_VNET_INET(sch->sch_vnet);
372
373	/* NB: syncache_head has already been locked by the callout. */
374	SCH_LOCK_ASSERT(sch);
375
376	/*
377	 * In the following cycle we may remove some entries and/or
378	 * advance some timeouts, so re-initialize the bucket timer.
379	 */
380	sch->sch_nextc = tick + INT_MAX;
381
382	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
383		/*
384		 * We do not check if the listen socket still exists
385		 * and accept the case where the listen socket may be
386		 * gone by the time we resend the SYN/ACK.  We do
387		 * not expect this to happens often. If it does,
388		 * then the RST will be sent by the time the remote
389		 * host does the SYN/ACK->ACK.
390		 */
391		if (TSTMP_GT(sc->sc_rxttime, tick)) {
392			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
393				sch->sch_nextc = sc->sc_rxttime;
394			continue;
395		}
396		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
397			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
398				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
399				    "giving up and removing syncache entry\n",
400				    s, __func__);
401				free(s, M_TCPLOG);
402			}
403			syncache_drop(sc, sch);
404			TCPSTAT_INC(tcps_sc_stale);
405			continue;
406		}
407		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
408			log(LOG_DEBUG, "%s; %s: Response timeout, "
409			    "retransmitting (%u) SYN|ACK\n",
410			    s, __func__, sc->sc_rxmits);
411			free(s, M_TCPLOG);
412		}
413
414		(void) syncache_respond(sc);
415		TCPSTAT_INC(tcps_sc_retransmitted);
416		syncache_timeout(sc, sch, 0);
417	}
418	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
419		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
420			syncache_timer, (void *)(sch));
421	CURVNET_RESTORE();
422}
423
424/*
425 * Find an entry in the syncache.
426 * Returns always with locked syncache_head plus a matching entry or NULL.
427 */
428struct syncache *
429syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
430{
431	INIT_VNET_INET(curvnet);
432	struct syncache *sc;
433	struct syncache_head *sch;
434
435#ifdef INET6
436	if (inc->inc_flags & INC_ISIPV6) {
437		sch = &V_tcp_syncache.hashbase[
438		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
439		*schp = sch;
440
441		SCH_LOCK(sch);
442
443		/* Circle through bucket row to find matching entry. */
444		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
445			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
446				return (sc);
447		}
448	} else
449#endif
450	{
451		sch = &V_tcp_syncache.hashbase[
452		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
453		*schp = sch;
454
455		SCH_LOCK(sch);
456
457		/* Circle through bucket row to find matching entry. */
458		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
459#ifdef INET6
460			if (sc->sc_inc.inc_flags & INC_ISIPV6)
461				continue;
462#endif
463			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
464				return (sc);
465		}
466	}
467	SCH_LOCK_ASSERT(*schp);
468	return (NULL);			/* always returns with locked sch */
469}
470
471/*
472 * This function is called when we get a RST for a
473 * non-existent connection, so that we can see if the
474 * connection is in the syn cache.  If it is, zap it.
475 */
476void
477syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
478{
479	INIT_VNET_INET(curvnet);
480	struct syncache *sc;
481	struct syncache_head *sch;
482	char *s = NULL;
483
484	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
485	SCH_LOCK_ASSERT(sch);
486
487	/*
488	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
489	 * See RFC 793 page 65, section SEGMENT ARRIVES.
490	 */
491	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
492		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
493			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
494			    "FIN flag set, segment ignored\n", s, __func__);
495		TCPSTAT_INC(tcps_badrst);
496		goto done;
497	}
498
499	/*
500	 * No corresponding connection was found in syncache.
501	 * If syncookies are enabled and possibly exclusively
502	 * used, or we are under memory pressure, a valid RST
503	 * may not find a syncache entry.  In that case we're
504	 * done and no SYN|ACK retransmissions will happen.
505	 * Otherwise the the RST was misdirected or spoofed.
506	 */
507	if (sc == NULL) {
508		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
509			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
510			    "syncache entry (possibly syncookie only), "
511			    "segment ignored\n", s, __func__);
512		TCPSTAT_INC(tcps_badrst);
513		goto done;
514	}
515
516	/*
517	 * If the RST bit is set, check the sequence number to see
518	 * if this is a valid reset segment.
519	 * RFC 793 page 37:
520	 *   In all states except SYN-SENT, all reset (RST) segments
521	 *   are validated by checking their SEQ-fields.  A reset is
522	 *   valid if its sequence number is in the window.
523	 *
524	 *   The sequence number in the reset segment is normally an
525	 *   echo of our outgoing acknowlegement numbers, but some hosts
526	 *   send a reset with the sequence number at the rightmost edge
527	 *   of our receive window, and we have to handle this case.
528	 */
529	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
530	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
531		syncache_drop(sc, sch);
532		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
533			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
534			    "connection attempt aborted by remote endpoint\n",
535			    s, __func__);
536		TCPSTAT_INC(tcps_sc_reset);
537	} else {
538		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
539			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
540			    "IRS %u (+WND %u), segment ignored\n",
541			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
542		TCPSTAT_INC(tcps_badrst);
543	}
544
545done:
546	if (s != NULL)
547		free(s, M_TCPLOG);
548	SCH_UNLOCK(sch);
549}
550
551void
552syncache_badack(struct in_conninfo *inc)
553{
554	INIT_VNET_INET(curvnet);
555	struct syncache *sc;
556	struct syncache_head *sch;
557
558	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
559	SCH_LOCK_ASSERT(sch);
560	if (sc != NULL) {
561		syncache_drop(sc, sch);
562		TCPSTAT_INC(tcps_sc_badack);
563	}
564	SCH_UNLOCK(sch);
565}
566
567void
568syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
569{
570	INIT_VNET_INET(curvnet);
571	struct syncache *sc;
572	struct syncache_head *sch;
573
574	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
575	SCH_LOCK_ASSERT(sch);
576	if (sc == NULL)
577		goto done;
578
579	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
580	if (ntohl(th->th_seq) != sc->sc_iss)
581		goto done;
582
583	/*
584	 * If we've rertransmitted 3 times and this is our second error,
585	 * we remove the entry.  Otherwise, we allow it to continue on.
