tcp_syncache.c revision 168901
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * Copyright (c) 2006 Andre Oppermann, Internet Business Solutions AG
4 * All rights reserved.
5 *
6 * This software was developed for the FreeBSD Project by Jonathan Lemon
7 * and McAfee Research, the Security Research Division of McAfee, Inc. under
8 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
9 * DARPA CHATS research program.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 *    notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 *    notice, this list of conditions and the following disclaimer in the
18 *    documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * $FreeBSD: head/sys/netinet/tcp_syncache.c 168901 2007-04-20 13:36:48Z andre $
33 */
34
35#include "opt_inet.h"
36#include "opt_inet6.h"
37#include "opt_ipsec.h"
38#include "opt_mac.h"
39
40#include <sys/param.h>
41#include <sys/systm.h>
42#include <sys/kernel.h>
43#include <sys/sysctl.h>
44#include <sys/lock.h>
45#include <sys/mutex.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/md5.h>
49#include <sys/proc.h>		/* for proc0 declaration */
50#include <sys/random.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53
54#include <vm/uma.h>
55
56#include <net/if.h>
57#include <net/route.h>
58
59#include <netinet/in.h>
60#include <netinet/in_systm.h>
61#include <netinet/ip.h>
62#include <netinet/in_var.h>
63#include <netinet/in_pcb.h>
64#include <netinet/ip_var.h>
65#include <netinet/ip_options.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#include <netinet/icmp6.h>
69#include <netinet6/nd6.h>
70#include <netinet6/ip6_var.h>
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/tcp.h>
74#include <netinet/tcp_fsm.h>
75#include <netinet/tcp_seq.h>
76#include <netinet/tcp_timer.h>
77#include <netinet/tcp_var.h>
78#ifdef INET6
79#include <netinet6/tcp6_var.h>
80#endif
81
82#ifdef IPSEC
83#include <netinet6/ipsec.h>
84#ifdef INET6
85#include <netinet6/ipsec6.h>
86#endif
87#endif /*IPSEC*/
88
89#ifdef FAST_IPSEC
90#include <netipsec/ipsec.h>
91#ifdef INET6
92#include <netipsec/ipsec6.h>
93#endif
94#include <netipsec/key.h>
95#endif /*FAST_IPSEC*/
96
97#include <machine/in_cksum.h>
98
99#include <security/mac/mac_framework.h>
100
101static int tcp_syncookies = 1;
102SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
103    &tcp_syncookies, 0,
104    "Use TCP SYN cookies if the syncache overflows");
105
106static int tcp_syncookiesonly = 0;
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies_only, CTLFLAG_RW,
108    &tcp_syncookiesonly, 0,
109    "Use only TCP SYN cookies");
110
111#define	SYNCOOKIE_SECRET_SIZE	8	/* dwords */
112#define	SYNCOOKIE_LIFETIME	16	/* seconds */
113
114struct syncache {
115	TAILQ_ENTRY(syncache)	sc_hash;
116	struct		in_conninfo sc_inc;	/* addresses */
117	u_long		sc_rxttime;		/* retransmit time */
118	u_int16_t	sc_rxmits;		/* retransmit counter */
119
120	u_int32_t	sc_tsreflect;		/* timestamp to reflect */
121	u_int32_t	sc_ts;			/* our timestamp to send */
122	u_int32_t	sc_tsoff;		/* ts offset w/ syncookies */
123	u_int32_t	sc_flowlabel;		/* IPv6 flowlabel */
124	tcp_seq		sc_irs;			/* seq from peer */
125	tcp_seq		sc_iss;			/* our ISS */
126	struct		mbuf *sc_ipopts;	/* source route */
127
128	u_int16_t	sc_peer_mss;		/* peer's MSS */
129	u_int16_t	sc_wnd;			/* advertised window */
130	u_int8_t	sc_ip_ttl;		/* IPv4 TTL */
131	u_int8_t	sc_ip_tos;		/* IPv4 TOS */
132	u_int8_t	sc_requested_s_scale:4,
133			sc_requested_r_scale:4;
134	u_int8_t	sc_flags;
135#define SCF_NOOPT	0x01			/* no TCP options */
136#define SCF_WINSCALE	0x02			/* negotiated window scaling */
137#define SCF_TIMESTAMP	0x04			/* negotiated timestamps */
138						/* MSS is implicit */
139#define SCF_UNREACH	0x10			/* icmp unreachable received */
140#define SCF_SIGNATURE	0x20			/* send MD5 digests */
141#define SCF_SACK	0x80			/* send SACK option */
142#ifdef MAC
143	struct label	*sc_label;		/* MAC label reference */
144#endif
145};
146
147struct syncache_head {
148	struct mtx	sch_mtx;
149	TAILQ_HEAD(sch_head, syncache)	sch_bucket;
150	struct callout	sch_timer;
151	int		sch_nextc;
152	u_int		sch_length;
153	u_int		sch_oddeven;
154	u_int32_t	sch_secbits_odd[SYNCOOKIE_SECRET_SIZE];
155	u_int32_t	sch_secbits_even[SYNCOOKIE_SECRET_SIZE];
156	u_int		sch_reseed;		/* time_uptime, seconds */
157};
158
159static void	 syncache_drop(struct syncache *, struct syncache_head *);
160static void	 syncache_free(struct syncache *);
161static void	 syncache_insert(struct syncache *, struct syncache_head *);
162struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
163static int	 syncache_respond(struct syncache *);
164static struct	 socket *syncache_socket(struct syncache *, struct socket *,
165		    struct mbuf *m);
166static void	 syncache_timer(void *);
167static void	 syncookie_generate(struct syncache_head *, struct syncache *,
168		    u_int32_t *);
169static struct syncache
170		*syncookie_lookup(struct in_conninfo *, struct syncache_head *,
171		    struct syncache *, struct tcpopt *, struct tcphdr *,
172		    struct socket *);
173
174/*
175 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
176 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
177 * the odds are that the user has given up attempting to connect by then.
