tcp_syncache.c revision 171652
1239310Sdim/*-
2239310Sdim * Copyright (c) 2001 McAfee, Inc.
3239310Sdim * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4239310Sdim * All rights reserved.
5239310Sdim *
6239310Sdim * This software was developed for the FreeBSD Project by Jonathan Lemon
7239310Sdim * and McAfee Research, the Security Research Division of McAfee, Inc. under
8239310Sdim * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9239310Sdim * DARPA CHATS research program.
10239310Sdim *
11239310Sdim * Redistribution and use in source and binary forms, with or without
12239310Sdim * modification, are permitted provided that the following conditions
13239310Sdim * are met:
14239310Sdim * 1. Redistributions of source code must retain the above copyright
15239310Sdim *    notice, this list of conditions and the following disclaimer.
16239310Sdim * 2. Redistributions in binary form must reproduce the above copyright
17239310Sdim *    notice, this list of conditions and the following disclaimer in the
18239310Sdim *    documentation and/or other materials provided with the distribution.
19239310Sdim *
20239310Sdim * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21239310Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22239310Sdim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23263509Sdim * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24239310Sdim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25239310Sdim * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26239310Sdim * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27239310Sdim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28239310Sdim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29239310Sdim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30252723Sdim * SUCH DAMAGE.
31252723Sdim *
32252723Sdim * $FreeBSD: head/sys/netinet/tcp_syncache.c 171652 2007-07-29 20:13:22Z bmah $
33252723Sdim */
34239310Sdim
35239310Sdim#include "opt_inet.h"
36239310Sdim#include "opt_inet6.h"
37239310Sdim#include "opt_ipsec.h"
38239310Sdim#include "opt_mac.h"
39245431Sdim
40245431Sdim#include <sys/param.h>
41245431Sdim#include <sys/systm.h>
42245431Sdim#include <sys/kernel.h>
43245431Sdim#include <sys/sysctl.h>
44239310Sdim#include <sys/lock.h>
45239310Sdim#include <sys/mutex.h>
46239310Sdim#include <sys/malloc.h>
47239310Sdim#include <sys/mbuf.h>
48239310Sdim#include <sys/md5.h>
49239310Sdim#include <sys/proc.h>		/* for proc0 declaration */
50239310Sdim#include <sys/random.h>
51239310Sdim#include <sys/socket.h>
52239310Sdim#include <sys/socketvar.h>
53#include <sys/syslog.h>
54
55#include <vm/uma.h>
56
57#include <net/if.h>
58#include <net/route.h>
59
60#include <netinet/in.h>
61#include <netinet/in_systm.h>
62#include <netinet/ip.h>
63#include <netinet/in_var.h>
64#include <netinet/in_pcb.h>
65#include <netinet/ip_var.h>
66#include <netinet/ip_options.h>
67#ifdef INET6
68#include <netinet/ip6.h>
69#include <netinet/icmp6.h>
70#include <netinet6/nd6.h>
71#include <netinet6/ip6_var.h>
72#include <netinet6/in6_pcb.h>
73#endif
74#include <netinet/tcp.h>
75#include <netinet/tcp_fsm.h>
76#include <netinet/tcp_seq.h>
77#include <netinet/tcp_timer.h>
78#include <netinet/tcp_var.h>
79#include <netinet/tcp_syncache.h>
80#ifdef INET6
81#include <netinet6/tcp6_var.h>
82#endif
83
84#ifdef IPSEC
85#include <netipsec/ipsec.h>
86#ifdef INET6
87#include <netipsec/ipsec6.h>
88#endif
89#include <netipsec/key.h>
90#endif /*IPSEC*/
91
92#include <machine/in_cksum.h>
93
94#include <security/mac/mac_framework.h>
95
96static int tcp_syncookies = 1;
97SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
98    &tcp_syncookies, 0,
99    "Use TCP SYN cookies if the syncache overflows");
100
101static int tcp_syncookiesonly = 0;
102SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
103    &tcp_syncookiesonly, 0,
104    "Use only TCP SYN cookies");
105
106#define	SYNCOOKIE_SECRET_SIZE	8	/* dwords */
107#define	SYNCOOKIE_LIFETIME	16	/* seconds */
108
109struct syncache {
110	TAILQ_ENTRY(syncache)	sc_hash;
111	struct		in_conninfo sc_inc;	/* addresses */
112	u_long		sc_rxttime;		/* retransmit time */
113	u_int16_t	sc_rxmits;		/* retransmit counter */
114
115	u_int32_t	sc_tsreflect;		/* timestamp to reflect */
116	u_int32_t	sc_ts;			/* our timestamp to send */
117	u_int32_t	sc_tsoff;		/* ts offset w/ syncookies */
118	u_int32_t	sc_flowlabel;		/* IPv6 flowlabel */
119	tcp_seq		sc_irs;			/* seq from peer */
120	tcp_seq		sc_iss;			/* our ISS */
121	struct		mbuf *sc_ipopts;	/* source route */
122
123	u_int16_t	sc_peer_mss;		/* peer's MSS */
124	u_int16_t	sc_wnd;			/* advertised window */
125	u_int8_t	sc_ip_ttl;		/* IPv4 TTL */
126	u_int8_t	sc_ip_tos;		/* IPv4 TOS */
127	u_int8_t	sc_requested_s_scale:4,
128			sc_requested_r_scale:4;
129	u_int8_t	sc_flags;
130#define SCF_NOOPT	0x01			/* no TCP options */
131#define SCF_WINSCALE	0x02			/* negotiated window scaling */
132#define SCF_TIMESTAMP	0x04			/* negotiated timestamps */
133						/* MSS is implicit */
134#define SCF_UNREACH	0x10			/* icmp unreachable received */
135#define SCF_SIGNATURE	0x20			/* send MD5 digests */
136#define SCF_SACK	0x80			/* send SACK option */
137#ifdef MAC
138	struct label	*sc_label;		/* MAC label reference */
139#endif
140};
141
142struct syncache_head {
143	struct mtx	sch_mtx;
144	TAILQ_HEAD(sch_head, syncache)	sch_bucket;
145	struct callout	sch_timer;
146	int		sch_nextc;
147	u_int		sch_length;
148	u_int		sch_oddeven;
149	u_int32_t	sch_secbits_odd[SYNCOOKIE_SECRET_SIZE];
150	u_int32_t	sch_secbits_even[SYNCOOKIE_SECRET_SIZE];
151	u_int		sch_reseed;		/* time_uptime, seconds */
152};
153
154static void	 syncache_drop(struct syncache *, struct syncache_head *);
155static void	 syncache_free(struct syncache *);
156static void	 syncache_insert(struct syncache *, struct syncache_head *);
157struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
158static int	 syncache_respond(struct syncache *);
159static struct	 socket *syncache_socket(struct syncache *, struct socket *,
160		    struct mbuf *m);
161static void	 syncache_timeout(struct syncache *sc, struct syncache_head *sch,
162		    int docallout);
163static void	 syncache_timer(void *);
164static void	 syncookie_generate(struct syncache_head *, struct syncache *,
165		    u_int32_t *);
166static struct syncache
167		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
168		    struct syncache *, struct tcpopt *, struct tcphdr *,
169		    struct socket *);
170
171/*
172 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
173 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
174 * the odds are that the user has given up attempting to connect by then.
