tcp_syncache.c revision 178285
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 178285 2008-04-17 21:38:18Z rwatson $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/limits.h>
46#include <sys/lock.h>
47#include <sys/mutex.h>
48#include <sys/malloc.h>
49#include <sys/mbuf.h>
50#include <sys/md5.h>
51#include <sys/proc.h>		/* for proc0 declaration */
52#include <sys/random.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/syslog.h>
56
57#include <vm/uma.h>
58
59#include <net/if.h>
60#include <net/route.h>
61
62#include <netinet/in.h>
63#include <netinet/in_systm.h>
64#include <netinet/ip.h>
65#include <netinet/in_var.h>
66#include <netinet/in_pcb.h>
67#include <netinet/ip_var.h>
68#include <netinet/ip_options.h>
69#ifdef INET6
70#include <netinet/ip6.h>
71#include <netinet/icmp6.h>
72#include <netinet6/nd6.h>
73#include <netinet6/ip6_var.h>
74#include <netinet6/in6_pcb.h>
75#endif
76#include <netinet/tcp.h>
77#include <netinet/tcp_fsm.h>
78#include <netinet/tcp_seq.h>
79#include <netinet/tcp_timer.h>
80#include <netinet/tcp_var.h>
81#include <netinet/tcp_syncache.h>
82#include <netinet/tcp_offload.h>
83#ifdef INET6
84#include <netinet6/tcp6_var.h>
85#endif
86
87#ifdef IPSEC
88#include <netipsec/ipsec.h>
89#ifdef INET6
90#include <netipsec/ipsec6.h>
91#endif
92#include <netipsec/key.h>
93#endif /*IPSEC*/
94
95#include <machine/in_cksum.h>
96
97#include <security/mac/mac_framework.h>
98
99static int tcp_syncookies = 1;
100SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
101    &tcp_syncookies, 0,
102    "Use TCP SYN cookies if the syncache overflows");
103
104static int tcp_syncookiesonly = 0;
105SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
106    &tcp_syncookiesonly, 0,
107    "Use only TCP SYN cookies");
108
109#define	SYNCOOKIE_SECRET_SIZE	8	/* dwords */
110#define	SYNCOOKIE_LIFETIME	16	/* seconds */
111
112struct syncache {
113	TAILQ_ENTRY(syncache)	sc_hash;
114	struct		in_conninfo sc_inc;	/* addresses */
115	int		sc_rxttime;		/* retransmit time */
116	u_int16_t	sc_rxmits;		/* retransmit counter */
117
118	u_int32_t	sc_tsreflect;		/* timestamp to reflect */
119	u_int32_t	sc_ts;			/* our timestamp to send */
120	u_int32_t	sc_tsoff;		/* ts offset w/ syncookies */
121	u_int32_t	sc_flowlabel;		/* IPv6 flowlabel */
122	tcp_seq		sc_irs;			/* seq from peer */
123	tcp_seq		sc_iss;			/* our ISS */
124	struct		mbuf *sc_ipopts;	/* source route */
125
126	u_int16_t	sc_peer_mss;		/* peer's MSS */
127	u_int16_t	sc_wnd;			/* advertised window */
128	u_int8_t	sc_ip_ttl;		/* IPv4 TTL */
129	u_int8_t	sc_ip_tos;		/* IPv4 TOS */
130	u_int8_t	sc_requested_s_scale:4,
131			sc_requested_r_scale:4;
132	u_int8_t	sc_flags;
133#define SCF_NOOPT	0x01			/* no TCP options */
134#define SCF_WINSCALE	0x02			/* negotiated window scaling */
135#define SCF_TIMESTAMP	0x04			/* negotiated timestamps */
136						/* MSS is implicit */
137#define SCF_UNREACH	0x10			/* icmp unreachable received */
138#define SCF_SIGNATURE	0x20			/* send MD5 digests */
139#define SCF_SACK	0x80			/* send SACK option */
140#ifndef TCP_OFFLOAD_DISABLE
141	struct toe_usrreqs *sc_tu;		/* TOE operations */
142	void 		*sc_toepcb;		/* TOE protocol block */
143#endif
144#ifdef MAC
145	struct label	*sc_label;		/* MAC label reference */
146#endif
147};
148
149#ifdef TCP_OFFLOAD_DISABLE
150#define TOEPCB_ISSET(sc) (0)
151#else
152#define TOEPCB_ISSET(sc) ((sc)->sc_toepcb != NULL)
153#endif
154
155
156struct syncache_head {
157	struct mtx	sch_mtx;
158	TAILQ_HEAD(sch_head, syncache)	sch_bucket;
159	struct callout	sch_timer;
160	int		sch_nextc;
161	u_int		sch_length;
162	u_int		sch_oddeven;
163	u_int32_t	sch_secbits_odd[SYNCOOKIE_SECRET_SIZE];
164	u_int32_t	sch_secbits_even[SYNCOOKIE_SECRET_SIZE];
165	u_int		sch_reseed;		/* time_uptime, seconds */
166};
167
168static void	 syncache_drop(struct syncache *, struct syncache_head *);
169static void	 syncache_free(struct syncache *);
170static void	 syncache_insert(struct syncache *, struct syncache_head *);
171struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
172static int	 syncache_respond(struct syncache *);
173static struct	 socket *syncache_socket(struct syncache *, struct socket *,
174		    struct mbuf *m);
175static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
176		    int docallout);
177static void	 syncache_timer(void *);
178static void	 syncookie_generate(struct syncache_head *, struct syncache *,
179		    u_int32_t *);
180static struct syncache
181		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
182		    struct syncache *, struct tcpopt *, struct tcphdr *,
183		    struct socket *);
184
185/*
186 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
187 * 3 retransmits corresponds to a timeout of 3 * (1 + 2 + 4 + 8) == 45 seconds,
188 * the odds are that the user has given up attempting to connect by then.
189 */
190#define SYNCACHE_MAXREXMTS		3
191
192/* Arbitrary values */
193#define TCP_SYNCACHE_HASHSIZE		512
194#define TCP_SYNCACHE_BUCKETLIMIT	30
195
196struct tcp_syncache {
197	struct	syncache_head *hashbase;
198	uma_zone_t zone;
199	u_int	hashsize;
200	u_int	hashmask;
201	u_int	bucket_limit;
202	u_int	cache_count;		/* XXX: unprotected */
203	u_int	cache_limit;
204	u_int	rexmt_limit;
205	u_int	hash_secret;
206};
207static struct tcp_syncache tcp_syncache;
208
209SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
210
211SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
212     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
213
214SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
215     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
216
217SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
218     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
219
220SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
221     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
222
223SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
224     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
225
226int	tcp_sc_rst_sock_fail = 1;
227SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail, CTLFLAG_RW,
228     &tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
229
230static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
231
232#define SYNCACHE_HASH(inc, mask)					\
233	((tcp_syncache.hash_secret ^					\
234	  (inc)->inc_faddr.s_addr ^					\
235	  ((inc)->inc_faddr.s_addr >> 16) ^				\
236	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
237
238#define SYNCACHE_HASH6(inc, mask)					\
239	((tcp_syncache.hash_secret ^					\
240	  (inc)->inc6_faddr.s6_addr32[0] ^				\
241	  (inc)->inc6_faddr.s6_addr32[3] ^				\
242	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
243
244#define ENDPTS_EQ(a, b) (						\
245	(a)->ie_fport == (b)->ie_fport &&				\
246	(a)->ie_lport == (b)->ie_lport &&				\
247	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
248	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
249)
250
251#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
252
253#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
254#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
255#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
256
257/*
258 * Requires the syncache entry to be already removed from the bucket list.
