tcp_syncache.c revision 170385
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/netinet/tcp_syncache.c 170385 2007-06-06 22:10:12Z andre $
33 */
34
35#include "opt_inet.h"
36#include "opt_inet6.h"
37#include "opt_ipsec.h"
38#include "opt_mac.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/sysctl.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/md5.h>
49#include <sys/proc.h>		/* for proc0 declaration */
50#include <sys/random.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53#include <sys/syslog.h>
54
55#include <vm/uma.h>
56
57#include <net/if.h>
58#include <net/route.h>
59
60#include <netinet/in.h>
61#include <netinet/in_systm.h>
62#include <netinet/ip.h>
63#include <netinet/in_var.h>
64#include <netinet/in_pcb.h>
65#include <netinet/ip_var.h>
66#include <netinet/ip_options.h>
67#ifdef INET6
68#include <netinet/ip6.h>
69#include <netinet/icmp6.h>
70#include <netinet6/nd6.h>
71#include <netinet6/ip6_var.h>
72#include <netinet6/in6_pcb.h>
73#endif
74#include <netinet/tcp.h>
75#include <netinet/tcp_fsm.h>
76#include <netinet/tcp_seq.h>
77#include <netinet/tcp_timer.h>
78#include <netinet/tcp_var.h>
79#ifdef INET6
80#include <netinet6/tcp6_var.h>
81#endif
82
83#ifdef IPSEC
84#include <netinet6/ipsec.h>
85#ifdef INET6
86#include <netinet6/ipsec6.h>
87#endif
88#endif /*IPSEC*/
89
90#ifdef FAST_IPSEC
91#include <netipsec/ipsec.h>
92#ifdef INET6
93#include <netipsec/ipsec6.h>
94#endif
95#include <netipsec/key.h>
96#endif /*FAST_IPSEC*/
97
98#include <machine/in_cksum.h>
99
100#include <security/mac/mac_framework.h>
101
102static int tcp_syncookies = 1;
103SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
104    &tcp_syncookies, 0,
105    "Use TCP SYN cookies if the syncache overflows");
106
107static int tcp_syncookiesonly = 0;
108SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
109    &tcp_syncookiesonly, 0,
110    "Use only TCP SYN cookies");
111
112#define	SYNCOOKIE_SECRET_SIZE	8	/* dwords */
113#define	SYNCOOKIE_LIFETIME	16	/* seconds */
114
115struct syncache {
116	TAILQ_ENTRY(syncache)	sc_hash;
117	struct		in_conninfo sc_inc;	/* addresses */
118	u_long		sc_rxttime;		/* retransmit time */
119	u_int16_t	sc_rxmits;		/* retransmit counter */
120
121	u_int32_t	sc_tsreflect;		/* timestamp to reflect */
122	u_int32_t	sc_ts;			/* our timestamp to send */
123	u_int32_t	sc_tsoff;		/* ts offset w/ syncookies */
124	u_int32_t	sc_flowlabel;		/* IPv6 flowlabel */
125	tcp_seq		sc_irs;			/* seq from peer */
126	tcp_seq		sc_iss;			/* our ISS */
127	struct		mbuf *sc_ipopts;	/* source route */
128
129	u_int16_t	sc_peer_mss;		/* peer's MSS */
130	u_int16_t	sc_wnd;			/* advertised window */
131	u_int8_t	sc_ip_ttl;		/* IPv4 TTL */
132	u_int8_t	sc_ip_tos;		/* IPv4 TOS */
133	u_int8_t	sc_requested_s_scale:4,
134			sc_requested_r_scale:4;
135	u_int8_t	sc_flags;
136#define SCF_NOOPT	0x01			/* no TCP options */
137#define SCF_WINSCALE	0x02			/* negotiated window scaling */
138#define SCF_TIMESTAMP	0x04			/* negotiated timestamps */
139						/* MSS is implicit */
140#define SCF_UNREACH	0x10			/* icmp unreachable received */
141#define SCF_SIGNATURE	0x20			/* send MD5 digests */
142#define SCF_SACK	0x80			/* send SACK option */
143#ifdef MAC
144	struct label	*sc_label;		/* MAC label reference */
145#endif
146};
147
148struct syncache_head {
149	struct mtx	sch_mtx;
150	TAILQ_HEAD(sch_head, syncache)	sch_bucket;
151	struct callout	sch_timer;
152	int		sch_nextc;
153	u_int		sch_length;
154	u_int		sch_oddeven;
155	u_int32_t	sch_secbits_odd[SYNCOOKIE_SECRET_SIZE];
156	u_int32_t	sch_secbits_even[SYNCOOKIE_SECRET_SIZE];
157	u_int		sch_reseed;		/* time_uptime, seconds */
158};
159
160static void	 syncache_drop(struct syncache *, struct syncache_head *);
161static void	 syncache_free(struct syncache *);
162static void	 syncache_insert(struct syncache *, struct syncache_head *);
163struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
164static int	 syncache_respond(struct syncache *);
165static struct	 socket *syncache_socket(struct syncache *, struct socket *,
166		    struct mbuf *m);
167static void	 syncache_timer(void *);
168static void	 syncookie_generate(struct syncache_head *, struct syncache *,
169		    u_int32_t *);
170static struct syncache
171		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
172		    struct syncache *, struct tcpopt *, struct tcphdr *,
173		    struct socket *);
174
175/*
176 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
177 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
178 * the odds are that the user has given up attempting to connect by then.