178 */
179#define SYNCACHE_MAXREXMTS		3
180
181/* Arbitrary values */
182#define TCP_SYNCACHE_HASHSIZE		512
183#define TCP_SYNCACHE_BUCKETLIMIT	30
184
185struct tcp_syncache {
186	struct	syncache_head *hashbase;
187	uma_zone_t zone;
188	u_int	hashsize;
189	u_int	hashmask;
190	u_int	bucket_limit;
191	u_int	cache_count;		/* XXX: unprotected */
192	u_int	cache_limit;
193	u_int	rexmt_limit;
194	u_int	hash_secret;
195};
196static struct tcp_syncache tcp_syncache;
197
198SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
199
200SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
201     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
202
203SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
204     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
205
206SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
207     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
208
209SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
210     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
211
212SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
213     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
214
215static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
216
217#define SYNCACHE_HASH(inc, mask)					\
218	((tcp_syncache.hash_secret ^					\
219	  (inc)->inc_faddr.s_addr ^					\
220	  ((inc)->inc_faddr.s_addr >> 16) ^				\
221	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
222
223#define SYNCACHE_HASH6(inc, mask)					\
224	((tcp_syncache.hash_secret ^					\
225	  (inc)->inc6_faddr.s6_addr32[0] ^				\
226	  (inc)->inc6_faddr.s6_addr32[3] ^				\
227	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
228
229#define ENDPTS_EQ(a, b) (						\
230	(a)->ie_fport == (b)->ie_fport &&				\
231	(a)->ie_lport == (b)->ie_lport &&				\
232	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
233	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
234)
235
236#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
237
238#define SYNCACHE_TIMEOUT(sc, sch, co) do {				\
239	(sc)->sc_rxmits++;						\
240	(sc)->sc_rxttime = ticks +					\
241		TCPTV_RTOBASE * tcp_backoff[(sc)->sc_rxmits - 1];	\
242	if ((sch)->sch_nextc > (sc)->sc_rxttime)			\
243		(sch)->sch_nextc = (sc)->sc_rxttime;			\
244	if (!TAILQ_EMPTY(&(sch)->sch_bucket) && !(co))			\
245		callout_reset(&(sch)->sch_timer,			\
246			(sch)->sch_nextc - ticks,			\
247			syncache_timer, (void *)(sch));			\
248} while (0)
249
250#define	SCH_LOCK(sch)		mtx_lock(&(sch)->sch_mtx)
251#define	SCH_UNLOCK(sch)		mtx_unlock(&(sch)->sch_mtx)
252#define	SCH_LOCK_ASSERT(sch)	mtx_assert(&(sch)->sch_mtx, MA_OWNED)
253
254/*
255 * Requires the syncache entry to be already removed from the bucket list.
256 */
257static void
258syncache_free(struct syncache *sc)
259{
260	if (sc->sc_ipopts)
261		(void) m_free(sc->sc_ipopts);
262#ifdef MAC
263	mac_destroy_syncache(&sc->sc_label);
264#endif
265
266	uma_zfree(tcp_syncache.zone, sc);
267}
268
269void
270syncache_init(void)
271{
272	int i;
273
274	tcp_syncache.cache_count = 0;
275	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
276	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
277	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
278	tcp_syncache.hash_secret = arc4random();
279
280	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
281	    &tcp_syncache.hashsize);
282	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
283	    &tcp_syncache.bucket_limit);
284	if (!powerof2(tcp_syncache.hashsize) || tcp_syncache.hashsize == 0) {
285		printf("WARNING: syncache hash size is not a power of 2.\n");
286		tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
287	}
288	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
289
290	/* Set limits. */
291	tcp_syncache.cache_limit =
292	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
293	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
294	    &tcp_syncache.cache_limit);
295
296	/* Allocate the hash table. */
297	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
298	    tcp_syncache.hashsize * sizeof(struct syncache_head),
299	    M_SYNCACHE, M_WAITOK | M_ZERO);
300
301	/* Initialize the hash buckets. */
302	for (i = 0; i < tcp_syncache.hashsize; i++) {
303		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
304		mtx_init(&tcp_syncache.hashbase[i].sch_mtx, "tcp_sc_head",
305			 NULL, MTX_DEF);
306		callout_init_mtx(&tcp_syncache.hashbase[i].sch_timer,
307			 &tcp_syncache.hashbase[i].sch_mtx, 0);
308		tcp_syncache.hashbase[i].sch_length = 0;
309	}
310
311	/* Create the syncache entry zone. */
312	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
313	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
314	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
315}
316
317/*
318 * Inserts a syncache entry into the specified bucket row.
319 * Locks and unlocks the syncache_head autonomously.
320 */
321static void
322syncache_insert(struct syncache *sc, struct syncache_head *sch)
323{
324	struct syncache *sc2;
325
326	SCH_LOCK(sch);
327
328	/*
329	 * Make sure that we don't overflow the per-bucket limit.
330	 * If the bucket is full, toss the oldest element.
331	 */
332	if (sch->sch_length >= tcp_syncache.bucket_limit) {
333		KASSERT(!TAILQ_EMPTY(&sch->sch_bucket),
334			("sch->sch_length incorrect"));
335		sc2 = TAILQ_LAST(&sch->sch_bucket, sch_head);
336		syncache_drop(sc2, sch);
337		tcpstat.tcps_sc_bucketoverflow++;
338	}
339
340	/* Put it into the bucket. */
341	TAILQ_INSERT_HEAD(&sch->sch_bucket, sc, sc_hash);
342	sch->sch_length++;
343
344	/* Reinitialize the bucket row's timer. */
345	SYNCACHE_TIMEOUT(sc, sch, 1);
346
347	SCH_UNLOCK(sch);
348
349	tcp_syncache.cache_count++;
350	tcpstat.tcps_sc_added++;
351}
352
353/*
354 * Remove and free entry from syncache bucket row.
355 * Expects locked syncache head.
356 */
357static void
358syncache_drop(struct syncache *sc, struct syncache_head *sch)
359{
360
361	SCH_LOCK_ASSERT(sch);
362
363	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
364	sch->sch_length--;
365
366	syncache_free(sc);
367	tcp_syncache.cache_count--;
368}
369
370/*
371 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
372 * If we have retransmitted an entry the maximum number of times, expire it.
373 * One separate timer for each bucket row.
374 */
375static void
376syncache_timer(void *xsch)
377{
378	struct syncache_head *sch = (struct syncache_head *)xsch;
379	struct syncache *sc, *nsc;
380	int tick = ticks;
381
382	/* NB: syncache_head has already been locked by the callout. */
383	SCH_LOCK_ASSERT(sch);
384
385	TAILQ_FOREACH_SAFE(sc, &sch->sch_bucket, sc_hash, nsc) {
386		/*
387		 * We do not check if the listen socket still exists
388		 * and accept the case where the listen socket may be
389		 * gone by the time we resend the SYN/ACK.  We do
390		 * not expect this to happens often. If it does,
391		 * then the RST will be sent by the time the remote
392		 * host does the SYN/ACK->ACK.
393		 */
394		if (sc->sc_rxttime >= tick) {
395			if (sc->sc_rxttime < sch->sch_nextc)
396				sch->sch_nextc = sc->sc_rxttime;
397			continue;
398		}
399
400		if (sc->sc_rxmits > tcp_syncache.rexmt_limit) {
401			syncache_drop(sc, sch);
402			tcpstat.tcps_sc_stale++;
403			continue;
404		}
405
406		(void) syncache_respond(sc);
407		tcpstat.tcps_sc_retransmitted++;
408		SYNCACHE_TIMEOUT(sc, sch, 0);
409	}
410	if (!TAILQ_EMPTY(&(sch)->sch_bucket))
411		callout_reset(&(sch)->sch_timer, (sch)->sch_nextc - tick,
412			syncache_timer, (void *)(sch));
413}
414
415/*
416 * Find an entry in the syncache.