259 */
260static void
261syncache_free(struct syncache *sc)
262{
263	if (sc->sc_ipopts)
264		(void) m_free(sc->sc_ipopts);
265#ifdef MAC
266	mac_syncache_destroy(&sc->sc_label);
267#endif
268
269	uma_zfree(tcp_syncache.zone, sc);
270}
271
272void
273syncache_init(void)
274{
275	int i;
276
277	tcp_syncache.cache_count = 0;
278	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
279	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
280	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
281	tcp_syncache.hash_secret = arc4random();
282
283	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
284	    &tcp_syncache.hashsize);
285	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
286	    &tcp_syncache.bucket_limit);
287	if (!powerof2(tcp_syncache.hashsize) || tcp_syncache.hashsize == 0) {
288		printf("WARNING: syncache hash size is not a power of 2.\n");
289		tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
290	}
291	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
292
293	/* Set limits. */
294	tcp_syncache.cache_limit =
295	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
296	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
297	    &tcp_syncache.cache_limit);
298
299	/* Allocate the hash table. */
300	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
301	    tcp_syncache.hashsize * sizeof(struct syncache_head),
302	    M_SYNCACHE, M_WAITOK | M_ZERO);
303
304	/* Initialize the hash buckets. */
305	for (i = 0; i < tcp_syncache.hashsize; i++) {
306		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
307		mtx_init(&tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
308			 NULL, MTX_DEF);
309		callout_init_mtx(&tcp_syncache.hashbase[i].sch_timer,
310			 &tcp_syncache.hashbase[i].sch_mtx, 0);
311		tcp_syncache.hashbase[i].sch_length = 0;
312	}
313
314	/* Create the syncache entry zone. */
315	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
316	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
317	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
318}
319
320/*
321 * Inserts a syncache entry into the specified bucket row.
322 * Locks and unlocks the syncache_head autonomously.
323 */
324static void
325syncache_insert(struct syncache *sc, struct syncache_head *sch)
326{
327	struct syncache *sc2;
328
329	SCH_LOCK(sch);
330
331	/*
332	 * Make sure that we don't overflow the per-bucket limit.
333	 * If the bucket is full, toss the oldest element.
334	 */
335	if (sch->sch_length >= tcp_syncache.bucket_limit) {
336		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
337			("sch->sch_length incorrect"));
338		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
339		syncache_drop(sc2, sch);
340		tcpstat.tcps_sc_bucketoverflow++;
341	}
342
343	/* Put it into the bucket. */
344	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
345	sch->sch_length++;
346
347	/* Reinitialize the bucket row's timer. */
348	if (sch->sch_length == 1)
349		sch->sch_nextc = ticks + INT_MAX;
350	syncache_timeout(sc, sch, 1);
351
352	SCH_UNLOCK(sch);
353
354	tcp_syncache.cache_count++;
355	tcpstat.tcps_sc_added++;
356}
357
358/*
359 * Remove and free entry from syncache bucket row.
360 * Expects locked syncache head.
361 */
362static void
363syncache_drop(struct syncache *sc, struct syncache_head *sch)
364{
365
366	SCH_LOCK_ASSERT(sch);
367
368	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
369	sch->sch_length--;
370
371#ifndef TCP_OFFLOAD_DISABLE
372	if (sc->sc_tu)
373		sc->sc_tu->tu_syncache_event(TOE_SC_DROP, sc->sc_toepcb);
374#endif
375	syncache_free(sc);
376	tcp_syncache.cache_count--;
377}
378
379/*
380 * Engage/reengage time on bucket row.
381 */
382static void
383syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
384{
385	sc->sc_rxttime = ticks +
386		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
387	sc->sc_rxmits++;
388	if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc)) {
389		sch->sch_nextc = sc->sc_rxttime;
390		if (docallout)
391			callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
392			    syncache_timer, (void *)sch);
393	}
394}
395
396/*
397 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
398 * If we have retransmitted an entry the maximum number of times, expire it.
399 * One separate timer for each bucket row.
400 */
401static void
402syncache_timer(void *xsch)
403{
404	struct syncache_head *sch = (struct syncache_head *)xsch;
405	struct syncache *sc, *nsc;
406	int tick = ticks;
407	char *s;
408
409	/* NB: syncache_head has already been locked by the callout. */
410	SCH_LOCK_ASSERT(sch);
411
412	/*
413	 * In the following cycle we may remove some entries and/or
414	 * advance some timeouts, so re-initialize the bucket timer.
415	 */
416	sch->sch_nextc = tick + INT_MAX;
417
418	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
419		/*
420		 * We do not check if the listen socket still exists
421		 * and accept the case where the listen socket may be
422		 * gone by the time we resend the SYN/ACK.  We do
423		 * not expect this to happens often. If it does,
424		 * then the RST will be sent by the time the remote
425		 * host does the SYN/ACK->ACK.
426		 */
427		if (TSTMP_GT(sc->sc_rxttime, tick)) {
428			if (TSTMP_LT(sc->sc_rxttime, sch->sch_nextc))
429				sch->sch_nextc = sc->sc_rxttime;
430			continue;
431		}
432		if (sc->sc_rxmits > tcp_syncache.rexmt_limit) {
433			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
434				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
435				    "giving up and removing syncache entry\n",
436				    s, __func__);
437				free(s, M_TCPLOG);
438			}
439			syncache_drop(sc, sch);
440			tcpstat.tcps_sc_stale++;
441			continue;
442		}
443		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
444			log(LOG_DEBUG, "%s; %s: Response timeout, "
445			    "retransmitting (%u) SYN|ACK\n",
446			    s, __func__, sc->sc_rxmits);
447			free(s, M_TCPLOG);
448		}
449
450		(void) syncache_respond(sc);
451		tcpstat.tcps_sc_retransmitted++;
452		syncache_timeout(sc, sch, 0);
453	}
454	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
455		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
456			syncache_timer, (void *)(sch));
457}
458
459/*
460 * Find an entry in the syncache.
461 * Returns always with locked syncache_head plus a matching entry or NULL.