175 */
176#define SYNCACHE_MAXREXMTS		3
177
178/* Arbitrary values */
179#define TCP_SYNCACHE_HASHSIZE		512
180#define TCP_SYNCACHE_BUCKETLIMIT	30
181
182struct tcp_syncache {
183	struct	syncache_head *hashbase;
184	uma_zone_t zone;
185	u_int	hashsize;
186	u_int	hashmask;
187	u_int	bucket_limit;
188	u_int	cache_count;		/* XXX: unprotected */
189	u_int	cache_limit;
190	u_int	rexmt_limit;
191	u_int	hash_secret;
192};
193static struct tcp_syncache tcp_syncache;
194
195SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
196
197SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
198     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
199
200SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
201     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
202
203SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
204     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
205
206SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
207     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
208
209SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
210     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
211
212int	tcp_sc_rst_sock_fail = 1;
213SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail, CTLFLAG_RW,
214     &tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
215
216static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
217
218#define SYNCACHE_HASH(inc, mask)					\
219	((tcp_syncache.hash_secret ^					\
220	  (inc)->inc_faddr.s_addr ^					\
221	  ((inc)->inc_faddr.s_addr >> 16) ^				\
222	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
223
224#define SYNCACHE_HASH6(inc, mask)					\
225	((tcp_syncache.hash_secret ^					\
226	  (inc)->inc6_faddr.s6_addr32[0] ^				\
227	  (inc)->inc6_faddr.s6_addr32[3] ^				\
228	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
229
230#define ENDPTS_EQ(a, b) (						\
231	(a)->ie_fport == (b)->ie_fport &&				\
232	(a)->ie_lport == (b)->ie_lport &&				\
233	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
234	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
235)
236
237#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
238
239#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
240#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
241#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
242
243/*
244 * Requires the syncache entry to be already removed from the bucket list.
245 */
246static void
247syncache_free(struct syncache *sc)
248{
249	if (sc->sc_ipopts)
250		(void) m_free(sc->sc_ipopts);
251#ifdef MAC
252	mac_destroy_syncache(&sc->sc_label);
253#endif
254
255	uma_zfree(tcp_syncache.zone, sc);
256}
257
258void
259syncache_init(void)
260{
261	int i;
262
263	tcp_syncache.cache_count = 0;
264	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
265	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
266	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
267	tcp_syncache.hash_secret = arc4random();
268
269	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
270	    &tcp_syncache.hashsize);
271	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
272	    &tcp_syncache.bucket_limit);
273	if (!powerof2(tcp_syncache.hashsize) || tcp_syncache.hashsize == 0) {
274		printf("WARNING: syncache hash size is not a power of 2.\n");
275		tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
276	}
277	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
278
279	/* Set limits. */
280	tcp_syncache.cache_limit =
281	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
282	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
283	    &tcp_syncache.cache_limit);
284
285	/* Allocate the hash table. */
286	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
287	    tcp_syncache.hashsize * sizeof(struct syncache_head),
288	    M_SYNCACHE, M_WAITOK | M_ZERO);
289
290	/* Initialize the hash buckets. */
291	for (i = 0; i < tcp_syncache.hashsize; i++) {
292		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
293		mtx_init(&tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
294			 NULL, MTX_DEF);
295		callout_init_mtx(&tcp_syncache.hashbase[i].sch_timer,
296			 &tcp_syncache.hashbase[i].sch_mtx, 0);
297		tcp_syncache.hashbase[i].sch_length = 0;
298	}
299
300	/* Create the syncache entry zone. */
301	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
302	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
303	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
304}
305
306/*
307 * Inserts a syncache entry into the specified bucket row.
308 * Locks and unlocks the syncache_head autonomously.
309 */
310static void
311syncache_insert(struct syncache *sc, struct syncache_head *sch)
312{
313	struct syncache *sc2;
314
315	SCH_LOCK(sch);
316
317	/*
318	 * Make sure that we don't overflow the per-bucket limit.
319	 * If the bucket is full, toss the oldest element.
320	 */
321	if (sch->sch_length >= tcp_syncache.bucket_limit) {
322		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
323			("sch->sch_length incorrect"));
324		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
325		syncache_drop(sc2, sch);
326		tcpstat.tcps_sc_bucketoverflow++;
327	}
328
329	/* Put it into the bucket. */
330	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
331	sch->sch_length++;
332
333	/* Reinitialize the bucket row's timer. */
334	syncache_timeout(sc, sch, 1);
335
336	SCH_UNLOCK(sch);
337
338	tcp_syncache.cache_count++;
339	tcpstat.tcps_sc_added++;
340}
341
342/*
343 * Remove and free entry from syncache bucket row.
344 * Expects locked syncache head.
345 */
346static void
347syncache_drop(struct syncache *sc, struct syncache_head *sch)
348{
349
350	SCH_LOCK_ASSERT(sch);
351
352	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
353	sch->sch_length--;
354
355	syncache_free(sc);
356	tcp_syncache.cache_count--;
357}
358
359/*
360 * Engage/reengage time on bucket row.
361 */
362static void
363syncache_timeout(struct syncache *sc, struct syncache_head *sch, int docallout)
364{
365	sc->sc_rxttime = ticks +
366		TCPTV_RTOBASE * (tcp_backoff[sc->sc_rxmits]);
367	sc->sc_rxmits++;
368	if (sch->sch_nextc > sc->sc_rxttime)
369		sch->sch_nextc = sc->sc_rxttime;
370	if (!TAILQ_EMPTY(&sch->sch_bucket) && docallout)
371		callout_reset(&sch->sch_timer, sch->sch_nextc - ticks,
372		    syncache_timer, (void *)sch);
373}
374
375/*
376 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
377 * If we have retransmitted an entry the maximum number of times, expire it.
378 * One separate timer for each bucket row.
379 */
380static void
381syncache_timer(void *xsch)
382{
383	struct syncache_head *sch = (struct syncache_head *)xsch;
384	struct syncache *sc, *nsc;
385	int tick = ticks;
386	char *s;
387
388	/* NB: syncache_head has already been locked by the callout. */
389	SCH_LOCK_ASSERT(sch);
390
391	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
392		/*
393		 * We do not check if the listen socket still exists
394		 * and accept the case where the listen socket may be
395		 * gone by the time we resend the SYN/ACK.  We do
396		 * not expect this to happens often. If it does,
397		 * then the RST will be sent by the time the remote
398		 * host does the SYN/ACK->ACK.
399		 */
400		if (sc->sc_rxttime > tick) {
401			if (sc->sc_rxttime < sch->sch_nextc)
402				sch->sch_nextc = sc->sc_rxttime;
403			continue;
404		}
405
406		if (sc->sc_rxmits > tcp_syncache.rexmt_limit) {
407			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
408				log(LOG_DEBUG, "%s; %s: Retransmits exhausted, "
409				    "giving up and removing syncache entry\n",
410				    s, __func__);
411				free(s, M_TCPLOG);
412			}
413			syncache_drop(sc, sch);
414			tcpstat.tcps_sc_stale++;
415			continue;
416		}
417		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
418			log(LOG_DEBUG, "%s; %s: Response timeout, "
419			    "retransmitting (%u) SYN|ACK\n",
420			    s, __func__, sc->sc_rxmits);
421			free(s, M_TCPLOG);
422		}
423
424		(void) syncache_respond(sc);
425		tcpstat.tcps_sc_retransmitted++;
426		syncache_timeout(sc, sch, 0);
427	}
428	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
429		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
430			syncache_timer, (void *)(sch));
431}
432
433/*
434 * Find an entry in the syncache.
