tcp_syncache.c revision 155439
1/*-
2 * Copyright (c) 2001 McAfee, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Jonathan Lemon
6 * and McAfee Research, the Security Research Division of McAfee, Inc. under
7 * DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8 * DARPA CHATS research program.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * $FreeBSD: head/sys/netinet/tcp_syncache.c 155439 2006-02-07 19:59:46Z qingli $
32 */
33
34#include "opt_inet.h"
35#include "opt_inet6.h"
36#include "opt_ipsec.h"
37#include "opt_mac.h"
38#include "opt_tcpdebug.h"
39#include "opt_tcp_sack.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/malloc.h>
46#include <sys/mac.h>
47#include <sys/mbuf.h>
48#include <sys/md5.h>
49#include <sys/proc.h>		/* for proc0 declaration */
50#include <sys/random.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53
54#include <net/if.h>
55#include <net/route.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/in_var.h>
61#include <netinet/in_pcb.h>
62#include <netinet/ip_var.h>
63#include <netinet/ip_options.h>
64#ifdef INET6
65#include <netinet/ip6.h>
66#include <netinet/icmp6.h>
67#include <netinet6/nd6.h>
68#include <netinet6/ip6_var.h>
69#include <netinet6/in6_pcb.h>
70#endif
71#include <netinet/tcp.h>
72#ifdef TCPDEBUG
73#include <netinet/tcpip.h>
74#endif
75#include <netinet/tcp_fsm.h>
76#include <netinet/tcp_seq.h>
77#include <netinet/tcp_timer.h>
78#include <netinet/tcp_var.h>
79#ifdef TCPDEBUG
80#include <netinet/tcp_debug.h>
81#endif
82#ifdef INET6
83#include <netinet6/tcp6_var.h>
84#endif
85
86#ifdef IPSEC
87#include <netinet6/ipsec.h>
88#ifdef INET6
89#include <netinet6/ipsec6.h>
90#endif
91#endif /*IPSEC*/
92
93#ifdef FAST_IPSEC
94#include <netipsec/ipsec.h>
95#ifdef INET6
96#include <netipsec/ipsec6.h>
97#endif
98#include <netipsec/key.h>
99#endif /*FAST_IPSEC*/
100
101#include <machine/in_cksum.h>
102#include <vm/uma.h>
103
104static int tcp_syncookies = 1;
105SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
106    &tcp_syncookies, 0,
107    "Use TCP SYN cookies if the syncache overflows");
108
109static void	 syncache_drop(struct syncache *, struct syncache_head *);
110static void	 syncache_free(struct syncache *);
111static void	 syncache_insert(struct syncache *, struct syncache_head *);
112struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
113#ifdef TCPDEBUG
114static int	 syncache_respond(struct syncache *, struct mbuf *, struct socket *);
115#else
116static int	 syncache_respond(struct syncache *, struct mbuf *);
117#endif
118static struct	 socket *syncache_socket(struct syncache *, struct socket *,
119		    struct mbuf *m);
120static void	 syncache_timer(void *);
121static u_int32_t syncookie_generate(struct syncache *, u_int32_t *);
122static struct syncache *syncookie_lookup(struct in_conninfo *,
123		    struct tcphdr *, struct socket *);
124
125/*
126 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
127 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
128 * the odds are that the user has given up attempting to connect by then.
129 */
130#define SYNCACHE_MAXREXMTS		3
131
132/* Arbitrary values */
133#define TCP_SYNCACHE_HASHSIZE		512
134#define TCP_SYNCACHE_BUCKETLIMIT	30
135
136struct tcp_syncache {
137	struct	syncache_head *hashbase;
138	uma_zone_t zone;
139	u_int	hashsize;
140	u_int	hashmask;
141	u_int	bucket_limit;
142	u_int	cache_count;
143	u_int	cache_limit;
144	u_int	rexmt_limit;
145	u_int	hash_secret;
146	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
147	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
148};
149static struct tcp_syncache tcp_syncache;
150
151SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
152
153SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
154     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
155
156SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
157     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
158
159SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
160     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
161
162SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
163     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
164
165SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
166     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
167
168static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
169
170#define SYNCACHE_HASH(inc, mask)					\
171	((tcp_syncache.hash_secret ^					\
172	  (inc)->inc_faddr.s_addr ^					\
173	  ((inc)->inc_faddr.s_addr >> 16) ^				\
174	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
175
176#define SYNCACHE_HASH6(inc, mask)					\
177	((tcp_syncache.hash_secret ^					\
178	  (inc)->inc6_faddr.s6_addr32[0] ^				\
179	  (inc)->inc6_faddr.s6_addr32[3] ^				\
180	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
181
182#define ENDPTS_EQ(a, b) (						\
183	(a)->ie_fport == (b)->ie_fport &&				\
184	(a)->ie_lport == (b)->ie_lport &&				\
185	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
186	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
187)
188
189#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
190
191#define SYNCACHE_TIMEOUT(sc, slot) do {				\
192	sc->sc_rxtslot = (slot);					\
193	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[(slot)];	\
194	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[(slot)], sc, sc_timerq);	\
195	if (!callout_active(&tcp_syncache.tt_timerq[(slot)]))		\
196		callout_reset(&tcp_syncache.tt_timerq[(slot)],		\
197		    TCPTV_RTOBASE * tcp_backoff[(slot)],		\
198		    syncache_timer, (void *)((intptr_t)(slot)));	\
199} while (0)
200
201static void
202syncache_free(struct syncache *sc)
203{
204	if (sc->sc_ipopts)
205		(void) m_free(sc->sc_ipopts);
206
207	uma_zfree(tcp_syncache.zone, sc);
208}
209
210void
211syncache_init(void)
212{
213	int i;
214
215	tcp_syncache.cache_count = 0;
216	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
217	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
218	tcp_syncache.cache_limit =
219	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
220	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
221	tcp_syncache.hash_secret = arc4random();
222
223	TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
224	    &tcp_syncache.hashsize);
225	TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
226	    &tcp_syncache.cache_limit);
227	TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
228	    &tcp_syncache.bucket_limit);
229	if (!powerof2(tcp_syncache.hashsize) || tcp_syncache.hashsize == 0) {
230		printf("WARNING: syncache hash size is not a power of 2.\n");
231		tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
232	}
233	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
234
235	/* Allocate the hash table. */
236	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
237	    tcp_syncache.hashsize * sizeof(struct syncache_head),
238	    M_SYNCACHE, M_WAITOK);
239
240	/* Initialize the hash buckets. */
241	for (i = 0; i < tcp_syncache.hashsize; i++) {
242		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
243		tcp_syncache.hashbase[i].sch_length = 0;
244	}
245
246	/* Initialize the timer queues. */
247	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
248		TAILQ_INIT(&tcp_syncache.timerq[i]);
249		callout_init(&tcp_syncache.tt_timerq[i], NET_CALLOUT_MPSAFE);
250	}
251
252	/*
253	 * Allocate the syncache entries.  Allow the zone to allocate one
254	 * more entry than cache limit, so a new entry can bump out an
255	 * older one.