462 */
463struct syncache *
464syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
465{
466	struct syncache *sc;
467	struct syncache_head *sch;
468
469#ifdef INET6
470	if (inc->inc_isipv6) {
471		sch = &tcp_syncache.hashbase[
472		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
473		*schp = sch;
474
475		SCH_LOCK(sch);
476
477		/* Circle through bucket row to find matching entry. */
478		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
479			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
480				return (sc);
481		}
482	} else
483#endif
484	{
485		sch = &tcp_syncache.hashbase[
486		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
487		*schp = sch;
488
489		SCH_LOCK(sch);
490
491		/* Circle through bucket row to find matching entry. */
492		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
493#ifdef INET6
494			if (sc->sc_inc.inc_isipv6)
495				continue;
496#endif
497			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
498				return (sc);
499		}
500	}
501	SCH_LOCK_ASSERT(*schp);
502	return (NULL);			/* always returns with locked sch */
503}
504
505/*
506 * This function is called when we get a RST for a
507 * non-existent connection, so that we can see if the
508 * connection is in the syn cache.  If it is, zap it.
509 */
510void
511syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
512{
513	struct syncache *sc;
514	struct syncache_head *sch;
515	char *s = NULL;
516
517	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
518	SCH_LOCK_ASSERT(sch);
519
520	/*
521	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
522	 * See RFC 793 page 65, section SEGMENT ARRIVES.
523	 */
524	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
525		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
526			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
527			    "FIN flag set, segment ignored\n", s, __func__);
528		tcpstat.tcps_badrst++;
529		goto done;
530	}
531
532	/*
533	 * No corresponding connection was found in syncache.
534	 * If syncookies are enabled and possibly exclusively
535	 * used, or we are under memory pressure, a valid RST
536	 * may not find a syncache entry.  In that case we're
537	 * done and no SYN|ACK retransmissions will happen.
538	 * Otherwise the the RST was misdirected or spoofed.
539	 */
540	if (sc == NULL) {
541		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
542			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
543			    "syncache entry (possibly syncookie only), "
544			    "segment ignored\n", s, __func__);
545		tcpstat.tcps_badrst++;
546		goto done;
547	}
548
549	/*
550	 * If the RST bit is set, check the sequence number to see
551	 * if this is a valid reset segment.
552	 * RFC 793 page 37:
553	 *   In all states except SYN-SENT, all reset (RST) segments
554	 *   are validated by checking their SEQ-fields.  A reset is
555	 *   valid if its sequence number is in the window.
556	 *
557	 *   The sequence number in the reset segment is normally an
558	 *   echo of our outgoing acknowlegement numbers, but some hosts
559	 *   send a reset with the sequence number at the rightmost edge
560	 *   of our receive window, and we have to handle this case.
561	 */
562	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
563	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
564		syncache_drop(sc, sch);
565		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
566			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
567			    "connection attempt aborted by remote endpoint\n",
568			    s, __func__);
569		tcpstat.tcps_sc_reset++;
570	} else if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
571		log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != IRS %u "
572		    "(+WND %u), segment ignored\n",
573		    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
574		tcpstat.tcps_badrst++;
575	}
576
577done:
578	if (s != NULL)
579		free(s, M_TCPLOG);
580	SCH_UNLOCK(sch);
581}
582
583void
584syncache_badack(struct in_conninfo *inc)
585{
586	struct syncache *sc;
587	struct syncache_head *sch;
588
589	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
590	SCH_LOCK_ASSERT(sch);
591	if (sc != NULL) {
592		syncache_drop(sc, sch);
593		tcpstat.tcps_sc_badack++;
594	}
595	SCH_UNLOCK(sch);
596}
597
598void
599syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
600{
601	struct syncache *sc;
602	struct syncache_head *sch;
603
604	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
605	SCH_LOCK_ASSERT(sch);
606	if (sc == NULL)
607		goto done;
608
609	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
610	if (ntohl(th->th_seq) != sc->sc_iss)
611		goto done;
612
613	/*
614	 * If we've rertransmitted 3 times and this is our second error,
615	 * we remove the entry.  Otherwise, we allow it to continue on.
616	 * This prevents us from incorrectly nuking an entry during a
617	 * spurious network outage.
618	 *
619	 * See tcp_notify().
620	 */
621	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
622		sc->sc_flags |= SCF_UNREACH;
623		goto done;
624	}
625	syncache_drop(sc, sch);
626	tcpstat.tcps_sc_unreach++;
627done:
628	SCH_UNLOCK(sch);
629}
630
631/*
632 * Build a new TCP socket structure from a syncache entry.
633 */
634static struct socket *
635syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
636{
637	struct inpcb *inp = NULL;
638	struct socket *so;
639	struct tcpcb *tp;
640	char *s;
641
642	INP_INFO_WLOCK_ASSERT(&tcbinfo);
643
644	/*
645	 * Ok, create the full blown connection, and set things up
646	 * as they would have been set up if we had created the
647	 * connection when the SYN arrived.  If we can't create
648	 * the connection, abort it.
649	 */
650	so = sonewconn(lso, SS_ISCONNECTED);
651	if (so == NULL) {
652		/*
653		 * Drop the connection; we will either send a RST or
654		 * have the peer retransmit its SYN again after its
655		 * RTO and try again.
656		 */
657		tcpstat.tcps_listendrop++;
658		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
659			log(LOG_DEBUG, "%s; %s: Socket create failed "
660			    "due to limits or memory shortage\n",
661			    s, __func__);
662			free(s, M_TCPLOG);
663		}
664		goto abort2;
665	}
666#ifdef MAC
667	SOCK_LOCK(so);
668	mac_socketpeer_set_from_mbuf(m, so);
669	SOCK_UNLOCK(so);
670#endif
671
672	inp = sotoinpcb(so);
673	INP_WLOCK(inp);
674
675	/* Insert new socket into PCB hash list. */
676	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
677#ifdef INET6
678	if (sc->sc_inc.inc_isipv6) {
679		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
680	} else {
681		inp->inp_vflag &= ~INP_IPV6;
682		inp->inp_vflag |= INP_IPV4;
683#endif
684		inp->inp_laddr = sc->sc_inc.inc_laddr;
685#ifdef INET6
686	}
687#endif
688	inp->inp_lport = sc->sc_inc.inc_lport;
689	if (in_pcbinshash(inp) != 0) {
690		/*
691		 * Undo the assignments above if we failed to
692		 * put the PCB on the hash lists.
693		 */
694#ifdef INET6
695		if (sc->sc_inc.inc_isipv6)
696			inp->in6p_laddr = in6addr_any;
697		else
698#endif
699			inp->inp_laddr.s_addr = INADDR_ANY;
700		inp->inp_lport = 0;
701		goto abort;
702	}
703#ifdef IPSEC
704	/* Copy old policy into new socket's. */
705	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
706		printf("syncache_socket: could not copy policy\n");
707#endif
708#ifdef INET6
709	if (sc->sc_inc.inc_isipv6) {
710		struct inpcb *oinp = sotoinpcb(lso);
711		struct in6_addr laddr6;
712		struct sockaddr_in6 sin6;
713		/*
714		 * Inherit socket options from the listening socket.
715		 * Note that in6p_inputopts are not (and should not be)
716		 * copied, since it stores previously received options and is
717		 * used to detect if each new option is different than the
718		 * previous one and hence should be passed to a user.
719		 * If we copied in6p_inputopts, a user would not be able to
720		 * receive options just after calling the accept system call.
