tcp_syncache.c revision 187062
191094Sdes/*-
292289Sdes * Copyright (c) 2001 McAfee, Inc.
391094Sdes * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
491094Sdes * All rights reserved.
591094Sdes *
699158Sdes * This software was developed for the FreeBSD Project by Jonathan Lemon
799158Sdes * and McAfee Research, the Security Research Division of McAfee, Inc. under
899158Sdes * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
991094Sdes * DARPA CHATS research program.
1091094Sdes *
1191094Sdes * Redistribution and use in source and binary forms, with or without
1291094Sdes * modification, are permitted provided that the following conditions
1391094Sdes * are met:
1491094Sdes * 1. Redistributions of source code must retain the above copyright
1591094Sdes *    notice, this list of conditions and the following disclaimer.
1691094Sdes * 2. Redistributions in binary form must reproduce the above copyright
1791094Sdes *    notice, this list of conditions and the following disclaimer in the
1891094Sdes *    documentation and/or other materials provided with the distribution.
1991094Sdes *
2091094Sdes * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
2191094Sdes * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2291094Sdes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2391094Sdes * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
2491094Sdes * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2591094Sdes * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2691094Sdes * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2791094Sdes * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2891094Sdes * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2991094Sdes * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
3091094Sdes * SUCH DAMAGE.
3191094Sdes */
3291094Sdes
3391094Sdes#include <sys/cdefs.h>
34107937Sdes__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 187062 2009-01-11 20:01:43Z rwatson $");
3591094Sdes
3691094Sdes#include "opt_inet.h"
3791094Sdes#include "opt_inet6.h"
3891094Sdes#include "opt_ipsec.h"
3993982Sdes#include "opt_mac.h"
4093982Sdes
4191094Sdes#include <sys/param.h>
4291094Sdes#include <sys/systm.h>
4391094Sdes#include <sys/kernel.h>
4491094Sdes#include <sys/sysctl.h>
4591094Sdes#include <sys/limits.h>
4693982Sdes#include <sys/lock.h>
4793982Sdes#include <sys/mutex.h>
4891094Sdes#include <sys/malloc.h>
4991094Sdes#include <sys/mbuf.h>
5091094Sdes#include <sys/md5.h>
5191094Sdes#include <sys/proc.h>		/* for proc0 declaration */
5291094Sdes#include <sys/random.h>
5391094Sdes#include <sys/socket.h>
5491094Sdes#include <sys/socketvar.h>
5591094Sdes#include <sys/syslog.h>
5691094Sdes#include <sys/ucred.h>
5791094Sdes#include <sys/vimage.h>
5891094Sdes
5991094Sdes#include <vm/uma.h>
6093982Sdes
6191094Sdes#include <net/if.h>
6291094Sdes#include <net/route.h>
63107937Sdes
6491094Sdes#include <netinet/in.h>
65107937Sdes#include <netinet/in_systm.h>
6691094Sdes#include <netinet/ip.h>
6791094Sdes#include <netinet/in_var.h>
68107937Sdes#include <netinet/in_pcb.h>
6991094Sdes#include <netinet/ip_var.h>
7093982Sdes#include <netinet/ip_options.h>
7193982Sdes#ifdef INET6
7293982Sdes#include <netinet/ip6.h>
7391094Sdes#include <netinet/icmp6.h>
7493982Sdes#include <netinet6/nd6.h>
7591094Sdes#include <netinet6/ip6_var.h>
76107937Sdes#include <netinet6/in6_pcb.h>
7793982Sdes#endif
7893982Sdes#include <netinet/tcp.h>
7993982Sdes#include <netinet/tcp_fsm.h>
80107937Sdes#include <netinet/tcp_seq.h>
81107937Sdes#include <netinet/tcp_timer.h>
8291094Sdes#include <netinet/tcp_var.h>
8391100Sdes#include <netinet/tcp_syncache.h>
8491100Sdes#include <netinet/tcp_offload.h>
8591100Sdes#ifdef INET6
8691100Sdes#include <netinet6/tcp6_var.h>
8791100Sdes#endif
8891100Sdes#include <netinet/vinet.h>
8991100Sdes
9091100Sdes#ifdef IPSEC
9191100Sdes#include <netipsec/ipsec.h>
9293982Sdes#ifdef INET6
9393982Sdes#include <netipsec/ipsec6.h>
9493982Sdes#endif
9593982Sdes#include <netipsec/key.h>
9693982Sdes#endif /*IPSEC*/
9793982Sdes
9893982Sdes#include <machine/in_cksum.h>
9993982Sdes
10093982Sdes#include <security/mac/mac_framework.h>
10193982Sdes
10293982Sdes#ifdef VIMAGE_GLOBALS
10393982Sdesstatic struct tcp_syncache tcp_syncache;
10493982Sdesstatic int tcp_syncookies;
10593982Sdesstatic int tcp_syncookiesonly;
10693982Sdesint tcp_sc_rst_sock_fail;
107#endif
108
109SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, syncookies,
110    CTLFLAG_RW, tcp_syncookies, 0,
111    "Use TCP SYN cookies if the syncache overflows");
112
113SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp, OID_AUTO, syncookies_only,
114    CTLFLAG_RW, tcp_syncookiesonly, 0,
115    "Use only TCP SYN cookies");
116
117#ifdef TCP_OFFLOAD_DISABLE
118#define TOEPCB_ISSET(sc) (0)
119#else
120#define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
121#endif
122
123static void	 syncache_drop(struct syncache *, struct syncache_head *);
124static void	 syncache_free(struct syncache *);
125static void	 syncache_insert(struct syncache *, struct syncache_head *);
126struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
127static int	 syncache_respond(struct syncache *);
128static struct	 socket *syncache_socket(struct syncache *, struct socket *,
129		    struct mbuf *m);
130static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
131		    int docallout);
132static void	 syncache_timer(void *);
133static void	 syncookie_generate(struct syncache_head *, struct syncache *,
134		    u_int32_t *);
135static struct syncache
136		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
137		    struct syncache *, struct tcpopt *, struct tcphdr *,
138		    struct socket *);
139
140/*
141 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
142 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
143 * the odds are that the user has given up attempting to connect by then.
144 */
145#define SYNCACHE_MAXREXMTS		3
146
147/* Arbitrary values */
148#define TCP_SYNCACHE_HASHSIZE		512
149#define TCP_SYNCACHE_BUCKETLIMIT	30
150
151SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
152
153SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
154    bucketlimit, CTLFLAG_RDTUN,
155    tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
156
157SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
158    cachelimit, CTLFLAG_RDTUN,
159    tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
160
161SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
162    count, CTLFLAG_RD,
163    tcp_syncache.cache_count, 0, "Current number of entries in syncache");
164
165SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
166    hashsize, CTLFLAG_RDTUN,
167    tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
168
169SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
170    rexmtlimit, CTLFLAG_RW,
171    tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
172
173SYSCTL_V_INT(V_NET, vnet_inet, _net_inet_tcp_syncache, OID_AUTO,
174     rst_on_sock_fail, CTLFLAG_RW,
175     tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
176
177static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
178
179#define SYNCACHE_HASH(inc, mask)					\
180	((V_tcp_syncache.hash_secret ^					\
181	  (inc)->inc_faddr.s_addr ^					\
182	  ((inc)->inc_faddr.s_addr >> 16) ^				\
183	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
184
185#define SYNCACHE_HASH6(inc, mask)					\
186	((V_tcp_syncache.hash_secret ^					\
187	  (inc)->inc6_faddr.s6_addr32[0] ^				\
188	  (inc)->inc6_faddr.s6_addr32[3] ^				\
189	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
190
191#define ENDPTS_EQ(a, b) (						\
192	(a)->ie_fport == (b)->ie_fport &&				\
193	(a)->ie_lport == (b)->ie_lport &&				\
194	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
195	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
196)
197
198#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
199
200#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
201#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
202#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
203
204/*
205 * Requires the syncache entry to be already removed from the bucket list.