586	 * This prevents us from incorrectly nuking an entry during a
587	 * spurious network outage.
588	 *
589	 * See tcp_notify().
590	 */
591	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
592		sc->sc_flags |= SCF_UNREACH;
593		goto done;
594	}
595	syncache_drop(sc, sch);
596	TCPSTAT_INC(tcps_sc_unreach);
597done:
598	SCH_UNLOCK(sch);
599}
600
601/*
602 * Build a new TCP socket structure from a syncache entry.
603 */
604static struct socket *
605syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
606{
607	INIT_VNET_INET(lso->so_vnet);
608	struct inpcb *inp = NULL;
609	struct socket *so;
610	struct tcpcb *tp;
611	char *s;
612
613	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
614
615	/*
616	 * Ok, create the full blown connection, and set things up
617	 * as they would have been set up if we had created the
618	 * connection when the SYN arrived.  If we can't create
619	 * the connection, abort it.
620	 */
621	so = sonewconn(lso, SS_ISCONNECTED);
622	if (so == NULL) {
623		/*
624		 * Drop the connection; we will either send a RST or
625		 * have the peer retransmit its SYN again after its
626		 * RTO and try again.
627		 */
628		TCPSTAT_INC(tcps_listendrop);
629		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
630			log(LOG_DEBUG, "%s; %s: Socket create failed "
631			    "due to limits or memory shortage\n",
632			    s, __func__);
633			free(s, M_TCPLOG);
634		}
635		goto abort2;
636	}
637#ifdef MAC
638	mac_socketpeer_set_from_mbuf(m, so);
639#endif
640
641	inp = sotoinpcb(so);
642	inp->inp_inc.inc_fibnum = sc->sc_inc.inc_fibnum;
643	so->so_fibnum = sc->sc_inc.inc_fibnum;
644	INP_WLOCK(inp);
645
646	/* Insert new socket into PCB hash list. */
647	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
648#ifdef INET6
649	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
650		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
651	} else {
652		inp->inp_vflag &= ~INP_IPV6;
653		inp->inp_vflag |= INP_IPV4;
654#endif
655		inp->inp_laddr = sc->sc_inc.inc_laddr;
656#ifdef INET6
657	}
658#endif
659	inp->inp_lport = sc->sc_inc.inc_lport;
660	if (in_pcbinshash(inp) != 0) {
661		/*
662		 * Undo the assignments above if we failed to
663		 * put the PCB on the hash lists.
664		 */
665#ifdef INET6
666		if (sc->sc_inc.inc_flags & INC_ISIPV6)
667			inp->in6p_laddr = in6addr_any;
668		else
669#endif
670			inp->inp_laddr.s_addr = INADDR_ANY;
671		inp->inp_lport = 0;
672		goto abort;
673	}
674#ifdef IPSEC
675	/* Copy old policy into new socket's. */
676	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
677		printf("syncache_socket: could not copy policy\n");
678#endif
679#ifdef INET6
680	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
681		struct inpcb *oinp = sotoinpcb(lso);
682		struct in6_addr laddr6;
683		struct sockaddr_in6 sin6;
684		/*
685		 * Inherit socket options from the listening socket.
686		 * Note that in6p_inputopts are not (and should not be)
687		 * copied, since it stores previously received options and is
688		 * used to detect if each new option is different than the
689		 * previous one and hence should be passed to a user.
690		 * If we copied in6p_inputopts, a user would not be able to
691		 * receive options just after calling the accept system call.
692		 */
693		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
694		if (oinp->in6p_outputopts)
695			inp->in6p_outputopts =
696			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
697
698		sin6.sin6_family = AF_INET6;
699		sin6.sin6_len = sizeof(sin6);
700		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
701		sin6.sin6_port = sc->sc_inc.inc_fport;
702		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
703		laddr6 = inp->in6p_laddr;
704		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
705			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
706		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
707		    thread0.td_ucred)) {
708			inp->in6p_laddr = laddr6;
709			goto abort;
710		}
711		/* Override flowlabel from in6_pcbconnect. */
712		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
713		inp->inp_flow |= sc->sc_flowlabel;
714	} else
715#endif
716	{
717		struct in_addr laddr;
718		struct sockaddr_in sin;
719
720		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
721
722		if (inp->inp_options == NULL) {
723			inp->inp_options = sc->sc_ipopts;
724			sc->sc_ipopts = NULL;
725		}
726
727		sin.sin_family = AF_INET;
728		sin.sin_len = sizeof(sin);
729		sin.sin_addr = sc->sc_inc.inc_faddr;
730		sin.sin_port = sc->sc_inc.inc_fport;
731		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
732		laddr = inp->inp_laddr;
733		if (inp->inp_laddr.s_addr == INADDR_ANY)
734			inp->inp_laddr = sc->sc_inc.inc_laddr;
735		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
736		    thread0.td_ucred)) {
737			inp->inp_laddr = laddr;
738			goto abort;
739		}
740	}
741	tp = intotcpcb(inp);
742	tp->t_state = TCPS_SYN_RECEIVED;
743	tp->iss = sc->sc_iss;
744	tp->irs = sc->sc_irs;
745	tcp_rcvseqinit(tp);
746	tcp_sendseqinit(tp);
747	tp->snd_wl1 = sc->sc_irs;
748	tp->snd_max = tp->iss + 1;
749	tp->snd_nxt = tp->iss + 1;
750	tp->rcv_up = sc->sc_irs + 1;
751	tp->rcv_wnd = sc->sc_wnd;
752	tp->rcv_adv += tp->rcv_wnd;
753	tp->last_ack_sent = tp->rcv_nxt;
754
755	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
756	if (sc->sc_flags & SCF_NOOPT)
757		tp->t_flags |= TF_NOOPT;
758	else {
759		if (sc->sc_flags & SCF_WINSCALE) {
760			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
761			tp->snd_scale = sc->sc_requested_s_scale;
762			tp->request_r_scale = sc->sc_requested_r_scale;
763		}
764		if (sc->sc_flags & SCF_TIMESTAMP) {
765			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
766			tp->ts_recent = sc->sc_tsreflect;
767			tp->ts_recent_age = ticks;
768			tp->ts_offset = sc->sc_tsoff;
769		}
770#ifdef TCP_SIGNATURE
771		if (sc->sc_flags & SCF_SIGNATURE)
772			tp->t_flags |= TF_SIGNATURE;
773#endif
774		if (sc->sc_flags & SCF_SACK)
775			tp->t_flags |= TF_SACK_PERMIT;
776	}
777
778	if (sc->sc_flags & SCF_ECN)
779		tp->t_flags |= TF_ECN_PERMIT;
780
781	/*
782	 * Set up MSS and get cached values from tcp_hostcache.
