tcp_syncache.c revision 172970
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33#include <sys/cdefs.h>
34__FBSDID("$FreeBSD: head/sys/netinet/tcp_syncache.c 172970 2007-10-25 14:37:37Z rwatson $");
35
36#include "opt_inet.h"
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/lock.h>
46#include <sys/mutex.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/md5.h>
50#include <sys/proc.h>		/* for proc0 declaration */
51#include <sys/random.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/syslog.h>
55
56#include <vm/uma.h>
57
58#include <net/if.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#include <netinet/in_var.h>
65#include <netinet/in_pcb.h>
66#include <netinet/ip_var.h>
67#include <netinet/ip_options.h>
68#ifdef INET6
69#include <netinet/ip6.h>
70#include <netinet/icmp6.h>
71#include <netinet6/nd6.h>
72#include <netinet6/ip6_var.h>
73#include <netinet6/in6_pcb.h>
74#endif
75#include <netinet/tcp.h>
76#include <netinet/tcp_fsm.h>
77#include <netinet/tcp_seq.h>
78#include <netinet/tcp_timer.h>
79#include <netinet/tcp_var.h>
80#include <netinet/tcp_syncache.h>
81#ifdef INET6
82#include <netinet6/tcp6_var.h>
83#endif
84
85#ifdef IPSEC
86#include <netipsec/ipsec.h>
87#ifdef INET6
88#include <netipsec/ipsec6.h>
89#endif
90#include <netipsec/key.h>
91#endif /*IPSEC*/
92
93#include <machine/in_cksum.h>
94
95#include <security/mac/mac_framework.h>
96
97static int tcp_syncookies = 1;
98SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
99    &tcp_syncookies, 0,
100    "Use TCP SYN cookies if the syncache overflows");
101
102static int tcp_syncookiesonly = 0;
103SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
104    &tcp_syncookiesonly, 0,
105    "Use only TCP SYN cookies");
106
107#define	SYNCOOKIE_SECRET_SIZE	8	/* dwords */
108#define	SYNCOOKIE_LIFETIME	16	/* seconds */
109
110struct syncache {
111	TAILQ_ENTRY(syncache)	sc_hash;
112	struct		in_conninfo sc_inc;	/* addresses */
113	u_long		sc_rxttime;		/* retransmit time */
114	u_int16_t	sc_rxmits;		/* retransmit counter */
115
116	u_int32_t	sc_tsreflect;		/* timestamp to reflect */
117	u_int32_t	sc_ts;			/* our timestamp to send */
118	u_int32_t	sc_tsoff;		/* ts offset w/ syncookies */
119	u_int32_t	sc_flowlabel;		/* IPv6 flowlabel */
120	tcp_seq		sc_irs;			/* seq from peer */
121	tcp_seq		sc_iss;			/* our ISS */
122	struct		mbuf *sc_ipopts;	/* source route */
123
124	u_int16_t	sc_peer_mss;		/* peer's MSS */
125	u_int16_t	sc_wnd;			/* advertised window */
126	u_int8_t	sc_ip_ttl;		/* IPv4 TTL */
127	u_int8_t	sc_ip_tos;		/* IPv4 TOS */
128	u_int8_t	sc_requested_s_scale:4,
129			sc_requested_r_scale:4;
130	u_int8_t	sc_flags;
131#define SCF_NOOPT	0x01			/* no TCP options */
132#define SCF_WINSCALE	0x02			/* negotiated window scaling */
133#define SCF_TIMESTAMP	0x04			/* negotiated timestamps */
134						/* MSS is implicit */
135#define SCF_UNREACH	0x10			/* icmp unreachable received */
136#define SCF_SIGNATURE	0x20			/* send MD5 digests */
137#define SCF_SACK	0x80			/* send SACK option */
138#ifdef MAC
139	struct label	*sc_label;		/* MAC label reference */
140#endif
141};
142
143struct syncache_head {
144	struct mtx	sch_mtx;
145	TAILQ_HEAD(sch_head, syncache)	sch_bucket;
146	struct callout	sch_timer;
147	int		sch_nextc;
148	u_int		sch_length;
149	u_int		sch_oddeven;
150	u_int32_t	sch_secbits_odd[SYNCOOKIE_SECRET_SIZE];
151	u_int32_t	sch_secbits_even[SYNCOOKIE_SECRET_SIZE];
152	u_int		sch_reseed;		/* time_uptime, seconds */
153};
154
155static void	 syncache_drop(struct syncache *, struct syncache_head *);
156static void	 syncache_free(struct syncache *);
157static void	 syncache_insert(struct syncache *, struct syncache_head *);
158struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
159static int	 syncache_respond(struct syncache *);
160static struct	 socket *syncache_socket(struct syncache *, struct socket *,
161		    struct mbuf *m);
162static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
163		    int docallout);
164static void	 syncache_timer(void *);
165static void	 syncookie_generate(struct syncache_head *, struct syncache *,
166		    u_int32_t *);
167static struct syncache
168		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
169		    struct syncache *, struct tcpopt *, struct tcphdr *,
170		    struct socket *);
171
172/*
173 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
174 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
175 * the odds are that the user has given up attempting to connect by then.
176 */
177#define SYNCACHE_MAXREXMTS		3
178
179/* Arbitrary values */
180#define TCP_SYNCACHE_HASHSIZE		512
181#define TCP_SYNCACHE_BUCKETLIMIT	30
182
183struct tcp_syncache {
184	struct	syncache_head *hashbase;
185	uma_zone_t zone;
186	u_int	hashsize;
187	u_int	hashmask;
188	u_int	bucket_limit;
189	u_int	cache_count;		/* XXX: unprotected */
190	u_int	cache_limit;
191	u_int	rexmt_limit;
192	u_int	hash_secret;
193};
194static struct tcp_syncache tcp_syncache;
195
196SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
197
198SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
199     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
200
201SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
202     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
203
204SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
205     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
206
207SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
208     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
209
210SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
211     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
212
213int	tcp_sc_rst_sock_fail = 1;
214SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail, CTLFLAG_RW,
215     &tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
216
217static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
218
219#define SYNCACHE_HASH(inc, mask)					\
220	((tcp_syncache.hash_secret ^					\
221	  (inc)->inc_faddr.s_addr ^					\
222	  ((inc)->inc_faddr.s_addr >> 16) ^				\
223	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
224
225#define SYNCACHE_HASH6(inc, mask)					\
226	((tcp_syncache.hash_secret ^					\
227	  (inc)->inc6_faddr.s6_addr32[0] ^				\
228	  (inc)->inc6_faddr.s6_addr32[3] ^				\
229	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
230
231#define ENDPTS_EQ(a, b) (						\
232	(a)->ie_fport == (b)->ie_fport &&				\
233	(a)->ie_lport == (b)->ie_lport &&				\
234	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
235	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
236)
237
238#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
239
240#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
241#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
242#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
243
244/*
245 * Requires the syncache entry to be already removed from the bucket list.