256	 */
257	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
258	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
259	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
260	tcp_syncache.cache_limit -= 1;
261}
262
263static void
264syncache_insert(sc, sch)
265	struct syncache *sc;
266	struct syncache_head *sch;
267{
268	struct syncache *sc2;
269	int i;
270
271	INP_INFO_WLOCK_ASSERT(&tcbinfo);
272
273	/*
274	 * Make sure that we don't overflow the per-bucket
275	 * limit or the total cache size limit.
276	 */
277	if (sch->sch_length >= tcp_syncache.bucket_limit) {
278		/*
279		 * The bucket is full, toss the oldest element.
280		 */
281		sc2 = TAILQ_FIRST(&sch->sch_bucket);
282		sc2->sc_tp->ts_recent = ticks;
283		syncache_drop(sc2, sch);
284		tcpstat.tcps_sc_bucketoverflow++;
285	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
286		/*
287		 * The cache is full.  Toss the oldest entry in the
288		 * entire cache.  This is the front entry in the
289		 * first non-empty timer queue with the largest
290		 * timeout value.
291		 */
292		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
293			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
294			if (sc2 != NULL)
295				break;
296		}
297		sc2->sc_tp->ts_recent = ticks;
298		syncache_drop(sc2, NULL);
299		tcpstat.tcps_sc_cacheoverflow++;
300	}
301
302	/* Initialize the entry's timer. */
303	SYNCACHE_TIMEOUT(sc, 0);
304
305	/* Put it into the bucket. */
306	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
307	sch->sch_length++;
308	tcp_syncache.cache_count++;
309	tcpstat.tcps_sc_added++;
310}
311
312static void
313syncache_drop(sc, sch)
314	struct syncache *sc;
315	struct syncache_head *sch;
316{
317	INP_INFO_WLOCK_ASSERT(&tcbinfo);
318
319	if (sch == NULL) {
320#ifdef INET6
321		if (sc->sc_inc.inc_isipv6) {
322			sch = &tcp_syncache.hashbase[
323			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
324		} else
325#endif
326		{
327			sch = &tcp_syncache.hashbase[
328			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
329		}
330	}
331
332	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
333	sch->sch_length--;
334	tcp_syncache.cache_count--;
335
336	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
337	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
338		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
339
340	syncache_free(sc);
341}
342
343/*
344 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
345 * If we have retransmitted an entry the maximum number of times, expire it.
346 */
347static void
348syncache_timer(xslot)
349	void *xslot;
350{
351	intptr_t slot = (intptr_t)xslot;
352	struct syncache *sc, *nsc;
353	struct inpcb *inp;
354
355	INP_INFO_WLOCK(&tcbinfo);
356	if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
357	    !callout_active(&tcp_syncache.tt_timerq[slot])) {
358		/* XXX can this happen? */
359		INP_INFO_WUNLOCK(&tcbinfo);
360		return;
361	}
362	callout_deactivate(&tcp_syncache.tt_timerq[slot]);
363
364	nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
365	while (nsc != NULL) {
366		if (ticks < nsc->sc_rxttime)
367			break;
368		sc = nsc;
369		inp = sc->sc_tp->t_inpcb;
370		if (slot == SYNCACHE_MAXREXMTS ||
371		    slot >= tcp_syncache.rexmt_limit ||
372		    inp == NULL || inp->inp_gencnt != sc->sc_inp_gencnt) {
373			nsc = TAILQ_NEXT(sc, sc_timerq);
374			syncache_drop(sc, NULL);
375			tcpstat.tcps_sc_stale++;
376			continue;
377		}
378		/*
379		 * syncache_respond() may call back into the syncache to
380		 * to modify another entry, so do not obtain the next
381		 * entry on the timer chain until it has completed.
382		 */
383#ifdef TCPDEBUG
384		(void) syncache_respond(sc, NULL, NULL);
385#else
386		(void) syncache_respond(sc, NULL);
387#endif
388		nsc = TAILQ_NEXT(sc, sc_timerq);
389		tcpstat.tcps_sc_retransmitted++;
390		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
391		SYNCACHE_TIMEOUT(sc, slot + 1);
392	}
393	if (nsc != NULL)
394		callout_reset(&tcp_syncache.tt_timerq[slot],
395		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
396	INP_INFO_WUNLOCK(&tcbinfo);
397}
398
399/*
400 * Find an entry in the syncache.