783	 * This might overwrite some of the defaults we just set.
784	 */
785	tcp_mss(tp, sc->sc_peer_mss);
786
787	/*
788	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
789	 */
790	if (sc->sc_rxmits)
791		tp->snd_cwnd = tp->t_maxseg;
792	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
793
794	INP_WUNLOCK(inp);
795
796	TCPSTAT_INC(tcps_accepts);
797	return (so);
798
799abort:
800	INP_WUNLOCK(inp);
801abort2:
802	if (so != NULL)
803		soabort(so);
804	return (NULL);
805}
806
807/*
808 * This function gets called when we receive an ACK for a
809 * socket in the LISTEN state.  We look up the connection
810 * in the syncache, and if its there, we pull it out of
811 * the cache and turn it into a full-blown connection in
812 * the SYN-RECEIVED state.
813 */
814int
815syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
816    struct socket **lsop, struct mbuf *m)
817{
818	INIT_VNET_INET(curvnet);
819	struct syncache *sc;
820	struct syncache_head *sch;
821	struct syncache scs;
822	char *s;
823
824	/*
825	 * Global TCP locks are held because we manipulate the PCB lists
826	 * and create a new socket.
827	 */
828	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
829	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
830	    ("%s: can handle only ACK", __func__));
831
832	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
833	SCH_LOCK_ASSERT(sch);
834	if (sc == NULL) {
835		/*
836		 * There is no syncache entry, so see if this ACK is
837		 * a returning syncookie.  To do this, first:
838		 *  A. See if this socket has had a syncache entry dropped in
839		 *     the past.  We don't want to accept a bogus syncookie
840		 *     if we've never received a SYN.
841		 *  B. check that the syncookie is valid.  If it is, then
842		 *     cobble up a fake syncache entry, and return.
843		 */
844		if (!V_tcp_syncookies) {
845			SCH_UNLOCK(sch);
846			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
847				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
848				    "segment rejected (syncookies disabled)\n",
849				    s, __func__);
850			goto failed;
851		}
852		bzero(&scs, sizeof(scs));
853		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
854		SCH_UNLOCK(sch);
855		if (sc == NULL) {
856			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
857				log(LOG_DEBUG, "%s; %s: Segment failed "
858				    "SYNCOOKIE authentication, segment rejected "
859				    "(probably spoofed)\n", s, __func__);
860			goto failed;
861		}
862	} else {
863		/* Pull out the entry to unlock the bucket row. */
864		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
865		sch->sch_length--;
866		V_tcp_syncache.cache_count--;
867		SCH_UNLOCK(sch);
868	}
869
870	/*
871	 * Segment validation:
872	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
873	 */
874	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
875		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
876			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
877			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
878		goto failed;
879	}
880
881	/*
882	 * The SEQ must fall in the window starting at the received
883	 * initial receive sequence number + 1 (the SYN).
884	 */
885	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
886	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
887	    !TOEPCB_ISSET(sc)) {
888		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
889			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
890			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
891		goto failed;
892	}
893
894	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
895		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
896			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
897			    "segment rejected\n", s, __func__);
898		goto failed;
899	}
900	/*
901	 * If timestamps were negotiated the reflected timestamp
902	 * must be equal to what we actually sent in the SYN|ACK.
903	 */
904	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
905	    !TOEPCB_ISSET(sc)) {
906		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
907			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
908			    "segment rejected\n",
909			    s, __func__, to->to_tsecr, sc->sc_ts);
910		goto failed;
911	}
912
913	*lsop = syncache_socket(sc, *lsop, m);
914
915	if (*lsop == NULL)
916		TCPSTAT_INC(tcps_sc_aborted);
917	else
918		TCPSTAT_INC(tcps_sc_completed);
919
920/* how do we find the inp for the new socket? */
921	if (sc != &scs)
922		syncache_free(sc);
923	return (1);
924failed:
925	if (sc != NULL && sc != &scs)
926		syncache_free(sc);
927	if (s != NULL)
928		free(s, M_TCPLOG);
929	*lsop = NULL;
930	return (0);
931}
932
933int
934tcp_offload_syncache_expand(struct in_conninfo *inc, struct tcpopt *to,
935    struct tcphdr *th, struct socket **lsop, struct mbuf *m)
936{
937	INIT_VNET_INET(curvnet);
938	int rc;
939
940	INP_INFO_WLOCK(&V_tcbinfo);
941	rc = syncache_expand(inc, to, th, lsop, m);
942	INP_INFO_WUNLOCK(&V_tcbinfo);
943
944	return (rc);
945}
946
947/*
948 * Given a LISTEN socket and an inbound SYN request, add
949 * this to the syn cache, and send back a segment:
950 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
951 * to the source.