246 */
247static void
248syncache_free(struct syncache *sc)
249{
250	if (sc->sc_ipopts)
251		(void) m_free(sc->sc_ipopts);
252#ifdef MAC
253	mac_syncache_destroy(&sc->sc_label);
254#endif
255
256	uma_zfree(tcp_syncache.zone, sc);
257}
258
259void
260syncache_init(void)
261{
262	int i;
263
264	tcp_syncache.cache_count = 0;
265	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
266	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
267	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
268	tcp_syncache.hash_secret = arc4random();
269
270	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
271	    &tcp_syncache.hashsize);
272	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
273	    &tcp_syncache.bucket_limit);
274	if (!powerof2(tcp_syncache.hashsize) || tcp_syncache.hashsize == 0) {
275		printf("WARNING: syncache hash size is not a power of 2.\n");
276		tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
277	}
278	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
279
280	/* Set limits. */
281	tcp_syncache.cache_limit =
282	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
283	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
284	    &tcp_syncache.cache_limit);
285
286	/* Allocate the hash table. */
287	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
288	    tcp_syncache.hashsize * sizeof(struct syncache_head),
289	    M_SYNCACHE, M_WAITOK | M_ZERO);
290
291	/* Initialize the hash buckets. */
292	for (i = 0; i < tcp_syncache.hashsize; i++) {
293		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
294		mtx_init(&tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
295			 NULL, MTX_DEF);
296		callout_init_mtx(&tcp_syncache.hashbase[i].sch_timer,
297			 &tcp_syncache.hashbase[i].sch_mtx, 0);
298		tcp_syncache.hashbase[i].sch_length = 0;
299	}
300
301	/* Create the syncache entry zone. */
302	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
303	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
304	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
305}
306
307/*
308 * Inserts a syncache entry into the specified bucket row.
309 * Locks and unlocks the syncache_head autonomously.
310 */
311static void
312syncache_insert(struct syncache *sc, struct syncache_head *sch)
313{
314	struct syncache *sc2;
315
316	SCH_LOCK(sch);
317
318	/*
319	 * Make sure that we don't overflow the per-bucket limit.
320	 * If the bucket is full, toss the oldest element.
321	 */
322	if (sch->sch_length >= tcp_syncache.bucket_limit) {
323		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
324			("sch->sch_length incorrect"));
325		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
326		syncache_drop(sc2, sch);
327		tcpstat.tcps_sc_bucketoverflow++;
328	}
329
330	/* Put it into the bucket. */
331	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
332	sch->sch_length++;
333
334	/* Reinitialize the bucket row's timer. */
335	syncache_timeout(sc, sch, 1);
336
337	SCH_UNLOCK(sch);
338
339	tcp_syncache.cache_count++;
340	tcpstat.tcps_sc_added++;
341}
342
343/*
344 * Remove and free entry from syncache bucket row.
345 * Expects locked syncache head.
346 */
347static void
348syncache_drop(struct syncache *sc, struct syncache_head *sch)
349{
350
351	SCH_LOCK_ASSERT(sch);
352
353	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
354	sch->sch_length--;
355
356	syncache_free(sc);
357	tcp_syncache.cache_count--;
358}
359
360/*
361 * Engage/reengage time on bucket row.
362 */
363static void
364syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
365{
366	sc->sc_rxttime = ticks +
367		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
368	sc->sc_rxmits++;
369	if (sch->sch_nextc > sc->sc_rxttime)
370		sch->sch_nextc = sc->sc_rxttime;
371	if (!TAILQ_EMPTY(&sch->sch_bucket) && docallout)
372		callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
373		    syncache_timer, (void *)sch);
374}
375
376/*
377 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
378 * If we have retransmitted an entry the maximum number of times, expire it.
379 * One separate timer for each bucket row.
380 */
381static void
382syncache_timer(void *xsch)
383{
384	struct syncache_head *sch = (struct syncache_head *)xsch;
385	struct syncache *sc, *nsc;
386	int tick = ticks;
387	char *s;
388
389	/* NB: syncache_head has already been locked by the callout. */
390	SCH_LOCK_ASSERT(sch);
391
392	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
393		/*
394		 * We do not check if the listen socket still exists
395		 * and accept the case where the listen socket may be
396		 * gone by the time we resend the SYN/ACK.  We do
397		 * not expect this to happens often. If it does,
398		 * then the RST will be sent by the time the remote
399		 * host does the SYN/ACK->ACK.
400		 */
401		if (sc->sc_rxttime > tick) {
402			if (sc->sc_rxttime < sch->sch_nextc)
403				sch->sch_nextc = sc->sc_rxttime;
404			continue;
405		}
406
407		if (sc->sc_rxmits > tcp_syncache.rexmt_limit) {
408			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
409				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
410				    "giving up and removing syncache entry\n",
411				    s, __func__);
412				free(s, M_TCPLOG);
413			}
414			syncache_drop(sc, sch);
415			tcpstat.tcps_sc_stale++;
416			continue;
417		}
418		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
419			log(LOG_DEBUG, "%s; %s: Response timeout, "
420			    "retransmitting (%u) SYN|ACK\n",
421			    s, __func__, sc->sc_rxmits);
422			free(s, M_TCPLOG);
423		}
424
425		(void) syncache_respond(sc);
426		tcpstat.tcps_sc_retransmitted++;
427		syncache_timeout(sc, sch, 0);
428	}
429	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
430		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
431			syncache_timer, (void *)(sch));
432}
433
434/*
435 * Find an entry in the syncache.
436 * Returns always with locked syncache_head plus a matching entry or NULL.
437 */
438struct syncache *
439syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
440{
441	struct syncache *sc;
442	struct syncache_head *sch;
443
444#ifdef INET6
445	if (inc->inc_isipv6) {
446		sch = &tcp_syncache.hashbase[
447		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
448		*schp = sch;
449
450		SCH_LOCK(sch);
451
452		/* Circle through bucket row to find matching entry. */
453		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
454			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
455				return (sc);
456		}
457	} else
458#endif
459	{
460		sch = &tcp_syncache.hashbase[
461		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
462		*schp = sch;
463
464		SCH_LOCK(sch);
465
466		/* Circle through bucket row to find matching entry. */
467		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
468#ifdef INET6
469			if (sc->sc_inc.inc_isipv6)
470				continue;
471#endif
472			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
473				return (sc);
474		}
475	}
476	SCH_LOCK_ASSERT(*schp);
477	return (NULL);			/* always returns with locked sch */
478}
479
480/*
481 * This function is called when we get a RST for a
482 * non-existent connection, so that we can see if the
483 * connection is in the syn cache.  If it is, zap it.