401 */
402struct syncache *
403syncache_lookup(inc, schp)
404	struct in_conninfo *inc;
405	struct syncache_head **schp;
406{
407	struct syncache *sc;
408	struct syncache_head *sch;
409
410	INP_INFO_WLOCK_ASSERT(&tcbinfo);
411
412#ifdef INET6
413	if (inc->inc_isipv6) {
414		sch = &tcp_syncache.hashbase[
415		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
416		*schp = sch;
417		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
418			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
419				return (sc);
420		}
421	} else
422#endif
423	{
424		sch = &tcp_syncache.hashbase[
425		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
426		*schp = sch;
427		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
428#ifdef INET6
429			if (sc->sc_inc.inc_isipv6)
430				continue;
431#endif
432			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
433				return (sc);
434		}
435	}
436	return (NULL);
437}
438
439/*
440 * This function is called when we get a RST for a
441 * non-existent connection, so that we can see if the
442 * connection is in the syn cache.  If it is, zap it.
443 */
444void
445syncache_chkrst(inc, th)
446	struct in_conninfo *inc;
447	struct tcphdr *th;
448{
449	struct syncache *sc;
450	struct syncache_head *sch;
451
452	INP_INFO_WLOCK_ASSERT(&tcbinfo);
453
454	sc = syncache_lookup(inc, &sch);
455	if (sc == NULL)
456		return;
457	/*
458	 * If the RST bit is set, check the sequence number to see
459	 * if this is a valid reset segment.
460	 * RFC 793 page 37:
461	 *   In all states except SYN-SENT, all reset (RST) segments
462	 *   are validated by checking their SEQ-fields.  A reset is
463	 *   valid if its sequence number is in the window.
464	 *
465	 *   The sequence number in the reset segment is normally an
466	 *   echo of our outgoing acknowlegement numbers, but some hosts
467	 *   send a reset with the sequence number at the rightmost edge
468	 *   of our receive window, and we have to handle this case.
469	 */
470	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
471	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
472		syncache_drop(sc, sch);
473		tcpstat.tcps_sc_reset++;
474	}
475}
476
477void
478syncache_badack(inc)
479	struct in_conninfo *inc;
480{
481	struct syncache *sc;
482	struct syncache_head *sch;
483
484	INP_INFO_WLOCK_ASSERT(&tcbinfo);
485
486	sc = syncache_lookup(inc, &sch);
487	if (sc != NULL) {
488		syncache_drop(sc, sch);
489		tcpstat.tcps_sc_badack++;
490	}
491}
492
493void
494syncache_unreach(inc, th)
495	struct in_conninfo *inc;
496	struct tcphdr *th;
497{
498	struct syncache *sc;
499	struct syncache_head *sch;
500
501	INP_INFO_WLOCK_ASSERT(&tcbinfo);
502
503	sc = syncache_lookup(inc, &sch);
504	if (sc == NULL)
505		return;
506
507	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
508	if (ntohl(th->th_seq) != sc->sc_iss)
509		return;
510
511	/*
512	 * If we've rertransmitted 3 times and this is our second error,
513	 * we remove the entry.  Otherwise, we allow it to continue on.
514	 * This prevents us from incorrectly nuking an entry during a
515	 * spurious network outage.
516	 *
517	 * See tcp_notify().
518	 */
519	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
520		sc->sc_flags |= SCF_UNREACH;
521		return;
522	}
523	syncache_drop(sc, sch);
524	tcpstat.tcps_sc_unreach++;
525}
526
527/*
528 * Build a new TCP socket structure from a syncache entry.
529 */
530static struct socket *
531syncache_socket(sc, lso, m)
532	struct syncache *sc;
533	struct socket *lso;
534	struct mbuf *m;
535{
536	struct inpcb *inp = NULL;
537	struct socket *so;
538	struct tcpcb *tp;
539
540	NET_ASSERT_GIANT();
541	INP_INFO_WLOCK_ASSERT(&tcbinfo);
542
543	/*
544	 * Ok, create the full blown connection, and set things up
545	 * as they would have been set up if we had created the
546	 * connection when the SYN arrived.  If we can't create
547	 * the connection, abort it.
548	 */
549	so = sonewconn(lso, SS_ISCONNECTED);
550	if (so == NULL) {
551		/*
552		 * Drop the connection; we will send a RST if the peer
553		 * retransmits the ACK,
554		 */
555		tcpstat.tcps_listendrop++;
556		goto abort2;
557	}
558#ifdef MAC
559	SOCK_LOCK(so);
560	mac_set_socket_peer_from_mbuf(m, so);
561	SOCK_UNLOCK(so);
562#endif
563
564	inp = sotoinpcb(so);
565	INP_LOCK(inp);
566
567	/*
568	 * Insert new socket into hash list.
569	 */
570	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
571#ifdef INET6
572	if (sc->sc_inc.inc_isipv6) {
573		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
574	} else {
575		inp->inp_vflag &= ~INP_IPV6;
576		inp->inp_vflag |= INP_IPV4;
577#endif
578		inp->inp_laddr = sc->sc_inc.inc_laddr;
579#ifdef INET6
580	}
581#endif
582	inp->inp_lport = sc->sc_inc.inc_lport;
583	if (in_pcbinshash(inp) != 0) {
584		/*
585		 * Undo the assignments above if we failed to
586		 * put the PCB on the hash lists.