179 */
180#define SYNCACHE_MAXREXMTS		3
181
182/* Arbitrary values */
183#define TCP_SYNCACHE_HASHSIZE		512
184#define TCP_SYNCACHE_BUCKETLIMIT	30
185
186struct tcp_syncache {
187	struct	syncache_head *hashbase;
188	uma_zone_t zone;
189	u_int	hashsize;
190	u_int	hashmask;
191	u_int	bucket_limit;
192	u_int	cache_count;		/* XXX: unprotected */
193	u_int	cache_limit;
194	u_int	rexmt_limit;
195	u_int	hash_secret;
196};
197static struct tcp_syncache tcp_syncache;
198
199SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
200
201SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
202     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
203
204SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
205     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
206
207SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
208     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
209
210SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
211     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
212
213SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
214     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
215
216int	tcp_sc_rst_sock_fail = 1;
217SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rst_on_sock_fail, CTLFLAG_RW,
218     &tcp_sc_rst_sock_fail, 0, "Send reset on socket allocation failure");
219
220static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
221
222#define SYNCACHE_HASH(inc, mask)					\
223	((tcp_syncache.hash_secret ^					\
224	  (inc)->inc_faddr.s_addr ^					\
225	  ((inc)->inc_faddr.s_addr >> 16) ^				\
226	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
227
228#define SYNCACHE_HASH6(inc, mask)					\
229	((tcp_syncache.hash_secret ^					\
230	  (inc)->inc6_faddr.s6_addr32[0] ^				\
231	  (inc)->inc6_faddr.s6_addr32[3] ^				\
232	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
233
234#define ENDPTS_EQ(a, b) (						\
235	(a)->ie_fport == (b)->ie_fport &&				\
236	(a)->ie_lport == (b)->ie_lport &&				\
237	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
238	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
239)
240
241#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
242
243#define SYNCACHE_TIMEOUT(sc, sch, co) do {				\
244	(sc)->sc_rxmits++;						\
245	(sc)->sc_rxttime = ticks +					\
246		TCPTV_RTOBASE * tcp_backoff[(sc)->sc_rxmits - 1];	\
247	if ((sch)->sch_nextc > (sc)->sc_rxttime)			\
248		(sch)->sch_nextc = (sc)->sc_rxttime;			\
249	if (!TAILQ_EMPTY(&(sch)->sch_bucket) && !(co))			\
250		callout_reset(&(sch)->sch_timer,			\
251			(sch)->sch_nextc - ticks,			\
252			syncache_timer, (void *)(sch));			\
253} while (0)
254
255#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
256#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
257#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
258
259/*
260 * Requires the syncache entry to be already removed from the bucket list.
261 */
262static void
263syncache_free(struct syncache *sc)
264{
265	if (sc->sc_ipopts)
266		(void) m_free(sc->sc_ipopts);
267#ifdef MAC
268	mac_destroy_syncache(&sc->sc_label);
269#endif
270
271	uma_zfree(tcp_syncache.zone, sc);
272}
273
274void
275syncache_init(void)
276{
277	int i;
278
279	tcp_syncache.cache_count = 0;
280	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
281	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
282	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
283	tcp_syncache.hash_secret = arc4random();
284
285	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
286	    &tcp_syncache.hashsize);
287	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
288	    &tcp_syncache.bucket_limit);
289	if (!powerof2(tcp_syncache.hashsize) || tcp_syncache.hashsize == 0) {
290		printf("WARNING: syncache hash size is not a power of 2.\n");
291		tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
292	}
293	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
294
295	/* Set limits. */
296	tcp_syncache.cache_limit =
297	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
298	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
299	    &tcp_syncache.cache_limit);
300
301	/* Allocate the hash table. */
302	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
303	    tcp_syncache.hashsize * sizeof(struct syncache_head),
304	    M_SYNCACHE, M_WAITOK | M_ZERO);
305
306	/* Initialize the hash buckets. */
307	for (i = 0; i < tcp_syncache.hashsize; i++) {
308		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
309		mtx_init(&tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
310			 NULL, MTX_DEF);
311		callout_init_mtx(&tcp_syncache.hashbase[i].sch_timer,
312			 &tcp_syncache.hashbase[i].sch_mtx, 0);
313		tcp_syncache.hashbase[i].sch_length = 0;
314	}
315
316	/* Create the syncache entry zone. */
317	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
318	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
319	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
320}
321
322/*
323 * Inserts a syncache entry into the specified bucket row.
324 * Locks and unlocks the syncache_head autonomously.
325 */
326static void
327syncache_insert(struct syncache *sc, struct syncache_head *sch)
328{
329	struct syncache *sc2;
330
331	SCH_LOCK(sch);
332
333	/*
334	 * Make sure that we don't overflow the per-bucket limit.
335	 * If the bucket is full, toss the oldest element.
336	 */
337	if (sch->sch_length >= tcp_syncache.bucket_limit) {
338		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
339			("sch->sch_length incorrect"));
340		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
341		syncache_drop(sc2, sch);
342		tcpstat.tcps_sc_bucketoverflow++;
343	}
344
345	/* Put it into the bucket. */
346	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
347	sch->sch_length++;
348
349	/* Reinitialize the bucket row's timer. */
350	SYNCACHE_TIMEOUT(sc, sch, 1);
351
352	SCH_UNLOCK(sch);
353
354	tcp_syncache.cache_count++;
355	tcpstat.tcps_sc_added++;
356}
357
358/*
359 * Remove and free entry from syncache bucket row.
360 * Expects locked syncache head.
361 */
362static void
363syncache_drop(struct syncache *sc, struct syncache_head *sch)
364{
365
366	SCH_LOCK_ASSERT(sch);
367
368	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
369	sch->sch_length--;
370
371	syncache_free(sc);
372	tcp_syncache.cache_count--;
373}
374
375/*
376 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
377 * If we have retransmitted an entry the maximum number of times, expire it.
378 * One separate timer for each bucket row.
379 */
380static void
381syncache_timer(void *xsch)
382{
383	struct syncache_head *sch = (struct syncache_head *)xsch;
384	struct syncache *sc, *nsc;
385	int tick = ticks;
386	char *s;
387
388	/* NB: syncache_head has already been locked by the callout. */
389	SCH_LOCK_ASSERT(sch);
390
391	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
392		/*
393		 * We do not check if the listen socket still exists
394		 * and accept the case where the listen socket may be
395		 * gone by the time we resend the SYN/ACK.  We do
396		 * not expect this to happens often. If it does,
397		 * then the RST will be sent by the time the remote
398		 * host does the SYN/ACK->ACK.
399		 */
400		if (sc->sc_rxttime >= tick) {
401			if (sc->sc_rxttime < sch->sch_nextc)
402				sch->sch_nextc = sc->sc_rxttime;
403			continue;
404		}
405
406		if (sc->sc_rxmits > tcp_syncache.rexmt_limit) {
407			if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
408				log(LOG_DEBUG, "%s; %s: Response timeout\n",
409				    s, __func__);
410				free(s, M_TCPLOG);
411			}
412			syncache_drop(sc, sch);
413			tcpstat.tcps_sc_stale++;
414			continue;
415		}
416
417		(void) syncache_respond(sc);
418		tcpstat.tcps_sc_retransmitted++;
419		SYNCACHE_TIMEOUT(sc, sch, 0);
420	}
421	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
422		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
423			syncache_timer, (void *)(sch));
424}
425
426/*
427 * Find an entry in the syncache.