952 *
953 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
954 * Doing so would require that we hold onto the data and deliver it
955 * to the application.  However, if we are the target of a SYN-flood
956 * DoS attack, an attacker could send data which would eventually
957 * consume all available buffer space if it were ACKed.  By not ACKing
958 * the data, we avoid this DoS scenario.
959 */
960static void
961_syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
962    struct inpcb *inp, struct socket **lsop, struct mbuf *m,
963    struct toe_usrreqs *tu, void *toepcb)
964{
965	INIT_VNET_INET(inp->inp_vnet);
966	struct tcpcb *tp;
967	struct socket *so;
968	struct syncache *sc = NULL;
969	struct syncache_head *sch;
970	struct mbuf *ipopts = NULL;
971	u_int32_t flowtmp;
972	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
973	char *s;
974#ifdef INET6
975	int autoflowlabel = 0;
976#endif
977#ifdef MAC
978	struct label *maclabel;
979#endif
980	struct syncache scs;
981	struct ucred *cred;
982
983	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
984	INP_WLOCK_ASSERT(inp);			/* listen socket */
985	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
986	    ("%s: unexpected tcp flags", __func__));
987
988	/*
989	 * Combine all so/tp operations very early to drop the INP lock as
990	 * soon as possible.
991	 */
992	so = *lsop;
993	tp = sototcpcb(so);
994	cred = crhold(so->so_cred);
995
996#ifdef INET6
997	if ((inc->inc_flags & INC_ISIPV6) &&
998	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
999		autoflowlabel = 1;
1000#endif
1001	ip_ttl = inp->inp_ip_ttl;
1002	ip_tos = inp->inp_ip_tos;
1003	win = sbspace(&so->so_rcv);
1004	sb_hiwat = so->so_rcv.sb_hiwat;
1005	noopt = (tp->t_flags & TF_NOOPT);
1006
1007	/* By the time we drop the lock these should no longer be used. */
1008	so = NULL;
1009	tp = NULL;
1010
1011#ifdef MAC
1012	if (mac_syncache_init(&maclabel) != 0) {
1013		INP_WUNLOCK(inp);
1014		INP_INFO_WUNLOCK(&V_tcbinfo);
1015		goto done;
1016	} else
1017		mac_syncache_create(maclabel, inp);
1018#endif
1019	INP_WUNLOCK(inp);
1020	INP_INFO_WUNLOCK(&V_tcbinfo);
1021
1022	/*
1023	 * Remember the IP options, if any.
1024	 */
1025#ifdef INET6
1026	if (!(inc->inc_flags & INC_ISIPV6))
1027#endif
1028		ipopts = (m) ? ip_srcroute(m) : NULL;
1029
1030	/*
1031	 * See if we already have an entry for this connection.
1032	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1033	 *
1034	 * XXX: should the syncache be re-initialized with the contents
1035	 * of the new SYN here (which may have different options?)
1036	 *
1037	 * XXX: We do not check the sequence number to see if this is a
1038	 * real retransmit or a new connection attempt.  The question is
1039	 * how to handle such a case; either ignore it as spoofed, or
1040	 * drop the current entry and create a new one?
1041	 */
1042	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1043	SCH_LOCK_ASSERT(sch);
1044	if (sc != NULL) {
1045#ifndef TCP_OFFLOAD_DISABLE
1046		if (sc->sc_tu)
1047			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1048			    sc->sc_toepcb);
1049#endif
1050		TCPSTAT_INC(tcps_sc_dupsyn);
1051		if (ipopts) {
1052			/*
1053			 * If we were remembering a previous source route,
1054			 * forget it and use the new one we've been given.
1055			 */
1056			if (sc->sc_ipopts)
1057				(void) m_free(sc->sc_ipopts);
1058			sc->sc_ipopts = ipopts;
1059		}
1060		/*
1061		 * Update timestamp if present.
1062		 */
1063		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1064			sc->sc_tsreflect = to->to_tsval;
1065		else
1066			sc->sc_flags &= ~SCF_TIMESTAMP;
1067#ifdef MAC
1068		/*
1069		 * Since we have already unconditionally allocated label
1070		 * storage, free it up.  The syncache entry will already
1071		 * have an initialized label we can use.
1072		 */
1073		mac_syncache_destroy(&maclabel);
1074#endif
1075		/* Retransmit SYN|ACK and reset retransmit count. */
1076		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1077			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1078			    "resetting timer and retransmitting SYN|ACK\n",
1079			    s, __func__);
1080			free(s, M_TCPLOG);
1081		}
1082		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1083			sc->sc_rxmits = 0;
1084			syncache_timeout(sc, sch, 1);
1085			TCPSTAT_INC(tcps_sndacks);
1086			TCPSTAT_INC(tcps_sndtotal);
1087		}
1088		SCH_UNLOCK(sch);
1089		goto done;
1090	}
1091
1092	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1093	if (sc == NULL) {
1094		/*
1095		 * The zone allocator couldn't provide more entries.
1096		 * Treat this as if the cache was full; drop the oldest
1097		 * entry and insert the new one.