417 * Returns always with locked syncache_head plus a matching entry or NULL.
418 */
419struct syncache *
420syncache_lookup(struct in_conninfo *inc, struct syncache_head **schp)
421{
422	struct syncache *sc;
423	struct syncache_head *sch;
424
425#ifdef INET6
426	if (inc->inc_isipv6) {
427		sch = &tcp_syncache.hashbase[
428		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
429		*schp = sch;
430
431		SCH_LOCK(sch);
432
433		/* Circle through bucket row to find matching entry. */
434		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
435			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
436				return (sc);
437		}
438	} else
439#endif
440	{
441		sch = &tcp_syncache.hashbase[
442		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
443		*schp = sch;
444
445		SCH_LOCK(sch);
446
447		/* Circle through bucket row to find matching entry. */
448		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
449#ifdef INET6
450			if (sc->sc_inc.inc_isipv6)
451				continue;
452#endif
453			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
454				return (sc);
455		}
456	}
457	SCH_LOCK_ASSERT(*schp);
458	return (NULL);			/* always returns with locked sch */
459}
460
461/*
462 * This function is called when we get a RST for a
463 * non-existent connection, so that we can see if the
464 * connection is in the syn cache.  If it is, zap it.
465 */
466void
467syncache_chkrst(struct in_conninfo *inc, struct tcphdr *th)
468{
469	struct syncache *sc;
470	struct syncache_head *sch;
471
472	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
473	SCH_LOCK_ASSERT(sch);
474	if (sc == NULL)
475		goto done;
476
477	/*
478	 * If the RST bit is set, check the sequence number to see
479	 * if this is a valid reset segment.
480	 * RFC 793 page 37:
481	 *   In all states except SYN-SENT, all reset (RST) segments
482	 *   are validated by checking their SEQ-fields.  A reset is
483	 *   valid if its sequence number is in the window.
484	 *
485	 *   The sequence number in the reset segment is normally an
486	 *   echo of our outgoing acknowlegement numbers, but some hosts
487	 *   send a reset with the sequence number at the rightmost edge
488	 *   of our receive window, and we have to handle this case.
489	 */
490	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
491	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
492		syncache_drop(sc, sch);
493		tcpstat.tcps_sc_reset++;
494	}
495done:
496	SCH_UNLOCK(sch);
497}
498
499void
500syncache_badack(struct in_conninfo *inc)
501{
502	struct syncache *sc;
503	struct syncache_head *sch;
504
505	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
506	SCH_LOCK_ASSERT(sch);
507	if (sc != NULL) {
508		syncache_drop(sc, sch);
509		tcpstat.tcps_sc_badack++;
510	}
511	SCH_UNLOCK(sch);
512}
513
514void
515syncache_unreach(struct in_conninfo *inc, struct tcphdr *th)
516{
517	struct syncache *sc;
518	struct syncache_head *sch;
519
520	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
521	SCH_LOCK_ASSERT(sch);
522	if (sc == NULL)
523		goto done;
524
525	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
526	if (ntohl(th->th_seq) != sc->sc_iss)
527		goto done;
528
529	/*
530	 * If we've rertransmitted 3 times and this is our second error,
531	 * we remove the entry.  Otherwise, we allow it to continue on.
532	 * This prevents us from incorrectly nuking an entry during a
533	 * spurious network outage.
534	 *
535	 * See tcp_notify().
536	 */
537	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxmits < 3 + 1) {
538		sc->sc_flags |= SCF_UNREACH;
539		goto done;
540	}
541	syncache_drop(sc, sch);
542	tcpstat.tcps_sc_unreach++;
543done:
544	SCH_UNLOCK(sch);
545}
546
547/*
548 * Build a new TCP socket structure from a syncache entry.
549 */
550static struct socket *
551syncache_socket(struct syncache *sc, struct socket *lso, struct mbuf *m)
552{
553	struct inpcb *inp = NULL;
554	struct socket *so;
555	struct tcpcb *tp;
556
557	NET_ASSERT_GIANT();
558	INP_INFO_WLOCK_ASSERT(&tcbinfo);
559
560	/*
561	 * Ok, create the full blown connection, and set things up
562	 * as they would have been set up if we had created the
563	 * connection when the SYN arrived.  If we can't create
564	 * the connection, abort it.
565	 */
566	so = sonewconn(lso, SS_ISCONNECTED);
567	if (so == NULL) {
568		/*
569		 * Drop the connection; we will send a RST if the peer
570		 * retransmits the ACK,
571		 */
572		tcpstat.tcps_listendrop++;
573		goto abort2;
574	}
575#ifdef MAC
576	SOCK_LOCK(so);
577	mac_set_socket_peer_from_mbuf(m, so);
578	SOCK_UNLOCK(so);
579#endif
580
581	inp = sotoinpcb(so);
582	INP_LOCK(inp);
583
584	/* Insert new socket into PCB hash list. */
585	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
586#ifdef INET6
587	if (sc->sc_inc.inc_isipv6) {
588		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
589	} else {
590		inp->inp_vflag &= ~INP_IPV6;
591		inp->inp_vflag |= INP_IPV4;
592#endif
593		inp->inp_laddr = sc->sc_inc.inc_laddr;
594#ifdef INET6
595	}
596#endif
597	inp->inp_lport = sc->sc_inc.inc_lport;
598	if (in_pcbinshash(inp) != 0) {
599		/*
600		 * Undo the assignments above if we failed to
601		 * put the PCB on the hash lists.
602		 */
603#ifdef INET6
604		if (sc->sc_inc.inc_isipv6)
605			inp->in6p_laddr = in6addr_any;
606		else
607#endif
608			inp->inp_laddr.s_addr = INADDR_ANY;
609		inp->inp_lport = 0;
610		goto abort;
611	}
612#ifdef IPSEC
613	/* Copy old policy into new socket's. */
614	if (ipsec_copy_pcbpolicy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
615		printf("syncache_socket: could not copy policy\n");
616#endif
617#ifdef FAST_IPSEC
618	/* Copy old policy into new socket's. */
619	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
620		printf("syncache_socket: could not copy policy\n");
621#endif
622#ifdef INET6
623	if (sc->sc_inc.inc_isipv6) {
624		struct inpcb *oinp = sotoinpcb(lso);
625		struct in6_addr laddr6;
626		struct sockaddr_in6 sin6;
627		/*
628		 * Inherit socket options from the listening socket.
629		 * Note that in6p_inputopts are not (and should not be)
630		 * copied, since it stores previously received options and is
631		 * used to detect if each new option is different than the
632		 * previous one and hence should be passed to a user.