587		 */
588#ifdef INET6
589		if (sc->sc_inc.inc_isipv6)
590			inp->in6p_laddr = in6addr_any;
591		else
592#endif
593			inp->inp_laddr.s_addr = INADDR_ANY;
594		inp->inp_lport = 0;
595		goto abort;
596	}
597#ifdef IPSEC
598	/* copy old policy into new socket's */
599	if (ipsec_copy_pcbpolicy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
600		printf("syncache_expand: could not copy policy\n");
601#endif
602#ifdef FAST_IPSEC
603	/* copy old policy into new socket's */
604	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
605		printf("syncache_expand: could not copy policy\n");
606#endif
607#ifdef INET6
608	if (sc->sc_inc.inc_isipv6) {
609		struct inpcb *oinp = sotoinpcb(lso);
610		struct in6_addr laddr6;
611		struct sockaddr_in6 sin6;
612		/*
613		 * Inherit socket options from the listening socket.
614		 * Note that in6p_inputopts are not (and should not be)
615		 * copied, since it stores previously received options and is
616		 * used to detect if each new option is different than the
617		 * previous one and hence should be passed to a user.
618		 * If we copied in6p_inputopts, a user would not be able to
619		 * receive options just after calling the accept system call.
620		 */
621		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
622		if (oinp->in6p_outputopts)
623			inp->in6p_outputopts =
624			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
625
626		sin6.sin6_family = AF_INET6;
627		sin6.sin6_len = sizeof(sin6);
628		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
629		sin6.sin6_port = sc->sc_inc.inc_fport;
630		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
631		laddr6 = inp->in6p_laddr;
632		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
633			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
634		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
635		    thread0.td_ucred)) {
636			inp->in6p_laddr = laddr6;
637			goto abort;
638		}
639		/* Override flowlabel from in6_pcbconnect. */
640		inp->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
641		inp->in6p_flowinfo |= sc->sc_flowlabel;
642	} else
643#endif
644	{
645		struct in_addr laddr;
646		struct sockaddr_in sin;
647
648		inp->inp_options = ip_srcroute(m);
649		if (inp->inp_options == NULL) {
650			inp->inp_options = sc->sc_ipopts;
651			sc->sc_ipopts = NULL;
652		}
653
654		sin.sin_family = AF_INET;
655		sin.sin_len = sizeof(sin);
656		sin.sin_addr = sc->sc_inc.inc_faddr;
657		sin.sin_port = sc->sc_inc.inc_fport;
658		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
659		laddr = inp->inp_laddr;
660		if (inp->inp_laddr.s_addr == INADDR_ANY)
661			inp->inp_laddr = sc->sc_inc.inc_laddr;
662		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
663		    thread0.td_ucred)) {
664			inp->inp_laddr = laddr;
665			goto abort;
666		}
667	}
668
669	tp = intotcpcb(inp);
670	tp->t_state = TCPS_SYN_RECEIVED;
671	tp->iss = sc->sc_iss;
672	tp->irs = sc->sc_irs;
673	tcp_rcvseqinit(tp);
674	tcp_sendseqinit(tp);
675	tp->snd_wl1 = sc->sc_irs;
676	tp->rcv_up = sc->sc_irs + 1;
677	tp->rcv_wnd = sc->sc_wnd;
678	tp->rcv_adv += tp->rcv_wnd;
679
680	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
681	if (sc->sc_flags & SCF_NOOPT)
682		tp->t_flags |= TF_NOOPT;
683	if (sc->sc_flags & SCF_WINSCALE) {
684		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
685		tp->requested_s_scale = sc->sc_requested_s_scale;
686		tp->request_r_scale = sc->sc_request_r_scale;
687	}
688	if (sc->sc_flags & SCF_TIMESTAMP) {
689		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
690		tp->ts_recent = sc->sc_tsrecent;
691		tp->ts_recent_age = ticks;
692	}
693#ifdef TCP_SIGNATURE
694	if (sc->sc_flags & SCF_SIGNATURE)
695		tp->t_flags |= TF_SIGNATURE;
696#endif
697	if (sc->sc_flags & SCF_SACK) {
698		tp->sack_enable = 1;
699		tp->t_flags |= TF_SACK_PERMIT;
700	}
701	/*
702	 * Set up MSS and get cached values from tcp_hostcache.
703	 * This might overwrite some of the defaults we just set.
704	 */
705	tcp_mss(tp, sc->sc_peer_mss);
706
707	/*
708	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
709	 */
710	if (sc->sc_rxtslot != 0)
711		tp->snd_cwnd = tp->t_maxseg;
712	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
713
714	INP_UNLOCK(inp);
715
716	tcpstat.tcps_accepts++;
717	return (so);
718
719abort:
720	INP_UNLOCK(inp);
721abort2:
722	if (so != NULL)
723		(void) soabort(so);
724	return (NULL);
725}
726
727/*
728 * This function gets called when we receive an ACK for a
729 * socket in the LISTEN state.  We look up the connection
730 * in the syncache, and if its there, we pull it out of
731 * the cache and turn it into a full-blown connection in
732 * the SYN-RECEIVED state.
733 */
734int
735syncache_expand(inc, th, sop, m)
736	struct in_conninfo *inc;
737	struct tcphdr *th;
738	struct socket **sop;
739	struct mbuf *m;
740{
741	struct syncache *sc;
742	struct syncache_head *sch;
743	struct socket *so;
744
745	INP_INFO_WLOCK_ASSERT(&tcbinfo);
746
747	sc = syncache_lookup(inc, &sch);
748	if (sc == NULL) {
749		/*
750		 * There is no syncache entry, so see if this ACK is
751		 * a returning syncookie.  To do this, first:
752		 *  A. See if this socket has had a syncache entry dropped in
753		 *     the past.  We don't want to accept a bogus syncookie
754		 *     if we've never received a SYN.