1098		 */
1099		TCPSTAT_INC(tcps_sc_zonefail);
1100		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1101			syncache_drop(sc, sch);
1102		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1103		if (sc == NULL) {
1104			if (V_tcp_syncookies) {
1105				bzero(&scs, sizeof(scs));
1106				sc = &scs;
1107			} else {
1108				SCH_UNLOCK(sch);
1109				if (ipopts)
1110					(void) m_free(ipopts);
1111				goto done;
1112			}
1113		}
1114	}
1115
1116	/*
1117	 * Fill in the syncache values.
1118	 */
1119#ifdef MAC
1120	sc->sc_label = maclabel;
1121#endif
1122	sc->sc_cred = cred;
1123	cred = NULL;
1124	sc->sc_ipopts = ipopts;
1125	/* XXX-BZ this fib assignment is just useless. */
1126	sc->sc_inc.inc_fibnum = inp->inp_inc.inc_fibnum;
1127	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1128#ifdef INET6
1129	if (!(inc->inc_flags & INC_ISIPV6))
1130#endif
1131	{
1132		sc->sc_ip_tos = ip_tos;
1133		sc->sc_ip_ttl = ip_ttl;
1134	}
1135#ifndef TCP_OFFLOAD_DISABLE
1136	sc->sc_tu = tu;
1137	sc->sc_toepcb = toepcb;
1138#endif
1139	sc->sc_irs = th->th_seq;
1140	sc->sc_iss = arc4random();
1141	sc->sc_flags = 0;
1142	sc->sc_flowlabel = 0;
1143
1144	/*
1145	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1146	 * win was derived from socket earlier in the function.
1147	 */
1148	win = imax(win, 0);
1149	win = imin(win, TCP_MAXWIN);
1150	sc->sc_wnd = win;
1151
1152	if (V_tcp_do_rfc1323) {
1153		/*
1154		 * A timestamp received in a SYN makes
1155		 * it ok to send timestamp requests and replies.
1156		 */
1157		if (to->to_flags & TOF_TS) {
1158			sc->sc_tsreflect = to->to_tsval;
1159			sc->sc_ts = ticks;
1160			sc->sc_flags |= SCF_TIMESTAMP;
1161		}
1162		if (to->to_flags & TOF_SCALE) {
1163			int wscale = 0;
1164
1165			/*
1166			 * Pick the smallest possible scaling factor that
1167			 * will still allow us to scale up to sb_max, aka
1168			 * kern.ipc.maxsockbuf.
1169			 *
1170			 * We do this because there are broken firewalls that
1171			 * will corrupt the window scale option, leading to
1172			 * the other endpoint believing that our advertised
1173			 * window is unscaled.  At scale factors larger than
1174			 * 5 the unscaled window will drop below 1500 bytes,
1175			 * leading to serious problems when traversing these
1176			 * broken firewalls.
1177			 *
1178			 * With the default maxsockbuf of 256K, a scale factor
1179			 * of 3 will be chosen by this algorithm.  Those who
1180			 * choose a larger maxsockbuf should watch out
1181			 * for the compatiblity problems mentioned above.
1182			 *
1183			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1184			 * or <SYN,ACK>) segment itself is never scaled.
1185			 */
1186			while (wscale < TCP_MAX_WINSHIFT &&
1187			    (TCP_MAXWIN << wscale) < sb_max)
1188				wscale++;
1189			sc->sc_requested_r_scale = wscale;
1190			sc->sc_requested_s_scale = to->to_wscale;
1191			sc->sc_flags |= SCF_WINSCALE;
1192		}
1193	}
1194#ifdef TCP_SIGNATURE
1195	/*
1196	 * If listening socket requested TCP digests, and received SYN
1197	 * contains the option, flag this in the syncache so that
1198	 * syncache_respond() will do the right thing with the SYN+ACK.
1199	 * XXX: Currently we always record the option by default and will
1200	 * attempt to use it in syncache_respond().
1201	 */
1202	if (to->to_flags & TOF_SIGNATURE)
1203		sc->sc_flags |= SCF_SIGNATURE;
1204#endif
1205	if (to->to_flags & TOF_SACKPERM)
1206		sc->sc_flags |= SCF_SACK;
1207	if (to->to_flags & TOF_MSS)
1208		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1209	if (noopt)
1210		sc->sc_flags |= SCF_NOOPT;
1211	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1212		sc->sc_flags |= SCF_ECN;
1213
1214	if (V_tcp_syncookies) {
1215		syncookie_generate(sch, sc, &flowtmp);
1216#ifdef INET6
1217		if (autoflowlabel)
1218			sc->sc_flowlabel = flowtmp;
1219#endif
1220	} else {
1221#ifdef INET6
1222		if (autoflowlabel)
1223			sc->sc_flowlabel =
1224			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1225#endif
1226	}
1227	SCH_UNLOCK(sch);
1228
1229	/*
1230	 * Do a standard 3-way handshake.