721		 */
722		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
723		if (oinp->in6p_outputopts)
724			inp->in6p_outputopts =
725			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
726
727		sin6.sin6_family = AF_INET6;
728		sin6.sin6_len = sizeof(sin6);
729		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
730		sin6.sin6_port = sc->sc_inc.inc_fport;
731		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
732		laddr6 = inp->in6p_laddr;
733		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
734			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
735		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
736		    thread0.td_ucred)) {
737			inp->in6p_laddr = laddr6;
738			goto abort;
739		}
740		/* Override flowlabel from in6_pcbconnect. */
741		inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
742		inp->in6p_flowinfo |= sc->sc_flowlabel;
743	} else
744#endif
745	{
746		struct in_addr laddr;
747		struct sockaddr_in sin;
748
749		inp->inp_options = (m) ? ip_srcroute(m) : NULL;
750
751		if (inp->inp_options == NULL) {
752			inp->inp_options = sc->sc_ipopts;
753			sc->sc_ipopts = NULL;
754		}
755
756		sin.sin_family = AF_INET;
757		sin.sin_len = sizeof(sin);
758		sin.sin_addr = sc->sc_inc.inc_faddr;
759		sin.sin_port = sc->sc_inc.inc_fport;
760		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
761		laddr = inp->inp_laddr;
762		if (inp->inp_laddr.s_addr == INADDR_ANY)
763			inp->inp_laddr = sc->sc_inc.inc_laddr;
764		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
765		    thread0.td_ucred)) {
766			inp->inp_laddr = laddr;
767			goto abort;
768		}
769	}
770	tp = intotcpcb(inp);
771	tp->t_state = TCPS_SYN_RECEIVED;
772	tp->iss = sc->sc_iss;
773	tp->irs = sc->sc_irs;
774	tcp_rcvseqinit(tp);
775	tcp_sendseqinit(tp);
776	tp->snd_wl1 = sc->sc_irs;
777	tp->snd_max = tp->iss + 1;
778	tp->snd_nxt = tp->iss + 1;
779	tp->rcv_up = sc->sc_irs + 1;
780	tp->rcv_wnd = sc->sc_wnd;
781	tp->rcv_adv += tp->rcv_wnd;
782	tp->last_ack_sent = tp->rcv_nxt;
783
784	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
785	if (sc->sc_flags & SCF_NOOPT)
786		tp->t_flags |= TF_NOOPT;
787	else {
788		if (sc->sc_flags & SCF_WINSCALE) {
789			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
790			tp->snd_scale = sc->sc_requested_s_scale;
791			tp->request_r_scale = sc->sc_requested_r_scale;
792		}
793		if (sc->sc_flags & SCF_TIMESTAMP) {
794			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
795			tp->ts_recent = sc->sc_tsreflect;
796			tp->ts_recent_age = ticks;
797			tp->ts_offset = sc->sc_tsoff;
798		}
799#ifdef TCP_SIGNATURE
800		if (sc->sc_flags & SCF_SIGNATURE)
801			tp->t_flags |= TF_SIGNATURE;
802#endif
803		if (sc->sc_flags & SCF_SACK)
804			tp->t_flags |= TF_SACK_PERMIT;
805	}
806
807	/*
808	 * Set up MSS and get cached values from tcp_hostcache.
809	 * This might overwrite some of the defaults we just set.
810	 */
811	tcp_mss(tp, sc->sc_peer_mss);
812
813	/*
814	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
815	 */
816	if (sc->sc_rxmits)
817		tp->snd_cwnd = tp->t_maxseg;
818	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
819
820	INP_WUNLOCK(inp);
821
822	tcpstat.tcps_accepts++;
823	return (so);
824
825abort:
826	INP_WUNLOCK(inp);
827abort2:
828	if (so != NULL)
829		soabort(so);
830	return (NULL);
831}
832
833/*
834 * This function gets called when we receive an ACK for a
835 * socket in the LISTEN state.  We look up the connection
836 * in the syncache, and if its there, we pull it out of
837 * the cache and turn it into a full-blown connection in
838 * the SYN-RECEIVED state.
839 */
840int
841syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
842    struct socket **lsop, struct mbuf *m)
843{
844	struct syncache *sc;
845	struct syncache_head *sch;
846	struct syncache scs;
847	char *s;
848
849	/*
850	 * Global TCP locks are held because we manipulate the PCB lists
851	 * and create a new socket.
852	 */
853	INP_INFO_WLOCK_ASSERT(&tcbinfo);
854	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
855	    ("%s: can handle only ACK", __func__));
856
857	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
858	SCH_LOCK_ASSERT(sch);
859	if (sc == NULL) {
860		/*
861		 * There is no syncache entry, so see if this ACK is
862		 * a returning syncookie.  To do this, first:
863		 *  A. See if this socket has had a syncache entry dropped in
864		 *     the past.  We don't want to accept a bogus syncookie
865		 *     if we've never received a SYN.
866		 *  B. check that the syncookie is valid.  If it is, then
867		 *     cobble up a fake syncache entry, and return.
868		 */
869		if (!tcp_syncookies) {
870			SCH_UNLOCK(sch);
871			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
872				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
873				    "segment rejected (syncookies disabled)\n",
874				    s, __func__);
875			goto failed;
876		}
877		bzero(&scs, sizeof(scs));
878		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
879		SCH_UNLOCK(sch);
880		if (sc == NULL) {
881			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
882				log(LOG_DEBUG, "%s; %s: Segment failed "
883				    "SYNCOOKIE authentication, segment rejected "
884				    "(probably spoofed)\n", s, __func__);
885			goto failed;
886		}
887	} else {
888		/* Pull out the entry to unlock the bucket row. */
889		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
890		sch->sch_length--;
891		tcp_syncache.cache_count--;
892		SCH_UNLOCK(sch);
893	}
894
895	/*
896	 * Segment validation:
897	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
898	 */
899	if (th->th_ack != sc->sc_iss + 1 && !TOEPCB_ISSET(sc)) {
900		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
901			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
902			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
903		goto failed;
904	}
905	/*
906	 * The SEQ must match the received initial receive sequence
907	 * number + 1 (the SYN) because we didn't ACK any data that
908	 * may have come with the SYN.
909	 */
910	if (th->th_seq != sc->sc_irs + 1 && !TOEPCB_ISSET(sc)) {
911		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
912			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
913			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
914		goto failed;
915	}
916
917	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
918		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
919			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
920			    "segment rejected\n", s, __func__);
921		goto failed;
922	}
923	/*
924	 * If timestamps were negotiated the reflected timestamp
925	 * must be equal to what we actually sent in the SYN|ACK.
926	 */
927	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts &&
928	    !TOEPCB_ISSET(sc)) {
929		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
930			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
931			    "segment rejected\n",
932			    s, __func__, to->to_tsecr, sc->sc_ts);
933		goto failed;
934	}
935
936	*lsop = syncache_socket(sc, *lsop, m);
937
938	if (*lsop == NULL)
939		tcpstat.tcps_sc_aborted++;
940	else
941		tcpstat.tcps_sc_completed++;
942
943	if (sc != &scs)
944		syncache_free(sc);
945	return (1);
946failed:
947	if (sc != NULL && sc != &scs)
948		syncache_free(sc);
949	if (s != NULL)
950		free(s, M_TCPLOG);
951	*lsop = NULL;
952	return (0);
953}
954
955/*
956 * Given a LISTEN socket and an inbound SYN request, add
957 * this to the syn cache, and send back a segment:
958 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
959 * to the source.