633		 * If we copied in6p_inputopts, a user would not be able to
634		 * receive options just after calling the accept system call.
635		 */
636		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
637		if (oinp->in6p_outputopts)
638			inp->in6p_outputopts =
639			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
640
641		sin6.sin6_family = AF_INET6;
642		sin6.sin6_len = sizeof(sin6);
643		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
644		sin6.sin6_port = sc->sc_inc.inc_fport;
645		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
646		laddr6 = inp->in6p_laddr;
647		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
648			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
649		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
650		    thread0.td_ucred)) {
651			inp->in6p_laddr = laddr6;
652			goto abort;
653		}
654		/* Override flowlabel from in6_pcbconnect. */
655		inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
656		inp->in6p_flowinfo |= sc->sc_flowlabel;
657	} else
658#endif
659	{
660		struct in_addr laddr;
661		struct sockaddr_in sin;
662
663		inp->inp_options = ip_srcroute(m);
664		if (inp->inp_options == NULL) {
665			inp->inp_options = sc->sc_ipopts;
666			sc->sc_ipopts = NULL;
667		}
668
669		sin.sin_family = AF_INET;
670		sin.sin_len = sizeof(sin);
671		sin.sin_addr = sc->sc_inc.inc_faddr;
672		sin.sin_port = sc->sc_inc.inc_fport;
673		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
674		laddr = inp->inp_laddr;
675		if (inp->inp_laddr.s_addr == INADDR_ANY)
676			inp->inp_laddr = sc->sc_inc.inc_laddr;
677		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
678		    thread0.td_ucred)) {
679			inp->inp_laddr = laddr;
680			goto abort;
681		}
682	}
683	tp = intotcpcb(inp);
684	tp->t_state = TCPS_SYN_RECEIVED;
685	tp->iss = sc->sc_iss;
686	tp->irs = sc->sc_irs;
687	tcp_rcvseqinit(tp);
688	tcp_sendseqinit(tp);
689	tp->snd_wl1 = sc->sc_irs;
690	tp->snd_max = tp->iss + 1;
691	tp->snd_nxt = tp->iss + 1;
692	tp->rcv_up = sc->sc_irs + 1;
693	tp->rcv_wnd = sc->sc_wnd;
694	tp->rcv_adv += tp->rcv_wnd;
695	tp->last_ack_sent = tp->rcv_nxt;
696
697	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
698	if (sc->sc_flags & SCF_NOOPT)
699		tp->t_flags |= TF_NOOPT;
700	else {
701		if (sc->sc_flags & SCF_WINSCALE) {
702			tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
703			tp->snd_scale = sc->sc_requested_s_scale;
704			tp->request_r_scale = sc->sc_requested_r_scale;
705		}
706		if (sc->sc_flags & SCF_TIMESTAMP) {
707			tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
708			tp->ts_recent = sc->sc_tsreflect;
709			tp->ts_recent_age = ticks;
710			tp->ts_offset = sc->sc_tsoff;
711		}
712#ifdef TCP_SIGNATURE
713		if (sc->sc_flags & SCF_SIGNATURE)
714			tp->t_flags |= TF_SIGNATURE;
715#endif
716		if (sc->sc_flags & SCF_SACK) {
717			tp->sack_enable = 1;
718			tp->t_flags |= TF_SACK_PERMIT;
719		}
720	}
721
722	/*
723	 * Set up MSS and get cached values from tcp_hostcache.
724	 * This might overwrite some of the defaults we just set.
725	 */
726	tcp_mss(tp, sc->sc_peer_mss);
727
728	/*
729	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
730	 */
731	if (sc->sc_rxmits > 1)
732		tp->snd_cwnd = tp->t_maxseg;
733	tcp_timer_activate(tp, TT_KEEP, tcp_keepinit);
734
735	INP_UNLOCK(inp);
736
737	tcpstat.tcps_accepts++;
738	return (so);
739
740abort:
741	INP_UNLOCK(inp);
742abort2:
743	if (so != NULL)
744		soabort(so);
745	return (NULL);
746}
747
748/*
749 * This function gets called when we receive an ACK for a
750 * socket in the LISTEN state.  We look up the connection
751 * in the syncache, and if its there, we pull it out of
752 * the cache and turn it into a full-blown connection in
753 * the SYN-RECEIVED state.
754 */
755int
756syncache_expand(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
757    struct socket **lsop, struct mbuf *m)
758{
759	struct syncache *sc;
760	struct syncache_head *sch;
761	struct socket *so;
762	struct syncache scs;
763
764	/*
765	 * Global TCP locks are held because we manipulate the PCB lists
766	 * and create a new socket.
767	 */
768	INP_INFO_WLOCK_ASSERT(&tcbinfo);
769
770	sc = syncache_lookup(inc, &sch);	/* returns locked sch */
771	SCH_LOCK_ASSERT(sch);
772	if (sc == NULL) {
773		/*
774		 * There is no syncache entry, so see if this ACK is
775		 * a returning syncookie.  To do this, first:
776		 *  A. See if this socket has had a syncache entry dropped in
777		 *     the past.  We don't want to accept a bogus syncookie
778		 *     if we've never received a SYN.
779		 *  B. check that the syncookie is valid.  If it is, then
780		 *     cobble up a fake syncache entry, and return.
781		 */
782		if (!tcp_syncookies) {
783			SCH_UNLOCK(sch);
784			goto failed;
785		}
786		bzero(&scs, sizeof(scs));
787		sc = syncookie_lookup(inc, sch, &scs, to, th, *lsop);
788		SCH_UNLOCK(sch);
789		if (sc == NULL)
790			goto failed;
791		tcpstat.tcps_sc_recvcookie++;
792	} else {
793		/* Pull out the entry to unlock the bucket row. */
794		TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
795		sch->sch_length--;
796		tcp_syncache.cache_count--;
797		SCH_UNLOCK(sch);
798	}
799
800	/*
801	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
802	 */
803	if (th->th_ack != sc->sc_iss + 1)
804		goto failed;
805
806	so = syncache_socket(sc, *lsop, m);
807
808	if (so == NULL) {
809#if 0
810resetandabort:
811		/* XXXjlemon check this - is this correct? */
812		(void) tcp_respond(NULL, m, m, th,
813		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
814#endif
815		m_freem(m);			/* XXX: only needed for above */
816		tcpstat.tcps_sc_aborted++;
817		if (sc != &scs) {
818			syncache_insert(sc, sch);  /* try again later */
819			sc = NULL;
820		}
821		goto failed;
822	} else
823		tcpstat.tcps_sc_completed++;
824	*lsop = so;
825
826	if (sc != &scs)
827		syncache_free(sc);
828	return (1);
829failed:
830	if (sc != NULL && sc != &scs)
831		syncache_free(sc);
832	return (0);
833}
834
835/*
836 * Given a LISTEN socket and an inbound SYN request, add
837 * this to the syn cache, and send back a segment:
838 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
839 * to the source.