484 */
485void
486syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
487{
488	struct syncache *sc;
489	struct syncache_head *sch;
490	char *s = NULL;
491
492	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
493	SCH_LOCK_ASSERT(sch);
494
495	/*
496	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
497	 * See RFC 793 page 65, section SEGMENT ARRIVES.
498	 */
499	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
500		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
501			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
502			    "FIN flag set, segment ignored\n", s, __func__);
503		tcpstat.tcps_badrst++;
504		goto done;
505	}
506
507	/*
508	 * No corresponding connection was found in syncache.
509	 * If syncookies are enabled and possibly exclusively
510	 * used, or we are under memory pressure, a valid RST
511	 * may not find a syncache entry.  In that case we're
512	 * done and no SYN|ACK retransmissions will happen.
513	 * Otherwise the the RST was misdirected or spoofed.
514	 */
515	if (sc == NULL) {
516		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
517			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
518			    "syncache entry (possibly syncookie only), "
519			    "segment ignored\n", s, __func__);
520		tcpstat.tcps_badrst++;
521		goto done;
522	}
523
524	/*
525	 * If the RST bit is set, check the sequence number to see
526	 * if this is a valid reset segment.
527	 * RFC 793 page 37:
528	 *   In all states except SYN-SENT, all reset (RST) segments
529	 *   are validated by checking their SEQ-fields.  A reset is
530	 *   valid if its sequence number is in the window.
531	 *
532	 *   The sequence number in the reset segment is normally an
533	 *   echo of our outgoing acknowlegement numbers, but some hosts
534	 *   send a reset with the sequence number at the rightmost edge
535	 *   of our receive window, and we have to handle this case.
536	 */
537	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
538	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
539		syncache_drop(sc, sch);
540		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
541			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
542			    "connection attempt aborted by remote endpoint\n",
543			    s, __func__);
544		tcpstat.tcps_sc_reset++;
545	} else if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
546		log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != IRS %u "
547		    "(+WND %u), segment ignored\n",
548		    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
549		tcpstat.tcps_badrst++;
550	}
551
552done:
553	if (s != NULL)
554		free(s, M_TCPLOG);
555	SCH_UNLOCK(sch);
556}
557
558void
559syncache_badack(struct in_conninfo *inc)
560{
561	struct syncache *sc;
562	struct syncache_head *sch;
563
564	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
565	SCH_LOCK_ASSERT(sch);
566	if (sc != NULL) {
567		syncache_drop(sc, sch);
568		tcpstat.tcps_sc_badack++;
569	}
570	SCH_UNLOCK(sch);
571}
572
573void
574syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
575{
576	struct syncache *sc;
577	struct syncache_head *sch;
578
579	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
580	SCH_LOCK_ASSERT(sch);
581	if (sc == NULL)
582		goto done;
583
584	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
585	if (ntohl(th->th_seq) != sc->sc_iss)
586		goto done;
587
588	/*
589	 * If we've rertransmitted 3 times and this is our second error,
590	 * we remove the entry.  Otherwise, we allow it to continue on.
591	 * This prevents us from incorrectly nuking an entry during a
592	 * spurious network outage.
593	 *
594	 * See tcp_notify().
595	 */
596	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
597		sc->sc_flags |= SCF_UNREACH;
598		goto done;
599	}
600	syncache_drop(sc, sch);
601	tcpstat.tcps_sc_unreach++;
602done:
603	SCH_UNLOCK(sch);
604}
605
606/*
607 * Build a new TCP socket structure from a syncache entry.
608 */
609static struct socket *
610syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
611{
612	struct inpcb *inp = NULL;
613	struct socket *so;
614	struct tcpcb *tp;
615	char *s;
616
617	INP_INFO_WLOCK_ASSERT(&tcbinfo);
618
619	/*
620	 * Ok, create the full blown connection, and set things up
621	 * as they would have been set up if we had created the
622	 * connection when the SYN arrived.  If we can't create
623	 * the connection, abort it.
624	 */
625	so = sonewconn(lso, SS_ISCONNECTED);
626	if (so == NULL) {
627		/*
628		 * Drop the connection; we will either send a RST or
629		 * have the peer retransmit its SYN again after its
630		 * RTO and try again.
631		 */
632		tcpstat.tcps_listendrop++;
633		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
634			log(LOG_DEBUG, "%s; %s: Socket create failed "
635			    "due to limits or memory shortage\n",
636			    s, __func__);
637			free(s, M_TCPLOG);
638		}
639		goto abort2;
640	}
641#ifdef MAC
642	SOCK_LOCK(so);
643	mac_socketpeer_set_from_mbuf(m, so);
644	SOCK_UNLOCK(so);
645#endif
646
647	inp = sotoinpcb(so);
648	INP_LOCK(inp);
649
650	/* Insert new socket into PCB hash list. */
651	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
652#ifdef INET6
653	if (sc->sc_inc.inc_isipv6) {
654		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
655	} else {
656		inp->inp_vflag &= ~INP_IPV6;
657		inp->inp_vflag |= INP_IPV4;
658#endif
659		inp->inp_laddr = sc->sc_inc.inc_laddr;
660#ifdef INET6
661	}
662#endif
663	inp->inp_lport = sc->sc_inc.inc_lport;
664	if (in_pcbinshash(inp) != 0) {
665		/*
666		 * Undo the assignments above if we failed to
667		 * put the PCB on the hash lists.
668		 */
669#ifdef INET6
670		if (sc->sc_inc.inc_isipv6)
671			inp->in6p_laddr = in6addr_any;
672		else
673#endif
674			inp->inp_laddr.s_addr = INADDR_ANY;
675		inp->inp_lport = 0;
676		goto abort;
677	}
678#ifdef IPSEC
679	/* Copy old policy into new socket's. */
680	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
681		printf("syncache_socket: could not copy policy\n");
682#endif
683#ifdef INET6
684	if (sc->sc_inc.inc_isipv6) {
685		struct inpcb *oinp = sotoinpcb(lso);
686		struct in6_addr laddr6;
687		struct sockaddr_in6 sin6;
688		/*
689		 * Inherit socket options from the listening socket.
690		 * Note that in6p_inputopts are not (and should not be)
691		 * copied, since it stores previously received options and is
692		 * used to detect if each new option is different than the
693		 * previous one and hence should be passed to a user.
694		 * If we copied in6p_inputopts, a user would not be able to
695		 * receive options just after calling the accept system call.