428 * Returns always with locked syncache_head plus a matching entry or NULL.
429 */
430struct syncache *
431syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
432{
433	struct syncache *sc;
434	struct syncache_head *sch;
435
436#ifdef INET6
437	if (inc->inc_isipv6) {
438		sch = &tcp_syncache.hashbase[
439		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
440		*schp = sch;
441
442		SCH_LOCK(sch);
443
444		/* Circle through bucket row to find matching entry. */
445		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
446			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
447				return (sc);
448		}
449	} else
450#endif
451	{
452		sch = &tcp_syncache.hashbase[
453		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
454		*schp = sch;
455
456		SCH_LOCK(sch);
457
458		/* Circle through bucket row to find matching entry. */
459		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
460#ifdef INET6
461			if (sc->sc_inc.inc_isipv6)
462				continue;
463#endif
464			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
465				return (sc);
466		}
467	}
468	SCH_LOCK_ASSERT(*schp);
469	return (NULL);			/* always returns with locked sch */
470}
471
472/*
473 * This function is called when we get a RST for a
474 * non-existent connection, so that we can see if the
475 * connection is in the syn cache.  If it is, zap it.
476 */
477void
478syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
479{
480	struct syncache *sc;
481	struct syncache_head *sch;
482
483	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
484	SCH_LOCK_ASSERT(sch);
485	if (sc == NULL)
486		goto done;
487
488	/*
489	 * If the RST bit is set, check the sequence number to see
490	 * if this is a valid reset segment.
491	 * RFC 793 page 37:
492	 *   In all states except SYN-SENT, all reset (RST) segments
493	 *   are validated by checking their SEQ-fields.  A reset is
494	 *   valid if its sequence number is in the window.
495	 *
496	 *   The sequence number in the reset segment is normally an
497	 *   echo of our outgoing acknowlegement numbers, but some hosts
498	 *   send a reset with the sequence number at the rightmost edge
499	 *   of our receive window, and we have to handle this case.
500	 */
501	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
502	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
503		syncache_drop(sc, sch);
504		tcpstat.tcps_sc_reset++;
505	}
506done:
507	SCH_UNLOCK(sch);
508}
509
510void
511syncache_badack(struct in_conninfo *inc)
512{
513	struct syncache *sc;
514	struct syncache_head *sch;
515
516	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
517	SCH_LOCK_ASSERT(sch);
518	if (sc != NULL) {
519		syncache_drop(sc, sch);
520		tcpstat.tcps_sc_badack++;
521	}
522	SCH_UNLOCK(sch);
523}
524
525void
526syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
527{
528	struct syncache *sc;
529	struct syncache_head *sch;
530
531	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
532	SCH_LOCK_ASSERT(sch);
533	if (sc == NULL)
534		goto done;
535
536	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
537	if (ntohl(th->th_seq) != sc->sc_iss)
538		goto done;
539
540	/*
541	 * If we've rertransmitted 3 times and this is our second error,
542	 * we remove the entry.  Otherwise, we allow it to continue on.
543	 * This prevents us from incorrectly nuking an entry during a
544	 * spurious network outage.
545	 *
546	 * See tcp_notify().
547	 */
548	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
549		sc->sc_flags |= SCF_UNREACH;
550		goto done;
551	}
552	syncache_drop(sc, sch);
553	tcpstat.tcps_sc_unreach++;
554done:
555	SCH_UNLOCK(sch);
556}
557
558/*
559 * Build a new TCP socket structure from a syncache entry.
560 */
561static struct socket *
562syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
563{
564	struct inpcb *inp = NULL;
565	struct socket *so;
566	struct tcpcb *tp;
567	char *s;
568
569	NET_ASSERT_GIANT();
570	INP_INFO_WLOCK_ASSERT(&tcbinfo);
571
572	/*
573	 * Ok, create the full blown connection, and set things up
574	 * as they would have been set up if we had created the
575	 * connection when the SYN arrived.  If we can't create
576	 * the connection, abort it.
577	 */
578	so = sonewconn(lso, SS_ISCONNECTED);
579	if (so == NULL) {
580		/*
581		 * Drop the connection; we will either send a RST or
582		 * have the peer retransmit its SYN again after its
583		 * RTO and try again.
584		 */
585		tcpstat.tcps_listendrop++;
586		if ((s = tcp_log_addrs(&sc->sc_inc, NULL, NULL, NULL))) {
587			log(LOG_DEBUG, "%s; %s: Socket create failed "
588			    "due to limits or memory shortage\n",
589			    s, __func__);
590			free(s, M_TCPLOG);
591		}
592		goto abort2;
593	}
594#ifdef MAC
595	SOCK_LOCK(so);
596	mac_set_socket_peer_from_mbuf(m, so);
597	SOCK_UNLOCK(so);
598#endif
599
600	inp = sotoinpcb(so);
601	INP_LOCK(inp);
602
603	/* Insert new socket into PCB hash list. */
604	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
605#ifdef INET6
606	if (sc->sc_inc.inc_isipv6) {
607		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
608	} else {
609		inp->inp_vflag &= ~INP_IPV6;
610		inp->inp_vflag |= INP_IPV4;
611#endif
612		inp->inp_laddr = sc->sc_inc.inc_laddr;
613#ifdef INET6
614	}
615#endif
616	inp->inp_lport = sc->sc_inc.inc_lport;
617	if (in_pcbinshash(inp) != 0) {
618		/*
619		 * Undo the assignments above if we failed to
620		 * put the PCB on the hash lists.
621		 */
622#ifdef INET6
623		if (sc->sc_inc.inc_isipv6)
624			inp->in6p_laddr = in6addr_any;
625		else
626#endif
627			inp->inp_laddr.s_addr = INADDR_ANY;
628		inp->inp_lport = 0;
629		goto abort;
630	}
631#ifdef IPSEC
632	/* Copy old policy into new socket's. */
633	if (ipsec_copy_pcbpolicy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
634		printf("syncache_socket: could not copy policy\n");
635#endif
636#ifdef FAST_IPSEC
637	/* Copy old policy into new socket's. */
638	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
639		printf("syncache_socket: could not copy policy\n");
640#endif
641#ifdef INET6
642	if (sc->sc_inc.inc_isipv6) {
643		struct inpcb *oinp = sotoinpcb(lso);
644		struct in6_addr laddr6;
645		struct sockaddr_in6 sin6;
646		/*
647		 * Inherit socket options from the listening socket.