1231	 */
1232	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1233		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1234			syncache_free(sc);
1235		else if (sc != &scs)
1236			syncache_insert(sc, sch);   /* locks and unlocks sch */
1237		TCPSTAT_INC(tcps_sndacks);
1238		TCPSTAT_INC(tcps_sndtotal);
1239	} else {
1240		if (sc != &scs)
1241			syncache_free(sc);
1242		TCPSTAT_INC(tcps_sc_dropped);
1243	}
1244
1245done:
1246	if (cred != NULL)
1247		crfree(cred);
1248#ifdef MAC
1249	if (sc == &scs)
1250		mac_syncache_destroy(&maclabel);
1251#endif
1252	if (m) {
1253
1254		*lsop = NULL;
1255		m_freem(m);
1256	}
1257}
1258
1259static int
1260syncache_respond(struct syncache *sc)
1261{
1262	INIT_VNET_INET(curvnet);
1263	struct ip *ip = NULL;
1264	struct mbuf *m;
1265	struct tcphdr *th;
1266	int optlen, error;
1267	u_int16_t hlen, tlen, mssopt;
1268	struct tcpopt to;
1269#ifdef INET6
1270	struct ip6_hdr *ip6 = NULL;
1271#endif
1272
1273	hlen =
1274#ifdef INET6
1275	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1276#endif
1277		sizeof(struct ip);
1278	tlen = hlen + sizeof(struct tcphdr);
1279
1280	/* Determine MSS we advertize to other end of connection. */
1281	mssopt = tcp_mssopt(&sc->sc_inc);
1282	if (sc->sc_peer_mss)
1283		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1284
1285	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1286	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1287	    ("syncache: mbuf too small"));
1288
1289	/* Create the IP+TCP header from scratch. */
1290	m = m_gethdr(M_DONTWAIT, MT_DATA);
1291	if (m == NULL)
1292		return (ENOBUFS);
1293#ifdef MAC
1294	mac_syncache_create_mbuf(sc->sc_label, m);
1295#endif
1296	m->m_data += max_linkhdr;
1297	m->m_len = tlen;
1298	m->m_pkthdr.len = tlen;
1299	m->m_pkthdr.rcvif = NULL;
1300
1301#ifdef INET6
1302	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1303		ip6 = mtod(m, struct ip6_hdr *);
1304		ip6->ip6_vfc = IPV6_VERSION;
1305		ip6->ip6_nxt = IPPROTO_TCP;
1306		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1307		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1308		ip6->ip6_plen = htons(tlen - hlen);
1309		/* ip6_hlim is set after checksum */
1310		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1311		ip6->ip6_flow |= sc->sc_flowlabel;
1312
1313		th = (struct tcphdr *)(ip6 + 1);
1314	} else
1315#endif
1316	{
1317		ip = mtod(m, struct ip *);
1318		ip->ip_v = IPVERSION;
1319		ip->ip_hl = sizeof(struct ip) >> 2;
1320		ip->ip_len = tlen;
1321		ip->ip_id = 0;
1322		ip->ip_off = 0;
1323		ip->ip_sum = 0;
1324		ip->ip_p = IPPROTO_TCP;
1325		ip->ip_src = sc->sc_inc.inc_laddr;
1326		ip->ip_dst = sc->sc_inc.inc_faddr;
1327		ip->ip_ttl = sc->sc_ip_ttl;
1328		ip->ip_tos = sc->sc_ip_tos;
1329
1330		/*
1331		 * See if we should do MTU discovery.  Route lookups are
1332		 * expensive, so we will only unset the DF bit if:
1333		 *
1334		 *	1) path_mtu_discovery is disabled
1335		 *	2) the SCF_UNREACH flag has been set
1336		 */
1337		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1338		       ip->ip_off |= IP_DF;
1339
1340		th = (struct tcphdr *)(ip + 1);
1341	}
1342	th->th_sport = sc->sc_inc.inc_lport;
1343	th->th_dport = sc->sc_inc.inc_fport;
1344
1345	th->th_seq = htonl(sc->sc_iss);
1346	th->th_ack = htonl(sc->sc_irs + 1);
1347	th->th_off = sizeof(struct tcphdr) >> 2;
1348	th->th_x2 = 0;
1349	th->th_flags = TH_SYN|TH_ACK;
1350	th->th_win = htons(sc->sc_wnd);
1351	th->th_urp = 0;
1352
1353	if (sc->sc_flags & SCF_ECN) {
1354		th->th_flags |= TH_ECE;
1355		TCPSTAT_INC(tcps_ecn_shs);
1356	}
1357
1358	/* Tack on the TCP options. */
1359	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1360		to.to_flags = 0;
1361
1362		to.to_mss = mssopt;
1363		to.to_flags = TOF_MSS;
1364		if (sc->sc_flags & SCF_WINSCALE) {
1365			to.to_wscale = sc->sc_requested_r_scale;
1366			to.to_flags |= TOF_SCALE;
1367		}
1368		if (sc->sc_flags & SCF_TIMESTAMP) {
1369			/* Virgin timestamp or TCP cookie enhanced one. */
1370			to.to_tsval = sc->sc_ts;
1371			to.to_tsecr = sc->sc_tsreflect;
1372			to.to_flags |= TOF_TS;
1373		}
1374		if (sc->sc_flags & SCF_SACK)
1375			to.to_flags |= TOF_SACKPERM;
1376#ifdef TCP_SIGNATURE
1377		if (sc->sc_flags & SCF_SIGNATURE)
1378			to.to_flags |= TOF_SIGNATURE;
1379#endif
1380		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1381
1382		/* Adjust headers by option size. */
1383		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1384		m->m_len += optlen;
1385		m->m_pkthdr.len += optlen;
1386
1387#ifdef TCP_SIGNATURE
1388		if (sc->sc_flags & SCF_SIGNATURE)
1389			tcp_signature_compute(m, 0, 0, optlen,
1390			    to.to_signature, IPSEC_DIR_OUTBOUND);
1391#endif
1392#ifdef INET6
1393		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1394			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1395		else
1396#endif
1397			ip->ip_len += optlen;
1398	} else
1399		optlen = 0;
1400
1401#ifdef INET6
1402	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1403		th->th_sum = 0;
1404		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1405				       tlen + optlen - hlen);
1406		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1407		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1408	} else
1409#endif
1410	{
1411		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1412		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1413		m->m_pkthdr.csum_flags = CSUM_TCP;
1414		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1415		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1416	}
1417	return (error);
1418}
1419
1420void
1421syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1422    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1423{
1424	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1425}
1426
1427void
1428tcp_offload_syncache_add(struct in_conninfo *inc, struct tcpopt *to,
1429    struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1430    struct toe_usrreqs *tu, void *toepcb)
1431{
1432	INIT_VNET_INET(curvnet);
1433
1434	INP_INFO_WLOCK(&V_tcbinfo);
1435	INP_WLOCK(inp);
1436	_syncache_add(inc, to, th, inp, lsop, NULL, tu, toepcb);
1437}
1438
1439/*
1440 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1441 * receive and to be able to handle SYN floods from bogus source addresses
1442 * (where we will never receive any reply).  SYN floods try to exhaust all
1443 * our memory and available slots in the SYN cache table to cause a denial
1444 * of service to legitimate users of the local host.