696		 */
697		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
698		if (oinp->in6p_outputopts)
699			inp->in6p_outputopts =
700			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
701
702		sin6.sin6_family = AF_INET6;
703		sin6.sin6_len = sizeof(sin6);
704		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
705		sin6.sin6_port = sc->sc_inc.inc_fport;
706		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
707		laddr6 = inp->in6p_laddr;
708		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
709			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
710		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
711		    thread0.td_ucred)) {
712			inp->in6p_laddr = laddr6;
713			goto abort;
714		}
715		/* Override flowlabel from in6_pcbconnect. */
716		inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
717		inp->in6p_flowinfo |= sc->sc_flowlabel;
718	} else
719#endif
720	{
721		struct in_addr laddr;
722		struct sockaddr_in sin;
723
724		inp->inp_options = ip_srcroute(m);
725		if (inp->inp_options == NULL) {
726			inp->inp_options = sc->sc_ipopts;
727			sc->sc_ipopts = NULL;
728		}
729
730		sin.sin_family = AF_INET;
731		sin.sin_len = sizeof(sin);
732		sin.sin_addr = sc->sc_inc.inc_faddr;
733		sin.sin_port = sc->sc_inc.inc_fport;
734		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
735		laddr = inp->inp_laddr;
736		if (inp->inp_laddr.s_addr == INADDR_ANY)
737			inp->inp_laddr = sc->sc_inc.inc_laddr;
738		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
739		    thread0.td_ucred)) {
740			inp->inp_laddr = laddr;
741			goto abort;
742		}
743	}
744	tp = intotcpcb(inp);
745	tp->t_state = TCPS_SYN_RECEIVED;
746	tp->iss = sc->sc_iss;
747	tp->irs = sc->sc_irs;
748	tcp_rcvseqinit(tp);
749	tcp_sendseqinit(tp);
750	tp->snd_wl1 = sc->sc_irs;
751	tp->snd_max = tp->iss + 1;
752	tp->snd_nxt = tp->iss + 1;
753	tp->rcv_up = sc->sc_irs + 1;
754	tp->rcv_wnd = sc->sc_wnd;
755	tp->rcv_adv += tp->rcv_wnd;
756	tp->last_ack_sent = tp->rcv_nxt;
757
758	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
759	if (sc->sc_flags & SCF_NOOPT)
760		tp->t_flags |= TF_NOOPT;
761	else {
762		if (sc->sc_flags & SCF_WINSCALE) {
763			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
764			tp->snd_scale = sc->sc_requested_s_scale;
765			tp->request_r_scale = sc->sc_requested_r_scale;
766		}
767		if (sc->sc_flags & SCF_TIMESTAMP) {
768			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
769			tp->ts_recent = sc->sc_tsreflect;
770			tp->ts_recent_age = ticks;
771			tp->ts_offset = sc->sc_tsoff;
772		}
773#ifdef TCP_SIGNATURE
774		if (sc->sc_flags & SCF_SIGNATURE)
775			tp->t_flags |= TF_SIGNATURE;
776#endif
777		if (sc->sc_flags & SCF_SACK)
778			tp->t_flags |= TF_SACK_PERMIT;
779	}
780
781	/*
782	 * Set up MSS and get cached values from tcp_hostcache.
783	 * This might overwrite some of the defaults we just set.
784	 */
785	tcp_mss(tp, sc->sc_peer_mss);
786
787	/*
788	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
789	 */
790	if (sc->sc_rxmits)
791		tp->snd_cwnd = tp->t_maxseg;
792	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
793
794	INP_UNLOCK(inp);
795
796	tcpstat.tcps_accepts++;
797	return (so);
798
799abort:
800	INP_UNLOCK(inp);
801abort2:
802	if (so != NULL)
803		soabort(so);
804	return (NULL);
805}
806
807/*
808 * This function gets called when we receive an ACK for a
809 * socket in the LISTEN state.  We look up the connection
810 * in the syncache, and if its there, we pull it out of
811 * the cache and turn it into a full-blown connection in
812 * the SYN-RECEIVED state.
813 */
814int
815syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
816    struct socket **lsop, struct mbuf *m)
817{
818	struct syncache *sc;
819	struct syncache_head *sch;
820	struct syncache scs;
821	char *s;
822
823	/*
824	 * Global TCP locks are held because we manipulate the PCB lists
825	 * and create a new socket.
826	 */
827	INP_INFO_WLOCK_ASSERT(&tcbinfo);
828	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
829	    ("%s: can handle only ACK", __func__));
830
831	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
832	SCH_LOCK_ASSERT(sch);
833	if (sc == NULL) {
834		/*
835		 * There is no syncache entry, so see if this ACK is
836		 * a returning syncookie.  To do this, first:
837		 *  A. See if this socket has had a syncache entry dropped in
838		 *     the past.  We don't want to accept a bogus syncookie
839		 *     if we've never received a SYN.
840		 *  B. check that the syncookie is valid.  If it is, then
841		 *     cobble up a fake syncache entry, and return.
842		 */
843		if (!tcp_syncookies) {
844			SCH_UNLOCK(sch);
845			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
846				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
847				    "segment rejected (syncookies disabled)\n",
848				    s, __func__);
849			goto failed;
850		}
851		bzero(&scs, sizeof(scs));
852		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
853		SCH_UNLOCK(sch);
854		if (sc == NULL) {
855			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
856				log(LOG_DEBUG, "%s; %s: Segment failed "
857				    "SYNCOOKIE authentication, segment rejected "
858				    "(probably spoofed)\n", s, __func__);
859			goto failed;
860		}
861	} else {
862		/* Pull out the entry to unlock the bucket row. */
863		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
864		sch->sch_length--;
865		tcp_syncache.cache_count--;
866		SCH_UNLOCK(sch);
867	}
868
869	/*
870	 * Segment validation:
871	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
872	 */
873	if (th->th_ack != sc->sc_iss + 1) {
874		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
875			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
876			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
877		goto failed;
878	}
879	/*
880	 * The SEQ must match the received initial receive sequence
881	 * number + 1 (the SYN) because we didn't ACK any data that
882	 * may have come with the SYN.
883	 */
884	if (th->th_seq != sc->sc_irs + 1) {
885		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
886			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
887			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
888		goto failed;
889	}
890	/*
891	 * If timestamps were present in the SYN and we accepted
892	 * them in our SYN|ACK we require them to be present from
893	 * now on.  And vice versa.
894	 */
895	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
896		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
897			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
898			    "segment rejected\n", s, __func__);
899		goto failed;
900	}
901	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
902		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
903			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
904			    "segment rejected\n", s, __func__);
905		goto failed;
906	}
907	/*
908	 * If timestamps were negotiated the reflected timestamp
909	 * must be equal to what we actually sent in the SYN|ACK.