840 *
841 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
842 * Doing so would require that we hold onto the data and deliver it
843 * to the application.  However, if we are the target of a SYN-flood
844 * DoS attack, an attacker could send data which would eventually
845 * consume all available buffer space if it were ACKed.  By not ACKing
846 * the data, we avoid this DoS scenario.
847 */
848int
849syncache_add(struct in_conninfo *inc, struct tcpopt *to, struct tcphdr *th,
850    struct inpcb *inp, struct socket **lsop, struct mbuf *m)
851{
852	struct tcpcb *tp;
853	struct socket *so;
854	struct syncache *sc = NULL;
855	struct syncache_head *sch;
856	struct mbuf *ipopts = NULL;
857	u_int32_t flowtmp;
858	int win, sb_hiwat, ip_ttl, ip_tos, noopt;
859#ifdef INET6
860	int autoflowlabel = 0;
861#endif
862#ifdef MAC
863	struct label *maclabel;
864#endif
865	struct syncache scs;
866
867	INP_INFO_WLOCK_ASSERT(&tcbinfo);
868	INP_LOCK_ASSERT(inp);			/* listen socket */
869
870	/*
871	 * Combine all so/tp operations very early to drop the INP lock as
872	 * soon as possible.
873	 */
874	so = *lsop;
875	tp = sototcpcb(so);
876
877#ifdef INET6
878	if (inc->inc_isipv6 &&
879	    (inp->in6p_flags & IN6P_AUTOFLOWLABEL))
880		autoflowlabel = 1;
881#endif
882	ip_ttl = inp->inp_ip_ttl;
883	ip_tos = inp->inp_ip_tos;
884	win = sbspace(&so->so_rcv);
885	sb_hiwat = so->so_rcv.sb_hiwat;
886	noopt = (tp->t_flags & TF_NOOPT);
887
888	so = NULL;
889	tp = NULL;
890
891#ifdef MAC
892	if (mac_init_syncache(&maclabel) != 0) {
893		INP_UNLOCK(inp);
894		INP_INFO_WUNLOCK(&tcbinfo);
895		goto done;
896	} else
897		mac_init_syncache_from_inpcb(maclabel, inp);
898#endif
899	INP_UNLOCK(inp);
900	INP_INFO_WUNLOCK(&tcbinfo);
901
902	/*
903	 * Remember the IP options, if any.
904	 */
905#ifdef INET6
906	if (!inc->inc_isipv6)
907#endif
908		ipopts = ip_srcroute(m);
909
910	/*
911	 * See if we already have an entry for this connection.
912	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
913	 *
914	 * XXX: should the syncache be re-initialized with the contents
915	 * of the new SYN here (which may have different options?)
916	 */
917	sc = syncache_lookup(inc, &sch);	/* returns locked entry */
918	SCH_LOCK_ASSERT(sch);
919	if (sc != NULL) {
920		tcpstat.tcps_sc_dupsyn++;
921		if (ipopts) {
922			/*
923			 * If we were remembering a previous source route,
924			 * forget it and use the new one we've been given.
925			 */
926			if (sc->sc_ipopts)
927				(void) m_free(sc->sc_ipopts);
928			sc->sc_ipopts = ipopts;
929		}
930		/*
931		 * Update timestamp if present.
932		 */
933		if ((sc->sc_flags & SCF_TIMESTAMP) && (to->to_flags & TOF_TS))
934			sc->sc_tsreflect = to->to_tsval;
935		else
936			sc->sc_flags &= ~SCF_TIMESTAMP;
937#ifdef MAC
938		/*
939		 * Since we have already unconditionally allocated label
940		 * storage, free it up.  The syncache entry will already
941		 * have an initialized label we can use.
942		 */
943		mac_destroy_syncache(&maclabel);
944		KASSERT(sc->sc_label != NULL,
945		    ("%s: label not initialized", __func__));
946#endif
947		if (syncache_respond(sc) == 0) {
948			SYNCACHE_TIMEOUT(sc, sch, 1);
949			tcpstat.tcps_sndacks++;
950			tcpstat.tcps_sndtotal++;
951		}
952		SCH_UNLOCK(sch);
953		goto done;
954	}
955
956	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
957	if (sc == NULL) {
958		/*
959		 * The zone allocator couldn't provide more entries.
960		 * Treat this as if the cache was full; drop the oldest
961		 * entry and insert the new one.
962		 */
963		tcpstat.tcps_sc_zonefail++;
964		if ((sc = TAILQ_LAST(&sch->sch_bucket, sch_head)) != NULL)
965			syncache_drop(sc, sch);
966		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT | M_ZERO);
967		if (sc == NULL) {
968			if (tcp_syncookies) {
969				bzero(&scs, sizeof(scs));
970				sc = &scs;
971			} else {
972				SCH_UNLOCK(sch);
973				if (ipopts)
974					(void) m_free(ipopts);
975				goto done;
976			}
977		}
978	}
979
980	/*
981	 * Fill in the syncache values.
982	 */
983#ifdef MAC
984	sc->sc_label = maclabel;
985#endif
986	sc->sc_ipopts = ipopts;
987	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
988#ifdef INET6
989	if (!inc->inc_isipv6)
990#endif
991	{
992		sc->sc_ip_tos = ip_tos;
993		sc->sc_ip_ttl = ip_ttl;
994	}
995
996	sc->sc_irs = th->th_seq;
997	sc->sc_iss = arc4random();
998	sc->sc_flags = 0;
999	sc->sc_flowlabel = 0;
1000
1001	/*
1002	 * Initial receive window: clip sbspace to [0 .. TCP_MAXWIN].
1003	 * win was derived from socket earlier in the function.
1004	 */
1005	win = imax(win, 0);
1006	win = imin(win, TCP_MAXWIN);
1007	sc->sc_wnd = win;
1008
1009	if (tcp_do_rfc1323) {
1010		/*
1011		 * A timestamp received in a SYN makes
1012		 * it ok to send timestamp requests and replies.
1013		 */
1014		if (to->to_flags & TOF_TS) {
1015			sc->sc_tsreflect = to->to_tsval;
1016			sc->sc_flags |= SCF_TIMESTAMP;
1017		}
1018		if (to->to_flags & TOF_SCALE) {
1019			int wscale = 0;
1020
1021			/*
1022			 * Compute proper scaling value from buffer space.
1023			 * Leave enough room for the socket buffer to grow
1024			 * with auto sizing.  This allows us to scale the
1025			 * receive buffer over a wide range while not losing
1026			 * any efficiency or fine granularity.
1027			 *
1028			 * RFC1323: The Window field in a SYN (i.e., a <SYN>
1029			 * or <SYN,ACK>) segment itself is never scaled.