206 */
207static void
208syncache_free(struct syncache *sc)
209{
210	INIT_VNET_INET(curvnet);
211
212	if (sc->sc_ipopts)
213		(void) m_free(sc->sc_ipopts);
214	if (sc->sc_cred)
215		crfree(sc->sc_cred);
216#ifdef MAC
217	mac_syncache_destroy(&sc->sc_label);
218#endif
219
220	uma_zfree(V_tcp_syncache.zone, sc);
221}
222
223void
224syncache_init(void)
225{
226	INIT_VNET_INET(curvnet);
227	int i;
228
229	V_tcp_syncookies = 1;
230	V_tcp_syncookiesonly = 0;
231	V_tcp_sc_rst_sock_fail = 1;
232
233	V_tcp_syncache.cache_count = 0;
234	V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
235	V_tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
236	V_tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
237	V_tcp_syncache.hash_secret = arc4random();
238
239	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
240	    &V_tcp_syncache.hashsize);
241	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
242	    &V_tcp_syncache.bucket_limit);
243	if (!powerof2(V_tcp_syncache.hashsize) ||
244	    V_tcp_syncache.hashsize == 0) {
245		printf("WARNING: syncache hash size is not a power of 2.\n");
246		V_tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
247	}
248	V_tcp_syncache.hashmask = V_tcp_syncache.hashsize - 1;
249
250	/* Set limits. */
251	V_tcp_syncache.cache_limit =
252	    V_tcp_syncache.hashsize * V_tcp_syncache.bucket_limit;
253	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
254	    &V_tcp_syncache.cache_limit);
255
256	/* Allocate the hash table. */
257	V_tcp_syncache.hashbase = malloc(V_tcp_syncache.hashsize *
258	    sizeof(struct syncache_head), M_SYNCACHE, M_WAITOK | M_ZERO);
259
260	/* Initialize the hash buckets. */
261	for (i = 0; i < V_tcp_syncache.hashsize; i++) {
262		TAILQ_INIT(&V_tcp_syncache.hashbase[i].sch_bucket);
263		mtx_init(&V_tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
264			 NULL, MTX_DEF);
265		callout_init_mtx(&V_tcp_syncache.hashbase[i].sch_timer,
266			 &V_tcp_syncache.hashbase[i].sch_mtx, 0);
267		V_tcp_syncache.hashbase[i].sch_length = 0;
268	}
269
270	/* Create the syncache entry zone. */
271	V_tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
272	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
273	uma_zone_set_max(V_tcp_syncache.zone, V_tcp_syncache.cache_limit);
274}
275
276/*
277 * Inserts a syncache entry into the specified bucket row.
278 * Locks and unlocks the syncache_head autonomously.
279 */
280static void
281syncache_insert(struct syncache *sc, struct syncache_head *sch)
282{
283	INIT_VNET_INET(sch->sch_vnet);
284	struct syncache *sc2;
285
286	SCH_LOCK(sch);
287
288	/*
289	 * Make sure that we don't overflow the per-bucket limit.
290	 * If the bucket is full, toss the oldest element.
291	 */
292	if (sch->sch_length >= V_tcp_syncache.bucket_limit) {
293		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
294			("sch->sch_length incorrect"));
295		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
296		syncache_drop(sc2, sch);
297		V_tcpstat.tcps_sc_bucketoverflow++;
298	}
299
300	/* Put it into the bucket. */
301	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
302	sch->sch_length++;
303
304	/* Reinitialize the bucket row's timer. */
305	if (sch->sch_length == 1)
306		sch->sch_nextc = ticks + INT_MAX;
307	syncache_timeout(sc, sch, 1);
308
309	SCH_UNLOCK(sch);
310
311	V_tcp_syncache.cache_count++;
312	V_tcpstat.tcps_sc_added++;
313}
314
315/*
316 * Remove and free entry from syncache bucket row.
317 * Expects locked syncache head.
318 */
319static void
320syncache_drop(struct syncache *sc, struct syncache_head *sch)
321{
322	INIT_VNET_INET(sch->sch_vnet);
323
324	SCH_LOCK_ASSERT(sch);
325
326	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
327	sch->sch_length--;
328
329#ifndef TCP_OFFLOAD_DISABLE
330	if (sc->sc_tu)
331		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
332#endif
333	syncache_free(sc);
334	V_tcp_syncache.cache_count--;
335}
336
337/*
338 * Engage/reengage time on bucket row.
339 */
340static void
341syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
342{
343	sc->sc_rxttime = ticks +
344		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
345	sc->sc_rxmits++;
346	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
347		sch->sch_nextc = sc->sc_rxttime;
348		if (docallout)
349			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
350			    syncache_timer, (void *)sch);
351	}
352}
353
354/*
355 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
356 * If we have retransmitted an entry the maximum number of times, expire it.
357 * One separate timer for each bucket row.
358 */
359static void
360syncache_timer(void *xsch)
361{
362	struct syncache_head *sch = (struct syncache_head *)xsch;
363	struct syncache *sc, *nsc;
364	int tick = ticks;
365	char *s;
366
367	CURVNET_SET(sch->sch_vnet);
368	INIT_VNET_INET(sch->sch_vnet);
369
370	/* NB: syncache_head has already been locked by the callout. */
371	SCH_LOCK_ASSERT(sch);
372
373	/*
374	 * In the following cycle we may remove some entries and/or
375	 * advance some timeouts, so re-initialize the bucket timer.
376	 */
377	sch->sch_nextc = tick + INT_MAX;
378
379	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
380		/*
381		 * We do not check if the listen socket still exists
382		 * and accept the case where the listen socket may be
383		 * gone by the time we resend the SYN/ACK.  We do
384		 * not expect this to happens often. If it does,
385		 * then the RST will be sent by the time the remote
386		 * host does the SYN/ACK->ACK.
387		 */
388		if (TSTMP_GT(sc->sc_rxttime, tick)) {
389			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
390				sch->sch_nextc = sc->sc_rxttime;
391			continue;
392		}
393		if (sc->sc_rxmits > V_tcp_syncache.rexmt_limit) {
394			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
395				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
396				    "giving up and removing syncache entry\n",
397				    s, __func__);
398				free(s, M_TCPLOG);
399			}
400			syncache_drop(sc, sch);
401			V_tcpstat.tcps_sc_stale++;
402			continue;
403		}
404		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
405			log(LOG_DEBUG, "%s; %s: Response timeout, "
406			    "retransmitting (%u) SYN|ACK\n",
407			    s, __func__, sc->sc_rxmits);
408			free(s, M_TCPLOG);
409		}
410
411		(void) syncache_respond(sc);
412		V_tcpstat.tcps_sc_retransmitted++;
413		syncache_timeout(sc, sch, 0);
414	}
415	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
416		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
417			syncache_timer, (void *)(sch));
418	CURVNET_RESTORE();
419}
420
421/*
422 * Find an entry in the syncache.
423 * Returns always with locked syncache_head plus a matching entry or NULL.