910	 */
911	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
912		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
913			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
914			    "segment rejected\n",
915			    s, __func__, to->to_tsecr, sc->sc_ts);
916		goto failed;
917	}
918
919	*lsop = syncache_socket(sc, *lsop, m);
920
921	if (*lsop == NULL)
922		tcpstat.tcps_sc_aborted++;
923	else
924		tcpstat.tcps_sc_completed++;
925
926	if (sc != &scs)
927		syncache_free(sc);
928	return (1);
929failed:
930	if (sc != NULL && sc != &scs)
931		syncache_free(sc);
932	if (s != NULL)
933		free(s, M_TCPLOG);
934	*lsop = NULL;
935	return (0);
936}
937
938/*
939 * Given a LISTEN socket and an inbound SYN request, add
940 * this to the syn cache, and send back a segment:
941 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
942 * to the source.
943 *
944 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
945 * Doing so would require that we hold onto the data and deliver it
946 * to the application.  However, if we are the target of a SYN-flood
947 * DoS attack, an attacker could send data which would eventually
948 * consume all available buffer space if it were ACKed.  By not ACKing
949 * the data, we avoid this DoS scenario.
950 */
951void
952syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
953    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
954{
955	struct tcpcb *tp;
956	struct socket *so;
957	struct syncache *sc = NULL;
958	struct syncache_head *sch;
959	struct mbuf *ipopts = NULL;
960	u_int32_t flowtmp;
961	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
962	char *s;
963#ifdef INET6
964	int autoflowlabel = 0;
965#endif
966#ifdef MAC
967	struct label *maclabel;
968#endif
969	struct syncache scs;
970
971	INP_INFO_WLOCK_ASSERT(&tcbinfo);
972	INP_LOCK_ASSERT(inp);			/* listen socket */
973	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
974	    ("%s: unexpected tcp flags", __func__));
975
976	/*
977	 * Combine all so/tp operations very early to drop the INP lock as
978	 * soon as possible.
979	 */
980	so = *lsop;
981	tp = sototcpcb(so);
982
983#ifdef INET6
984	if (inc->inc_isipv6 &&
985	    (inp->in6p_flags & IN6P_AUTOFLOWLABEL))
986		autoflowlabel = 1;
987#endif
988	ip_ttl = inp->inp_ip_ttl;
989	ip_tos = inp->inp_ip_tos;
990	win = sbspace(&so->so_rcv);
991	sb_hiwat = so->so_rcv.sb_hiwat;
992	noopt = (tp->t_flags & TF_NOOPT);
993
994	so = NULL;
995	tp = NULL;
996
997#ifdef MAC
998	if (mac_syncache_init(&maclabel) != 0) {
999		INP_UNLOCK(inp);
1000		INP_INFO_WUNLOCK(&tcbinfo);
1001		goto done;
1002	} else
1003		mac_syncache_create(maclabel, inp);
1004#endif
1005	INP_UNLOCK(inp);
1006	INP_INFO_WUNLOCK(&tcbinfo);
1007
1008	/*
1009	 * Remember the IP options, if any.
1010	 */
1011#ifdef INET6
1012	if (!inc->inc_isipv6)
1013#endif
1014		ipopts = ip_srcroute(m);
1015
1016	/*
1017	 * See if we already have an entry for this connection.
1018	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1019	 *
1020	 * XXX: should the syncache be re-initialized with the contents
1021	 * of the new SYN here (which may have different options?)
1022	 *
1023	 * XXX: We do not check the sequence number to see if this is a
1024	 * real retransmit or a new connection attempt.  The question is
1025	 * how to handle such a case; either ignore it as spoofed, or
1026	 * drop the current entry and create a new one?
1027	 */
1028	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1029	SCH_LOCK_ASSERT(sch);
1030	if (sc != NULL) {
1031		tcpstat.tcps_sc_dupsyn++;
1032		if (ipopts) {
1033			/*
1034			 * If we were remembering a previous source route,
1035			 * forget it and use the new one we've been given.
1036			 */
1037			if (sc->sc_ipopts)
1038				(void) m_free(sc->sc_ipopts);
1039			sc->sc_ipopts = ipopts;
1040		}
1041		/*
1042		 * Update timestamp if present.
1043		 */
1044		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1045			sc->sc_tsreflect = to->to_tsval;
1046		else
1047			sc->sc_flags &= ~SCF_TIMESTAMP;
1048#ifdef MAC
1049		/*
1050		 * Since we have already unconditionally allocated label
1051		 * storage, free it up.  The syncache entry will already
1052		 * have an initialized label we can use.
1053		 */
1054		mac_syncache_destroy(&maclabel);
1055		KASSERT(sc->sc_label != NULL,
1056		    ("%s: label not initialized", __func__));
1057#endif
1058		/* Retransmit SYN|ACK and reset retransmit count. */
1059		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1060			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1061			    "resetting timer and retransmitting SYN|ACK\n",
1062			    s, __func__);
1063			free(s, M_TCPLOG);
1064		}
1065		if (syncache_respond(sc) == 0) {
1066			sc->sc_rxmits = 0;
1067			syncache_timeout(sc, sch, 1);
1068			tcpstat.tcps_sndacks++;
1069			tcpstat.tcps_sndtotal++;
1070		}
1071		SCH_UNLOCK(sch);
1072		goto done;
1073	}
1074
1075	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
1076	if (sc == NULL) {
1077		/*
1078		 * The zone allocator couldn't provide more entries.
1079		 * Treat this as if the cache was full; drop the oldest
1080		 * entry and insert the new one.
1081		 */
1082		tcpstat.tcps_sc_zonefail++;
1083		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1084			syncache_drop(sc, sch);
1085		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
1086		if (sc == NULL) {
1087			if (tcp_syncookies) {
1088				bzero(&scs, sizeof(scs));
1089				sc = &scs;
1090			} else {
1091				SCH_UNLOCK(sch);
1092				if (ipopts)
1093					(void) m_free(ipopts);
1094				goto done;
1095			}
1096		}
1097	}
1098
1099	/*
1100	 * Fill in the syncache values.
1101	 */
1102#ifdef MAC
1103	sc->sc_label = maclabel;
1104#endif
1105	sc->sc_ipopts = ipopts;
1106	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1107#ifdef INET6
1108	if (!inc->inc_isipv6)
1109#endif
1110	{
1111		sc->sc_ip_tos = ip_tos;
1112		sc->sc_ip_ttl = ip_ttl;
1113	}
1114
1115	sc->sc_irs = th->th_seq;
1116	sc->sc_iss = arc4random();
1117	sc->sc_flags = 0;
1118	sc->sc_flowlabel = 0;
1119
1120	/*
1121	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1122	 * win was derived from socket earlier in the function.
1123	 */
1124	win = imax(win, 0);
1125	win = imin(win, TCP_MAXWIN);
1126	sc->sc_wnd = win;
1127
1128	if (tcp_do_rfc1323) {
1129		/*
1130		 * A timestamp received in a SYN makes
1131		 * it ok to send timestamp requests and replies.