1030			 */
1031			while (wscale < TCP_MAX_WINSHIFT &&
1032			    (0x1 << wscale) < tcp_minmss)
1033				wscale++;
1034			sc->sc_requested_r_scale = wscale;
1035			sc->sc_requested_s_scale = to->to_wscale;
1036			sc->sc_flags |= SCF_WINSCALE;
1037		}
1038	}
1039#ifdef TCP_SIGNATURE
1040	/*
1041	 * If listening socket requested TCP digests, and received SYN
1042	 * contains the option, flag this in the syncache so that
1043	 * syncache_respond() will do the right thing with the SYN+ACK.
1044	 * XXX: Currently we always record the option by default and will
1045	 * attempt to use it in syncache_respond().
1046	 */
1047	if (to->to_flags & TOF_SIGNATURE)
1048		sc->sc_flags |= SCF_SIGNATURE;
1049#endif
1050	if (to->to_flags & TOF_SACK)
1051		sc->sc_flags |= SCF_SACK;
1052	if (to->to_flags & TOF_MSS)
1053		sc->sc_peer_mss = to->to_mss;	/* peer mss may be zero */
1054	if (noopt)
1055		sc->sc_flags |= SCF_NOOPT;
1056
1057	if (tcp_syncookies) {
1058		syncookie_generate(sch, sc, &flowtmp);
1059#ifdef INET6
1060		if (autoflowlabel)
1061			sc->sc_flowlabel = flowtmp;
1062#endif
1063	} else {
1064#ifdef INET6
1065		if (autoflowlabel)
1066			sc->sc_flowlabel =
1067			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
1068#endif
1069	}
1070	SCH_UNLOCK(sch);
1071
1072	/*
1073	 * Do a standard 3-way handshake.
1074	 */
1075	if (syncache_respond(sc) == 0) {
1076		if (tcp_syncookies && tcp_syncookiesonly && sc != &scs)
1077			syncache_free(sc);
1078		else if (sc != &scs)
1079			syncache_insert(sc, sch);   /* locks and unlocks sch */
1080		tcpstat.tcps_sndacks++;
1081		tcpstat.tcps_sndtotal++;
1082	} else {
1083		if (sc != &scs)
1084			syncache_free(sc);
1085		tcpstat.tcps_sc_dropped++;
1086	}
1087
1088done:
1089#ifdef MAC
1090	if (sc == &scs)
1091		mac_destroy_syncache(&maclabel);
1092#endif
1093	*lsop = NULL;
1094	m_freem(m);
1095	return (1);
1096}
1097
1098static int
1099syncache_respond(struct syncache *sc)
1100{
1101	struct ip *ip = NULL;
1102	struct mbuf *m;
1103	struct tcphdr *th;
1104	int optlen, error;
1105	u_int16_t hlen, tlen, mssopt;
1106	struct tcpopt to;
1107#ifdef INET6
1108	struct ip6_hdr *ip6 = NULL;
1109#endif
1110
1111	hlen =
1112#ifdef INET6
1113	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1114#endif
1115		sizeof(struct ip);
1116	tlen = hlen + sizeof(struct tcphdr);
1117
1118	/* Determine MSS we advertize to other end of connection. */
1119	mssopt = tcp_mssopt(&sc->sc_inc);
1120	if (sc->sc_peer_mss)
1121		mssopt = max( min(sc->sc_peer_mss, mssopt), tcp_minmss);
1122
1123	/* XXX: Assume that the entire packet will fit in a header mbuf. */
1124	KASSERT(max_linkhdr + tlen + MAX_TCPOPTLEN <= MHLEN,
1125	    ("syncache: mbuf too small"));
1126
1127	/* Create the IP+TCP header from scratch. */
1128	m = m_gethdr(M_DONTWAIT, MT_DATA);
1129	if (m == NULL)
1130		return (ENOBUFS);
1131#ifdef MAC
1132	mac_create_mbuf_from_syncache(sc->sc_label, m);
1133#endif
1134	m->m_data += max_linkhdr;
1135	m->m_len = tlen;
1136	m->m_pkthdr.len = tlen;
1137	m->m_pkthdr.rcvif = NULL;
1138
1139#ifdef INET6
1140	if (sc->sc_inc.inc_isipv6) {
1141		ip6 = mtod(m, struct ip6_hdr *);
1142		ip6->ip6_vfc = IPV6_VERSION;
1143		ip6->ip6_nxt = IPPROTO_TCP;
1144		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1145		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1146		ip6->ip6_plen = htons(tlen - hlen);
1147		/* ip6_hlim is set after checksum */
1148		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1149		ip6->ip6_flow |= sc->sc_flowlabel;
1150
1151		th = (struct tcphdr *)(ip6 + 1);
1152	} else
1153#endif
1154	{
1155		ip = mtod(m, struct ip *);
1156		ip->ip_v = IPVERSION;
1157		ip->ip_hl = sizeof(struct ip) >> 2;
1158		ip->ip_len = tlen;
1159		ip->ip_id = 0;
1160		ip->ip_off = 0;
1161		ip->ip_sum = 0;
1162		ip->ip_p = IPPROTO_TCP;
1163		ip->ip_src = sc->sc_inc.inc_laddr;
1164		ip->ip_dst = sc->sc_inc.inc_faddr;
1165		ip->ip_ttl = sc->sc_ip_ttl;
1166		ip->ip_tos = sc->sc_ip_tos;
1167
1168		/*
1169		 * See if we should do MTU discovery.  Route lookups are
1170		 * expensive, so we will only unset the DF bit if:
1171		 *
1172		 *	1) path_mtu_discovery is disabled
1173		 *	2) the SCF_UNREACH flag has been set
1174		 */
1175		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1176		       ip->ip_off |= IP_DF;
1177
1178		th = (struct tcphdr *)(ip + 1);
1179	}
1180	th->th_sport = sc->sc_inc.inc_lport;
1181	th->th_dport = sc->sc_inc.inc_fport;
1182
1183	th->th_seq = htonl(sc->sc_iss);
1184	th->th_ack = htonl(sc->sc_irs + 1);
1185	th->th_off = sizeof(struct tcphdr) >> 2;
1186	th->th_x2 = 0;
1187	th->th_flags = TH_SYN|TH_ACK;
1188	th->th_win = htons(sc->sc_wnd);
1189	th->th_urp = 0;
1190
1191	/* Tack on the TCP options. */
1192	if ((sc->sc_flags & SCF_NOOPT) == 0) {
1193		to.to_flags = 0;
1194
1195		to.to_mss = mssopt;
1196		to.to_flags = TOF_MSS;
1197		if (sc->sc_flags & SCF_WINSCALE) {
1198			to.to_wscale = sc->sc_requested_r_scale;
1199			to.to_flags |= TOF_SCALE;
1200		}
1201		if (sc->sc_flags & SCF_TIMESTAMP) {
1202			/* Virgin timestamp or TCP cookie enhanced one. */
1203			to.to_tsval = sc->sc_ts ? sc->sc_ts : ticks;
1204			to.to_tsecr = sc->sc_tsreflect;
1205			to.to_flags |= TOF_TS;
1206		}
1207		if (sc->sc_flags & SCF_SACK)
1208			to.to_flags |= TOF_SACKPERM;
1209#ifdef TCP_SIGNATURE
1210		if (sc->sc_flags & SCF_SIGNATURE)
1211			to.to_flags |= TOF_SIGNATURE;
1212#endif
1213		optlen = tcp_addoptions(&to, (u_char *)(th + 1));
1214
1215#ifdef TCP_SIGNATURE
1216		tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
1217		    to.to_signature, IPSEC_DIR_OUTBOUND);
1218#endif
1219
1220		/* Adjust headers by option size. */