435 * Returns always with locked syncache_head plus a matching entry or NULL.
436 */
437struct syncache *
438syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
439{
440	struct syncache *sc;
441	struct syncache_head *sch;
442
443#ifdef INET6
444	if (inc->inc_isipv6) {
445		sch = &tcp_syncache.hashbase[
446		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
447		*schp = sch;
448
449		SCH_LOCK(sch);
450
451		/* Circle through bucket row to find matching entry. */
452		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
453			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
454				return (sc);
455		}
456	} else
457#endif
458	{
459		sch = &tcp_syncache.hashbase[
460		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
461		*schp = sch;
462
463		SCH_LOCK(sch);
464
465		/* Circle through bucket row to find matching entry. */
466		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
467#ifdef INET6
468			if (sc->sc_inc.inc_isipv6)
469				continue;
470#endif
471			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
472				return (sc);
473		}
474	}
475	SCH_LOCK_ASSERT(*schp);
476	return (NULL);			/* always returns with locked sch */
477}
478
479/*
480 * This function is called when we get a RST for a
481 * non-existent connection, so that we can see if the
482 * connection is in the syn cache.  If it is, zap it.
483 */
484void
485syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
486{
487	struct syncache *sc;
488	struct syncache_head *sch;
489	char *s = NULL;
490
491	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
492	SCH_LOCK_ASSERT(sch);
493
494	/*
495	 * Any RST to our SYN|ACK must not carry ACK, SYN or FIN flags.
496	 * See RFC 793 page 65, section SEGMENT ARRIVES.
497	 */
498	if (th->th_flags & (TH_ACK|TH_SYN|TH_FIN)) {
499		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
500			log(LOG_DEBUG, "%s; %s: Spurious RST with ACK, SYN or "
501			    "FIN flag set, segment ignored\n", s, __func__);
502		tcpstat.tcps_badrst++;
503		goto done;
504	}
505
506	/*
507	 * No corresponding connection was found in syncache.
508	 * If syncookies are enabled and possibly exclusively
509	 * used, or we are under memory pressure, a valid RST
510	 * may not find a syncache entry.  In that case we're
511	 * done and no SYN|ACK retransmissions will happen.
512	 * Otherwise the the RST was misdirected or spoofed.
513	 */
514	if (sc == NULL) {
515		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
516			log(LOG_DEBUG, "%s; %s: Spurious RST without matching "
517			    "syncache entry (possibly syncookie only), "
518			    "segment ignored\n", s, __func__);
519		tcpstat.tcps_badrst++;
520		goto done;
521	}
522
523	/*
524	 * If the RST bit is set, check the sequence number to see
525	 * if this is a valid reset segment.
526	 * RFC 793 page 37:
527	 *   In all states except SYN-SENT, all reset (RST) segments
528	 *   are validated by checking their SEQ-fields.  A reset is
529	 *   valid if its sequence number is in the window.
530	 *
531	 *   The sequence number in the reset segment is normally an
532	 *   echo of our outgoing acknowlegement numbers, but some hosts
533	 *   send a reset with the sequence number at the rightmost edge
534	 *   of our receive window, and we have to handle this case.
535	 */
536	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
537	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
538		syncache_drop(sc, sch);
539		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
540			log(LOG_DEBUG, "%s; %s: Our SYN|ACK was rejected, "
541			    "connection attempt aborted by remote endpoint\n",
542			    s, __func__);
543		tcpstat.tcps_sc_reset++;
544	} else if ((s = tcp_log_addrs(inc, th, NULL, NULL))) {
545		log(LOG_DEBUG, "%s; %s: RST with invalid SEQ %u != IRS %u "
546		    "(+WND %u), segment ignored\n",
547		    s, __func__, th->th_seq, sc->sc_irs, sc->sc_wnd);
548		tcpstat.tcps_badrst++;
549	}
550
551done:
552	if (s != NULL)
553		free(s, M_TCPLOG);
554	SCH_UNLOCK(sch);
555}
556
557void
558syncache_badack(struct in_conninfo *inc)
559{
560	struct syncache *sc;
561	struct syncache_head *sch;
562
563	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
564	SCH_LOCK_ASSERT(sch);
565	if (sc != NULL) {
566		syncache_drop(sc, sch);
567		tcpstat.tcps_sc_badack++;
568	}
569	SCH_UNLOCK(sch);
570}
571
572void
573syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
574{
575	struct syncache *sc;
576	struct syncache_head *sch;
577
578	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
579	SCH_LOCK_ASSERT(sch);
580	if (sc == NULL)
581		goto done;
582
583	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
584	if (ntohl(th->th_seq) != sc->sc_iss)
585		goto done;
586
587	/*
588	 * If we've rertransmitted 3 times and this is our second error,
589	 * we remove the entry.  Otherwise, we allow it to continue on.
590	 * This prevents us from incorrectly nuking an entry during a
591	 * spurious network outage.
592	 *
593	 * See tcp_notify().
594	 */
595	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
596		sc->sc_flags |= SCF_UNREACH;
597		goto done;
598	}
599	syncache_drop(sc, sch);
600	tcpstat.tcps_sc_unreach++;
601done:
602	SCH_UNLOCK(sch);
603}
604
605/*
606 * Build a new TCP socket structure from a syncache entry.
607 */
608static struct socket *
609syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
610{
611	struct inpcb *inp = NULL;
612	struct socket *so;
613	struct tcpcb *tp;
614	char *s;
615
616	NET_ASSERT_GIANT();
617	INP_INFO_WLOCK_ASSERT(&tcbinfo);
618
619	/*
620	 * Ok, create the full blown connection, and set things up
621	 * as they would have been set up if we had created the
622	 * connection when the SYN arrived.  If we can't create
623	 * the connection, abort it.
624	 */
625	so = sonewconn(lso, SS_ISCONNECTED);
626	if (so == NULL) {
627		/*
628		 * Drop the connection; we will either send a RST or
629		 * have the peer retransmit its SYN again after its
630		 * RTO and try again.
631		 */
632		tcpstat.tcps_listendrop++;
633		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
634			log(LOG_DEBUG, "%s; %s: Socket create failed "
635			    "due to limits or memory shortage\n",
636			    s, __func__);
637			free(s, M_TCPLOG);
638		}
639		goto abort2;
640	}
641#ifdef MAC
642	SOCK_LOCK(so);
643	mac_set_socket_peer_from_mbuf(m, so);
644	SOCK_UNLOCK(so);
645#endif
646
647	inp = sotoinpcb(so);
648	INP_LOCK(inp);
649
650	/* Insert new socket into PCB hash list. */
651	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
652#ifdef INET6
653	if (sc->sc_inc.inc_isipv6) {
654		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
655	} else {
656		inp->inp_vflag &= ~INP_IPV6;
657		inp->inp_vflag |= INP_IPV4;
658#endif
659		inp->inp_laddr = sc->sc_inc.inc_laddr;
660#ifdef INET6
661	}
662#endif
663	inp->inp_lport = sc->sc_inc.inc_lport;
664	if (in_pcbinshash(inp) != 0) {
665		/*
666		 * Undo the assignments above if we failed to
667		 * put the PCB on the hash lists.