960 *
961 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
962 * Doing so would require that we hold onto the data and deliver it
963 * to the application.  However, if we are the target of a SYN-flood
964 * DoS attack, an attacker could send data which would eventually
965 * consume all available buffer space if it were ACKed.  By not ACKing
966 * the data, we avoid this DoS scenario.
967 */
968static void
969_syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
970    struct inpcb *inp, struct socket **lsop, struct mbuf *m,
971    struct toe_usrreqs *tu, void *toepcb)
972{
973	struct tcpcb *tp;
974	struct socket *so;
975	struct syncache *sc = NULL;
976	struct syncache_head *sch;
977	struct mbuf *ipopts = NULL;
978	u_int32_t flowtmp;
979	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
980	char *s;
981#ifdef INET6
982	int autoflowlabel = 0;
983#endif
984#ifdef MAC
985	struct label *maclabel;
986#endif
987	struct syncache scs;
988
989	INP_INFO_WLOCK_ASSERT(&tcbinfo);
990	INP_WLOCK_ASSERT(inp);			/* listen socket */
991	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
992	    ("%s: unexpected tcp flags", __func__));
993
994	/*
995	 * Combine all so/tp operations very early to drop the INP lock as
996	 * soon as possible.
997	 */
998	so = *lsop;
999	tp = sototcpcb(so);
1000
1001#ifdef INET6
1002	if (inc->inc_isipv6 &&
1003	    (inp->in6p_flags & IN6P_AUTOFLOWLABEL))
1004		autoflowlabel = 1;
1005#endif
1006	ip_ttl = inp->inp_ip_ttl;
1007	ip_tos = inp->inp_ip_tos;
1008	win = sbspace(&so->so_rcv);
1009	sb_hiwat = so->so_rcv.sb_hiwat;
1010	noopt = (tp->t_flags & TF_NOOPT);
1011
1012	so = NULL;
1013	tp = NULL;
1014
1015#ifdef MAC
1016	if (mac_syncache_init(&maclabel) != 0) {
1017		INP_WUNLOCK(inp);
1018		INP_INFO_WUNLOCK(&tcbinfo);
1019		goto done;
1020	} else
1021		mac_syncache_create(maclabel, inp);
1022#endif
1023	INP_WUNLOCK(inp);
1024	INP_INFO_WUNLOCK(&tcbinfo);
1025
1026	/*
1027	 * Remember the IP options, if any.
1028	 */
1029#ifdef INET6
1030	if (!inc->inc_isipv6)
1031#endif
1032		ipopts = (m) ? ip_srcroute(m) : NULL;
1033
1034	/*
1035	 * See if we already have an entry for this connection.
1036	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1037	 *
1038	 * XXX: should the syncache be re-initialized with the contents
1039	 * of the new SYN here (which may have different options?)
1040	 *
1041	 * XXX: We do not check the sequence number to see if this is a
1042	 * real retransmit or a new connection attempt.  The question is
1043	 * how to handle such a case; either ignore it as spoofed, or
1044	 * drop the current entry and create a new one?
1045	 */
1046	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1047	SCH_LOCK_ASSERT(sch);
1048	if (sc != NULL) {
1049#ifndef TCP_OFFLOAD_DISABLE
1050		if (sc->sc_tu)
1051			sc->sc_tu->tu_syncache_event(TOE_SC_ENTRY_PRESENT,
1052			    sc->sc_toepcb);
1053#endif
1054		tcpstat.tcps_sc_dupsyn++;
1055		if (ipopts) {
1056			/*
1057			 * If we were remembering a previous source route,
1058			 * forget it and use the new one we've been given.
1059			 */
1060			if (sc->sc_ipopts)
1061				(void) m_free(sc->sc_ipopts);
1062			sc->sc_ipopts = ipopts;
1063		}
1064		/*
1065		 * Update timestamp if present.
1066		 */
1067		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1068			sc->sc_tsreflect = to->to_tsval;
1069		else
1070			sc->sc_flags &= ~SCF_TIMESTAMP;
1071#ifdef MAC
1072		/*
1073		 * Since we have already unconditionally allocated label
1074		 * storage, free it up.  The syncache entry will already
1075		 * have an initialized label we can use.
1076		 */
1077		mac_syncache_destroy(&maclabel);
1078		KASSERT(sc->sc_label != NULL,
1079		    ("%s: label not initialized", __func__));
1080#endif
1081		/* Retransmit SYN|ACK and reset retransmit count. */
1082		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1083			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1084			    "resetting timer and retransmitting SYN|ACK\n",
1085			    s, __func__);
1086			free(s, M_TCPLOG);
1087		}
1088		if (!TOEPCB_ISSET(sc) && syncache_respond(sc) == 0) {
1089			sc->sc_rxmits = 0;
1090			syncache_timeout(sc, sch, 1);
1091			tcpstat.tcps_sndacks++;
1092			tcpstat.tcps_sndtotal++;
1093		}
1094		SCH_UNLOCK(sch);
1095		goto done;
1096	}
1097
1098	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
1099	if (sc == NULL) {
1100		/*
1101		 * The zone allocator couldn't provide more entries.
1102		 * Treat this as if the cache was full; drop the oldest
1103		 * entry and insert the new one.
1104		 */
1105		tcpstat.tcps_sc_zonefail++;
1106		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1107			syncache_drop(sc, sch);
1108		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
1109		if (sc == NULL) {
1110			if (tcp_syncookies) {
1111				bzero(&scs, sizeof(scs));
1112				sc = &scs;
1113			} else {
1114				SCH_UNLOCK(sch);
1115				if (ipopts)
1116					(void) m_free(ipopts);
1117				goto done;
1118			}
1119		}
1120	}
1121
1122	/*
1123	 * Fill in the syncache values.
1124	 */
1125#ifdef MAC
1126	sc->sc_label = maclabel;
1127#endif
1128	sc->sc_ipopts = ipopts;
1129	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1130#ifdef INET6
1131	if (!inc->inc_isipv6)
1132#endif
1133	{
1134		sc->sc_ip_tos = ip_tos;
1135		sc->sc_ip_ttl = ip_ttl;
1136	}
1137#ifndef TCP_OFFLOAD_DISABLE
1138	sc->sc_tu = tu;
1139	sc->sc_toepcb = toepcb;
1140#endif
1141	sc->sc_irs = th->th_seq;
1142	sc->sc_iss = arc4random();
1143	sc->sc_flags = 0;
1144	sc->sc_flowlabel = 0;
1145
1146	/*
1147	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1148	 * win was derived from socket earlier in the function.