1132		 */
1133		if (to->to_flags & TOF_TS) {
1134			sc->sc_tsreflect = to->to_tsval;
1135			sc->sc_ts = ticks;
1136			sc->sc_flags |= SCF_TIMESTAMP;
1137		}
1138		if (to->to_flags & TOF_SCALE) {
1139			int wscale = 0;
1140
1141			/*
1142			 * Pick the smallest possible scaling factor that
1143			 * will still allow us to scale up to sb_max, aka
1144			 * kern.ipc.maxsockbuf.
1145			 *
1146			 * We do this because there are broken firewalls that
1147			 * will corrupt the window scale option, leading to
1148			 * the other endpoint believing that our advertised
1149			 * window is unscaled.  At scale factors larger than
1150			 * 5 the unscaled window will drop below 1500 bytes,
1151			 * leading to serious problems when traversing these
1152			 * broken firewalls.
1153			 *
1154			 * With the default maxsockbuf of 256K, a scale factor
1155			 * of 3 will be chosen by this algorithm.  Those who
1156			 * choose a larger maxsockbuf should watch out
1157			 * for the compatiblity problems mentioned above.
1158			 *
1159			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1160			 * or <SYN,ACK>) segment itself is never scaled.
1161			 */
1162			while (wscale < TCP_MAX_WINSHIFT &&
1163			    (TCP_MAXWIN << wscale) < sb_max)
1164				wscale++;
1165			sc->sc_requested_r_scale = wscale;
1166			sc->sc_requested_s_scale = to->to_wscale;
1167			sc->sc_flags |= SCF_WINSCALE;
1168		}
1169	}
1170#ifdef TCP_SIGNATURE
1171	/*
1172	 * If listening socket requested TCP digests, and received SYN
1173	 * contains the option, flag this in the syncache so that
1174	 * syncache_respond() will do the right thing with the SYN+ACK.
1175	 * XXX: Currently we always record the option by default and will
1176	 * attempt to use it in syncache_respond().
1177	 */
1178	if (to->to_flags & TOF_SIGNATURE)
1179		sc->sc_flags |= SCF_SIGNATURE;
1180#endif
1181	if (to->to_flags & TOF_SACK)
1182		sc->sc_flags |= SCF_SACK;
1183	if (to->to_flags & TOF_MSS)
1184		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1185	if (noopt)
1186		sc->sc_flags |= SCF_NOOPT;
1187
1188	if (tcp_syncookies) {
1189		syncookie_generate(sch, sc, &flowtmp);
1190#ifdef INET6
1191		if (autoflowlabel)
1192			sc->sc_flowlabel = flowtmp;
1193#endif
1194	} else {
1195#ifdef INET6
1196		if (autoflowlabel)
1197			sc->sc_flowlabel =
1198			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1199#endif
1200	}
1201	SCH_UNLOCK(sch);
1202
1203	/*
1204	 * Do a standard 3-way handshake.
1205	 */
1206	if (syncache_respond(sc) == 0) {
1207		if (tcp_syncookies && tcp_syncookiesonly && sc != &scs)
1208			syncache_free(sc);
1209		else if (sc != &scs)
1210			syncache_insert(sc, sch);   /* locks and unlocks sch */
1211		tcpstat.tcps_sndacks++;
1212		tcpstat.tcps_sndtotal++;
1213	} else {
1214		if (sc != &scs)
1215			syncache_free(sc);
1216		tcpstat.tcps_sc_dropped++;
1217	}
1218
1219done:
1220#ifdef MAC
1221	if (sc == &scs)
1222		mac_syncache_destroy(&maclabel);
1223#endif
1224	*lsop = NULL;
1225	m_freem(m);
1226	return;
1227}
1228
1229static int
1230syncache_respond(struct syncache *sc)
1231{
1232	struct ip *ip = NULL;
1233	struct mbuf *m;
1234	struct tcphdr *th;
1235	int optlen, error;
1236	u_int16_t hlen, tlen, mssopt;
1237	struct tcpopt to;
1238#ifdef INET6
1239	struct ip6_hdr *ip6 = NULL;
1240#endif
1241
1242	hlen =
1243#ifdef INET6
1244	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1245#endif
1246		sizeof(struct ip);
1247	tlen = hlen + sizeof(struct tcphdr);
1248
1249	/* Determine MSS we advertize to other end of connection. */
1250	mssopt = tcp_mssopt(&sc->sc_inc);
1251	if (sc->sc_peer_mss)
1252		mssopt = max( min(sc->sc_peer_mss, mssopt), tcp_minmss);
1253
1254	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1255	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1256	    ("syncache: mbuf too small"));
1257
1258	/* Create the IP+TCP header from scratch. */
1259	m = m_gethdr(M_DONTWAIT, MT_DATA);
1260	if (m == NULL)
1261		return (ENOBUFS);
1262#ifdef MAC
1263	mac_syncache_create_mbuf(sc->sc_label, m);
1264#endif
1265	m->m_data += max_linkhdr;
1266	m->m_len = tlen;
1267	m->m_pkthdr.len = tlen;
1268	m->m_pkthdr.rcvif = NULL;
1269
1270#ifdef INET6
1271	if (sc->sc_inc.inc_isipv6) {
1272		ip6 = mtod(m, struct ip6_hdr *);
1273		ip6->ip6_vfc = IPV6_VERSION;
1274		ip6->ip6_nxt = IPPROTO_TCP;
1275		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1276		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1277		ip6->ip6_plen = htons(tlen - hlen);
1278		/* ip6_hlim is set after checksum */
1279		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1280		ip6->ip6_flow |= sc->sc_flowlabel;
1281
1282		th = (struct tcphdr *)(ip6 + 1);
1283	} else
1284#endif
1285	{
1286		ip = mtod(m, struct ip *);
1287		ip->ip_v = IPVERSION;
1288		ip->ip_hl = sizeof(struct ip) >> 2;
1289		ip->ip_len = tlen;
1290		ip->ip_id = 0;
1291		ip->ip_off = 0;
1292		ip->ip_sum = 0;
1293		ip->ip_p = IPPROTO_TCP;
1294		ip->ip_src = sc->sc_inc.inc_laddr;
1295		ip->ip_dst = sc->sc_inc.inc_faddr;
1296		ip->ip_ttl = sc->sc_ip_ttl;
1297		ip->ip_tos = sc->sc_ip_tos;
1298
1299		/*
1300		 * See if we should do MTU discovery.  Route lookups are
1301		 * expensive, so we will only unset the DF bit if:
1302		 *
1303		 *	1) path_mtu_discovery is disabled
1304		 *	2) the SCF_UNREACH flag has been set
1305		 */
1306		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1307		       ip->ip_off |= IP_DF;
1308
1309		th = (struct tcphdr *)(ip + 1);
1310	}
1311	th->th_sport = sc->sc_inc.inc_lport;
1312	th->th_dport = sc->sc_inc.inc_fport;
1313
1314	th->th_seq = htonl(sc->sc_iss);
1315	th->th_ack = htonl(sc->sc_irs + 1);
1316	th->th_off = sizeof(struct tcphdr) >> 2;
1317	th->th_x2 = 0;
1318	th->th_flags = TH_SYN|TH_ACK;
1319	th->th_win = htons(sc->sc_wnd);
1320	th->th_urp = 0;
1321
1322	/* Tack on the TCP options. */
1323	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1324		to.to_flags = 0;
1325
1326		to.to_mss = mssopt;
1327		to.to_flags = TOF_MSS;
1328		if (sc->sc_flags & SCF_WINSCALE) {
1329			to.to_wscale = sc->sc_requested_r_scale;
1330			to.to_flags |= TOF_SCALE;
1331		}
1332		if (sc->sc_flags & SCF_TIMESTAMP) {
1333			/* Virgin timestamp or TCP cookie enhanced one. */