668		 */
669#ifdef INET6
670		if (sc->sc_inc.inc_isipv6)
671			inp->in6p_laddr = in6addr_any;
672		else
673#endif
674			inp->inp_laddr.s_addr = INADDR_ANY;
675		inp->inp_lport = 0;
676		goto abort;
677	}
678#ifdef IPSEC
679	/* Copy old policy into new socket's. */
680	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
681		printf("syncache_socket: could not copy policy\n");
682#endif
683#ifdef INET6
684	if (sc->sc_inc.inc_isipv6) {
685		struct inpcb *oinp = sotoinpcb(lso);
686		struct in6_addr laddr6;
687		struct sockaddr_in6 sin6;
688		/*
689		 * Inherit socket options from the listening socket.
690		 * Note that in6p_inputopts are not (and should not be)
691		 * copied, since it stores previously received options and is
692		 * used to detect if each new option is different than the
693		 * previous one and hence should be passed to a user.
694		 * If we copied in6p_inputopts, a user would not be able to
695		 * receive options just after calling the accept system call.
696		 */
697		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
698		if (oinp->in6p_outputopts)
699			inp->in6p_outputopts =
700			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
701
702		sin6.sin6_family = AF_INET6;
703		sin6.sin6_len = sizeof(sin6);
704		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
705		sin6.sin6_port = sc->sc_inc.inc_fport;
706		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
707		laddr6 = inp->in6p_laddr;
708		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
709			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
710		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
711		    thread0.td_ucred)) {
712			inp->in6p_laddr = laddr6;
713			goto abort;
714		}
715		/* Override flowlabel from in6_pcbconnect. */
716		inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
717		inp->in6p_flowinfo |= sc->sc_flowlabel;
718	} else
719#endif
720	{
721		struct in_addr laddr;
722		struct sockaddr_in sin;
723
724		inp->inp_options = ip_srcroute(m);
725		if (inp->inp_options == NULL) {
726			inp->inp_options = sc->sc_ipopts;
727			sc->sc_ipopts = NULL;
728		}
729
730		sin.sin_family = AF_INET;
731		sin.sin_len = sizeof(sin);
732		sin.sin_addr = sc->sc_inc.inc_faddr;
733		sin.sin_port = sc->sc_inc.inc_fport;
734		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
735		laddr = inp->inp_laddr;
736		if (inp->inp_laddr.s_addr == INADDR_ANY)
737			inp->inp_laddr = sc->sc_inc.inc_laddr;
738		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
739		    thread0.td_ucred)) {
740			inp->inp_laddr = laddr;
741			goto abort;
742		}
743	}
744	tp = intotcpcb(inp);
745	tp->t_state = TCPS_SYN_RECEIVED;
746	tp->iss = sc->sc_iss;
747	tp->irs = sc->sc_irs;
748	tcp_rcvseqinit(tp);
749	tcp_sendseqinit(tp);
750	tp->snd_wl1 = sc->sc_irs;
751	tp->snd_max = tp->iss + 1;
752	tp->snd_nxt = tp->iss + 1;
753	tp->rcv_up = sc->sc_irs + 1;
754	tp->rcv_wnd = sc->sc_wnd;
755	tp->rcv_adv += tp->rcv_wnd;
756	tp->last_ack_sent = tp->rcv_nxt;
757
758	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
759	if (sc->sc_flags & SCF_NOOPT)
760		tp->t_flags |= TF_NOOPT;
761	else {
762		if (sc->sc_flags & SCF_WINSCALE) {
763			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
764			tp->snd_scale = sc->sc_requested_s_scale;
765			tp->request_r_scale = sc->sc_requested_r_scale;
766		}
767		if (sc->sc_flags & SCF_TIMESTAMP) {
768			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
769			tp->ts_recent = sc->sc_tsreflect;
770			tp->ts_recent_age = ticks;
771			tp->ts_offset = sc->sc_tsoff;
772		}
773#ifdef TCP_SIGNATURE
774		if (sc->sc_flags & SCF_SIGNATURE)
775			tp->t_flags |= TF_SIGNATURE;
776#endif
777		if (sc->sc_flags & SCF_SACK)
778			tp->t_flags |= TF_SACK_PERMIT;
779	}
780
781	/*
782	 * Set up MSS and get cached values from tcp_hostcache.
783	 * This might overwrite some of the defaults we just set.
784	 */
785	tcp_mss(tp, sc->sc_peer_mss);
786
787	/*
788	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
789	 */
790	if (sc->sc_rxmits)
791		tp->snd_cwnd = tp->t_maxseg;
792	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
793
794	INP_UNLOCK(inp);
795
796	tcpstat.tcps_accepts++;
797	return (so);
798
799abort:
800	INP_UNLOCK(inp);
801abort2:
802	if (so != NULL)
803		soabort(so);
804	return (NULL);
805}
806
807/*
808 * This function gets called when we receive an ACK for a
809 * socket in the LISTEN state.  We look up the connection
810 * in the syncache, and if its there, we pull it out of
811 * the cache and turn it into a full-blown connection in
812 * the SYN-RECEIVED state.
813 */
814int
815syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
816    struct socket **lsop, struct mbuf *m)
817{
818	struct syncache *sc;
819	struct syncache_head *sch;
820	struct syncache scs;
821	char *s;
822
823	/*
824	 * Global TCP locks are held because we manipulate the PCB lists
825	 * and create a new socket.
826	 */
827	INP_INFO_WLOCK_ASSERT(&tcbinfo);
828	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
829	    ("%s: can handle only ACK", __func__));
830
831	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
832	SCH_LOCK_ASSERT(sch);
833	if (sc == NULL) {
834		/*
835		 * There is no syncache entry, so see if this ACK is
836		 * a returning syncookie.  To do this, first:
837		 *  A. See if this socket has had a syncache entry dropped in
838		 *     the past.  We don't want to accept a bogus syncookie
839		 *     if we've never received a SYN.
840		 *  B. check that the syncookie is valid.  If it is, then
841		 *     cobble up a fake syncache entry, and return.