755		 *  B. check that the syncookie is valid.  If it is, then
756		 *     cobble up a fake syncache entry, and return.
757		 */
758		if (!tcp_syncookies)
759			return (0);
760		sc = syncookie_lookup(inc, th, *sop);
761		if (sc == NULL)
762			return (0);
763		sch = NULL;
764		tcpstat.tcps_sc_recvcookie++;
765	}
766
767	/*
768	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
769	 */
770	if (th->th_ack != sc->sc_iss + 1) {
771		if (sch == NULL)
772			syncache_free(sc);
773		return (0);
774	}
775
776	so = syncache_socket(sc, *sop, m);
777	if (so == NULL) {
778#if 0
779resetandabort:
780		/* XXXjlemon check this - is this correct? */
781		(void) tcp_respond(NULL, m, m, th,
782		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
783#endif
784		m_freem(m);			/* XXX only needed for above */
785		tcpstat.tcps_sc_aborted++;
786	} else
787		tcpstat.tcps_sc_completed++;
788
789	if (sch == NULL)
790		syncache_free(sc);
791	else
792		syncache_drop(sc, sch);
793	*sop = so;
794	return (1);
795}
796
797/*
798 * Given a LISTEN socket and an inbound SYN request, add
799 * this to the syn cache, and send back a segment:
800 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
801 * to the source.
802 *
803 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
804 * Doing so would require that we hold onto the data and deliver it
805 * to the application.  However, if we are the target of a SYN-flood
806 * DoS attack, an attacker could send data which would eventually
807 * consume all available buffer space if it were ACKed.  By not ACKing
808 * the data, we avoid this DoS scenario.
809 */
810int
811syncache_add(inc, to, th, sop, m)
812	struct in_conninfo *inc;
813	struct tcpopt *to;
814	struct tcphdr *th;
815	struct socket **sop;
816	struct mbuf *m;
817{
818	struct tcpcb *tp;
819	struct socket *so;
820	struct syncache *sc = NULL;
821	struct syncache_head *sch;
822	struct mbuf *ipopts = NULL;
823	u_int32_t flowtmp;
824	int i, win;
825
826	INP_INFO_WLOCK_ASSERT(&tcbinfo);
827
828	so = *sop;
829	tp = sototcpcb(so);
830
831	/*
832	 * Remember the IP options, if any.
833	 */
834#ifdef INET6
835	if (!inc->inc_isipv6)
836#endif
837		ipopts = ip_srcroute(m);
838
839	/*
840	 * See if we already have an entry for this connection.
841	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
842	 *
843	 * XXX
844	 * should the syncache be re-initialized with the contents
845	 * of the new SYN here (which may have different options?)
846	 */
847	sc = syncache_lookup(inc, &sch);
848	if (sc != NULL) {
849		tcpstat.tcps_sc_dupsyn++;
850		if (ipopts) {
851			/*
852			 * If we were remembering a previous source route,
853			 * forget it and use the new one we've been given.
854			 */
855			if (sc->sc_ipopts)
856				(void) m_free(sc->sc_ipopts);
857			sc->sc_ipopts = ipopts;
858		}
859		/*
860		 * Update timestamp if present.
861		 */
862		if (sc->sc_flags & SCF_TIMESTAMP)
863			sc->sc_tsrecent = to->to_tsval;
864		/*
865		 * PCB may have changed, pick up new values.
866		 */
867		sc->sc_tp = tp;
868		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
869#ifdef TCPDEBUG
870		if (syncache_respond(sc, m, so) == 0) {
871#else
872		if (syncache_respond(sc, m) == 0) {
873#endif
874			/* NB: guarded by INP_INFO_WLOCK(&tcbinfo) */
875			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
876			    sc, sc_timerq);
877			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
878			tcpstat.tcps_sndacks++;
879			tcpstat.tcps_sndtotal++;
880		}
881		*sop = NULL;
882		return (1);
883	}
884
885	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
886	if (sc == NULL) {
887		/*
888		 * The zone allocator couldn't provide more entries.
889		 * Treat this as if the cache was full; drop the oldest
890		 * entry and insert the new one.
891		 */
892		tcpstat.tcps_sc_zonefail++;
893		/* NB: guarded by INP_INFO_WLOCK(&tcbinfo) */
894		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
895			sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
896			if (sc != NULL)
897				break;
898		}
899		if (sc == NULL) {
900			/* Generic memory failure. */
901			if (ipopts)
902				(void) m_free(ipopts);
903			return (0);
904		}
905		sc->sc_tp->ts_recent = ticks;
906		syncache_drop(sc, NULL);
907		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
908		if (sc == NULL) {
909			if (ipopts)
910				(void) m_free(ipopts);
911			return (0);
912		}
913	}
914
915	/*
916	 * Fill in the syncache values.