424 */
425struct syncache *
426syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
427{
428	INIT_VNET_INET(curvnet);
429	struct syncache *sc;
430	struct syncache_head *sch;
431
432#ifdef INET6
433	if (inc->inc_flags & INC_ISIPV6) {
434		sch = &V_tcp_syncache.hashbase[
435		    SYNCACHE_HASH6(inc, V_tcp_syncache.hashmask)];
436		*schp = sch;
437
438		SCH_LOCK(sch);
439
440		/* Circle through bucket row to find matching entry. */
441		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
442			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
443				return (sc);
444		}
445	} else
446#endif
447	{
448		sch = &V_tcp_syncache.hashbase[
449		    SYNCACHE_HASH(inc, V_tcp_syncache.hashmask)];
450		*schp = sch;
451
452		SCH_LOCK(sch);
453
454		/* Circle through bucket row to find matching entry. */
455		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
456#ifdef INET6
457			if (sc->sc_inc.inc_flags & INC_ISIPV6)
458				continue;
459#endif
460			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
461				return (sc);
462		}
463	}
464	SCH_LOCK_ASSERT(*schp);
465	return (NULL);			/* always returns with locked sch */
466}
467
468/*
469 * This function is called when we get a RST for a
470 * non-existent connection, so that we can see if the
471 * connection is in the syn cache.  If it is, zap it.
472 */
473void
474syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
475{
476	INIT_VNET_INET(curvnet);
477	struct syncache *sc;
478	struct syncache_head *sch;
479	char *s = NULL;
480
481	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
482	SCH_LOCK_ASSERT(sch);
483
484	/*
485	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
486	 * See RFC 793 page 65, section SEGMENT ARRIVES.
487	 */
488	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
489		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
490			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
491			    "FIN flag set, segment ignored\n", s, __func__);
492		V_tcpstat.tcps_badrst++;
493		goto done;
494	}
495
496	/*
497	 * No corresponding connection was found in syncache.
498	 * If syncookies are enabled and possibly exclusively
499	 * used, or we are under memory pressure, a valid RST
500	 * may not find a syncache entry.  In that case we're
501	 * done and no SYN|ACK retransmissions will happen.
502	 * Otherwise the the RST was misdirected or spoofed.
503	 */
504	if (sc == NULL) {
505		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
506			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
507			    "syncache entry (possibly syncookie only), "
508			    "segment ignored\n", s, __func__);
509		V_tcpstat.tcps_badrst++;
510		goto done;
511	}
512
513	/*
514	 * If the RST bit is set, check the sequence number to see
515	 * if this is a valid reset segment.
516	 * RFC 793 page 37:
517	 *   In all states except SYN-SENT, all reset (RST) segments
518	 *   are validated by checking their SEQ-fields.  A reset is
519	 *   valid if its sequence number is in the window.
520	 *
521	 *   The sequence number in the reset segment is normally an
522	 *   echo of our outgoing acknowlegement numbers, but some hosts
523	 *   send a reset with the sequence number at the rightmost edge
524	 *   of our receive window, and we have to handle this case.
525	 */
526	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
527	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
528		syncache_drop(sc, sch);
529		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
530			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
531			    "connection attempt aborted by remote endpoint\n",
532			    s, __func__);
533		V_tcpstat.tcps_sc_reset++;
534	} else {
535		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
536			log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != "
537			    "IRS %u (+WND %u), segment ignored\n",
538			    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
539		V_tcpstat.tcps_badrst++;
540	}
541
542done:
543	if (s != NULL)
544		free(s, M_TCPLOG);
545	SCH_UNLOCK(sch);
546}
547
548void
549syncache_badack(struct in_conninfo *inc)
550{
551	INIT_VNET_INET(curvnet);
552	struct syncache *sc;
553	struct syncache_head *sch;
554
555	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
556	SCH_LOCK_ASSERT(sch);
557	if (sc != NULL) {
558		syncache_drop(sc, sch);
559		V_tcpstat.tcps_sc_badack++;
560	}
561	SCH_UNLOCK(sch);
562}
563
564void
565syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
566{
567	INIT_VNET_INET(curvnet);
568	struct syncache *sc;
569	struct syncache_head *sch;
570
571	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
572	SCH_LOCK_ASSERT(sch);
573	if (sc == NULL)
574		goto done;
575
576	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
577	if (ntohl(th->th_seq) != sc->sc_iss)
578		goto done;
579
580	/*
581	 * If we've rertransmitted 3 times and this is our second error,
582	 * we remove the entry.  Otherwise, we allow it to continue on.
583	 * This prevents us from incorrectly nuking an entry during a
584	 * spurious network outage.
585	 *
586	 * See tcp_notify().
587	 */
588	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
589		sc->sc_flags |= SCF_UNREACH;
590		goto done;
591	}
592	syncache_drop(sc, sch);
593	V_tcpstat.tcps_sc_unreach++;
594done:
595	SCH_UNLOCK(sch);
596}
597
598/*
599 * Build a new TCP socket structure from a syncache entry.
600 */
601static struct socket *
602syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
603{
604	INIT_VNET_INET(lso->so_vnet);
605	struct inpcb *inp = NULL;
606	struct socket *so;
607	struct tcpcb *tp;
608	char *s;
609
610	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
611
612	/*
613	 * Ok, create the full blown connection, and set things up
614	 * as they would have been set up if we had created the
615	 * connection when the SYN arrived.  If we can't create
616	 * the connection, abort it.
617	 */
618	so = sonewconn(lso, SS_ISCONNECTED);
619	if (so == NULL) {
620		/*
621		 * Drop the connection; we will either send a RST or
622		 * have the peer retransmit its SYN again after its
623		 * RTO and try again.
624		 */
625		V_tcpstat.tcps_listendrop++;
626		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
627			log(LOG_DEBUG, "%s; %s: Socket create failed "
628			    "due to limits or memory shortage\n",
629			    s, __func__);
630			free(s, M_TCPLOG);
631		}
632		goto abort2;
633	}
634#ifdef MAC
635	SOCK_LOCK(so);
636	mac_socketpeer_set_from_mbuf(m, so);
637	SOCK_UNLOCK(so);
638#endif
639
640	inp = sotoinpcb(so);
641	inp->inp_inc.inc_fibnum = sc->sc_inc.inc_fibnum;
642	so->so_fibnum = sc->sc_inc.inc_fibnum;
643	INP_WLOCK(inp);
644
645	/* Insert new socket into PCB hash list. */
646	inp->inp_inc.inc_flags = sc->sc_inc.inc_flags;
647#ifdef INET6
648	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
649		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
650	} else {
651		inp->inp_vflag &= ~INP_IPV6;
652		inp->inp_vflag |= INP_IPV4;
653#endif
654		inp->inp_laddr = sc->sc_inc.inc_laddr;
655#ifdef INET6
656	}
657#endif
658	inp->inp_lport = sc->sc_inc.inc_lport;
659	if (in_pcbinshash(inp) != 0) {
660		/*
661		 * Undo the assignments above if we failed to
662		 * put the PCB on the hash lists.
663		 */
664#ifdef INET6
665		if (sc->sc_inc.inc_flags & INC_ISIPV6)
666			inp->in6p_laddr = in6addr_any;
667		else
668#endif
669			inp->inp_laddr.s_addr = INADDR_ANY;
670		inp->inp_lport = 0;
671		goto abort;
672	}
673#ifdef IPSEC
674	/* Copy old policy into new socket's. */
675	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
676		printf("syncache_socket: could not copy policy\n");
677#endif
678#ifdef INET6
679	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
680		struct inpcb *oinp = sotoinpcb(lso);
681		struct in6_addr laddr6;
682		struct sockaddr_in6 sin6;
683		/*
684		 * Inherit socket options from the listening socket.