842		 */
843		if (!tcp_syncookies) {
844			SCH_UNLOCK(sch);
845			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
846				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
847				    "segment rejected (syncookies disabled)\n",
848				    s, __func__);
849			goto failed;
850		}
851		bzero(&scs, sizeof(scs));
852		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
853		SCH_UNLOCK(sch);
854		if (sc == NULL) {
855			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
856				log(LOG_DEBUG, "%s; %s: Segment failed "
857				    "SYNCOOKIE authentication, segment rejected "
858				    "(probably spoofed)\n", s, __func__);
859			goto failed;
860		}
861	} else {
862		/* Pull out the entry to unlock the bucket row. */
863		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
864		sch->sch_length--;
865		tcp_syncache.cache_count--;
866		SCH_UNLOCK(sch);
867	}
868
869	/*
870	 * Segment validation:
871	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
872	 */
873	if (th->th_ack != sc->sc_iss + 1) {
874		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
875			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
876			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
877		goto failed;
878	}
879	/*
880	 * The SEQ must match the received initial receive sequence
881	 * number + 1 (the SYN) because we didn't ACK any data that
882	 * may have come with the SYN.
883	 */
884	if (th->th_seq != sc->sc_irs + 1) {
885		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
886			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
887			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
888		goto failed;
889	}
890	/*
891	 * If timestamps were present in the SYN and we accepted
892	 * them in our SYN|ACK we require them to be present from
893	 * now on.  And vice versa.
894	 */
895	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
896		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
897			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
898			    "segment rejected\n", s, __func__);
899		goto failed;
900	}
901	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
902		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
903			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
904			    "segment rejected\n", s, __func__);
905		goto failed;
906	}
907	/*
908	 * If timestamps were negotiated the reflected timestamp
909	 * must be equal to what we actually sent in the SYN|ACK.
910	 */
911	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
912		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
913			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
914			    "segment rejected\n",
915			    s, __func__, to->to_tsecr, sc->sc_ts);
916		goto failed;
917	}
918
919	*lsop = syncache_socket(sc, *lsop, m);
920
921	if (*lsop == NULL)
922		tcpstat.tcps_sc_aborted++;
923	else
924		tcpstat.tcps_sc_completed++;
925
926	if (sc != &scs)
927		syncache_free(sc);
928	return (1);
929failed:
930	if (sc != NULL && sc != &scs)
931		syncache_free(sc);
932	if (s != NULL)
933		free(s, M_TCPLOG);
934	*lsop = NULL;
935	return (0);
936}
937
938/*
939 * Given a LISTEN socket and an inbound SYN request, add
940 * this to the syn cache, and send back a segment:
941 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
942 * to the source.
943 *
944 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
945 * Doing so would require that we hold onto the data and deliver it
946 * to the application.  However, if we are the target of a SYN-flood
947 * DoS attack, an attacker could send data which would eventually
948 * consume all available buffer space if it were ACKed.  By not ACKing
949 * the data, we avoid this DoS scenario.
950 */
951void
952syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
953    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
954{
955	struct tcpcb *tp;
956	struct socket *so;
957	struct syncache *sc = NULL;
958	struct syncache_head *sch;
959	struct mbuf *ipopts = NULL;
960	u_int32_t flowtmp;
961	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
962	char *s;
963#ifdef INET6
964	int autoflowlabel = 0;
965#endif
966#ifdef MAC
967	struct label *maclabel;
968#endif
969	struct syncache scs;
970
971	INP_INFO_WLOCK_ASSERT(&tcbinfo);
972	INP_LOCK_ASSERT(inp);			/* listen socket */
973	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN,
974	    ("%s: unexpected tcp flags", __func__));
975
976	/*
977	 * Combine all so/tp operations very early to drop the INP lock as
978	 * soon as possible.
979	 */
980	so = *lsop;
981	tp = sototcpcb(so);
982
983#ifdef INET6
984	if (inc->inc_isipv6 &&
985	    (inp->in6p_flags & IN6P_AUTOFLOWLABEL))
986		autoflowlabel = 1;
987#endif
988	ip_ttl = inp->inp_ip_ttl;
989	ip_tos = inp->inp_ip_tos;
990	win = sbspace(&so->so_rcv);
991	sb_hiwat = so->so_rcv.sb_hiwat;
992	noopt = (tp->t_flags & TF_NOOPT);
993
994	so = NULL;
995	tp = NULL;
996
997#ifdef MAC
998	if (mac_init_syncache(&maclabel) != 0) {
999		INP_UNLOCK(inp);
1000		INP_INFO_WUNLOCK(&tcbinfo);
1001		goto done;
1002	} else
1003		mac_init_syncache_from_inpcb(maclabel, inp);
1004#endif
1005	INP_UNLOCK(inp);
1006	INP_INFO_WUNLOCK(&tcbinfo);
1007
1008	/*
1009	 * Remember the IP options, if any.
1010	 */
1011#ifdef INET6
1012	if (!inc->inc_isipv6)
1013#endif
1014		ipopts = ip_srcroute(m);
1015
1016	/*
1017	 * See if we already have an entry for this connection.
1018	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
1019	 *
1020	 * XXX: should the syncache be re-initialized with the contents
1021	 * of the new SYN here (which may have different options?)
1022	 *
1023	 * XXX: We do not check the sequence number to see if this is a
1024	 * real retransmit or a new connection attempt.  The question is
1025	 * how to handle such a case; either ignore it as spoofed, or
1026	 * drop the current entry and create a new one?
1027	 */
1028	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
1029	SCH_LOCK_ASSERT(sch);
1030	if (sc != NULL) {
1031		tcpstat.tcps_sc_dupsyn++;
1032		if (ipopts) {
1033			/*
1034			 * If we were remembering a previous source route,
1035			 * forget it and use the new one we've been given.
1036			 */
1037			if (sc->sc_ipopts)
1038				(void) m_free(sc->sc_ipopts);
1039			sc->sc_ipopts = ipopts;
1040		}
1041		/*
1042		 * Update timestamp if present.
1043		 */
1044		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
1045			sc->sc_tsreflect = to->to_tsval;
1046		else
1047			sc->sc_flags &= ~SCF_TIMESTAMP;
1048#ifdef MAC
1049		/*
1050		 * Since we have already unconditionally allocated label
1051		 * storage, free it up.  The syncache entry will already
1052		 * have an initialized label we can use.
1053		 */
1054		mac_destroy_syncache(&maclabel);
1055		KASSERT(sc->sc_label != NULL,
1056		    ("%s: label not initialized", __func__));
1057#endif
1058		/* Retransmit SYN|ACK and reset retransmit count. */
1059		if ((s = tcp_log_addrs(&sc->sc_inc, th, NULL, NULL))) {
1060			log(LOG_DEBUG, "%s; %s: Received duplicate SYN, "
1061			    "resetting timer and retransmitting SYN|ACK\n",
1062			    s, __func__);
1063			free(s, M_TCPLOG);
1064		}
1065		if (syncache_respond(sc) == 0) {
1066			sc->sc_rxmits = 0;
1067			syncache_timeout(sc, sch, 1);
1068			tcpstat.tcps_sndacks++;
1069			tcpstat.tcps_sndtotal++;
1070		}
1071		SCH_UNLOCK(sch);
1072		goto done;
1073	}
1074
1075	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
1076	if (sc == NULL) {
1077		/*
1078		 * The zone allocator couldn't provide more entries.
1079		 * Treat this as if the cache was full; drop the oldest
1080		 * entry and insert the new one.