1149	 */
1150	win = imax(win, 0);
1151	win = imin(win, TCP_MAXWIN);
1152	sc->sc_wnd = win;
1153
1154	if (tcp_do_rfc1323) {
1155		/*
1156		 * A timestamp received in a SYN makes
1157		 * it ok to send timestamp requests and replies.
1158		 */
1159		if (to->to_flags & TOF_TS) {
1160			sc->sc_tsreflect = to->to_tsval;
1161			sc->sc_ts = ticks;
1162			sc->sc_flags |= SCF_TIMESTAMP;
1163		}
1164		if (to->to_flags & TOF_SCALE) {
1165			int wscale = 0;
1166
1167			/*
1168			 * Pick the smallest possible scaling factor that
1169			 * will still allow us to scale up to sb_max, aka
1170			 * kern.ipc.maxsockbuf.
1171			 *
1172			 * We do this because there are broken firewalls that
1173			 * will corrupt the window scale option, leading to
1174			 * the other endpoint believing that our advertised
1175			 * window is unscaled.  At scale factors larger than
1176			 * 5 the unscaled window will drop below 1500 bytes,
1177			 * leading to serious problems when traversing these
1178			 * broken firewalls.
1179			 *
1180			 * With the default maxsockbuf of 256K, a scale factor
1181			 * of 3 will be chosen by this algorithm.  Those who
1182			 * choose a larger maxsockbuf should watch out
1183			 * for the compatiblity problems mentioned above.
1184			 *
1185			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1186			 * or <SYN,ACK>) segment itself is never scaled.
1187			 */
1188			while (wscale < TCP_MAX_WINSHIFT &&
1189			    (TCP_MAXWIN << wscale) < sb_max)
1190				wscale++;
1191			sc->sc_requested_r_scale = wscale;
1192			sc->sc_requested_s_scale = to->to_wscale;
1193			sc->sc_flags |= SCF_WINSCALE;
1194		}
1195	}
1196#ifdef TCP_SIGNATURE
1197	/*
1198	 * If listening socket requested TCP digests, and received SYN
1199	 * contains the option, flag this in the syncache so that
1200	 * syncache_respond() will do the right thing with the SYN+ACK.
1201	 * XXX: Currently we always record the option by default and will
1202	 * attempt to use it in syncache_respond().
1203	 */
1204	if (to->to_flags & TOF_SIGNATURE)
1205		sc->sc_flags |= SCF_SIGNATURE;
1206#endif
1207	if (to->to_flags & TOF_SACKPERM)
1208		sc->sc_flags |= SCF_SACK;
1209	if (to->to_flags & TOF_MSS)
1210		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1211	if (noopt)
1212		sc->sc_flags |= SCF_NOOPT;
1213
1214	if (tcp_syncookies) {
1215		syncookie_generate(sch, sc, &flowtmp);
1216#ifdef INET6
1217		if (autoflowlabel)
1218			sc->sc_flowlabel = flowtmp;
1219#endif
1220	} else {
1221#ifdef INET6
1222		if (autoflowlabel)
1223			sc->sc_flowlabel =
1224			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1225#endif
1226	}
1227	SCH_UNLOCK(sch);
1228
1229	/*
1230	 * Do a standard 3-way handshake.
1231	 */
1232	if (TOEPCB_ISSET(sc) || syncache_respond(sc) == 0) {
1233		if (tcp_syncookies && tcp_syncookiesonly && sc != &scs)
1234			syncache_free(sc);
1235		else if (sc != &scs)
1236			syncache_insert(sc, sch);   /* locks and unlocks sch */
1237		tcpstat.tcps_sndacks++;
1238		tcpstat.tcps_sndtotal++;
1239	} else {
1240		if (sc != &scs)
1241			syncache_free(sc);
1242		tcpstat.tcps_sc_dropped++;
1243	}
1244
1245done:
1246#ifdef MAC
1247	if (sc == &scs)
1248		mac_syncache_destroy(&maclabel);
1249#endif
1250	if (m) {
1251
1252		*lsop = NULL;
1253		m_freem(m);
1254	}
1255	return;
1256}
1257
1258static int
1259syncache_respond(struct syncache *sc)
1260{
1261	struct ip *ip = NULL;
1262	struct mbuf *m;
1263	struct tcphdr *th;
1264	int optlen, error;
1265	u_int16_t hlen, tlen, mssopt;
1266	struct tcpopt to;
1267#ifdef INET6
1268	struct ip6_hdr *ip6 = NULL;
1269#endif
1270
1271	hlen =
1272#ifdef INET6
1273	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1274#endif
1275		sizeof(struct ip);
1276	tlen = hlen + sizeof(struct tcphdr);
1277
1278	/* Determine MSS we advertize to other end of connection. */
1279	mssopt = tcp_mssopt(&sc->sc_inc);
1280	if (sc->sc_peer_mss)
1281		mssopt = max( min(sc->sc_peer_mss, mssopt), tcp_minmss);
1282
1283	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1284	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1285	    ("syncache: mbuf too small"));
1286
1287	/* Create the IP+TCP header from scratch. */
1288	m = m_gethdr(M_DONTWAIT, MT_DATA);
1289	if (m == NULL)
1290		return (ENOBUFS);
1291#ifdef MAC
1292	mac_syncache_create_mbuf(sc->sc_label, m);
1293#endif
1294	m->m_data += max_linkhdr;
1295	m->m_len = tlen;
1296	m->m_pkthdr.len = tlen;
1297	m->m_pkthdr.rcvif = NULL;
1298
1299#ifdef INET6
1300	if (sc->sc_inc.inc_isipv6) {
1301		ip6 = mtod(m, struct ip6_hdr *);
1302		ip6->ip6_vfc = IPV6_VERSION;
1303		ip6->ip6_nxt = IPPROTO_TCP;
1304		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1305		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1306		ip6->ip6_plen = htons(tlen - hlen);
1307		/* ip6_hlim is set after checksum */
1308		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1309		ip6->ip6_flow |= sc->sc_flowlabel;
1310
1311		th = (struct tcphdr *)(ip6 + 1);
1312	} else
1313#endif
1314	{
1315		ip = mtod(m, struct ip *);
1316		ip->ip_v = IPVERSION;
1317		ip->ip_hl = sizeof(struct ip) >> 2;
1318		ip->ip_len = tlen;
1319		ip->ip_id = 0;
1320		ip->ip_off = 0;
1321		ip->ip_sum = 0;
1322		ip->ip_p = IPPROTO_TCP;
1323		ip->ip_src = sc->sc_inc.inc_laddr;
1324		ip->ip_dst = sc->sc_inc.inc_faddr;
1325		ip->ip_ttl = sc->sc_ip_ttl;
1326		ip->ip_tos = sc->sc_ip_tos;
1327
1328		/*
1329		 * See if we should do MTU discovery.  Route lookups are
1330		 * expensive, so we will only unset the DF bit if:
1331		 *
1332		 *	1) path_mtu_discovery is disabled
1333		 *	2) the SCF_UNREACH flag has been set
1334		 */
1335		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1336		       ip->ip_off |= IP_DF;
1337
1338		th = (struct tcphdr *)(ip + 1);
1339	}
1340	th->th_sport = sc->sc_inc.inc_lport;
1341	th->th_dport = sc->sc_inc.inc_fport;
1342
1343	th->th_seq = htonl(sc->sc_iss);
1344	th->th_ack = htonl(sc->sc_irs + 1);
1345	th->th_off = sizeof(struct tcphdr) >> 2;
1346	th->th_x2 = 0;
1347	th->th_flags = TH_SYN|TH_ACK;
1348	th->th_win = htons(sc->sc_wnd);
1349	th->th_urp = 0;
1350
1351	/* Tack on the TCP options. */
1352	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1353		to.to_flags = 0;
1354
1355		to.to_mss = mssopt;
1356		to.to_flags = TOF_MSS;
1357		if (sc->sc_flags & SCF_WINSCALE) {
1358			to.to_wscale = sc->sc_requested_r_scale;
1359			to.to_flags |= TOF_SCALE;
1360		}
1361		if (sc->sc_flags & SCF_TIMESTAMP) {
1362			/* Virgin timestamp or TCP cookie enhanced one. */
1363			to.to_tsval = sc->sc_ts;
1364			to.to_tsecr = sc->sc_tsreflect;
1365			to.to_flags |= TOF_TS;