917	 */
918	bzero(sc, sizeof(*sc));
919	sc->sc_tp = tp;
920	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
921	sc->sc_ipopts = ipopts;
922	sc->sc_inc.inc_fport = inc->inc_fport;
923	sc->sc_inc.inc_lport = inc->inc_lport;
924#ifdef INET6
925	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
926	if (inc->inc_isipv6) {
927		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
928		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
929	} else
930#endif
931	{
932		sc->sc_inc.inc_faddr = inc->inc_faddr;
933		sc->sc_inc.inc_laddr = inc->inc_laddr;
934	}
935	sc->sc_irs = th->th_seq;
936	sc->sc_flags = 0;
937	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
938	sc->sc_flowlabel = 0;
939	if (tcp_syncookies) {
940		sc->sc_iss = syncookie_generate(sc, &flowtmp);
941#ifdef INET6
942		if (inc->inc_isipv6 &&
943		    (sc->sc_tp->t_inpcb->in6p_flags & IN6P_AUTOFLOWLABEL)) {
944			sc->sc_flowlabel = flowtmp & IPV6_FLOWLABEL_MASK;
945		}
946#endif
947	} else {
948		sc->sc_iss = arc4random();
949#ifdef INET6
950		if (inc->inc_isipv6 &&
951		    (sc->sc_tp->t_inpcb->in6p_flags & IN6P_AUTOFLOWLABEL)) {
952			sc->sc_flowlabel =
953			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
954		}
955#endif
956	}
957
958	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
959	win = sbspace(&so->so_rcv);
960	win = imax(win, 0);
961	win = imin(win, TCP_MAXWIN);
962	sc->sc_wnd = win;
963
964	if (tcp_do_rfc1323) {
965		/*
966		 * A timestamp received in a SYN makes
967		 * it ok to send timestamp requests and replies.
968		 */
969		if (to->to_flags & TOF_TS) {
970			sc->sc_tsrecent = to->to_tsval;
971			sc->sc_flags |= SCF_TIMESTAMP;
972		}
973		if (to->to_flags & TOF_SCALE) {
974			int wscale = 0;
975
976			/* Compute proper scaling value from buffer space */
977			while (wscale < TCP_MAX_WINSHIFT &&
978			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
979				wscale++;
980			sc->sc_request_r_scale = wscale;
981			sc->sc_requested_s_scale = to->to_requested_s_scale;
982			sc->sc_flags |= SCF_WINSCALE;
983		}
984	}
985	if (tp->t_flags & TF_NOOPT)
986		sc->sc_flags = SCF_NOOPT;
987#ifdef TCP_SIGNATURE
988	/*
989	 * If listening socket requested TCP digests, and received SYN
990	 * contains the option, flag this in the syncache so that
991	 * syncache_respond() will do the right thing with the SYN+ACK.
992	 * XXX Currently we always record the option by default and will
993	 * attempt to use it in syncache_respond().
994	 */
995	if (to->to_flags & TOF_SIGNATURE)
996		sc->sc_flags |= SCF_SIGNATURE;
997#endif
998
999	if (to->to_flags & TOF_SACK)
1000		sc->sc_flags |= SCF_SACK;
1001
1002	/*
1003	 * Do a standard 3-way handshake.
1004	 */
1005#ifdef TCPDEBUG
1006	if (syncache_respond(sc, m, so) == 0) {
1007#else
1008	if (syncache_respond(sc, m) == 0) {
1009#endif
1010		syncache_insert(sc, sch);
1011		tcpstat.tcps_sndacks++;
1012		tcpstat.tcps_sndtotal++;
1013	} else {
1014		syncache_free(sc);
1015		tcpstat.tcps_sc_dropped++;
1016	}
1017	*sop = NULL;
1018	return (1);
1019}
1020
1021#ifdef TCPDEBUG
1022static int
1023syncache_respond(sc, m, so)
1024	struct syncache *sc;
1025	struct mbuf *m;
1026	struct socket *so;
1027#else
1028static int
1029syncache_respond(sc, m)
1030	struct syncache *sc;
1031	struct mbuf *m;
1032#endif
1033{
1034	u_int8_t *optp;
1035	int optlen, error;
1036	u_int16_t tlen, hlen, mssopt;
1037	struct ip *ip = NULL;
1038	struct tcphdr *th;
1039	struct inpcb *inp;
1040#ifdef INET6
1041	struct ip6_hdr *ip6 = NULL;
1042#endif
1043
1044	hlen =
1045#ifdef INET6
1046	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1047#endif
1048		sizeof(struct ip);
1049
1050	KASSERT((&sc->sc_inc) != NULL, ("syncache_respond with NULL in_conninfo pointer"));
1051
1052	/* Determine MSS we advertize to other end of connection */
1053	mssopt = tcp_mssopt(&sc->sc_inc);
1054
1055	/* Compute the size of the TCP options. */
1056	if (sc->sc_flags & SCF_NOOPT) {
1057		optlen = 0;
1058	} else {
1059		optlen = TCPOLEN_MAXSEG +
1060		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1061		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
1062#ifdef TCP_SIGNATURE
1063		if (sc->sc_flags & SCF_SIGNATURE)
1064			optlen += TCPOLEN_SIGNATURE;
1065#endif
1066		if (sc->sc_flags & SCF_SACK)
1067			optlen += TCPOLEN_SACK_PERMITTED;
1068		optlen = roundup2(optlen, 4);
1069	}
1070	tlen = hlen + sizeof(struct tcphdr) + optlen;
1071
1072	/*
1073	 * XXX
1074	 * assume that the entire packet will fit in a header mbuf
1075	 */
1076	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1077
1078	/*
1079	 * XXX shouldn't this reuse the mbuf if possible ?
1080	 * Create the IP+TCP header from scratch.