1081		 */
1082		tcpstat.tcps_sc_zonefail++;
1083		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1084			syncache_drop(sc, sch);
1085		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
1086		if (sc == NULL) {
1087			if (tcp_syncookies) {
1088				bzero(&scs, sizeof(scs));
1089				sc = &scs;
1090			} else {
1091				SCH_UNLOCK(sch);
1092				if (ipopts)
1093					(void) m_free(ipopts);
1094				goto done;
1095			}
1096		}
1097	}
1098
1099	/*
1100	 * Fill in the syncache values.
1101	 */
1102#ifdef MAC
1103	sc->sc_label = maclabel;
1104#endif
1105	sc->sc_ipopts = ipopts;
1106	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1107#ifdef INET6
1108	if (!inc->inc_isipv6)
1109#endif
1110	{
1111		sc->sc_ip_tos = ip_tos;
1112		sc->sc_ip_ttl = ip_ttl;
1113	}
1114
1115	sc->sc_irs = th->th_seq;
1116	sc->sc_iss = arc4random();
1117	sc->sc_flags = 0;
1118	sc->sc_flowlabel = 0;
1119
1120	/*
1121	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1122	 * win was derived from socket earlier in the function.
1123	 */
1124	win = imax(win, 0);
1125	win = imin(win, TCP_MAXWIN);
1126	sc->sc_wnd = win;
1127
1128	if (tcp_do_rfc1323) {
1129		/*
1130		 * A timestamp received in a SYN makes
1131		 * it ok to send timestamp requests and replies.
1132		 */
1133		if (to->to_flags & TOF_TS) {
1134			sc->sc_tsreflect = to->to_tsval;
1135			sc->sc_ts = ticks;
1136			sc->sc_flags |= SCF_TIMESTAMP;
1137		}
1138		if (to->to_flags & TOF_SCALE) {
1139			int wscale = 0;
1140
1141			/*
1142			 * Compute proper scaling value from buffer space.
1143			 * Leave enough room for the socket buffer to grow
1144			 * with auto sizing.  This allows us to scale the
1145			 * receive buffer over a wide range while not losing
1146			 * any efficiency or fine granularity.
1147			 *
1148			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1149			 * or <SYN,ACK>) segment itself is never scaled.
1150			 */
1151			while (wscale < TCP_MAX_WINSHIFT &&
1152			    (0x1 << wscale) < tcp_minmss)
1153				wscale++;
1154			sc->sc_requested_r_scale = wscale;
1155			sc->sc_requested_s_scale = to->to_wscale;
1156			sc->sc_flags |= SCF_WINSCALE;
1157		}
1158	}
1159#ifdef TCP_SIGNATURE
1160	/*
1161	 * If listening socket requested TCP digests, and received SYN
1162	 * contains the option, flag this in the syncache so that
1163	 * syncache_respond() will do the right thing with the SYN+ACK.
1164	 * XXX: Currently we always record the option by default and will
1165	 * attempt to use it in syncache_respond().
1166	 */
1167	if (to->to_flags & TOF_SIGNATURE)
1168		sc->sc_flags |= SCF_SIGNATURE;
1169#endif
1170	if (to->to_flags & TOF_SACK)
1171		sc->sc_flags |= SCF_SACK;
1172	if (to->to_flags & TOF_MSS)
1173		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1174	if (noopt)
1175		sc->sc_flags |= SCF_NOOPT;
1176
1177	if (tcp_syncookies) {
1178		syncookie_generate(sch, sc, &flowtmp);
1179#ifdef INET6
1180		if (autoflowlabel)
1181			sc->sc_flowlabel = flowtmp;
1182#endif
1183	} else {
1184#ifdef INET6
1185		if (autoflowlabel)
1186			sc->sc_flowlabel =
1187			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1188#endif
1189	}
1190	SCH_UNLOCK(sch);
1191
1192	/*
1193	 * Do a standard 3-way handshake.
1194	 */
1195	if (syncache_respond(sc) == 0) {
1196		if (tcp_syncookies && tcp_syncookiesonly && sc != &scs)
1197			syncache_free(sc);
1198		else if (sc != &scs)
1199			syncache_insert(sc, sch);   /* locks and unlocks sch */
1200		tcpstat.tcps_sndacks++;
1201		tcpstat.tcps_sndtotal++;
1202	} else {
1203		if (sc != &scs)
1204			syncache_free(sc);
1205		tcpstat.tcps_sc_dropped++;
1206	}
1207
1208done:
1209#ifdef MAC
1210	if (sc == &scs)
1211		mac_destroy_syncache(&maclabel);
1212#endif
1213	*lsop = NULL;
1214	m_freem(m);
1215	return;
1216}
1217
1218static int
1219syncache_respond(struct syncache *sc)
1220{
1221	struct ip *ip = NULL;
1222	struct mbuf *m;
1223	struct tcphdr *th;
1224	int optlen, error;
1225	u_int16_t hlen, tlen, mssopt;
1226	struct tcpopt to;
1227#ifdef INET6
1228	struct ip6_hdr *ip6 = NULL;
1229#endif
1230
1231	hlen =
1232#ifdef INET6
1233	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1234#endif
1235		sizeof(struct ip);
1236	tlen = hlen + sizeof(struct tcphdr);
1237
1238	/* Determine MSS we advertize to other end of connection. */
1239	mssopt = tcp_mssopt(&sc->sc_inc);
1240	if (sc->sc_peer_mss)
1241		mssopt = max( min(sc->sc_peer_mss, mssopt), tcp_minmss);
1242
1243	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1244	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1245	    ("syncache: mbuf too small"));
1246
1247	/* Create the IP+TCP header from scratch. */
1248	m = m_gethdr(M_DONTWAIT, MT_DATA);
1249	if (m == NULL)
1250		return (ENOBUFS);
1251#ifdef MAC
1252	mac_create_mbuf_from_syncache(sc->sc_label, m);
1253#endif
1254	m->m_data += max_linkhdr;
1255	m->m_len = tlen;
1256	m->m_pkthdr.len = tlen;
1257	m->m_pkthdr.rcvif = NULL;
1258
1259#ifdef INET6
1260	if (sc->sc_inc.inc_isipv6) {
1261		ip6 = mtod(m, struct ip6_hdr *);
1262		ip6->ip6_vfc = IPV6_VERSION;
1263		ip6->ip6_nxt = IPPROTO_TCP;
1264		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1265		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1266		ip6->ip6_plen = htons(tlen - hlen);
1267		/* ip6_hlim is set after checksum */
1268		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1269		ip6->ip6_flow |= sc->sc_flowlabel;
1270
1271		th = (struct tcphdr *)(ip6 + 1);
1272	} else
1273#endif
1274	{
1275		ip = mtod(m, struct ip *);
1276		ip->ip_v = IPVERSION;
1277		ip->ip_hl = sizeof(struct ip) >> 2;
1278		ip->ip_len = tlen;
1279		ip->ip_id = 0;
1280		ip->ip_off = 0;
1281		ip->ip_sum = 0;
1282		ip->ip_p = IPPROTO_TCP;
1283		ip->ip_src = sc->sc_inc.inc_laddr;
1284		ip->ip_dst = sc->sc_inc.inc_faddr;
1285		ip->ip_ttl = sc->sc_ip_ttl;
1286		ip->ip_tos = sc->sc_ip_tos;
1287
1288		/*
1289		 * See if we should do MTU discovery.  Route lookups are
1290		 * expensive, so we will only unset the DF bit if:
1291		 *
1292		 *	1) path_mtu_discovery is disabled
1293		 *	2) the SCF_UNREACH flag has been set
1294		 */
1295		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1296		       ip->ip_off |= IP_DF;
1297
1298		th = (struct tcphdr *)(ip + 1);
1299	}
1300	th->th_sport = sc->sc_inc.inc_lport;
1301	th->th_dport = sc->sc_inc.inc_fport;
1302
1303	th->th_seq = htonl(sc->sc_iss);
1304	th->th_ack = htonl(sc->sc_irs + 1);
1305	th->th_off = sizeof(struct tcphdr) >> 2;
1306	th->th_x2 = 0;
1307	th->th_flags = TH_SYN|TH_ACK;
1308	th->th_win = htons(sc->sc_wnd);
1309	th->th_urp = 0;
1310