648		 * Note that in6p_inputopts are not (and should not be)
649		 * copied, since it stores previously received options and is
650		 * used to detect if each new option is different than the
651		 * previous one and hence should be passed to a user.
652		 * If we copied in6p_inputopts, a user would not be able to
653		 * receive options just after calling the accept system call.
654		 */
655		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
656		if (oinp->in6p_outputopts)
657			inp->in6p_outputopts =
658			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
659
660		sin6.sin6_family = AF_INET6;
661		sin6.sin6_len = sizeof(sin6);
662		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
663		sin6.sin6_port = sc->sc_inc.inc_fport;
664		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
665		laddr6 = inp->in6p_laddr;
666		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
667			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
668		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
669		    thread0.td_ucred)) {
670			inp->in6p_laddr = laddr6;
671			goto abort;
672		}
673		/* Override flowlabel from in6_pcbconnect. */
674		inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
675		inp->in6p_flowinfo |= sc->sc_flowlabel;
676	} else
677#endif
678	{
679		struct in_addr laddr;
680		struct sockaddr_in sin;
681
682		inp->inp_options = ip_srcroute(m);
683		if (inp->inp_options == NULL) {
684			inp->inp_options = sc->sc_ipopts;
685			sc->sc_ipopts = NULL;
686		}
687
688		sin.sin_family = AF_INET;
689		sin.sin_len = sizeof(sin);
690		sin.sin_addr = sc->sc_inc.inc_faddr;
691		sin.sin_port = sc->sc_inc.inc_fport;
692		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
693		laddr = inp->inp_laddr;
694		if (inp->inp_laddr.s_addr == INADDR_ANY)
695			inp->inp_laddr = sc->sc_inc.inc_laddr;
696		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
697		    thread0.td_ucred)) {
698			inp->inp_laddr = laddr;
699			goto abort;
700		}
701	}
702	tp = intotcpcb(inp);
703	tp->t_state = TCPS_SYN_RECEIVED;
704	tp->iss = sc->sc_iss;
705	tp->irs = sc->sc_irs;
706	tcp_rcvseqinit(tp);
707	tcp_sendseqinit(tp);
708	tp->snd_wl1 = sc->sc_irs;
709	tp->snd_max = tp->iss + 1;
710	tp->snd_nxt = tp->iss + 1;
711	tp->rcv_up = sc->sc_irs + 1;
712	tp->rcv_wnd = sc->sc_wnd;
713	tp->rcv_adv += tp->rcv_wnd;
714	tp->last_ack_sent = tp->rcv_nxt;
715
716	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
717	if (sc->sc_flags & SCF_NOOPT)
718		tp->t_flags |= TF_NOOPT;
719	else {
720		if (sc->sc_flags & SCF_WINSCALE) {
721			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
722			tp->snd_scale = sc->sc_requested_s_scale;
723			tp->request_r_scale = sc->sc_requested_r_scale;
724		}
725		if (sc->sc_flags & SCF_TIMESTAMP) {
726			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
727			tp->ts_recent = sc->sc_tsreflect;
728			tp->ts_recent_age = ticks;
729			tp->ts_offset = sc->sc_tsoff;
730		}
731#ifdef TCP_SIGNATURE
732		if (sc->sc_flags & SCF_SIGNATURE)
733			tp->t_flags |= TF_SIGNATURE;
734#endif
735		if (sc->sc_flags & SCF_SACK)
736			tp->t_flags |= TF_SACK_PERMIT;
737	}
738
739	/*
740	 * Set up MSS and get cached values from tcp_hostcache.
741	 * This might overwrite some of the defaults we just set.
742	 */
743	tcp_mss(tp, sc->sc_peer_mss);
744
745	/*
746	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
747	 */
748	if (sc->sc_rxmits > 1)
749		tp->snd_cwnd = tp->t_maxseg;
750	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
751
752	INP_UNLOCK(inp);
753
754	tcpstat.tcps_accepts++;
755	return (so);
756
757abort:
758	INP_UNLOCK(inp);
759abort2:
760	if (so != NULL)
761		soabort(so);
762	return (NULL);
763}
764
765/*
766 * This function gets called when we receive an ACK for a
767 * socket in the LISTEN state.  We look up the connection
768 * in the syncache, and if its there, we pull it out of
769 * the cache and turn it into a full-blown connection in
770 * the SYN-RECEIVED state.
771 */
772int
773syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
774    struct socket **lsop, struct mbuf *m)
775{
776	struct syncache *sc;
777	struct syncache_head *sch;
778	struct syncache scs;
779	char *s;
780
781	/*
782	 * Global TCP locks are held because we manipulate the PCB lists
783	 * and create a new socket.
784	 */
785	INP_INFO_WLOCK_ASSERT(&tcbinfo);
786	KASSERT((th->th_flags & (TH_RST|TH_ACK|TH_SYN)) == TH_ACK,
787	    ("%s: can handle only ACK", __func__));
788
789	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
790	SCH_LOCK_ASSERT(sch);
791	if (sc == NULL) {
792		/*
793		 * There is no syncache entry, so see if this ACK is
794		 * a returning syncookie.  To do this, first:
795		 *  A. See if this socket has had a syncache entry dropped in
796		 *     the past.  We don't want to accept a bogus syncookie
797		 *     if we've never received a SYN.
798		 *  B. check that the syncookie is valid.  If it is, then
799		 *     cobble up a fake syncache entry, and return.
800		 */
801		if (!tcp_syncookies) {
802			SCH_UNLOCK(sch);
803			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
804				log(LOG_DEBUG, "%s; %s: Spurious ACK, "
805				    "segment rejected (syncookies disabled)\n",
806				    s, __func__);
807			goto failed;
808		}
809		bzero(&scs, sizeof(scs));
810		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
811		SCH_UNLOCK(sch);
812		if (sc == NULL) {
813			if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
814				log(LOG_DEBUG, "%s; %s: Segment failed "
815				    "SYNCOOKIE authentication, segment rejected "
816				    "(probably spoofed)\n", s, __func__);
817			goto failed;
818		}
819		tcpstat.tcps_sc_recvcookie++;
820	} else {
821		/* Pull out the entry to unlock the bucket row. */
822		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
823		sch->sch_length--;
824		tcp_syncache.cache_count--;
825		SCH_UNLOCK(sch);
826	}
827
828	/*
829	 * Segment validation:
830	 * ACK must match our initial sequence number + 1 (the SYN|ACK).