685		 * Note that in6p_inputopts are not (and should not be)
686		 * copied, since it stores previously received options and is
687		 * used to detect if each new option is different than the
688		 * previous one and hence should be passed to a user.
689		 * If we copied in6p_inputopts, a user would not be able to
690		 * receive options just after calling the accept system call.
691		 */
692		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
693		if (oinp->in6p_outputopts)
694			inp->in6p_outputopts =
695			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
696
697		sin6.sin6_family = AF_INET6;
698		sin6.sin6_len = sizeof(sin6);
699		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
700		sin6.sin6_port = sc->sc_inc.inc_fport;
701		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
702		laddr6 = inp->in6p_laddr;
703		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
704			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
705		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
706		    thread0.td_ucred)) {
707			inp->in6p_laddr = laddr6;
708			goto abort;
709		}
710		/* Override flowlabel from in6_pcbconnect. */
711		inp->inp_flow &= ~IPV6_FLOWLABEL_MASK;
712		inp->inp_flow |= sc->sc_flowlabel;
713	} else
714#endif
715	{
716		struct in_addr laddr;
717		struct sockaddr_in sin;
718
719		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
720
721		if (inp->inp_options == NULL) {
722			inp->inp_options = sc->sc_ipopts;
723			sc->sc_ipopts = NULL;
724		}
725
726		sin.sin_family = AF_INET;
727		sin.sin_len = sizeof(sin);
728		sin.sin_addr = sc->sc_inc.inc_faddr;
729		sin.sin_port = sc->sc_inc.inc_fport;
730		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
731		laddr = inp->inp_laddr;
732		if (inp->inp_laddr.s_addr == INADDR_ANY)
733			inp->inp_laddr = sc->sc_inc.inc_laddr;
734		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
735		    thread0.td_ucred)) {
736			inp->inp_laddr = laddr;
737			goto abort;
738		}
739	}
740	tp = intotcpcb(inp);
741	tp->t_state = TCPS_SYN_RECEIVED;
742	tp->iss = sc->sc_iss;
743	tp->irs = sc->sc_irs;
744	tcp_rcvseqinit(tp);
745	tcp_sendseqinit(tp);
746	tp->snd_wl1 = sc->sc_irs;
747	tp->snd_max = tp->iss + 1;
748	tp->snd_nxt = tp->iss + 1;
749	tp->rcv_up = sc->sc_irs + 1;
750	tp->rcv_wnd = sc->sc_wnd;
751	tp->rcv_adv += tp->rcv_wnd;
752	tp->last_ack_sent = tp->rcv_nxt;
753
754	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
755	if (sc->sc_flags & SCF_NOOPT)
756		tp->t_flags |= TF_NOOPT;
757	else {
758		if (sc->sc_flags & SCF_WINSCALE) {
759			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
760			tp->snd_scale = sc->sc_requested_s_scale;
761			tp->request_r_scale = sc->sc_requested_r_scale;
762		}
763		if (sc->sc_flags & SCF_TIMESTAMP) {
764			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
765			tp->ts_recent = sc->sc_tsreflect;
766			tp->ts_recent_age = ticks;
767			tp->ts_offset = sc->sc_tsoff;
768		}
769#ifdef TCP_SIGNATURE
770		if (sc->sc_flags & SCF_SIGNATURE)
771			tp->t_flags |= TF_SIGNATURE;
772#endif
773		if (sc->sc_flags & SCF_SACK)
774			tp->t_flags |= TF_SACK_PERMIT;
775	}
776
777	if (sc->sc_flags & SCF_ECN)
778		tp->t_flags |= TF_ECN_PERMIT;
779
780	/*
781	 * Set up MSS and get cached values from tcp_hostcache.
782	 * This might overwrite some of the defaults we just set.
783	 */
784	tcp_mss(tp, sc->sc_peer_mss);
785
786	/*
787	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
788	 */
789	if (sc->sc_rxmits)
790		tp->snd_cwnd = tp->t_maxseg;
791	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
792
793	INP_WUNLOCK(inp);
794
795	V_tcpstat.tcps_accepts++;
796	return (so);
797
798abort:
799	INP_WUNLOCK(inp);
800abort2:
801	if (so != NULL)
802		soabort(so);
803	return (NULL);
804}
805
806/*
807 * This function gets called when we receive an ACK for a
808 * socket in the LISTEN state.  We look up the connection
809 * in the syncache, and if its there, we pull it out of
810 * the cache and turn it into a full-blown connection in
811 * the SYN-RECEIVED state.
812 */
813int
814syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
815    struct socket **lsop, struct mbuf *m)
816{
817	INIT_VNET_INET(curvnet);
818	struct syncache *sc;
819	struct syncache_head *sch;
820	struct syncache scs;
821	char *s;
822
823	/*
824	 * Global TCP locks are held because we manipulate the PCB lists
825	 * and create a new socket.
826	 */
827	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
828	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
829	    ("%s: can handle only ACK", __func__));
830
831	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
832	SCH_LOCK_ASSERT(sch);
833	if (sc == NULL) {
834		/*
835		 * There is no syncache entry, so see if this ACK is
836		 * a returning syncookie.  To do this, first:
837		 *  A. See if this socket has had a syncache entry dropped in
838		 *     the past.  We don't want to accept a bogus syncookie
839		 *     if we've never received a SYN.
840		 *  B. check that the syncookie is valid.  If it is, then
841		 *     cobble up a fake syncache entry, and return.
842		 */
843		if (!V_tcp_syncookies) {
844			SCH_UNLOCK(sch);
845			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
846				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
847				    "segment rejected (syncookies disabled)\n",
848				    s, __func__);
849			goto failed;
850		}
851		bzero(&scs, sizeof(scs));
852		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
853		SCH_UNLOCK(sch);
854		if (sc == NULL) {
855			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
856				log(LOG_DEBUG, "%s; %s: Segment failed "
857				    "SYNCOOKIE authentication, segment rejected "
858				    "(probably spoofed)\n", s, __func__);
859			goto failed;
860		}
861	} else {
862		/* Pull out the entry to unlock the bucket row. */
863		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
864		sch->sch_length--;
865		V_tcp_syncache.cache_count--;
866		SCH_UNLOCK(sch);
867	}
868
869	/*
870	 * Segment validation:
871	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
872	 */
873	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
874		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
875			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
876			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
877		goto failed;
878	}
879
880	/*
881	 * The SEQ must fall in the window starting at the received
882	 * initial receive sequence number + 1 (the SYN).
883	 */
884	if ((SEQ_LEQ(th->th_seq, sc->sc_irs) ||
885	    SEQ_GT(th->th_seq, sc->sc_irs + sc->sc_wnd)) &&
886	    !TOEPCB_ISSET(sc)) {
887		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
888			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
889			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
890		goto failed;
891	}
892
893	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
894		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
895			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
896			    "segment rejected\n", s, __func__);
897		goto failed;
898	}
899	/*
900	 * If timestamps were negotiated the reflected timestamp
901	 * must be equal to what we actually sent in the SYN|ACK.