1445 *
1446 * The idea of SYN cookies is to encode and include all necessary information
1447 * about the connection setup state within the SYN-ACK we send back and thus
1448 * to get along without keeping any local state until the ACK to the SYN-ACK
1449 * arrives (if ever).  Everything we need to know should be available from
1450 * the information we encoded in the SYN-ACK.
1451 *
1452 * More information about the theory behind SYN cookies and its first
1453 * discussion and specification can be found at:
1454 *  http://cr.yp.to/syncookies.html    (overview)
1455 *  http://cr.yp.to/syncookies/archive (gory details)
1456 *
1457 * This implementation extends the orginal idea and first implementation
1458 * of FreeBSD by using not only the initial sequence number field to store
1459 * information but also the timestamp field if present.  This way we can
1460 * keep track of the entire state we need to know to recreate the session in
1461 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1462 * these days.  For those that do not we still have to live with the known
1463 * shortcomings of the ISN only SYN cookies.
1464 *
1465 * Cookie layers:
1466 *
1467 * Initial sequence number we send:
1468 * 31|................................|0
1469 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1470 *    D = MD5 Digest (first dword)
1471 *    M = MSS index
1472 *    R = Rotation of secret
1473 *    P = Odd or Even secret
1474 *
1475 * The MD5 Digest is computed with over following parameters:
1476 *  a) randomly rotated secret
1477 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1478 *  c) the received initial sequence number from remote host
1479 *  d) the rotation offset and odd/even bit
1480 *
1481 * Timestamp we send:
1482 * 31|................................|0
1483 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1484 *    D = MD5 Digest (third dword) (only as filler)
1485 *    S = Requested send window scale
1486 *    R = Requested receive window scale
1487 *    A = SACK allowed
1488 *    5 = TCP-MD5 enabled (not implemented yet)
1489 *    XORed with MD5 Digest (forth dword)
1490 *
1491 * The timestamp isn't cryptographically secure and doesn't need to be.
1492 * The double use of the MD5 digest dwords ties it to a specific remote/
1493 * local host/port, remote initial sequence number and our local time
1494 * limited secret.  A received timestamp is reverted (XORed) and then
1495 * the contained MD5 dword is compared to the computed one to ensure the
1496 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1497 * have been tampered with but this isn't different from supplying bogus
1498 * values in the SYN in the first place.
1499 *
1500 * Some problems with SYN cookies remain however:
1501 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1502 * original SYN was accepted, the connection is established.  The second
1503 * SYN is inflight, and if it arrives with an ISN that falls within the
1504 * receive window, the connection is killed.
1505 *
1506 * Notes:
1507 * A heuristic to determine when to accept syn cookies is not necessary.
1508 * An ACK flood would cause the syncookie verification to be attempted,
1509 * but a SYN flood causes syncookies to be generated.  Both are of equal
1510 * cost, so there's no point in trying to optimize the ACK flood case.
1511 * Also, if you don't process certain ACKs for some reason, then all someone
1512 * would have to do is launch a SYN and ACK flood at the same time, which
1513 * would stop cookie verification and defeat the entire purpose of syncookies.
1514 */
1515static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1516
1517static void
1518syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1519    u_int32_t *flowlabel)
1520{
1521	INIT_VNET_INET(curvnet);
1522	MD5_CTX ctx;
1523	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1524	u_int32_t data;
1525	u_int32_t *secbits;
1526	u_int off, pmss, mss;
1527	int i;
1528
1529	SCH_LOCK_ASSERT(sch);
1530
1531	/* Which of the two secrets to use. */
1532	secbits = sch->sch_oddeven ?
1533			sch->sch_secbits_odd : sch->sch_secbits_even;
1534
1535	/* Reseed secret if too old. */
1536	if (sch->sch_reseed < time_uptime) {
1537		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1538		secbits = sch->sch_oddeven ?
1539				sch->sch_secbits_odd : sch->sch_secbits_even;
1540		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1541			secbits[i] = arc4random();
1542		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1543	}
1544
1545	/* Secret rotation offset. */
1546	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1547
1548	/* Maximum segment size calculation. */
1549	pmss =
1550	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1551	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1552		if (tcp_sc_msstab[mss] <= pmss)
1553			break;
1554
1555	/* Fold parameters and MD5 digest into the ISN we will send. */
1556	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1557	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1558	data |= mss << 4;	/* mss, 3 bits */
1559
1560	MD5Init(&ctx);
1561	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1562	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1563	MD5Update(&ctx, secbits, off);
1564	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1565	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1566	MD5Update(&ctx, &data, sizeof(data));
1567	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1568
1569	data |= (md5_buffer[0] << 7);
1570	sc->sc_iss = data;
1571
1572#ifdef INET6
1573	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1574#endif
1575
1576	/* Additional parameters are stored in the timestamp if present. */
1577	if (sc->sc_flags & SCF_TIMESTAMP) {
1578		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1579		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1580		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1581		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1582		data |= md5_buffer[2] << 10;		/* more digest bits */
1583		data ^= md5_buffer[3];
1584		sc->sc_ts = data;
1585		sc->sc_tsoff = data - ticks;		/* after XOR */
1586	}
1587
1588	TCPSTAT_INC(tcps_sc_sendcookie);
1589}
1590
1591static struct syncache *
1592syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1593    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1594    struct socket *so)
1595{
1596	INIT_VNET_INET(curvnet);
1597	MD5_CTX ctx;
1598	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1599	u_int32_t data = 0;
1600	u_int32_t *secbits;
1601	tcp_seq ack, seq;
1602	int off, mss, wnd, flags;
1603
1604	SCH_LOCK_ASSERT(sch);
1605
1606	/*
1607	 * Pull information out of SYN-ACK/ACK and
1608	 * revert sequence number advances.