831	 */
832	if (th->th_ack != sc->sc_iss + 1) {
833		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
834			log(LOG_DEBUG, "%s; %s: ACK %u != ISS+1 %u, segment "
835			    "rejected\n", s, __func__, th->th_ack, sc->sc_iss);
836		goto failed;
837	}
838	/*
839	 * The SEQ must match the received initial receive sequence
840	 * number + 1 (the SYN) because we didn't ACK any data that
841	 * may have come with the SYN.
842	 */
843	if (th->th_seq != sc->sc_irs + 1) {
844		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
845			log(LOG_DEBUG, "%s; %s: SEQ %u != IRS+1 %u, segment "
846			    "rejected\n", s, __func__, th->th_seq, sc->sc_irs);
847		goto failed;
848	}
849	/*
850	 * If timestamps were present in the SYN and we accepted
851	 * them in our SYN|ACK we require them to be present from
852	 * now on.  And vice versa.
853	 */
854	if ((sc->sc_flags & SCF_TIMESTAMP) && !(to->to_flags & TOF_TS)) {
855		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
856			log(LOG_DEBUG, "%s; %s: Timestamp missing, "
857			    "segment rejected\n", s, __func__);
858		goto failed;
859	}
860	if (!(sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS)) {
861		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
862			log(LOG_DEBUG, "%s; %s: Timestamp not expected, "
863			    "segment rejected\n", s, __func__);
864		goto failed;
865	}
866	/*
867	 * If timestamps were negotiated the reflected timestamp
868	 * must be equal to what we actually sent in the SYN|ACK.
869	 */
870	if ((to->to_flags & TOF_TS) && to->to_tsecr != sc->sc_ts) {
871		if ((s = tcp_log_addrs(inc, th, NULL, NULL)))
872			log(LOG_DEBUG, "%s; %s: TSECR %u != TS %u, "
873			    "segment rejected\n",
874			    s, __func__, to->to_tsecr, sc->sc_ts);
875		goto failed;
876	}
877
878	*lsop = syncache_socket(sc, *lsop, m);
879
880	if (*lsop == NULL)
881		tcpstat.tcps_sc_aborted++;
882	else
883		tcpstat.tcps_sc_completed++;
884
885	if (sc != &scs)
886		syncache_free(sc);
887	return (1);
888failed:
889	if (sc != NULL && sc != &scs)
890		syncache_free(sc);
891	if (s != NULL)
892		free(s, M_TCPLOG);
893	*lsop = NULL;
894	return (0);
895}
896
897/*
898 * Given a LISTEN socket and an inbound SYN request, add
899 * this to the syn cache, and send back a segment:
900 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
901 * to the source.
902 *
903 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
904 * Doing so would require that we hold onto the data and deliver it
905 * to the application.  However, if we are the target of a SYN-flood
906 * DoS attack, an attacker could send data which would eventually
907 * consume all available buffer space if it were ACKed.  By not ACKing
908 * the data, we avoid this DoS scenario.
909 */
910void
911syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
912    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
913{
914	struct tcpcb *tp;
915	struct socket *so;
916	struct syncache *sc = NULL;
917	struct syncache_head *sch;
918	struct mbuf *ipopts = NULL;
919	u_int32_t flowtmp;
920	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
921#ifdef INET6
922	int autoflowlabel = 0;
923#endif
924#ifdef MAC
925	struct label *maclabel;
926#endif
927	struct syncache scs;
928
929	INP_INFO_WLOCK_ASSERT(&tcbinfo);
930	INP_LOCK_ASSERT(inp);			/* listen socket */
931
932	/*
933	 * Combine all so/tp operations very early to drop the INP lock as
934	 * soon as possible.
935	 */
936	so = *lsop;
937	tp = sototcpcb(so);
938
939#ifdef INET6
940	if (inc->inc_isipv6 &&
941	    (inp->in6p_flags & IN6P_AUTOFLOWLABEL))
942		autoflowlabel = 1;
943#endif
944	ip_ttl = inp->inp_ip_ttl;
945	ip_tos = inp->inp_ip_tos;
946	win = sbspace(&so->so_rcv);
947	sb_hiwat = so->so_rcv.sb_hiwat;
948	noopt = (tp->t_flags & TF_NOOPT);
949
950	so = NULL;
951	tp = NULL;
952
953#ifdef MAC
954	if (mac_init_syncache(&maclabel) != 0) {
955		INP_UNLOCK(inp);
956		INP_INFO_WUNLOCK(&tcbinfo);
957		goto done;
958	} else
959		mac_init_syncache_from_inpcb(maclabel, inp);
960#endif
961	INP_UNLOCK(inp);
962	INP_INFO_WUNLOCK(&tcbinfo);
963
964	/*
965	 * Remember the IP options, if any.
966	 */
967#ifdef INET6
968	if (!inc->inc_isipv6)
969#endif
970		ipopts = ip_srcroute(m);
971
972	/*
973	 * See if we already have an entry for this connection.
974	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
975	 *
976	 * XXX: should the syncache be re-initialized with the contents
977	 * of the new SYN here (which may have different options?)
978	 */
979	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
980	SCH_LOCK_ASSERT(sch);
981	if (sc != NULL) {
982		tcpstat.tcps_sc_dupsyn++;
983		if (ipopts) {
984			/*
985			 * If we were remembering a previous source route,
986			 * forget it and use the new one we've been given.
987			 */
988			if (sc->sc_ipopts)
989				(void) m_free(sc->sc_ipopts);
990			sc->sc_ipopts = ipopts;
991		}
992		/*
993		 * Update timestamp if present.
994		 */
995		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
996			sc->sc_tsreflect = to->to_tsval;
997		else
998			sc->sc_flags &= ~SCF_TIMESTAMP;
999#ifdef MAC
1000		/*
1001		 * Since we have already unconditionally allocated label
1002		 * storage, free it up.  The syncache entry will already
1003		 * have an initialized label we can use.
1004		 */
1005		mac_destroy_syncache(&maclabel);
1006		KASSERT(sc->sc_label != NULL,
1007		    ("%s: label not initialized", __func__));
1008#endif
1009		if (syncache_respond(sc) == 0) {
1010			SYNCACHE_TIMEOUT(sc, sch, 1);
1011			tcpstat.tcps_sndacks++;
1012			tcpstat.tcps_sndtotal++;
1013		}
1014		SCH_UNLOCK(sch);
1015		goto done;
1016	}
1017
1018	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
1019	if (sc == NULL) {
1020		/*
1021		 * The zone allocator couldn't provide more entries.