902	 */
903	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
904	    !TOEPCB_ISSET(sc)) {
905		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
906			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
907			    "segment rejected\n",
908			    s, __func__, to->to_tsecr, sc->sc_ts);
909		goto failed;
910	}
911
912	*lsop = syncache_socket(sc, *lsop, m);
913
914	if (*lsop == NULL)
915		V_tcpstat.tcps_sc_aborted++;
916	else
917		V_tcpstat.tcps_sc_completed++;
918
919/* how do we find the inp for the new socket? */
920	if (sc != &scs)
921		syncache_free(sc);
922	return (1);
923failed:
924	if (sc != NULL && sc != &scs)
925		syncache_free(sc);
926	if (s != NULL)
927		free(s, M_TCPLOG);
928	*lsop = NULL;
929	return (0);
930}
931
932int
933tcp_offload_syncache_expand(struct in_conninfo *inc, struct tcpopt *to,
934    struct tcphdr *th, struct socket **lsop, struct mbuf *m)
935{
936	INIT_VNET_INET(curvnet);
937	int rc;
938
939	INP_INFO_WLOCK(&V_tcbinfo);
940	rc = syncache_expand(inc, to, th, lsop, m);
941	INP_INFO_WUNLOCK(&V_tcbinfo);
942
943	return (rc);
944}
945
946/*
947 * Given a LISTEN socket and an inbound SYN request, add
948 * this to the syn cache, and send back a segment:
949 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
950 * to the source.
951 *
952 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
953 * Doing so would require that we hold onto the data and deliver it
954 * to the application.  However, if we are the target of a SYN-flood
955 * DoS attack, an attacker could send data which would eventually
956 * consume all available buffer space if it were ACKed.  By not ACKing
957 * the data, we avoid this DoS scenario.
958 */
959static void
960_syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
961    struct inpcb *inp, struct socket **lsop, struct mbuf *m,
962    struct toe_usrreqs *tu, void *toepcb)
963{
964	INIT_VNET_INET(inp->inp_vnet);
965	struct tcpcb *tp;
966	struct socket *so;
967	struct syncache *sc = NULL;
968	struct syncache_head *sch;
969	struct mbuf *ipopts = NULL;
970	u_int32_t flowtmp;
971	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
972	char *s;
973#ifdef INET6
974	int autoflowlabel = 0;
975#endif
976#ifdef MAC
977	struct label *maclabel;
978#endif
979	struct syncache scs;
980	struct ucred *cred;
981
982	INP_INFO_WLOCK_ASSERT(&V_tcbinfo);
983	INP_WLOCK_ASSERT(inp);			/* listen socket */
984	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
985	    ("%s: unexpected tcp flags", __func__));
986
987	/*
988	 * Combine all so/tp operations very early to drop the INP lock as
989	 * soon as possible.
990	 */
991	so = *lsop;
992	tp = sototcpcb(so);
993	cred = crhold(so->so_cred);
994
995#ifdef INET6
996	if ((inc->inc_flags & INC_ISIPV6) &&
997	    (inp->inp_flags & IN6P_AUTOFLOWLABEL))
998		autoflowlabel = 1;
999#endif
1000	ip_ttl = inp->inp_ip_ttl;
1001	ip_tos = inp->inp_ip_tos;
1002	win = sbspace(&so->so_rcv);
1003	sb_hiwat = so->so_rcv.sb_hiwat;
1004	noopt = (tp->t_flags & TF_NOOPT);
1005
1006	/* By the time we drop the lock these should no longer be used. */
1007	so = NULL;
1008	tp = NULL;
1009
1010#ifdef MAC
1011	if (mac_syncache_init(&maclabel) != 0) {
1012		INP_WUNLOCK(inp);
1013		INP_INFO_WUNLOCK(&V_tcbinfo);
1014		goto done;
1015	} else
1016		mac_syncache_create(maclabel, inp);
1017#endif
1018	INP_WUNLOCK(inp);
1019	INP_INFO_WUNLOCK(&V_tcbinfo);
1020
1021	/*
1022	 * Remember the IP options, if any.
1023	 */
1024#ifdef INET6
1025	if (!(inc->inc_flags & INC_ISIPV6))
1026#endif
1027		ipopts = (m) ? ip_srcroute(m) : NULL;
1028
1029	/*
1030	 * See if we already have an entry for this connection.
1031	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1032	 *
1033	 * XXX: should the syncache be re-initialized with the contents
1034	 * of the new SYN here (which may have different options?)
1035	 *
1036	 * XXX: We do not check the sequence number to see if this is a
1037	 * real retransmit or a new connection attempt.  The question is
1038	 * how to handle such a case; either ignore it as spoofed, or
1039	 * drop the current entry and create a new one?
1040	 */
1041	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1042	SCH_LOCK_ASSERT(sch);
1043	if (sc != NULL) {
1044#ifndef TCP_OFFLOAD_DISABLE
1045		if (sc->sc_tu)
1046			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1047			    sc->sc_toepcb);
1048#endif
1049		V_tcpstat.tcps_sc_dupsyn++;
1050		if (ipopts) {
1051			/*
1052			 * If we were remembering a previous source route,
1053			 * forget it and use the new one we've been given.
1054			 */
1055			if (sc->sc_ipopts)
1056				(void) m_free(sc->sc_ipopts);
1057			sc->sc_ipopts = ipopts;
1058		}
1059		/*
1060		 * Update timestamp if present.
1061		 */
1062		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1063			sc->sc_tsreflect = to->to_tsval;
1064		else
1065			sc->sc_flags &= ~SCF_TIMESTAMP;
1066#ifdef MAC
1067		/*
1068		 * Since we have already unconditionally allocated label
1069		 * storage, free it up.  The syncache entry will already
1070		 * have an initialized label we can use.
1071		 */
1072		mac_syncache_destroy(&maclabel);
1073#endif
1074		/* Retransmit SYN|ACK and reset retransmit count. */
1075		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1076			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1077			    "resetting timer and retransmitting SYN|ACK\n",
1078			    s, __func__);
1079			free(s, M_TCPLOG);
1080		}
1081		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1082			sc->sc_rxmits = 0;
1083			syncache_timeout(sc, sch, 1);
1084			V_tcpstat.tcps_sndacks++;
1085			V_tcpstat.tcps_sndtotal++;
1086		}
1087		SCH_UNLOCK(sch);
1088		goto done;
1089	}
1090
1091	sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1092	if (sc == NULL) {
1093		/*
1094		 * The zone allocator couldn't provide more entries.
1095		 * Treat this as if the cache was full; drop the oldest
1096		 * entry and insert the new one.
1097		 */
1098		V_tcpstat.tcps_sc_zonefail++;
1099		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1100			syncache_drop(sc, sch);
1101		sc = uma_zalloc(V_tcp_syncache.zone, M_NOWAIT | M_ZERO);
1102		if (sc == NULL) {
1103			if (V_tcp_syncookies) {
1104				bzero(&scs, sizeof(scs));
1105				sc = &scs;
1106			} else {
1107				SCH_UNLOCK(sch);
1108				if (ipopts)
1109					(void) m_free(ipopts);
1110				goto done;
1111			}
1112		}
1113	}
1114
1115	/*
1116	 * Fill in the syncache values.
1117	 */
1118#ifdef MAC
1119	sc->sc_label = maclabel;
1120#endif
1121	sc->sc_cred = cred;
1122	cred = NULL;
1123	sc->sc_ipopts = ipopts;
1124	/* XXX-BZ this fib assignment is just useless. */
1125	sc->sc_inc.inc_fibnum = inp->inp_inc.inc_fibnum;
1126	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1127#ifdef INET6
1128	if (!(inc->inc_flags & INC_ISIPV6))
1129#endif
1130	{
1131		sc->sc_ip_tos = ip_tos;
1132		sc->sc_ip_ttl = ip_ttl;
1133	}
1134#ifndef TCP_OFFLOAD_DISABLE
1135	sc->sc_tu = tu;
1136	sc->sc_toepcb = toepcb;
1137#endif
1138	sc->sc_irs = th->th_seq;
1139	sc->sc_iss = arc4random();
1140	sc->sc_flags = 0;
1141	sc->sc_flowlabel = 0;
1142
1143	/*
1144	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1145	 * win was derived from socket earlier in the function.