1334			to.to_tsval = sc->sc_ts;
1335			to.to_tsecr = sc->sc_tsreflect;
1336			to.to_flags |= TOF_TS;
1337		}
1338		if (sc->sc_flags & SCF_SACK)
1339			to.to_flags |= TOF_SACKPERM;
1340#ifdef TCP_SIGNATURE
1341		if (sc->sc_flags & SCF_SIGNATURE)
1342			to.to_flags |= TOF_SIGNATURE;
1343#endif
1344		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1345
1346#ifdef TCP_SIGNATURE
1347		tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
1348		    to.to_signature, IPSEC_DIR_OUTBOUND);
1349#endif
1350
1351		/* Adjust headers by option size. */
1352		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1353		m->m_len += optlen;
1354		m->m_pkthdr.len += optlen;
1355#ifdef INET6
1356		if (sc->sc_inc.inc_isipv6)
1357			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1358		else
1359#endif
1360			ip->ip_len += optlen;
1361	} else
1362		optlen = 0;
1363
1364#ifdef INET6
1365	if (sc->sc_inc.inc_isipv6) {
1366		th->th_sum = 0;
1367		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1368				       tlen + optlen - hlen);
1369		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1370		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1371	} else
1372#endif
1373	{
1374		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1375		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1376		m->m_pkthdr.csum_flags = CSUM_TCP;
1377		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1378		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1379	}
1380	return (error);
1381}
1382
1383/*
1384 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1385 * receive and to be able to handle SYN floods from bogus source addresses
1386 * (where we will never receive any reply).  SYN floods try to exhaust all
1387 * our memory and available slots in the SYN cache table to cause a denial
1388 * of service to legitimate users of the local host.
1389 *
1390 * The idea of SYN cookies is to encode and include all necessary information
1391 * about the connection setup state within the SYN-ACK we send back and thus
1392 * to get along without keeping any local state until the ACK to the SYN-ACK
1393 * arrives (if ever).  Everything we need to know should be available from
1394 * the information we encoded in the SYN-ACK.
1395 *
1396 * More information about the theory behind SYN cookies and its first
1397 * discussion and specification can be found at:
1398 *  http://cr.yp.to/syncookies.html    (overview)
1399 *  http://cr.yp.to/syncookies/archive (gory details)
1400 *
1401 * This implementation extends the orginal idea and first implementation
1402 * of FreeBSD by using not only the initial sequence number field to store
1403 * information but also the timestamp field if present.  This way we can
1404 * keep track of the entire state we need to know to recreate the session in
1405 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1406 * these days.  For those that do not we still have to live with the known
1407 * shortcomings of the ISN only SYN cookies.
1408 *
1409 * Cookie layers:
1410 *
1411 * Initial sequence number we send:
1412 * 31|................................|0
1413 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1414 *    D = MD5 Digest (first dword)
1415 *    M = MSS index
1416 *    R = Rotation of secret
1417 *    P = Odd or Even secret
1418 *
1419 * The MD5 Digest is computed with over following parameters:
1420 *  a) randomly rotated secret
1421 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1422 *  c) the received initial sequence number from remote host
1423 *  d) the rotation offset and odd/even bit
1424 *
1425 * Timestamp we send:
1426 * 31|................................|0
1427 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1428 *    D = MD5 Digest (third dword) (only as filler)
1429 *    S = Requested send window scale
1430 *    R = Requested receive window scale
1431 *    A = SACK allowed
1432 *    5 = TCP-MD5 enabled (not implemented yet)
1433 *    XORed with MD5 Digest (forth dword)
1434 *
1435 * The timestamp isn't cryptographically secure and doesn't need to be.
1436 * The double use of the MD5 digest dwords ties it to a specific remote/
1437 * local host/port, remote initial sequence number and our local time
1438 * limited secret.  A received timestamp is reverted (XORed) and then
1439 * the contained MD5 dword is compared to the computed one to ensure the
1440 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1441 * have been tampered with but this isn't different from supplying bogus
1442 * values in the SYN in the first place.
1443 *
1444 * Some problems with SYN cookies remain however:
1445 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1446 * original SYN was accepted, the connection is established.  The second
1447 * SYN is inflight, and if it arrives with an ISN that falls within the
1448 * receive window, the connection is killed.
1449 *
1450 * Notes:
1451 * A heuristic to determine when to accept syn cookies is not necessary.
1452 * An ACK flood would cause the syncookie verification to be attempted,
1453 * but a SYN flood causes syncookies to be generated.  Both are of equal
1454 * cost, so there's no point in trying to optimize the ACK flood case.
1455 * Also, if you don't process certain ACKs for some reason, then all someone
1456 * would have to do is launch a SYN and ACK flood at the same time, which
1457 * would stop cookie verification and defeat the entire purpose of syncookies.
1458 */
1459static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1460
1461static void
1462syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1463    u_int32_t *flowlabel)
1464{
1465	MD5_CTX ctx;
1466	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1467	u_int32_t data;
1468	u_int32_t *secbits;
1469	u_int off, pmss, mss;
1470	int i;
1471
1472	SCH_LOCK_ASSERT(sch);
1473
1474	/* Which of the two secrets to use. */
1475	secbits = sch->sch_oddeven ?
1476			sch->sch_secbits_odd : sch->sch_secbits_even;
1477
1478	/* Reseed secret if too old. */
1479	if (sch->sch_reseed < time_uptime) {
1480		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1481		secbits = sch->sch_oddeven ?