1022		 * Treat this as if the cache was full; drop the oldest
1023		 * entry and insert the new one.
1024		 */
1025		tcpstat.tcps_sc_zonefail++;
1026		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
1027			syncache_drop(sc, sch);
1028		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
1029		if (sc == NULL) {
1030			if (tcp_syncookies) {
1031				bzero(&scs, sizeof(scs));
1032				sc = &scs;
1033			} else {
1034				SCH_UNLOCK(sch);
1035				if (ipopts)
1036					(void) m_free(ipopts);
1037				goto done;
1038			}
1039		}
1040	}
1041
1042	/*
1043	 * Fill in the syncache values.
1044	 */
1045#ifdef MAC
1046	sc->sc_label = maclabel;
1047#endif
1048	sc->sc_ipopts = ipopts;
1049	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1050#ifdef INET6
1051	if (!inc->inc_isipv6)
1052#endif
1053	{
1054		sc->sc_ip_tos = ip_tos;
1055		sc->sc_ip_ttl = ip_ttl;
1056	}
1057
1058	sc->sc_irs = th->th_seq;
1059	sc->sc_iss = arc4random();
1060	sc->sc_flags = 0;
1061	sc->sc_flowlabel = 0;
1062
1063	/*
1064	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1065	 * win was derived from socket earlier in the function.
1066	 */
1067	win = imax(win, 0);
1068	win = imin(win, TCP_MAXWIN);
1069	sc->sc_wnd = win;
1070
1071	if (tcp_do_rfc1323) {
1072		/*
1073		 * A timestamp received in a SYN makes
1074		 * it ok to send timestamp requests and replies.
1075		 */
1076		if (to->to_flags & TOF_TS) {
1077			sc->sc_tsreflect = to->to_tsval;
1078			sc->sc_ts = ticks;
1079			sc->sc_flags |= SCF_TIMESTAMP;
1080		}
1081		if (to->to_flags & TOF_SCALE) {
1082			int wscale = 0;
1083
1084			/*
1085			 * Compute proper scaling value from buffer space.
1086			 * Leave enough room for the socket buffer to grow
1087			 * with auto sizing.  This allows us to scale the
1088			 * receive buffer over a wide range while not losing
1089			 * any efficiency or fine granularity.
1090			 *
1091			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1092			 * or <SYN,ACK>) segment itself is never scaled.
1093			 */
1094			while (wscale < TCP_MAX_WINSHIFT &&
1095			    (0x1 << wscale) < tcp_minmss)
1096				wscale++;
1097			sc->sc_requested_r_scale = wscale;
1098			sc->sc_requested_s_scale = to->to_wscale;
1099			sc->sc_flags |= SCF_WINSCALE;
1100		}
1101	}
1102#ifdef TCP_SIGNATURE
1103	/*
1104	 * If listening socket requested TCP digests, and received SYN
1105	 * contains the option, flag this in the syncache so that
1106	 * syncache_respond() will do the right thing with the SYN+ACK.
1107	 * XXX: Currently we always record the option by default and will
1108	 * attempt to use it in syncache_respond().
1109	 */
1110	if (to->to_flags & TOF_SIGNATURE)
1111		sc->sc_flags |= SCF_SIGNATURE;
1112#endif
1113	if (to->to_flags & TOF_SACK)
1114		sc->sc_flags |= SCF_SACK;
1115	if (to->to_flags & TOF_MSS)
1116		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1117	if (noopt)
1118		sc->sc_flags |= SCF_NOOPT;
1119
1120	if (tcp_syncookies) {
1121		syncookie_generate(sch, sc, &flowtmp);
1122#ifdef INET6
1123		if (autoflowlabel)
1124			sc->sc_flowlabel = flowtmp;
1125#endif
1126	} else {
1127#ifdef INET6
1128		if (autoflowlabel)
1129			sc->sc_flowlabel =
1130			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1131#endif
1132	}
1133	SCH_UNLOCK(sch);
1134
1135	/*
1136	 * Do a standard 3-way handshake.
1137	 */
1138	if (syncache_respond(sc) == 0) {
1139		if (tcp_syncookies && tcp_syncookiesonly && sc != &scs)
1140			syncache_free(sc);
1141		else if (sc != &scs)
1142			syncache_insert(sc, sch);   /* locks and unlocks sch */
1143		tcpstat.tcps_sndacks++;
1144		tcpstat.tcps_sndtotal++;
1145	} else {
1146		if (sc != &scs)
1147			syncache_free(sc);
1148		tcpstat.tcps_sc_dropped++;
1149	}
1150
1151done:
1152#ifdef MAC
1153	if (sc == &scs)
1154		mac_destroy_syncache(&maclabel);
1155#endif
1156	*lsop = NULL;
1157	m_freem(m);
1158	return;
1159}
1160
1161static int
1162syncache_respond(struct syncache *sc)
1163{
1164	struct ip *ip = NULL;
1165	struct mbuf *m;
1166	struct tcphdr *th;
1167	int optlen, error;
1168	u_int16_t hlen, tlen, mssopt;
1169	struct tcpopt to;
1170#ifdef INET6
1171	struct ip6_hdr *ip6 = NULL;
1172#endif
1173
1174	hlen =
1175#ifdef INET6
1176	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1177#endif
1178		sizeof(struct ip);
1179	tlen = hlen + sizeof(struct tcphdr);
1180
1181	/* Determine MSS we advertize to other end of connection. */
1182	mssopt = tcp_mssopt(&sc->sc_inc);
1183	if (sc->sc_peer_mss)
1184		mssopt = max( min(sc->sc_peer_mss, mssopt), tcp_minmss);
1185
1186	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1187	KASSERT(max_linkhdr + tlen + TCP_MAXOLEN <= MHLEN,
1188	    ("syncache: mbuf too small"));
1189
1190	/* Create the IP+TCP header from scratch. */
1191	m = m_gethdr(M_DONTWAIT, MT_DATA);
1192	if (m == NULL)
1193		return (ENOBUFS);
1194#ifdef MAC
1195	mac_create_mbuf_from_syncache(sc->sc_label, m);
1196#endif
1197	m->m_data += max_linkhdr;
1198	m->m_len = tlen;
1199	m->m_pkthdr.len = tlen;
1200	m->m_pkthdr.rcvif = NULL;
1201
1202#ifdef INET6
1203	if (sc->sc_inc.inc_isipv6) {
1204		ip6 = mtod(m, struct ip6_hdr *);
1205		ip6->ip6_vfc = IPV6_VERSION;
1206		ip6->ip6_nxt = IPPROTO_TCP;
1207		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1208		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1209		ip6->ip6_plen = htons(tlen - hlen);
1210		/* ip6_hlim is set after checksum */
1211		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1212		ip6->ip6_flow |= sc->sc_flowlabel;
1213
1214		th = (struct tcphdr *)(ip6 + 1);
1215	} else
1216#endif
1217	{
1218		ip = mtod(m, struct ip *);