1081	 */
1082	if (m)
1083		m_freem(m);
1084
1085	m = m_gethdr(M_DONTWAIT, MT_DATA);
1086	if (m == NULL)
1087		return (ENOBUFS);
1088	m->m_data += max_linkhdr;
1089	m->m_len = tlen;
1090	m->m_pkthdr.len = tlen;
1091	m->m_pkthdr.rcvif = NULL;
1092	inp = sc->sc_tp->t_inpcb;
1093	INP_LOCK(inp);
1094#ifdef MAC
1095	mac_create_mbuf_from_inpcb(inp, m);
1096#endif
1097
1098#ifdef INET6
1099	if (sc->sc_inc.inc_isipv6) {
1100		ip6 = mtod(m, struct ip6_hdr *);
1101		ip6->ip6_vfc = IPV6_VERSION;
1102		ip6->ip6_nxt = IPPROTO_TCP;
1103		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1104		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1105		ip6->ip6_plen = htons(tlen - hlen);
1106		/* ip6_hlim is set after checksum */
1107		ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
1108		ip6->ip6_flow |= sc->sc_flowlabel;
1109
1110		th = (struct tcphdr *)(ip6 + 1);
1111	} else
1112#endif
1113	{
1114		ip = mtod(m, struct ip *);
1115		ip->ip_v = IPVERSION;
1116		ip->ip_hl = sizeof(struct ip) >> 2;
1117		ip->ip_len = tlen;
1118		ip->ip_id = 0;
1119		ip->ip_off = 0;
1120		ip->ip_sum = 0;
1121		ip->ip_p = IPPROTO_TCP;
1122		ip->ip_src = sc->sc_inc.inc_laddr;
1123		ip->ip_dst = sc->sc_inc.inc_faddr;
1124		ip->ip_ttl = inp->inp_ip_ttl;   /* XXX */
1125		ip->ip_tos = inp->inp_ip_tos;   /* XXX */
1126
1127		/*
1128		 * See if we should do MTU discovery.  Route lookups are
1129		 * expensive, so we will only unset the DF bit if:
1130		 *
1131		 *	1) path_mtu_discovery is disabled
1132		 *	2) the SCF_UNREACH flag has been set
1133		 */
1134		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1135		       ip->ip_off |= IP_DF;
1136
1137		th = (struct tcphdr *)(ip + 1);
1138	}
1139	th->th_sport = sc->sc_inc.inc_lport;
1140	th->th_dport = sc->sc_inc.inc_fport;
1141
1142	th->th_seq = htonl(sc->sc_iss);
1143	th->th_ack = htonl(sc->sc_irs + 1);
1144	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1145	th->th_x2 = 0;
1146	th->th_flags = TH_SYN|TH_ACK;
1147	th->th_win = htons(sc->sc_wnd);
1148	th->th_urp = 0;
1149
1150	/* Tack on the TCP options. */
1151	if (optlen != 0) {
1152		optp = (u_int8_t *)(th + 1);
1153		*optp++ = TCPOPT_MAXSEG;
1154		*optp++ = TCPOLEN_MAXSEG;
1155		*optp++ = (mssopt >> 8) & 0xff;
1156		*optp++ = mssopt & 0xff;
1157
1158		if (sc->sc_flags & SCF_WINSCALE) {
1159			*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1160			    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1161			    sc->sc_request_r_scale);
1162			optp += 4;
1163		}
1164
1165		if (sc->sc_flags & SCF_TIMESTAMP) {
1166			u_int32_t *lp = (u_int32_t *)(optp);
1167
1168			/* Form timestamp option per appendix A of RFC 1323. */
1169			*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1170			*lp++ = htonl(ticks);
1171			*lp   = htonl(sc->sc_tsrecent);
1172			optp += TCPOLEN_TSTAMP_APPA;
1173		}
1174
1175#ifdef TCP_SIGNATURE
1176		/*
1177		 * Handle TCP-MD5 passive opener response.
1178		 */
1179		if (sc->sc_flags & SCF_SIGNATURE) {
1180			u_int8_t *bp = optp;
1181			int i;
1182
1183			*bp++ = TCPOPT_SIGNATURE;
1184			*bp++ = TCPOLEN_SIGNATURE;
1185			for (i = 0; i < TCP_SIGLEN; i++)
1186				*bp++ = 0;
1187			tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
1188			    optp + 2, IPSEC_DIR_OUTBOUND);
1189			optp += TCPOLEN_SIGNATURE;
1190		}
1191#endif /* TCP_SIGNATURE */
1192
1193		if (sc->sc_flags & SCF_SACK) {
1194			*optp++ = TCPOPT_SACK_PERMITTED;
1195			*optp++ = TCPOLEN_SACK_PERMITTED;
1196		}
1197
1198		{
1199			/* Pad TCP options to a 4 byte boundary */
1200			int padlen = optlen - (optp - (u_int8_t *)(th + 1));
1201			while (padlen-- > 0)
1202				*optp++ = TCPOPT_EOL;
1203		}
1204	}
1205
1206#ifdef INET6
1207	if (sc->sc_inc.inc_isipv6) {
1208		th->th_sum = 0;
1209		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1210		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1211		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
1212	} else
1213#endif
1214	{
1215		th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1216		    htons(tlen - hlen + IPPROTO_TCP));
1217		m->m_pkthdr.csum_flags = CSUM_TCP;
1218		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1219#ifdef TCPDEBUG
1220		/*
1221		 * Trace.
1222		 */
1223		if (so != NULL && so->so_options & SO_DEBUG) {
1224			struct tcpcb *tp = sototcpcb(so);
1225			tcp_trace(TA_OUTPUT, tp->t_state, tp,
1226			    mtod(m, void *), th, 0);
1227		}
1228#endif
1229		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, inp);
1230	}
1231	INP_UNLOCK(inp);
1232	return (error);
1233}
1234
1235/*
1236 * cookie layers:
1237 *
1238 *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1239 *	| peer iss                                                      |
1240 *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1241 *	|                     0                       |(A)|             |
1242 * (A): peer mss index
1243 */
1244
1245/*
1246 * The values below are chosen to minimize the size of the tcp_secret
1247 * table, as well as providing roughly a 16 second lifetime for the cookie.