1146	 */
1147	win = imax(win, 0);
1148	win = imin(win, TCP_MAXWIN);
1149	sc->sc_wnd = win;
1150
1151	if (V_tcp_do_rfc1323) {
1152		/*
1153		 * A timestamp received in a SYN makes
1154		 * it ok to send timestamp requests and replies.
1155		 */
1156		if (to->to_flags & TOF_TS) {
1157			sc->sc_tsreflect = to->to_tsval;
1158			sc->sc_ts = ticks;
1159			sc->sc_flags |= SCF_TIMESTAMP;
1160		}
1161		if (to->to_flags & TOF_SCALE) {
1162			int wscale = 0;
1163
1164			/*
1165			 * Pick the smallest possible scaling factor that
1166			 * will still allow us to scale up to sb_max, aka
1167			 * kern.ipc.maxsockbuf.
1168			 *
1169			 * We do this because there are broken firewalls that
1170			 * will corrupt the window scale option, leading to
1171			 * the other endpoint believing that our advertised
1172			 * window is unscaled.  At scale factors larger than
1173			 * 5 the unscaled window will drop below 1500 bytes,
1174			 * leading to serious problems when traversing these
1175			 * broken firewalls.
1176			 *
1177			 * With the default maxsockbuf of 256K, a scale factor
1178			 * of 3 will be chosen by this algorithm.  Those who
1179			 * choose a larger maxsockbuf should watch out
1180			 * for the compatiblity problems mentioned above.
1181			 *
1182			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1183			 * or <SYN,ACK>) segment itself is never scaled.
1184			 */
1185			while (wscale < TCP_MAX_WINSHIFT &&
1186			    (TCP_MAXWIN << wscale) < sb_max)
1187				wscale++;
1188			sc->sc_requested_r_scale = wscale;
1189			sc->sc_requested_s_scale = to->to_wscale;
1190			sc->sc_flags |= SCF_WINSCALE;
1191		}
1192	}
1193#ifdef TCP_SIGNATURE
1194	/*
1195	 * If listening socket requested TCP digests, and received SYN
1196	 * contains the option, flag this in the syncache so that
1197	 * syncache_respond() will do the right thing with the SYN+ACK.
1198	 * XXX: Currently we always record the option by default and will
1199	 * attempt to use it in syncache_respond().
1200	 */
1201	if (to->to_flags & TOF_SIGNATURE)
1202		sc->sc_flags |= SCF_SIGNATURE;
1203#endif
1204	if (to->to_flags & TOF_SACKPERM)
1205		sc->sc_flags |= SCF_SACK;
1206	if (to->to_flags & TOF_MSS)
1207		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1208	if (noopt)
1209		sc->sc_flags |= SCF_NOOPT;
1210	if ((th->th_flags & (TH_ECE|TH_CWR)) && V_tcp_do_ecn)
1211		sc->sc_flags |= SCF_ECN;
1212
1213	if (V_tcp_syncookies) {
1214		syncookie_generate(sch, sc, &flowtmp);
1215#ifdef INET6
1216		if (autoflowlabel)
1217			sc->sc_flowlabel = flowtmp;
1218#endif
1219	} else {
1220#ifdef INET6
1221		if (autoflowlabel)
1222			sc->sc_flowlabel =
1223			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1224#endif
1225	}
1226	SCH_UNLOCK(sch);
1227
1228	/*
1229	 * Do a standard 3-way handshake.
1230	 */
1231	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1232		if (V_tcp_syncookies && V_tcp_syncookiesonly && sc != &scs)
1233			syncache_free(sc);
1234		else if (sc != &scs)
1235			syncache_insert(sc, sch);   /* locks and unlocks sch */
1236		V_tcpstat.tcps_sndacks++;
1237		V_tcpstat.tcps_sndtotal++;
1238	} else {
1239		if (sc != &scs)
1240			syncache_free(sc);
1241		V_tcpstat.tcps_sc_dropped++;
1242	}
1243
1244done:
1245	if (cred != NULL)
1246		crfree(cred);
1247#ifdef MAC
1248	if (sc == &scs)
1249		mac_syncache_destroy(&maclabel);
1250#endif
1251	if (m) {
1252
1253		*lsop = NULL;
1254		m_freem(m);
1255	}
1256}
1257
1258static int
1259syncache_respond(struct syncache *sc)
1260{
1261	INIT_VNET_INET(curvnet);
1262	struct ip *ip = NULL;
1263	struct mbuf *m;
1264	struct tcphdr *th;
1265	int optlen, error;
1266	u_int16_t hlen, tlen, mssopt;
1267	struct tcpopt to;
1268#ifdef INET6
1269	struct ip6_hdr *ip6 = NULL;
1270#endif
1271
1272	hlen =
1273#ifdef INET6
1274	       (sc->sc_inc.inc_flags & INC_ISIPV6) ? sizeof(struct ip6_hdr) :
1275#endif
1276		sizeof(struct ip);
1277	tlen = hlen + sizeof(struct tcphdr);
1278
1279	/* Determine MSS we advertize to other end of connection. */
1280	mssopt = tcp_mssopt(&sc->sc_inc);
1281	if (sc->sc_peer_mss)
1282		mssopt = max( min(sc->sc_peer_mss, mssopt), V_tcp_minmss);
1283
1284	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1285	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1286	    ("syncache: mbuf too small"));
1287
1288	/* Create the IP+TCP header from scratch. */
1289	m = m_gethdr(M_DONTWAIT, MT_DATA);
1290	if (m == NULL)
1291		return (ENOBUFS);
1292#ifdef MAC
1293	mac_syncache_create_mbuf(sc->sc_label, m);
1294#endif
1295	m->m_data += max_linkhdr;
1296	m->m_len = tlen;
1297	m->m_pkthdr.len = tlen;
1298	m->m_pkthdr.rcvif = NULL;
1299
1300#ifdef INET6
1301	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1302		ip6 = mtod(m, struct ip6_hdr *);
1303		ip6->ip6_vfc = IPV6_VERSION;
1304		ip6->ip6_nxt = IPPROTO_TCP;
1305		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1306		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1307		ip6->ip6_plen = htons(tlen - hlen);
1308		/* ip6_hlim is set after checksum */
1309		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1310		ip6->ip6_flow |= sc->sc_flowlabel;
1311
1312		th = (struct tcphdr *)(ip6 + 1);
1313	} else
1314#endif
1315	{
1316		ip = mtod(m, struct ip *);
1317		ip->ip_v = IPVERSION;
1318		ip->ip_hl = sizeof(struct ip) >> 2;
1319		ip->ip_len = tlen;
1320		ip->ip_id = 0;
1321		ip->ip_off = 0;
1322		ip->ip_sum = 0;
1323		ip->ip_p = IPPROTO_TCP;
1324		ip->ip_src = sc->sc_inc.inc_laddr;
1325		ip->ip_dst = sc->sc_inc.inc_faddr;
1326		ip->ip_ttl = sc->sc_ip_ttl;
1327		ip->ip_tos = sc->sc_ip_tos;
1328
1329		/*
1330		 * See if we should do MTU discovery.  Route lookups are
1331		 * expensive, so we will only unset the DF bit if:
1332		 *
1333		 *	1) path_mtu_discovery is disabled
1334		 *	2) the SCF_UNREACH flag has been set
1335		 */
1336		if (V_path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1337		       ip->ip_off |= IP_DF;
1338
1339		th = (struct tcphdr *)(ip + 1);
1340	}
1341	th->th_sport = sc->sc_inc.inc_lport;
1342	th->th_dport = sc->sc_inc.inc_fport;
1343
1344	th->th_seq = htonl(sc->sc_iss);
1345	th->th_ack = htonl(sc->sc_irs + 1);
1346	th->th_off = sizeof(struct tcphdr) >> 2;
1347	th->th_x2 = 0;
1348	th->th_flags = TH_SYN|TH_ACK;
1349	th->th_win = htons(sc->sc_wnd);
1350	th->th_urp = 0;
1351
1352	if (sc->sc_flags & SCF_ECN) {
1353		th->th_flags |= TH_ECE;
1354		V_tcpstat.tcps_ecn_shs++;
1355	}
1356
1357	/* Tack on the TCP options. */
1358	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1359		to.to_flags = 0;
1360
1361		to.to_mss = mssopt;
1362		to.to_flags = TOF_MSS;
1363		if (sc->sc_flags & SCF_WINSCALE) {
1364			to.to_wscale = sc->sc_requested_r_scale;
1365			to.to_flags |= TOF_SCALE;