1219		ip->ip_v = IPVERSION;
1220		ip->ip_hl = sizeof(struct ip) >> 2;
1221		ip->ip_len = tlen;
1222		ip->ip_id = 0;
1223		ip->ip_off = 0;
1224		ip->ip_sum = 0;
1225		ip->ip_p = IPPROTO_TCP;
1226		ip->ip_src = sc->sc_inc.inc_laddr;
1227		ip->ip_dst = sc->sc_inc.inc_faddr;
1228		ip->ip_ttl = sc->sc_ip_ttl;
1229		ip->ip_tos = sc->sc_ip_tos;
1230
1231		/*
1232		 * See if we should do MTU discovery.  Route lookups are
1233		 * expensive, so we will only unset the DF bit if:
1234		 *
1235		 *	1) path_mtu_discovery is disabled
1236		 *	2) the SCF_UNREACH flag has been set
1237		 */
1238		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1239		       ip->ip_off |= IP_DF;
1240
1241		th = (struct tcphdr *)(ip + 1);
1242	}
1243	th->th_sport = sc->sc_inc.inc_lport;
1244	th->th_dport = sc->sc_inc.inc_fport;
1245
1246	th->th_seq = htonl(sc->sc_iss);
1247	th->th_ack = htonl(sc->sc_irs + 1);
1248	th->th_off = sizeof(struct tcphdr) >> 2;
1249	th->th_x2 = 0;
1250	th->th_flags = TH_SYN|TH_ACK;
1251	th->th_win = htons(sc->sc_wnd);
1252	th->th_urp = 0;
1253
1254	/* Tack on the TCP options. */
1255	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1256		to.to_flags = 0;
1257
1258		to.to_mss = mssopt;
1259		to.to_flags = TOF_MSS;
1260		if (sc->sc_flags & SCF_WINSCALE) {
1261			to.to_wscale = sc->sc_requested_r_scale;
1262			to.to_flags |= TOF_SCALE;
1263		}
1264		if (sc->sc_flags & SCF_TIMESTAMP) {
1265			/* Virgin timestamp or TCP cookie enhanced one. */
1266			to.to_tsval = sc->sc_ts;
1267			to.to_tsecr = sc->sc_tsreflect;
1268			to.to_flags |= TOF_TS;
1269		}
1270		if (sc->sc_flags & SCF_SACK)
1271			to.to_flags |= TOF_SACKPERM;
1272#ifdef TCP_SIGNATURE
1273		if (sc->sc_flags & SCF_SIGNATURE)
1274			to.to_flags |= TOF_SIGNATURE;
1275#endif
1276		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1277
1278#ifdef TCP_SIGNATURE
1279		tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
1280		    to.to_signature, IPSEC_DIR_OUTBOUND);
1281#endif
1282
1283		/* Adjust headers by option size. */
1284		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1285		m->m_len += optlen;
1286		m->m_pkthdr.len += optlen;
1287#ifdef INET6
1288		if (sc->sc_inc.inc_isipv6)
1289			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1290		else
1291#endif
1292			ip->ip_len += optlen;
1293	} else
1294		optlen = 0;
1295
1296#ifdef INET6
1297	if (sc->sc_inc.inc_isipv6) {
1298		th->th_sum = 0;
1299		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1300				       tlen + optlen - hlen);
1301		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1302		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1303	} else
1304#endif
1305	{
1306		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1307		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1308		m->m_pkthdr.csum_flags = CSUM_TCP;
1309		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1310		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1311	}
1312	return (error);
1313}
1314
1315/*
1316 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1317 * receive and to be able to handle SYN floods from bogus source addresses
1318 * (where we will never receive any reply).  SYN floods try to exhaust all
1319 * our memory and available slots in the SYN cache table to cause a denial
1320 * of service to legitimate users of the local host.
1321 *
1322 * The idea of SYN cookies is to encode and include all necessary information
1323 * about the connection setup state within the SYN-ACK we send back and thus
1324 * to get along without keeping any local state until the ACK to the SYN-ACK
1325 * arrives (if ever).  Everything we need to know should be available from
1326 * the information we encoded in the SYN-ACK.
1327 *
1328 * More information about the theory behind SYN cookies and its first
1329 * discussion and specification can be found at:
1330 *  http://cr.yp.to/syncookies.html    (overview)
1331 *  http://cr.yp.to/syncookies/archive (gory details)
1332 *
1333 * This implementation extends the orginal idea and first implementation
1334 * of FreeBSD by using not only the initial sequence number field to store
1335 * information but also the timestamp field if present.  This way we can
1336 * keep track of the entire state we need to know to recreate the session in
1337 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1338 * these days.  For those that do not we still have to live with the known
1339 * shortcomings of the ISN only SYN cookies.
1340 *
1341 * Cookie layers:
1342 *
1343 * Initial sequence number we send:
1344 * 31|................................|0
1345 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1346 *    D = MD5 Digest (first dword)
1347 *    M = MSS index
1348 *    R = Rotation of secret
1349 *    P = Odd or Even secret
1350 *
1351 * The MD5 Digest is computed with over following parameters:
1352 *  a) randomly rotated secret
1353 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1354 *  c) the received initial sequence number from remote host
1355 *  d) the rotation offset and odd/even bit
1356 *
1357 * Timestamp we send:
1358 * 31|................................|0
1359 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1360 *    D = MD5 Digest (third dword) (only as filler)
1361 *    S = Requested send window scale
1362 *    R = Requested receive window scale
1363 *    A = SACK allowed
1364 *    5 = TCP-MD5 enabled (not implemented yet)
1365 *    XORed with MD5 Digest (forth dword)
1366 *
1367 * The timestamp isn't cryptographically secure and doesn't need to be.