1311	/* Tack on the TCP options. */
1312	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1313		to.to_flags = 0;
1314
1315		to.to_mss = mssopt;
1316		to.to_flags = TOF_MSS;
1317		if (sc->sc_flags & SCF_WINSCALE) {
1318			to.to_wscale = sc->sc_requested_r_scale;
1319			to.to_flags |= TOF_SCALE;
1320		}
1321		if (sc->sc_flags & SCF_TIMESTAMP) {
1322			/* Virgin timestamp or TCP cookie enhanced one. */
1323			to.to_tsval = sc->sc_ts;
1324			to.to_tsecr = sc->sc_tsreflect;
1325			to.to_flags |= TOF_TS;
1326		}
1327		if (sc->sc_flags & SCF_SACK)
1328			to.to_flags |= TOF_SACKPERM;
1329#ifdef TCP_SIGNATURE
1330		if (sc->sc_flags & SCF_SIGNATURE)
1331			to.to_flags |= TOF_SIGNATURE;
1332#endif
1333		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1334
1335#ifdef TCP_SIGNATURE
1336		tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
1337		    to.to_signature, IPSEC_DIR_OUTBOUND);
1338#endif
1339
1340		/* Adjust headers by option size. */
1341		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1342		m->m_len += optlen;
1343		m->m_pkthdr.len += optlen;
1344#ifdef INET6
1345		if (sc->sc_inc.inc_isipv6)
1346			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1347		else
1348#endif
1349			ip->ip_len += optlen;
1350	} else
1351		optlen = 0;
1352
1353#ifdef INET6
1354	if (sc->sc_inc.inc_isipv6) {
1355		th->th_sum = 0;
1356		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1357				       tlen + optlen - hlen);
1358		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1359		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1360	} else
1361#endif
1362	{
1363		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1364		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1365		m->m_pkthdr.csum_flags = CSUM_TCP;
1366		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1367		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1368	}
1369	return (error);
1370}
1371
1372/*
1373 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1374 * receive and to be able to handle SYN floods from bogus source addresses
1375 * (where we will never receive any reply).  SYN floods try to exhaust all
1376 * our memory and available slots in the SYN cache table to cause a denial
1377 * of service to legitimate users of the local host.
1378 *
1379 * The idea of SYN cookies is to encode and include all necessary information
1380 * about the connection setup state within the SYN-ACK we send back and thus
1381 * to get along without keeping any local state until the ACK to the SYN-ACK
1382 * arrives (if ever).  Everything we need to know should be available from
1383 * the information we encoded in the SYN-ACK.
1384 *
1385 * More information about the theory behind SYN cookies and its first
1386 * discussion and specification can be found at:
1387 *  http://cr.yp.to/syncookies.html    (overview)
1388 *  http://cr.yp.to/syncookies/archive (gory details)
1389 *
1390 * This implementation extends the orginal idea and first implementation
1391 * of FreeBSD by using not only the initial sequence number field to store
1392 * information but also the timestamp field if present.  This way we can
1393 * keep track of the entire state we need to know to recreate the session in
1394 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1395 * these days.  For those that do not we still have to live with the known
1396 * shortcomings of the ISN only SYN cookies.
1397 *
1398 * Cookie layers:
1399 *
1400 * Initial sequence number we send:
1401 * 31|................................|0
1402 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1403 *    D = MD5 Digest (first dword)
1404 *    M = MSS index
1405 *    R = Rotation of secret
1406 *    P = Odd or Even secret
1407 *
1408 * The MD5 Digest is computed with over following parameters:
1409 *  a) randomly rotated secret
1410 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1411 *  c) the received initial sequence number from remote host
1412 *  d) the rotation offset and odd/even bit
1413 *
1414 * Timestamp we send:
1415 * 31|................................|0
1416 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1417 *    D = MD5 Digest (third dword) (only as filler)
1418 *    S = Requested send window scale
1419 *    R = Requested receive window scale
1420 *    A = SACK allowed
1421 *    5 = TCP-MD5 enabled (not implemented yet)
1422 *    XORed with MD5 Digest (forth dword)
1423 *
1424 * The timestamp isn't cryptographically secure and doesn't need to be.
1425 * The double use of the MD5 digest dwords ties it to a specific remote/
1426 * local host/port, remote initial sequence number and our local time
1427 * limited secret.  A received timestamp is reverted (XORed) and then
1428 * the contained MD5 dword is compared to the computed one to ensure the
1429 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1430 * have been tampered with but this isn't different from supplying bogus
1431 * values in the SYN in the first place.
1432 *
1433 * Some problems with SYN cookies remain however:
1434 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1435 * original SYN was accepted, the connection is established.  The second
1436 * SYN is inflight, and if it arrives with an ISN that falls within the
1437 * receive window, the connection is killed.
1438 *
1439 * Notes:
1440 * A heuristic to determine when to accept syn cookies is not necessary.
1441 * An ACK flood would cause the syncookie verification to be attempted,
1442 * but a SYN flood causes syncookies to be generated.  Both are of equal
1443 * cost, so there's no point in trying to optimize the ACK flood case.
1444 * Also, if you don't process certain ACKs for some reason, then all someone
1445 * would have to do is launch a SYN and ACK flood at the same time, which
1446 * would stop cookie verification and defeat the entire purpose of syncookies.
1447 */
1448static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1449
1450static void
1451syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1452    u_int32_t *flowlabel)
1453{
1454	MD5_CTX ctx;
1455	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1456	u_int32_t data;
1457	u_int32_t *secbits;
1458	u_int off, pmss, mss;
1459	int i;
1460
1461	SCH_LOCK_ASSERT(sch);
1462
1463	/* Which of the two secrets to use. */
1464	secbits = sch->sch_oddeven ?
1465			sch->sch_secbits_odd : sch->sch_secbits_even;
1466
1467	/* Reseed secret if too old. */
1468	if (sch->sch_reseed < time_uptime) {
1469		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1470		secbits = sch->sch_oddeven ?