1482				sch->sch_secbits_odd : sch->sch_secbits_even;
1483		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1484			secbits[i] = arc4random();
1485		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1486	}
1487
1488	/* Secret rotation offset. */
1489	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1490
1491	/* Maximum segment size calculation. */
1492	pmss = max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)), tcp_minmss);
1493	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1494		if (tcp_sc_msstab[mss] <= pmss)
1495			break;
1496
1497	/* Fold parameters and MD5 digest into the ISN we will send. */
1498	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1499	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1500	data |= mss << 4;	/* mss, 3 bits */
1501
1502	MD5Init(&ctx);
1503	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1504	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1505	MD5Update(&ctx, secbits, off);
1506	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1507	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1508	MD5Update(&ctx, &data, sizeof(data));
1509	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1510
1511	data |= (md5_buffer[0] << 7);
1512	sc->sc_iss = data;
1513
1514#ifdef INET6
1515	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1516#endif
1517
1518	/* Additional parameters are stored in the timestamp if present. */
1519	if (sc->sc_flags & SCF_TIMESTAMP) {
1520		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1521		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1522		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1523		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1524		data |= md5_buffer[2] << 10;		/* more digest bits */
1525		data ^= md5_buffer[3];
1526		sc->sc_ts = data;
1527		sc->sc_tsoff = data - ticks;		/* after XOR */
1528	}
1529
1530	tcpstat.tcps_sc_sendcookie++;
1531	return;
1532}
1533
1534static struct syncache *
1535syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1536    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1537    struct socket *so)
1538{
1539	MD5_CTX ctx;
1540	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1541	u_int32_t data = 0;
1542	u_int32_t *secbits;
1543	tcp_seq ack, seq;
1544	int off, mss, wnd, flags;
1545
1546	SCH_LOCK_ASSERT(sch);
1547
1548	/*
1549	 * Pull information out of SYN-ACK/ACK and
1550	 * revert sequence number advances.
1551	 */
1552	ack = th->th_ack - 1;
1553	seq = th->th_seq - 1;
1554	off = (ack >> 1) & 0x7;
1555	mss = (ack >> 4) & 0x7;
1556	flags = ack & 0x7f;
1557
1558	/* Which of the two secrets to use. */
1559	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1560
1561	/*
1562	 * The secret wasn't updated for the lifetime of a syncookie,
1563	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1564	 */
1565	if (sch->sch_reseed < time_uptime) {
1566		return (NULL);
1567	}
1568
1569	/* Recompute the digest so we can compare it. */
1570	MD5Init(&ctx);
1571	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1572	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1573	MD5Update(&ctx, secbits, off);
1574	MD5Update(&ctx, inc, sizeof(*inc));
1575	MD5Update(&ctx, &seq, sizeof(seq));
1576	MD5Update(&ctx, &flags, sizeof(flags));
1577	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1578
1579	/* Does the digest part of or ACK'ed ISS match? */
1580	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1581		return (NULL);
1582
1583	/* Does the digest part of our reflected timestamp match? */
1584	if (to->to_flags & TOF_TS) {
1585		data = md5_buffer[3] ^ to->to_tsecr;
1586		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1587			return (NULL);
1588	}
1589
1590	/* Fill in the syncache values. */
1591	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1592	sc->sc_ipopts = NULL;
1593
1594	sc->sc_irs = seq;
1595	sc->sc_iss = ack;
1596
1597#ifdef INET6
1598	if (inc->inc_isipv6) {
1599		if (sotoinpcb(so)->in6p_flags & IN6P_AUTOFLOWLABEL)
1600			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1601	} else
1602#endif
1603	{
1604		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1605		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1606	}
1607
1608	/* Additional parameters that were encoded in the timestamp. */
1609	if (data) {
1610		sc->sc_flags |= SCF_TIMESTAMP;
1611		sc->sc_tsreflect = to->to_tsval;
1612		sc->sc_ts = to->to_tsecr;
1613		sc->sc_tsoff = to->to_tsecr - ticks;
1614		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1615		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1616		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1617		    TCP_MAX_WINSHIFT);
1618		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1619		    TCP_MAX_WINSHIFT);
1620		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1621			sc->sc_flags |= SCF_WINSCALE;
1622	} else
1623		sc->sc_flags |= SCF_NOOPT;
1624
1625	wnd = sbspace(&so->so_rcv);
1626	wnd = imax(wnd, 0);
1627	wnd = imin(wnd, TCP_MAXWIN);
1628	sc->sc_wnd = wnd;
1629
1630	sc->sc_rxmits = 0;
1631	sc->sc_peer_mss = tcp_sc_msstab[mss];
1632
1633	tcpstat.tcps_sc_recvcookie++;
1634	return (sc);
1635}
1636
1637/*
1638 * Returns the current number of syncache entries.  This number
1639 * will probably change before you get around to calling
1640 * syncache_pcblist.
1641 */
1642
1643int
1644syncache_pcbcount(void)
1645{
1646	struct syncache_head *sch;
1647	int count, i;
1648
1649	for (count = 0, i = 0; i < tcp_syncache.hashsize; i++) {
1650		/* No need to lock for a read. */
1651		sch = &tcp_syncache.hashbase[i];
1652		count += sch->sch_length;
1653	}
1654	return count;
1655}
1656
1657/*
1658 * Exports the syncache entries to userland so that netstat can display
1659 * them alongside the other sockets.  This function is intended to be
1660 * called only from tcp_pcblist.
1661 *
1662 * Due to concurrency on an active system, the number of pcbs exported
1663 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1664 * amount of space the caller allocated for this function to use.
1665 */
1666int
1667syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1668{
1669	struct xtcpcb xt;
1670	struct syncache *sc;
1671	struct syncache_head *sch;
1672	int count, error, i;
1673
1674	for (count = 0, error = 0, i = 0; i < tcp_syncache.hashsize; i++) {
1675		sch = &tcp_syncache.hashbase[i];
1676		SCH_LOCK(sch);
1677		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1678			if (count >= max_pcbs) {
1679				SCH_UNLOCK(sch);
1680				goto exit;
1681			}
1682			bzero(&xt, sizeof(xt));
1683			xt.xt_len = sizeof(xt);
1684			if (sc->sc_inc.inc_isipv6)
1685				xt.xt_inp.inp_vflag = INP_IPV6;
1686			else
1687				xt.xt_inp.inp_vflag = INP_IPV4;
1688			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1689			xt.xt_tp.t_inpcb = &xt.xt_inp;
1690			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1691			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1692			xt.xt_socket.xso_len = sizeof (struct xsocket);
1693			xt.xt_socket.so_type = SOCK_STREAM;
1694			xt.xt_socket.so_state = SS_ISCONNECTING;
1695			error = SYSCTL_OUT(req, &xt, sizeof xt);
1696			if (error) {
1697				SCH_UNLOCK(sch);
1698				goto exit;
1699			}
1700			count++;
1701		}
1702		SCH_UNLOCK(sch);
1703	}
1704exit:
1705	*pcbs_exported = count;
1706	return error;
1707}
1708
1709