1366		}
1367		if (sc->sc_flags & SCF_TIMESTAMP) {
1368			/* Virgin timestamp or TCP cookie enhanced one. */
1369			to.to_tsval = sc->sc_ts;
1370			to.to_tsecr = sc->sc_tsreflect;
1371			to.to_flags |= TOF_TS;
1372		}
1373		if (sc->sc_flags & SCF_SACK)
1374			to.to_flags |= TOF_SACKPERM;
1375#ifdef TCP_SIGNATURE
1376		if (sc->sc_flags & SCF_SIGNATURE)
1377			to.to_flags |= TOF_SIGNATURE;
1378#endif
1379		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1380
1381		/* Adjust headers by option size. */
1382		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1383		m->m_len += optlen;
1384		m->m_pkthdr.len += optlen;
1385
1386#ifdef TCP_SIGNATURE
1387		if (sc->sc_flags & SCF_SIGNATURE)
1388			tcp_signature_compute(m, 0, 0, optlen,
1389			    to.to_signature, IPSEC_DIR_OUTBOUND);
1390#endif
1391#ifdef INET6
1392		if (sc->sc_inc.inc_flags & INC_ISIPV6)
1393			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1394		else
1395#endif
1396			ip->ip_len += optlen;
1397	} else
1398		optlen = 0;
1399
1400#ifdef INET6
1401	if (sc->sc_inc.inc_flags & INC_ISIPV6) {
1402		th->th_sum = 0;
1403		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1404				       tlen + optlen - hlen);
1405		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1406		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1407	} else
1408#endif
1409	{
1410		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1411		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1412		m->m_pkthdr.csum_flags = CSUM_TCP;
1413		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1414		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1415	}
1416	return (error);
1417}
1418
1419void
1420syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1421    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1422{
1423	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1424}
1425
1426void
1427tcp_offload_syncache_add(struct in_conninfo *inc, struct tcpopt *to,
1428    struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1429    struct toe_usrreqs *tu, void *toepcb)
1430{
1431	INIT_VNET_INET(curvnet);
1432
1433	INP_INFO_WLOCK(&V_tcbinfo);
1434	INP_WLOCK(inp);
1435	_syncache_add(inc, to, th, inp, lsop, NULL, tu, toepcb);
1436}
1437
1438/*
1439 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1440 * receive and to be able to handle SYN floods from bogus source addresses
1441 * (where we will never receive any reply).  SYN floods try to exhaust all
1442 * our memory and available slots in the SYN cache table to cause a denial
1443 * of service to legitimate users of the local host.
1444 *
1445 * The idea of SYN cookies is to encode and include all necessary information
1446 * about the connection setup state within the SYN-ACK we send back and thus
1447 * to get along without keeping any local state until the ACK to the SYN-ACK
1448 * arrives (if ever).  Everything we need to know should be available from
1449 * the information we encoded in the SYN-ACK.
1450 *
1451 * More information about the theory behind SYN cookies and its first
1452 * discussion and specification can be found at:
1453 *  http://cr.yp.to/syncookies.html    (overview)
1454 *  http://cr.yp.to/syncookies/archive (gory details)
1455 *
1456 * This implementation extends the orginal idea and first implementation
1457 * of FreeBSD by using not only the initial sequence number field to store
1458 * information but also the timestamp field if present.  This way we can
1459 * keep track of the entire state we need to know to recreate the session in
1460 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1461 * these days.  For those that do not we still have to live with the known
1462 * shortcomings of the ISN only SYN cookies.
1463 *
1464 * Cookie layers:
1465 *
1466 * Initial sequence number we send:
1467 * 31|................................|0
1468 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1469 *    D = MD5 Digest (first dword)
1470 *    M = MSS index
1471 *    R = Rotation of secret
1472 *    P = Odd or Even secret
1473 *
1474 * The MD5 Digest is computed with over following parameters:
1475 *  a) randomly rotated secret
1476 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1477 *  c) the received initial sequence number from remote host
1478 *  d) the rotation offset and odd/even bit
1479 *
1480 * Timestamp we send:
1481 * 31|................................|0
1482 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1483 *    D = MD5 Digest (third dword) (only as filler)
1484 *    S = Requested send window scale
1485 *    R = Requested receive window scale
1486 *    A = SACK allowed
1487 *    5 = TCP-MD5 enabled (not implemented yet)
1488 *    XORed with MD5 Digest (forth dword)
1489 *
1490 * The timestamp isn't cryptographically secure and doesn't need to be.
1491 * The double use of the MD5 digest dwords ties it to a specific remote/
1492 * local host/port, remote initial sequence number and our local time
1493 * limited secret.  A received timestamp is reverted (XORed) and then
1494 * the contained MD5 dword is compared to the computed one to ensure the
1495 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1496 * have been tampered with but this isn't different from supplying bogus
1497 * values in the SYN in the first place.
1498 *
1499 * Some problems with SYN cookies remain however:
1500 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1501 * original SYN was accepted, the connection is established.  The second
1502 * SYN is inflight, and if it arrives with an ISN that falls within the
1503 * receive window, the connection is killed.
1504 *
1505 * Notes:
1506 * A heuristic to determine when to accept syn cookies is not necessary.
1507 * An ACK flood would cause the syncookie verification to be attempted,
1508 * but a SYN flood causes syncookies to be generated.  Both are of equal
1509 * cost, so there's no point in trying to optimize the ACK flood case.
1510 * Also, if you don't process certain ACKs for some reason, then all someone
1511 * would have to do is launch a SYN and ACK flood at the same time, which
1512 * would stop cookie verification and defeat the entire purpose of syncookies.
1513 */
1514static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1515
1516static void
1517syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1518    u_int32_t *flowlabel)
1519{
1520	INIT_VNET_INET(curvnet);
1521	MD5_CTX ctx;
1522	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1523	u_int32_t data;
1524	u_int32_t *secbits;
1525	u_int off, pmss, mss;
1526	int i;
1527
1528	SCH_LOCK_ASSERT(sch);
1529
1530	/* Which of the two secrets to use. */
1531	secbits = sch->sch_oddeven ?