1221		th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1222		m->m_len += optlen;
1223		m->m_pkthdr.len += optlen;
1224#ifdef INET6
1225		if (sc->sc_inc.inc_isipv6)
1226			ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) + optlen);
1227		else
1228#endif
1229			ip->ip_len += optlen;
1230	} else
1231		optlen = 0;
1232
1233#ifdef INET6
1234	if (sc->sc_inc.inc_isipv6) {
1235		th->th_sum = 0;
1236		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen,
1237				       tlen + optlen - hlen);
1238		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1239		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, NULL);
1240	} else
1241#endif
1242	{
1243		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1244		    htons(tlen + optlen - hlen + IPPROTO_TCP));
1245		m->m_pkthdr.csum_flags = CSUM_TCP;
1246		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1247		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, NULL);
1248	}
1249	return (error);
1250}
1251
1252/*
1253 * The purpose of SYN cookies is to avoid keeping track of all SYN's we
1254 * receive and to be able to handle SYN floods from bogus source addresses
1255 * (where we will never receive any reply).  SYN floods try to exhaust all
1256 * our memory and available slots in the SYN cache table to cause a denial
1257 * of service to legitimate users of the local host.
1258 *
1259 * The idea of SYN cookies is to encode and include all necessary information
1260 * about the connection setup state within the SYN-ACK we send back and thus
1261 * to get along without keeping any local state until the ACK to the SYN-ACK
1262 * arrives (if ever).  Everything we need to know should be available from
1263 * the information we encoded in the SYN-ACK.
1264 *
1265 * More information about the theory behind SYN cookies and its first
1266 * discussion and specification can be found at:
1267 *  http://cr.yp.to/syncookies.html    (overview)
1268 *  http://cr.yp.to/syncookies/archive (gory details)
1269 *
1270 * This implementation extends the orginal idea and first implementation
1271 * of FreeBSD by using not only the initial sequence number field to store
1272 * information but also the timestamp field if present.  This way we can
1273 * keep track of the entire state we need to know to recreate the session in
1274 * its original form.  Almost all TCP speakers implement RFC1323 timestamps
1275 * these days.  For those that do not we still have to live with the known
1276 * shortcomings of the ISN only SYN cookies.
1277 *
1278 * Cookie layers:
1279 *
1280 * Initial sequence number we send:
1281 * 31|................................|0
1282 *    DDDDDDDDDDDDDDDDDDDDDDDDDMMMRRRP
1283 *    D = MD5 Digest (first dword)
1284 *    M = MSS index
1285 *    R = Rotation of secret
1286 *    P = Odd or Even secret
1287 *
1288 * The MD5 Digest is computed with over following parameters:
1289 *  a) randomly rotated secret
1290 *  b) struct in_conninfo containing the remote/local ip/port (IPv4&IPv6)
1291 *  c) the received initial sequence number from remote host
1292 *  d) the rotation offset and odd/even bit
1293 *
1294 * Timestamp we send:
1295 * 31|................................|0
1296 *    DDDDDDDDDDDDDDDDDDDDDDSSSSRRRRA5
1297 *    D = MD5 Digest (third dword) (only as filler)
1298 *    S = Requested send window scale
1299 *    R = Requested receive window scale
1300 *    A = SACK allowed
1301 *    5 = TCP-MD5 enabled (not implemented yet)
1302 *    XORed with MD5 Digest (forth dword)
1303 *
1304 * The timestamp isn't cryptographically secure and doesn't need to be.
1305 * The double use of the MD5 digest dwords ties it to a specific remote/
1306 * local host/port, remote initial sequence number and our local time
1307 * limited secret.  A received timestamp is reverted (XORed) and then
1308 * the contained MD5 dword is compared to the computed one to ensure the
1309 * timestamp belongs to the SYN-ACK we sent.  The other parameters may
1310 * have been tampered with but this isn't different from supplying bogus
1311 * values in the SYN in the first place.
1312 *
1313 * Some problems with SYN cookies remain however:
1314 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1315 * original SYN was accepted, the connection is established.  The second
1316 * SYN is inflight, and if it arrives with an ISN that falls within the
1317 * receive window, the connection is killed.
1318 *
1319 * Notes:
1320 * A heuristic to determine when to accept syn cookies is not necessary.
1321 * An ACK flood would cause the syncookie verification to be attempted,
1322 * but a SYN flood causes syncookies to be generated.  Both are of equal
1323 * cost, so there's no point in trying to optimize the ACK flood case.
1324 * Also, if you don't process certain ACKs for some reason, then all someone
1325 * would have to do is launch a SYN and ACK flood at the same time, which
1326 * would stop cookie verification and defeat the entire purpose of syncookies.
1327 */
1328static int tcp_sc_msstab[] = { 0, 256, 468, 536, 996, 1452, 1460, 8960 };
1329
1330static void
1331syncookie_generate(struct syncache_head *sch, struct syncache *sc,
1332    u_int32_t *flowlabel)
1333{
1334	MD5_CTX ctx;
1335	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1336	u_int32_t data;
1337	u_int32_t *secbits;
1338	u_int off, pmss, mss;
1339	int i;
1340
1341	SCH_LOCK_ASSERT(sch);
1342
1343	/* Which of the two secrets to use. */
1344	secbits = sch->sch_oddeven ?
1345			sch->sch_secbits_odd : sch->sch_secbits_even;
1346
1347	/* Reseed secret if too old. */
1348	if (sch->sch_reseed < time_uptime) {
1349		sch->sch_oddeven = sch->sch_oddeven ? 0 : 1;	/* toggle */
1350		secbits = sch->sch_oddeven ?