1609	 */
1610	ack = th->th_ack - 1;
1611	seq = th->th_seq - 1;
1612	off = (ack >> 1) & 0x7;
1613	mss = (ack >> 4) & 0x7;
1614	flags = ack & 0x7f;
1615
1616	/* Which of the two secrets to use. */
1617	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1618
1619	/*
1620	 * The secret wasn't updated for the lifetime of a syncookie,
1621	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1622	 */
1623	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1624		return (NULL);
1625	}
1626
1627	/* Recompute the digest so we can compare it. */
1628	MD5Init(&ctx);
1629	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1630	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1631	MD5Update(&ctx, secbits, off);
1632	MD5Update(&ctx, inc, sizeof(*inc));
1633	MD5Update(&ctx, &seq, sizeof(seq));
1634	MD5Update(&ctx, &flags, sizeof(flags));
1635	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1636
1637	/* Does the digest part of or ACK'ed ISS match? */
1638	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1639		return (NULL);
1640
1641	/* Does the digest part of our reflected timestamp match? */
1642	if (to->to_flags & TOF_TS) {
1643		data = md5_buffer[3] ^ to->to_tsecr;
1644		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1645			return (NULL);
1646	}
1647
1648	/* Fill in the syncache values. */
1649	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1650	sc->sc_ipopts = NULL;
1651
1652	sc->sc_irs = seq;
1653	sc->sc_iss = ack;
1654
1655#ifdef INET6
1656	if (inc->inc_flags & INC_ISIPV6) {
1657		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1658			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1659	} else
1660#endif
1661	{
1662		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1663		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1664	}
1665
1666	/* Additional parameters that were encoded in the timestamp. */
1667	if (data) {
1668		sc->sc_flags |= SCF_TIMESTAMP;
1669		sc->sc_tsreflect = to->to_tsval;
1670		sc->sc_ts = to->to_tsecr;
1671		sc->sc_tsoff = to->to_tsecr - ticks;
1672		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1673		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1674		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1675		    TCP_MAX_WINSHIFT);
1676		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1677		    TCP_MAX_WINSHIFT);
1678		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1679			sc->sc_flags |= SCF_WINSCALE;
1680	} else
1681		sc->sc_flags |= SCF_NOOPT;
1682
1683	wnd = sbspace(&so->so_rcv);
1684	wnd = imax(wnd, 0);
1685	wnd = imin(wnd, TCP_MAXWIN);
1686	sc->sc_wnd = wnd;
1687
1688	sc->sc_rxmits = 0;
1689	sc->sc_peer_mss = tcp_sc_msstab[mss];
1690
1691	TCPSTAT_INC(tcps_sc_recvcookie);
1692	return (sc);
1693}
1694
1695/*
1696 * Returns the current number of syncache entries.  This number
1697 * will probably change before you get around to calling
1698 * syncache_pcblist.
1699 */
1700
1701int
1702syncache_pcbcount(void)
1703{
1704	INIT_VNET_INET(curvnet);
1705	struct syncache_head *sch;
1706	int count, i;
1707
1708	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1709		/* No need to lock for a read. */
1710		sch = &V_tcp_syncache.hashbase[i];
1711		count += sch->sch_length;
1712	}
1713	return count;
1714}
1715
1716/*
1717 * Exports the syncache entries to userland so that netstat can display
1718 * them alongside the other sockets.  This function is intended to be
1719 * called only from tcp_pcblist.
1720 *
1721 * Due to concurrency on an active system, the number of pcbs exported
1722 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1723 * amount of space the caller allocated for this function to use.
1724 */
1725int
1726syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1727{
1728	INIT_VNET_INET(curvnet);
1729	struct xtcpcb xt;
1730	struct syncache *sc;
1731	struct syncache_head *sch;
1732	int count, error, i;
1733
1734	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1735		sch = &V_tcp_syncache.hashbase[i];
1736		SCH_LOCK(sch);
1737		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1738			if (count >= max_pcbs) {
1739				SCH_UNLOCK(sch);
1740				goto exit;
1741			}
1742			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1743				continue;
1744			bzero(&xt, sizeof(xt));
1745			xt.xt_len = sizeof(xt);
1746			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1747				xt.xt_inp.inp_vflag = INP_IPV6;
1748			else
1749				xt.xt_inp.inp_vflag = INP_IPV4;
1750			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1751			xt.xt_tp.t_inpcb = &xt.xt_inp;
1752			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1753			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1754			xt.xt_socket.xso_len = sizeof (struct xsocket);
1755			xt.xt_socket.so_type = SOCK_STREAM;
1756			xt.xt_socket.so_state = SS_ISCONNECTING;
1757			error = SYSCTL_OUT(req, &xt, sizeof xt);
1758			if (error) {
1759				SCH_UNLOCK(sch);
1760				goto exit;
1761			}
1762			count++;
1763		}
1764		SCH_UNLOCK(sch);
1765	}
1766exit:
1767	*pcbs_exported = count;
1768	return error;
1769}
1770