1471				sch->sch_secbits_odd : sch->sch_secbits_even;
1472		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1473			secbits[i] = arc4random();
1474		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1475	}
1476
1477	/* Secret rotation offset. */
1478	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1479
1480	/* Maximum segment size calculation. */
1481	pmss = max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)), tcp_minmss);
1482	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1483		if (tcp_sc_msstab[mss] <= pmss)
1484			break;
1485
1486	/* Fold parameters and MD5 digest into the ISN we will send. */
1487	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1488	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1489	data |= mss << 4;	/* mss, 3 bits */
1490
1491	MD5Init(&ctx);
1492	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1493	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1494	MD5Update(&ctx, secbits, off);
1495	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1496	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1497	MD5Update(&ctx, &data, sizeof(data));
1498	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1499
1500	data |= (md5_buffer[0] << 7);
1501	sc->sc_iss = data;
1502
1503#ifdef INET6
1504	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1505#endif
1506
1507	/* Additional parameters are stored in the timestamp if present. */
1508	if (sc->sc_flags & SCF_TIMESTAMP) {
1509		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1510		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1511		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1512		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1513		data |= md5_buffer[2] << 10;		/* more digest bits */
1514		data ^= md5_buffer[3];
1515		sc->sc_ts = data;
1516		sc->sc_tsoff = data - ticks;		/* after XOR */
1517	}
1518
1519	tcpstat.tcps_sc_sendcookie++;
1520	return;
1521}
1522
1523static struct syncache *
1524syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1525    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1526    struct socket *so)
1527{
1528	MD5_CTX ctx;
1529	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1530	u_int32_t data = 0;
1531	u_int32_t *secbits;
1532	tcp_seq ack, seq;
1533	int off, mss, wnd, flags;
1534
1535	SCH_LOCK_ASSERT(sch);
1536
1537	/*
1538	 * Pull information out of SYN-ACK/ACK and
1539	 * revert sequence number advances.
1540	 */
1541	ack = th->th_ack - 1;
1542	seq = th->th_seq - 1;
1543	off = (ack >> 1) & 0x7;
1544	mss = (ack >> 4) & 0x7;
1545	flags = ack & 0x7f;
1546
1547	/* Which of the two secrets to use. */
1548	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1549
1550	/*
1551	 * The secret wasn't updated for the lifetime of a syncookie,
1552	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1553	 */
1554	if (sch->sch_reseed < time_uptime) {
1555		return (NULL);
1556	}
1557
1558	/* Recompute the digest so we can compare it. */
1559	MD5Init(&ctx);
1560	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1561	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1562	MD5Update(&ctx, secbits, off);
1563	MD5Update(&ctx, inc, sizeof(*inc));
1564	MD5Update(&ctx, &seq, sizeof(seq));
1565	MD5Update(&ctx, &flags, sizeof(flags));
1566	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1567
1568	/* Does the digest part of or ACK'ed ISS match? */
1569	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1570		return (NULL);
1571
1572	/* Does the digest part of our reflected timestamp match? */
1573	if (to->to_flags & TOF_TS) {
1574		data = md5_buffer[3] ^ to->to_tsecr;
1575		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1576			return (NULL);
1577	}
1578
1579	/* Fill in the syncache values. */
1580	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1581	sc->sc_ipopts = NULL;
1582
1583	sc->sc_irs = seq;
1584	sc->sc_iss = ack;
1585
1586#ifdef INET6
1587	if (inc->inc_isipv6) {
1588		if (sotoinpcb(so)->in6p_flags & IN6P_AUTOFLOWLABEL)
1589			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1590	} else
1591#endif
1592	{
1593		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1594		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1595	}
1596
1597	/* Additional parameters that were encoded in the timestamp. */
1598	if (data) {
1599		sc->sc_flags |= SCF_TIMESTAMP;
1600		sc->sc_tsreflect = to->to_tsval;
1601		sc->sc_ts = to->to_tsecr;
1602		sc->sc_tsoff = to->to_tsecr - ticks;
1603		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1604		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1605		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1606		    TCP_MAX_WINSHIFT);
1607		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1608		    TCP_MAX_WINSHIFT);
1609		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1610			sc->sc_flags |= SCF_WINSCALE;
1611	} else
1612		sc->sc_flags |= SCF_NOOPT;
1613
1614	wnd = sbspace(&so->so_rcv);
1615	wnd = imax(wnd, 0);
1616	wnd = imin(wnd, TCP_MAXWIN);
1617	sc->sc_wnd = wnd;
1618
1619	sc->sc_rxmits = 0;
1620	sc->sc_peer_mss = tcp_sc_msstab[mss];
1621
1622	tcpstat.tcps_sc_recvcookie++;
1623	return (sc);
1624}
1625
1626/*
1627 * Returns the current number of syncache entries.  This number
1628 * will probably change before you get around to calling
1629 * syncache_pcblist.
1630 */
1631
1632int
1633syncache_pcbcount(void)
1634{
1635	struct syncache_head *sch;
1636	int count, i;
1637
1638	for (count = 0, i = 0; i < tcp_syncache.hashsize; i++) {
1639		/* No need to lock for a read. */
1640		sch = &tcp_syncache.hashbase[i];
1641		count += sch->sch_length;
1642	}
1643	return count;
1644}
1645
1646/*
1647 * Exports the syncache entries to userland so that netstat can display
1648 * them alongside the other sockets.  This function is intended to be
1649 * called only from tcp_pcblist.
1650 *
1651 * Due to concurrency on an active system, the number of pcbs exported
1652 * may have no relation to max_pcbs.  max_pcbs merely indicates the
1653 * amount of space the caller allocated for this function to use.
1654 */
1655int
1656syncache_pcblist(struct sysctl_req *req, int max_pcbs, int *pcbs_exported)
1657{
1658	struct xtcpcb xt;
1659	struct syncache *sc;
1660	struct syncache_head *sch;
1661	int count, error, i;
1662
1663	for (count = 0, error = 0, i = 0; i < tcp_syncache.hashsize; i++) {
1664		sch = &tcp_syncache.hashbase[i];
1665		SCH_LOCK(sch);
1666		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
1667			if (count >= max_pcbs) {
1668				SCH_UNLOCK(sch);
1669				goto exit;
1670			}
1671			bzero(&xt, sizeof(xt));
1672			xt.xt_len = sizeof(xt);
1673			if (sc->sc_inc.inc_isipv6)
1674				xt.xt_inp.inp_vflag = INP_IPV6;
1675			else
1676				xt.xt_inp.inp_vflag = INP_IPV4;
1677			bcopy(&sc->sc_inc, &xt.xt_inp.inp_inc, sizeof (struct in_conninfo));
1678			xt.xt_tp.t_inpcb = &xt.xt_inp;
1679			xt.xt_tp.t_state = TCPS_SYN_RECEIVED;
1680			xt.xt_socket.xso_protocol = IPPROTO_TCP;
1681			xt.xt_socket.xso_len = sizeof (struct xsocket);
1682			xt.xt_socket.so_type = SOCK_STREAM;
1683			xt.xt_socket.so_state = SS_ISCONNECTING;
1684			error = SYSCTL_OUT(req, &xt, sizeof xt);
1685			if (error) {
1686				SCH_UNLOCK(sch);
1687				goto exit;
1688			}
1689			count++;
1690		}
1691		SCH_UNLOCK(sch);
1692	}
1693exit:
1694	*pcbs_exported = count;
1695	return error;
1696}
1697
1698