1366		}
1367		if (sc->sc_flags & SCF_SACK)
1368			to.to_flags |= TOF_SACKPERM;
1369#ifdef TCP_SIGNATURE
1370		if (sc->sc_flags & SCF_SIGNATURE)
1371			to.to_flags |= TOF_SIGNATURE;
1372#endif
1373		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1374
1375		/* Adjust headers by option size. */
1376		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1377		m->m_len += optlen;
1378		m->m_pkthdr.len += optlen;
1379
1380#ifdef TCP_SIGNATURE
1381		if (sc->sc_flags & SCF_SIGNATURE)
1382			tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
1383			    to.to_signature, IPSEC_DIR_OUTBOUND);
1384#endif
1385#ifdef INET6
1386		if (sc->sc_inc.inc_isipv6)
1387			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1388		else
1389#endif
1390			ip->ip_len += optlen;
1391	} else
1392		optlen = 0;
1393
1394#ifdef INET6
1395	if (sc->sc_inc.inc_isipv6) {
1396		th->th_sum = 0;
1397		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1398				       tlen + optlen - hlen);
1399		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1400		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1401	} else
1402#endif
1403	{
1404		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1405		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1406		m->m_pkthdr.csum_flags = CSUM_TCP;
1407		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1408		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1409	}
1410	return (error);
1411}
1412
1413void
1414syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
1415    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
1416{
1417	_syncache_add(inc, to, th, inp, lsop, m, NULL, NULL);
1418}
1419
1420void
1421syncache_offload_add(struct in_conninfo *inc, struct tcpopt *to,
1422    struct tcphdr *th, struct inpcb *inp, struct socket **lsop,
1423    struct toe_usrreqs *tu, void *toepcb)
1424{
1425	_syncache_add(inc, to, th, inp, lsop, NULL, tu, toepcb);
1426}
1427
1428/*
1429 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1430 * receive and to be able to handle SYN floods from bogus source addresses
1431 * (where we will never receive any reply).  SYN floods try to exhaust all
1432 * our memory and available slots in the SYN cache table to cause a denial
1433 * of service to legitimate users of the local host.
1434 *
1435 * The idea of SYN cookies is to encode and include all necessary information
1436 * about the connection setup state within the SYN-ACK we send back and thus
1437 * to get along without keeping any local state until the ACK to the SYN-ACK
1438 * arrives (if ever).  Everything we need to know should be available from
1439 * the information we encoded in the SYN-ACK.
1440 *
1441 * More information about the theory behind SYN cookies and its first
1442 * discussion and specification can be found at:
1443 *  http://cr.yp.to/syncookies.html    (overview)
1444 *  http://cr.yp.to/syncookies/archive (gory details)
1445 *
1446 * This implementation extends the orginal idea and first implementation
1447 * of FreeBSD by using not only the initial sequence number field to store
1448 * information but also the timestamp field if present.  This way we can
1449 * keep track of the entire state we need to know to recreate the session in
1450 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1451 * these days.  For those that do not we still have to live with the known
1452 * shortcomings of the ISN only SYN cookies.
1453 *
1454 * Cookie layers:
1455 *
1456 * Initial sequence number we send:
1457 * 31|................................|0
1458 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1459 *    D = MD5 Digest (first dword)
1460 *    M = MSS index
1461 *    R = Rotation of secret
1462 *    P = Odd or Even secret
1463 *
1464 * The MD5 Digest is computed with over following parameters:
1465 *  a) randomly rotated secret
1466 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1467 *  c) the received initial sequence number from remote host
1468 *  d) the rotation offset and odd/even bit
1469 *
1470 * Timestamp we send:
1471 * 31|................................|0
1472 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1473 *    D = MD5 Digest (third dword) (only as filler)
1474 *    S = Requested send window scale
1475 *    R = Requested receive window scale
1476 *    A = SACK allowed
1477 *    5 = TCP-MD5 enabled (not implemented yet)
1478 *    XORed with MD5 Digest (forth dword)
1479 *
1480 * The timestamp isn't cryptographically secure and doesn't need to be.
1481 * The double use of the MD5 digest dwords ties it to a specific remote/
1482 * local host/port, remote initial sequence number and our local time
1483 * limited secret.  A received timestamp is reverted (XORed) and then
1484 * the contained MD5 dword is compared to the computed one to ensure the
1485 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1486 * have been tampered with but this isn't different from supplying bogus
1487 * values in the SYN in the first place.
1488 *
1489 * Some problems with SYN cookies remain however:
1490 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1491 * original SYN was accepted, the connection is established.  The second
1492 * SYN is inflight, and if it arrives with an ISN that falls within the
1493 * receive window, the connection is killed.
1494 *
1495 * Notes:
1496 * A heuristic to determine when to accept syn cookies is not necessary.
1497 * An ACK flood would cause the syncookie verification to be attempted,
1498 * but a SYN flood causes syncookies to be generated.  Both are of equal
1499 * cost, so there's no point in trying to optimize the ACK flood case.
1500 * Also, if you don't process certain ACKs for some reason, then all someone
1501 * would have to do is launch a SYN and ACK flood at the same time, which
1502 * would stop cookie verification and defeat the entire purpose of syncookies.
1503 */
1504static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1505
1506static void
1507syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1508    u_int32_t *flowlabel)
1509{
1510	MD5_CTX ctx;
1511	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1512	u_int32_t data;
1513	u_int32_t *secbits;
1514	u_int off, pmss, mss;
1515	int i;
1516
1517	SCH_LOCK_ASSERT(sch);
1518
1519	/* Which of the two secrets to use. */
1520	secbits = sch->sch_oddeven ?
1521			sch->sch_secbits_odd : sch->sch_secbits_even;
1522
1523	/* Reseed secret if too old. */
1524	if (sch->sch_reseed < time_uptime) {
1525		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1526		secbits = sch->sch_oddeven ?