1368 * The double use of the MD5 digest dwords ties it to a specific remote/
1369 * local host/port, remote initial sequence number and our local time
1370 * limited secret.  A received timestamp is reverted (XORed) and then
1371 * the contained MD5 dword is compared to the computed one to ensure the
1372 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1373 * have been tampered with but this isn't different from supplying bogus
1374 * values in the SYN in the first place.
1375 *
1376 * Some problems with SYN cookies remain however:
1377 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1378 * original SYN was accepted, the connection is established.  The second
1379 * SYN is inflight, and if it arrives with an ISN that falls within the
1380 * receive window, the connection is killed.
1381 *
1382 * Notes:
1383 * A heuristic to determine when to accept syn cookies is not necessary.
1384 * An ACK flood would cause the syncookie verification to be attempted,
1385 * but a SYN flood causes syncookies to be generated.  Both are of equal
1386 * cost, so there's no point in trying to optimize the ACK flood case.
1387 * Also, if you don't process certain ACKs for some reason, then all someone
1388 * would have to do is launch a SYN and ACK flood at the same time, which
1389 * would stop cookie verification and defeat the entire purpose of syncookies.
1390 */
1391static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1392
1393static void
1394syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1395    u_int32_t *flowlabel)
1396{
1397	MD5_CTX ctx;
1398	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1399	u_int32_t data;
1400	u_int32_t *secbits;
1401	u_int off, pmss, mss;
1402	int i;
1403
1404	SCH_LOCK_ASSERT(sch);
1405
1406	/* Which of the two secrets to use. */
1407	secbits = sch->sch_oddeven ?
1408			sch->sch_secbits_odd : sch->sch_secbits_even;
1409
1410	/* Reseed secret if too old. */
1411	if (sch->sch_reseed < time_uptime) {
1412		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1413		secbits = sch->sch_oddeven ?
1414				sch->sch_secbits_odd : sch->sch_secbits_even;
1415		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1416			secbits[i] = arc4random();
1417		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1418	}
1419
1420	/* Secret rotation offset. */
1421	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1422
1423	/* Maximum segment size calculation. */
1424	pmss = max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)), tcp_minmss);
1425	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1426		if (tcp_sc_msstab[mss] <= pmss)
1427			break;
1428
1429	/* Fold parameters and MD5 digest into the ISN we will send. */
1430	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1431	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1432	data |= mss << 4;	/* mss, 3 bits */
1433
1434	MD5Init(&ctx);
1435	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1436	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1437	MD5Update(&ctx, secbits, off);
1438	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1439	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1440	MD5Update(&ctx, &data, sizeof(data));
1441	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1442
1443	data |= (md5_buffer[0] << 7);
1444	sc->sc_iss = data;
1445
1446#ifdef INET6
1447	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1448#endif
1449
1450	/* Additional parameters are stored in the timestamp if present. */
1451	if (sc->sc_flags & SCF_TIMESTAMP) {
1452		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1453		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1454		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1455		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1456		data |= md5_buffer[2] << 10;		/* more digest bits */
1457		data ^= md5_buffer[3];
1458		sc->sc_ts = data;
1459		sc->sc_tsoff = data - ticks;		/* after XOR */
1460	}
1461
1462	return;
1463}
1464
1465static struct syncache *
1466syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1467    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1468    struct socket *so)
1469{
1470	MD5_CTX ctx;
1471	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1472	u_int32_t data = 0;
1473	u_int32_t *secbits;
1474	tcp_seq ack, seq;
1475	int off, mss, wnd, flags;
1476
1477	SCH_LOCK_ASSERT(sch);
1478
1479	/*
1480	 * Pull information out of SYN-ACK/ACK and
1481	 * revert sequence number advances.
1482	 */
1483	ack = th->th_ack - 1;
1484	seq = th->th_seq - 1;
1485	off = (ack >> 1) & 0x7;
1486	mss = (ack >> 4) & 0x7;
1487	flags = ack & 0x7f;
1488
1489	/* Which of the two secrets to use. */
1490	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1491
1492	/*
1493	 * The secret wasn't updated for the lifetime of a syncookie,
1494	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1495	 */
1496	if (sch->sch_reseed < time_uptime) {
1497		return (NULL);
1498	}
1499
1500	/* Recompute the digest so we can compare it. */
1501	MD5Init(&ctx);
1502	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1503	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1504	MD5Update(&ctx, secbits, off);
1505	MD5Update(&ctx, inc, sizeof(*inc));
1506	MD5Update(&ctx, &seq, sizeof(seq));
1507	MD5Update(&ctx, &flags, sizeof(flags));
1508	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1509
1510	/* Does the digest part of or ACK'ed ISS match? */
1511	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1512		return (NULL);
1513
1514	/* Does the digest part of our reflected timestamp match? */
1515	if (to->to_flags & TOF_TS) {
1516		data = md5_buffer[3] ^ to->to_tsecr;
1517		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1518			return (NULL);
1519	}
1520
1521	/* Fill in the syncache values. */
1522	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1523	sc->sc_ipopts = NULL;
1524
1525	sc->sc_irs = seq;
1526	sc->sc_iss = ack;
1527
1528#ifdef INET6
1529	if (inc->inc_isipv6) {
1530		if (sotoinpcb(so)->in6p_flags & IN6P_AUTOFLOWLABEL)
1531			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1532	} else
1533#endif
1534	{
1535		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1536		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1537	}
1538
1539	/* Additional parameters that were encoded in the timestamp. */
1540	if (data) {
1541		sc->sc_flags |= SCF_TIMESTAMP;
1542		sc->sc_tsreflect = to->to_tsval;
1543		sc->sc_ts = to->to_tsecr;
1544		sc->sc_tsoff = to->to_tsecr - ticks;
1545		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1546		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1547		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1548		    TCP_MAX_WINSHIFT);
1549		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1550		    TCP_MAX_WINSHIFT);
1551		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1552			sc->sc_flags |= SCF_WINSCALE;
1553	} else
1554		sc->sc_flags |= SCF_NOOPT;
1555
1556	wnd = sbspace(&so->so_rcv);
1557	wnd = imax(wnd, 0);
1558	wnd = imin(wnd, TCP_MAXWIN);
1559	sc->sc_wnd = wnd;
1560
1561	sc->sc_rxmits = 0;
1562	sc->sc_peer_mss = tcp_sc_msstab[mss];
1563
1564	return (sc);
1565}
1566