1248 */
1249
1250#define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1251#define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1252
1253#define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1254#define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1255#define SYNCOOKIE_TIMEOUT \
1256    (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1257#define SYNCOOKIE_DATAMASK	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1258
1259static struct {
1260	u_int32_t	ts_secbits[4];
1261	u_int		ts_expire;
1262} tcp_secret[SYNCOOKIE_NSECRETS];
1263
1264static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1265
1266static MD5_CTX syn_ctx;
1267
1268#define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1269
1270struct md5_add {
1271	u_int32_t laddr, faddr;
1272	u_int32_t secbits[4];
1273	u_int16_t lport, fport;
1274};
1275
1276#ifdef CTASSERT
1277CTASSERT(sizeof(struct md5_add) == 28);
1278#endif
1279
1280/*
1281 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1282 * original SYN was accepted, the connection is established.  The second
1283 * SYN is inflight, and if it arrives with an ISN that falls within the
1284 * receive window, the connection is killed.
1285 *
1286 * However, since cookies have other problems, this may not be worth
1287 * worrying about.
1288 */
1289
1290static u_int32_t
1291syncookie_generate(struct syncache *sc, u_int32_t *flowid)
1292{
1293	u_int32_t md5_buffer[4];
1294	u_int32_t data;
1295	int idx, i;
1296	struct md5_add add;
1297
1298	/* NB: single threaded; could add INP_INFO_WLOCK_ASSERT(&tcbinfo) */
1299
1300	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1301	if (tcp_secret[idx].ts_expire < ticks) {
1302		for (i = 0; i < 4; i++)
1303			tcp_secret[idx].ts_secbits[i] = arc4random();
1304		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1305	}
1306	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1307		if (tcp_msstab[data] <= sc->sc_peer_mss)
1308			break;
1309	data = (data << SYNCOOKIE_WNDBITS) | idx;
1310	data ^= sc->sc_irs;				/* peer's iss */
1311	MD5Init(&syn_ctx);
1312#ifdef INET6
1313	if (sc->sc_inc.inc_isipv6) {
1314		MD5Add(sc->sc_inc.inc6_laddr);
1315		MD5Add(sc->sc_inc.inc6_faddr);
1316		add.laddr = 0;
1317		add.faddr = 0;
1318	} else
1319#endif
1320	{
1321		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1322		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1323	}
1324	add.lport = sc->sc_inc.inc_lport;
1325	add.fport = sc->sc_inc.inc_fport;
1326	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1327	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1328	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1329	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1330	MD5Add(add);
1331	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1332	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1333	*flowid = md5_buffer[1];
1334	return (data);
1335}
1336
1337static struct syncache *
1338syncookie_lookup(inc, th, so)
1339	struct in_conninfo *inc;
1340	struct tcphdr *th;
1341	struct socket *so;
1342{
1343	u_int32_t md5_buffer[4];
1344	struct syncache *sc;
1345	u_int32_t data;
1346	int wnd, idx;
1347	struct md5_add add;
1348
1349	/* NB: single threaded; could add INP_INFO_WLOCK_ASSERT(&tcbinfo) */
1350
1351	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1352	idx = data & SYNCOOKIE_WNDMASK;
1353	if (tcp_secret[idx].ts_expire < ticks ||
1354	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1355		return (NULL);
1356	MD5Init(&syn_ctx);
1357#ifdef INET6
1358	if (inc->inc_isipv6) {
1359		MD5Add(inc->inc6_laddr);
1360		MD5Add(inc->inc6_faddr);
1361		add.laddr = 0;
1362		add.faddr = 0;
1363	} else
1364#endif
1365	{
1366		add.laddr = inc->inc_laddr.s_addr;
1367		add.faddr = inc->inc_faddr.s_addr;
1368	}
1369	add.lport = inc->inc_lport;
1370	add.fport = inc->inc_fport;
1371	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1372	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1373	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1374	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1375	MD5Add(add);
1376	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1377	data ^= md5_buffer[0];
1378	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1379		return (NULL);
1380	data = data >> SYNCOOKIE_WNDBITS;
1381
1382	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1383	if (sc == NULL)
1384		return (NULL);
1385	/*
1386	 * Fill in the syncache values.
1387	 * XXX duplicate code from syncache_add
1388	 */
1389	bzero(sc, sizeof(*sc));
1390	sc->sc_ipopts = NULL;
1391	sc->sc_inc.inc_fport = inc->inc_fport;
1392	sc->sc_inc.inc_lport = inc->inc_lport;
1393	sc->sc_tp = sototcpcb(so);
1394#ifdef INET6
1395	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1396	if (inc->inc_isipv6) {
1397		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1398		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1399		if (sc->sc_tp->t_inpcb->in6p_flags & IN6P_AUTOFLOWLABEL)
1400			sc->sc_flowlabel = md5_buffer[1] & IPV6_FLOWLABEL_MASK;
1401	} else
1402#endif
1403	{
1404		sc->sc_inc.inc_faddr = inc->inc_faddr;
1405		sc->sc_inc.inc_laddr = inc->inc_laddr;
1406	}
1407	sc->sc_irs = th->th_seq - 1;
1408	sc->sc_iss = th->th_ack - 1;
1409	wnd = sbspace(&so->so_rcv);
1410	wnd = imax(wnd, 0);
1411	wnd = imin(wnd, TCP_MAXWIN);
1412	sc->sc_wnd = wnd;
1413	sc->sc_flags = 0;
1414	sc->sc_rxtslot = 0;
1415	sc->sc_peer_mss = tcp_msstab[data];
1416	return (sc);
1417}
1418