1527				sch->sch_secbits_odd : sch->sch_secbits_even;
1528		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1529			secbits[i] = arc4random();
1530		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1531	}
1532
1533	/* Secret rotation offset. */
1534	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1535
1536	/* Maximum segment size calculation. */
1537	pmss = max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)), tcp_minmss);
1538	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1539		if (tcp_sc_msstab[mss] <= pmss)
1540			break;
1541
1542	/* Fold parameters and MD5 digest into the ISN we will send. */
1543	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1544	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1545	data |= mss << 4;	/* mss, 3 bits */
1546
1547	MD5Init(&ctx);
1548	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1549	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1550	MD5Update(&ctx, secbits, off);
1551	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1552	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1553	MD5Update(&ctx, &data, sizeof(data));
1554	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1555
1556	data |= (md5_buffer[0] << 7);
1557	sc->sc_iss = data;
1558
1559#ifdef INET6
1560	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1561#endif
1562
1563	/* Additional parameters are stored in the timestamp if present. */
1564	if (sc->sc_flags & SCF_TIMESTAMP) {
1565		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1566		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1567		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1568		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1569		data |= md5_buffer[2] << 10;		/* more digest bits */
1570		data ^= md5_buffer[3];
1571		sc->sc_ts = data;
1572		sc->sc_tsoff = data - ticks;		/* after XOR */
1573	}
1574
1575	tcpstat.tcps_sc_sendcookie++;
1576	return;
1577}
1578
1579static struct syncache *
1580syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1581    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1582    struct socket *so)
1583{
1584	MD5_CTX ctx;
1585	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1586	u_int32_t data = 0;
1587	u_int32_t *secbits;
1588	tcp_seq ack, seq;
1589	int off, mss, wnd, flags;
1590
1591	SCH_LOCK_ASSERT(sch);
1592
1593	/*
1594	 * Pull information out of SYN-ACK/ACK and
1595	 * revert sequence number advances.
1596	 */
1597	ack = th->th_ack - 1;
1598	seq = th->th_seq - 1;
1599	off = (ack >> 1) & 0x7;
1600	mss = (ack >> 4) & 0x7;
1601	flags = ack & 0x7f;
1602
1603	/* Which of the two secrets to use. */
1604	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1605
1606	/*
1607	 * The secret wasn't updated for the lifetime of a syncookie,
1608	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1609	 */
1610	if (sch->sch_reseed < time_uptime) {
1611		return (NULL);
1612	}
1613
1614	/* Recompute the digest so we can compare it. */
1615	MD5Init(&ctx);
1616	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1617	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1618	MD5Update(&ctx, secbits, off);
1619	MD5Update(&ctx, inc, sizeof(*inc));
1620	MD5Update(&ctx, &seq, sizeof(seq));
1621	MD5Update(&ctx, &flags, sizeof(flags));
1622	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1623
1624	/* Does the digest part of or ACK'ed ISS match? */
1625	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1626		return (NULL);
1627
1628	/* Does the digest part of our reflected timestamp match? */
1629	if (to->to_flags & TOF_TS) {
1630		data = md5_buffer[3] ^ to->to_tsecr;
1631		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1632			return (NULL);
1633	}
1634
1635	/* Fill in the syncache values. */
1636	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1637	sc->sc_ipopts = NULL;
1638
1639	sc->sc_irs = seq;
1640	sc->sc_iss = ack;
1641
1642#ifdef INET6
1643	if (inc->inc_isipv6) {
1644		if (sotoinpcb(so)->in6p_flags & IN6P_AUTOFLOWLABEL)
1645			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1646	} else
1647#endif
1648	{
1649		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1650		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1651	}
1652
1653	/* Additional parameters that were encoded in the timestamp. */
1654	if (data) {
1655		sc->sc_flags |= SCF_TIMESTAMP;
1656		sc->sc_tsreflect = to->to_tsval;
1657		sc->sc_ts = to->to_tsecr;
1658		sc->sc_tsoff = to->to_tsecr - ticks;
1659		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1660		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1661		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1662		    TCP_MAX_WINSHIFT);
1663		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1664		    TCP_MAX_WINSHIFT);
1665		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1666			sc->sc_flags |= SCF_WINSCALE;
1667	} else
1668		sc->sc_flags |= SCF_NOOPT;
1669
1670	wnd = sbspace(&so->so_rcv);
1671	wnd = imax(wnd, 0);
1672	wnd = imin(wnd, TCP_MAXWIN);
1673	sc->sc_wnd = wnd;
1674
1675	sc->sc_rxmits = 0;
1676	sc->sc_peer_mss = tcp_sc_msstab[mss];
1677
1678	tcpstat.tcps_sc_recvcookie++;
1679	return (sc);
1680}
1681
1682/*
1683 * Returns the current number of syncache entries.  This number
1684 * will probably change before you get around to calling
1685 * syncache_pcblist.
1686 */
1687
1688int
1689syncache_pcbcount(void)
1690{
1691	struct syncache_head *sch;
1692	int count, i;
1693
1694	for (count = 0, i = 0; i < tcp_syncache.hashsize; i++) {
1695		/* No need to lock for a read. */
1696		sch = &tcp_syncache.hashbase[i];
1697		count += sch->sch_length;
1698	}
1699	return count;
1700}
1701
1702/*
1703 * Exports the syncache entries to userland so that netstat can display
1704 * them alongside the other sockets.  This function is intended to be
1705 * called only from tcp_pcblist.
1706 *
1707 * Due to concurrency on an active system, the number of pcbs exported
1708 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1709 * amount of space the caller allocated for this function to use.
1710 */
1711int
1712syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1713{
1714	struct xtcpcb xt;
1715	struct syncache *sc;
1716	struct syncache_head *sch;
1717	int count, error, i;
1718
1719	for (count = 0, error = 0, i = 0; i < tcp_syncache.hashsize; i++) {
1720		sch = &tcp_syncache.hashbase[i];
1721		SCH_LOCK(sch);
1722		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1723			if (count >= max_pcbs) {
1724				SCH_UNLOCK(sch);
1725				goto exit;
1726			}
1727			bzero(&xt, sizeof(xt));
1728			xt.xt_len = sizeof(xt);
1729			if (sc->sc_inc.inc_isipv6)
1730				xt.xt_inp.inp_vflag = INP_IPV6;
1731			else
1732				xt.xt_inp.inp_vflag = INP_IPV4;
1733			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1734			xt.xt_tp.t_inpcb = &xt.xt_inp;
1735			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1736			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1737			xt.xt_socket.xso_len = sizeof (struct xsocket);
1738			xt.xt_socket.so_type = SOCK_STREAM;
1739			xt.xt_socket.so_state = SS_ISCONNECTING;
1740			error = SYSCTL_OUT(req, &xt, sizeof xt);
1741			if (error) {
1742				SCH_UNLOCK(sch);
1743				goto exit;
1744			}
1745			count++;
1746		}
1747		SCH_UNLOCK(sch);
1748	}
1749exit:
1750	*pcbs_exported = count;
1751	return error;
1752}
1753