1351				sch->sch_secbits_odd : sch->sch_secbits_even;
1352		for (i = 0; i < SYNCOOKIE_SECRET_SIZE; i++)
1353			secbits[i] = arc4random();
1354		sch->sch_reseed = time_uptime + SYNCOOKIE_LIFETIME;
1355	}
1356
1357	/* Secret rotation offset. */
1358	off = sc->sc_iss & 0x7;			/* iss was randomized before */
1359
1360	/* Maximum segment size calculation. */
1361	pmss = max( min(sc->sc_peer_mss, tcp_mssopt(&sc->sc_inc)), tcp_minmss);
1362	for (mss = sizeof(tcp_sc_msstab) / sizeof(int) - 1; mss > 0; mss--)
1363		if (tcp_sc_msstab[mss] <= pmss)
1364			break;
1365
1366	/* Fold parameters and MD5 digest into the ISN we will send. */
1367	data = sch->sch_oddeven;/* odd or even secret, 1 bit */
1368	data |= off << 1;	/* secret offset, derived from iss, 3 bits */
1369	data |= mss << 4;	/* mss, 3 bits */
1370
1371	MD5Init(&ctx);
1372	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1373	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1374	MD5Update(&ctx, secbits, off);
1375	MD5Update(&ctx, &sc->sc_inc, sizeof(sc->sc_inc));
1376	MD5Update(&ctx, &sc->sc_irs, sizeof(sc->sc_irs));
1377	MD5Update(&ctx, &data, sizeof(data));
1378	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1379
1380	data |= (md5_buffer[0] << 7);
1381	sc->sc_iss = data;
1382
1383#ifdef INET6
1384	*flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1385#endif
1386
1387	/* Additional parameters are stored in the timestamp if present. */
1388	if (sc->sc_flags & SCF_TIMESTAMP) {
1389		data =  ((sc->sc_flags & SCF_SIGNATURE) ? 1 : 0); /* TCP-MD5, 1 bit */
1390		data |= ((sc->sc_flags & SCF_SACK) ? 1 : 0) << 1; /* SACK, 1 bit */
1391		data |= sc->sc_requested_s_scale << 2;  /* SWIN scale, 4 bits */
1392		data |= sc->sc_requested_r_scale << 6;  /* RWIN scale, 4 bits */
1393		data |= md5_buffer[2] << 10;		/* more digest bits */
1394		data ^= md5_buffer[3];
1395		sc->sc_ts = data;
1396		sc->sc_tsoff = data - ticks;		/* after XOR */
1397	} else
1398		sc->sc_ts = 0;
1399
1400	return;
1401}
1402
1403static struct syncache *
1404syncookie_lookup(struct in_conninfo *inc, struct syncache_head *sch,
1405    struct syncache *sc, struct tcpopt *to, struct tcphdr *th,
1406    struct socket *so)
1407{
1408	MD5_CTX ctx;
1409	u_int32_t md5_buffer[MD5_DIGEST_LENGTH / sizeof(u_int32_t)];
1410	u_int32_t data = 0;
1411	u_int32_t *secbits;
1412	tcp_seq ack, seq;
1413	int off, mss, wnd, flags;
1414
1415	SCH_LOCK_ASSERT(sch);
1416
1417	/*
1418	 * Pull information out of SYN-ACK/ACK and
1419	 * revert sequence number advances.
1420	 */
1421	ack = th->th_ack - 1;
1422	seq = th->th_seq - 1;
1423	off = (ack >> 1) & 0x7;
1424	mss = (ack >> 4) & 0x7;
1425	flags = ack & 0x7f;
1426
1427	/* Which of the two secrets to use. */
1428	secbits = (flags & 0x1) ? sch->sch_secbits_odd : sch->sch_secbits_even;
1429
1430	/*
1431	 * The secret wasn't updated for the lifetime of a syncookie,
1432	 * so this SYN-ACK/ACK is either too old (replay) or totally bogus.
1433	 */
1434	if (sch->sch_reseed < time_uptime) {
1435		return (NULL);
1436	}
1437
1438	/* Recompute the digest so we can compare it. */
1439	MD5Init(&ctx);
1440	MD5Update(&ctx, ((u_int8_t *)secbits) + off,
1441	    SYNCOOKIE_SECRET_SIZE * sizeof(*secbits) - off);
1442	MD5Update(&ctx, secbits, off);
1443	MD5Update(&ctx, inc, sizeof(*inc));
1444	MD5Update(&ctx, &seq, sizeof(seq));
1445	MD5Update(&ctx, &flags, sizeof(flags));
1446	MD5Final((u_int8_t *)&md5_buffer, &ctx);
1447
1448	/* Does the digest part of or ACK'ed ISS match? */
1449	if ((ack & (~0x7f)) != (md5_buffer[0] << 7))
1450		return (NULL);
1451
1452	/* Does the digest part of our reflected timestamp match? */
1453	if (to->to_flags & TOF_TS) {
1454		data = md5_buffer[3] ^ to->to_tsecr;
1455		if ((data & (~0x3ff)) != (md5_buffer[2] << 10))
1456			return (NULL);
1457	}
1458
1459	/* Fill in the syncache values. */
1460	bcopy(inc, &sc->sc_inc, sizeof(struct in_conninfo));
1461	sc->sc_ipopts = NULL;
1462
1463	sc->sc_irs = seq;
1464	sc->sc_iss = ack;
1465
1466#ifdef INET6
1467	if (inc->inc_isipv6) {
1468		if (sotoinpcb(so)->in6p_flags & IN6P_AUTOFLOWLABEL)
1469			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1470	} else
1471#endif
1472	{
1473		sc->sc_ip_ttl = sotoinpcb(so)->inp_ip_ttl;
1474		sc->sc_ip_tos = sotoinpcb(so)->inp_ip_tos;
1475	}
1476
1477	/* Additional parameters that were encoded in the timestamp. */
1478	if (data) {
1479		sc->sc_flags |= SCF_TIMESTAMP;
1480		sc->sc_tsreflect = to->to_tsval;
1481		sc->sc_tsoff = to->to_tsecr - ticks;
1482		sc->sc_flags |= (data & 0x1) ? SCF_SIGNATURE : 0;
1483		sc->sc_flags |= ((data >> 1) & 0x1) ? SCF_SACK : 0;
1484		sc->sc_requested_s_scale = min((data >> 2) & 0xf,
1485		    TCP_MAX_WINSHIFT);
1486		sc->sc_requested_r_scale = min((data >> 6) & 0xf,
1487		    TCP_MAX_WINSHIFT);
1488		if (sc->sc_requested_s_scale || sc->sc_requested_r_scale)
1489			sc->sc_flags |= SCF_WINSCALE;
1490	} else
1491		sc->sc_flags |= SCF_NOOPT;
1492
1493	wnd = sbspace(&so->so_rcv);
1494	wnd = imax(wnd, 0);
1495	wnd = imin(wnd, TCP_MAXWIN);
1496	sc->sc_wnd = wnd;
1497
1498	sc->sc_rxmits = 0;
1499	sc->sc_peer_mss = tcp_sc_msstab[mss];
1500
1501	return (sc);
1502}
1503