1532			sch->sch_secbits_odd : sch->sch_secbits_even;
1533
1534	/* Reseed secret if too old. */
1535	if (sch->sch_reseed < time_uptime) {
1536		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1537		secbits = sch->sch_oddeven ?
1538				sch->sch_secbits_odd : sch->sch_secbits_even;
1539		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1540			secbits[i] = arc4random();
1541		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1542	}
1543
1544	/* Secret rotation offset. */
1545	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1546
1547	/* Maximum segment size calculation. */
1548	pmss =
1549	    max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)),	V_tcp_minmss);
1550	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1551		if (tcp_sc_msstab[mss] <= pmss)
1552			break;
1553
1554	/* Fold parameters and MD5 digest into the ISN we will send. */
1555	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1556	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1557	data |= mss << 4;	/* mss, 3 bits */
1558
1559	MD5Init(&ctx);
1560	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1561	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1562	MD5Update(&ctx, secbits, off);
1563	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1564	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1565	MD5Update(&ctx, &data, sizeof(data));
1566	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1567
1568	data |= (md5_buffer[0] << 7);
1569	sc->sc_iss = data;
1570
1571#ifdef INET6
1572	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1573#endif
1574
1575	/* Additional parameters are stored in the timestamp if present. */
1576	if (sc->sc_flags & SCF_TIMESTAMP) {
1577		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1578		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1579		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1580		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1581		data |= md5_buffer[2] << 10;		/* more digest bits */
1582		data ^= md5_buffer[3];
1583		sc->sc_ts = data;
1584		sc->sc_tsoff = data - ticks;		/* after XOR */
1585	}
1586
1587	V_tcpstat.tcps_sc_sendcookie++;
1588}
1589
1590static struct syncache *
1591syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1592    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1593    struct socket *so)
1594{
1595	INIT_VNET_INET(curvnet);
1596	MD5_CTX ctx;
1597	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1598	u_int32_t data = 0;
1599	u_int32_t *secbits;
1600	tcp_seq ack, seq;
1601	int off, mss, wnd, flags;
1602
1603	SCH_LOCK_ASSERT(sch);
1604
1605	/*
1606	 * Pull information out of SYN-ACK/ACK and
1607	 * revert sequence number advances.
1608	 */
1609	ack = th->th_ack - 1;
1610	seq = th->th_seq - 1;
1611	off = (ack >> 1) & 0x7;
1612	mss = (ack >> 4) & 0x7;
1613	flags = ack & 0x7f;
1614
1615	/* Which of the two secrets to use. */
1616	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1617
1618	/*
1619	 * The secret wasn't updated for the lifetime of a syncookie,
1620	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1621	 */
1622	if (sch->sch_reseed + SYNCOOKIE_LIFETIME < time_uptime) {
1623		return (NULL);
1624	}
1625
1626	/* Recompute the digest so we can compare it. */
1627	MD5Init(&ctx);
1628	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1629	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1630	MD5Update(&ctx, secbits, off);
1631	MD5Update(&ctx, inc, sizeof(*inc));
1632	MD5Update(&ctx, &seq, sizeof(seq));
1633	MD5Update(&ctx, &flags, sizeof(flags));
1634	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1635
1636	/* Does the digest part of or ACK'ed ISS match? */
1637	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1638		return (NULL);
1639
1640	/* Does the digest part of our reflected timestamp match? */
1641	if (to->to_flags & TOF_TS) {
1642		data = md5_buffer[3] ^ to->to_tsecr;
1643		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1644			return (NULL);
1645	}
1646
1647	/* Fill in the syncache values. */
1648	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1649	sc->sc_ipopts = NULL;
1650
1651	sc->sc_irs = seq;
1652	sc->sc_iss = ack;
1653
1654#ifdef INET6
1655	if (inc->inc_flags & INC_ISIPV6) {
1656		if (sotoinpcb(so)->inp_flags & IN6P_AUTOFLOWLABEL)
1657			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1658	} else
1659#endif
1660	{
1661		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1662		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1663	}
1664
1665	/* Additional parameters that were encoded in the timestamp. */
1666	if (data) {
1667		sc->sc_flags |= SCF_TIMESTAMP;
1668		sc->sc_tsreflect = to->to_tsval;
1669		sc->sc_ts = to->to_tsecr;
1670		sc->sc_tsoff = to->to_tsecr - ticks;
1671		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1672		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1673		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1674		    TCP_MAX_WINSHIFT);
1675		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1676		    TCP_MAX_WINSHIFT);
1677		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1678			sc->sc_flags |= SCF_WINSCALE;
1679	} else
1680		sc->sc_flags |= SCF_NOOPT;
1681
1682	wnd = sbspace(&so->so_rcv);
1683	wnd = imax(wnd, 0);
1684	wnd = imin(wnd, TCP_MAXWIN);
1685	sc->sc_wnd = wnd;
1686
1687	sc->sc_rxmits = 0;
1688	sc->sc_peer_mss = tcp_sc_msstab[mss];
1689
1690	V_tcpstat.tcps_sc_recvcookie++;
1691	return (sc);
1692}
1693
1694/*
1695 * Returns the current number of syncache entries.  This number
1696 * will probably change before you get around to calling
1697 * syncache_pcblist.
1698 */
1699
1700int
1701syncache_pcbcount(void)
1702{
1703	INIT_VNET_INET(curvnet);
1704	struct syncache_head *sch;
1705	int count, i;
1706
1707	for (count = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1708		/* No need to lock for a read. */
1709		sch = &V_tcp_syncache.hashbase[i];
1710		count += sch->sch_length;
1711	}
1712	return count;
1713}
1714
1715/*
1716 * Exports the syncache entries to userland so that netstat can display
1717 * them alongside the other sockets.  This function is intended to be
1718 * called only from tcp_pcblist.
1719 *
1720 * Due to concurrency on an active system, the number of pcbs exported
1721 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1722 * amount of space the caller allocated for this function to use.
1723 */
1724int
1725syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1726{
1727	INIT_VNET_INET(curvnet);
1728	struct xtcpcb xt;
1729	struct syncache *sc;
1730	struct syncache_head *sch;
1731	int count, error, i;
1732
1733	for (count = 0, error = 0, i = 0; i < V_tcp_syncache.hashsize; i++) {
1734		sch = &V_tcp_syncache.hashbase[i];
1735		SCH_LOCK(sch);
1736		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1737			if (count >= max_pcbs) {
1738				SCH_UNLOCK(sch);
1739				goto exit;
1740			}
1741			if (cr_cansee(req->td->td_ucred, sc->sc_cred) != 0)
1742				continue;
1743			bzero(&xt, sizeof(xt));
1744			xt.xt_len = sizeof(xt);
1745			if (sc->sc_inc.inc_flags & INC_ISIPV6)
1746				xt.xt_inp.inp_vflag = INP_IPV6;
1747			else
1748				xt.xt_inp.inp_vflag = INP_IPV4;
1749			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1750			xt.xt_tp.t_inpcb = &xt.xt_inp;
1751			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1752			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1753			xt.xt_socket.xso_len = sizeof (struct xsocket);
1754			xt.xt_socket.so_type = SOCK_STREAM;
1755			xt.xt_socket.so_state = SS_ISCONNECTING;
1756			error = SYSCTL_OUT(req, &xt, sizeof xt);
1757			if (error) {
1758				SCH_UNLOCK(sch);
1759				goto exit;
1760			}
1761			count++;
1762		}
1763		SCH_UNLOCK(sch);
1764	}
1765exit:
1766	*pcbs_exported = count;
1767	return error;
1768}
1769