tcp_syncache.c revision 130989
1/*-
2 * Copyright (c) 2001 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Jonathan Lemon
6 * and NAI Labs, the Security Research Division of Network Associates, Inc.
7 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8 * DARPA CHATS research program.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 *    products derived from this software without specific prior written
20 *    permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $FreeBSD: head/sys/netinet/tcp_syncache.c 130989 2004-06-23 21:04:37Z ps $
35 */
36
37#include "opt_inet.h"
38#include "opt_inet6.h"
39#include "opt_ipsec.h"
40#include "opt_mac.h"
41#include "opt_tcpdebug.h"
42#include "opt_tcp_sack.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/kernel.h>
47#include <sys/sysctl.h>
48#include <sys/malloc.h>
49#include <sys/mac.h>
50#include <sys/mbuf.h>
51#include <sys/md5.h>
52#include <sys/proc.h>		/* for proc0 declaration */
53#include <sys/random.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56
57#include <net/if.h>
58#include <net/route.h>
59
60#include <netinet/in.h>
61#include <netinet/in_systm.h>
62#include <netinet/ip.h>
63#include <netinet/in_var.h>
64#include <netinet/in_pcb.h>
65#include <netinet/ip_var.h>
66#ifdef INET6
67#include <netinet/ip6.h>
68#include <netinet/icmp6.h>
69#include <netinet6/nd6.h>
70#include <netinet6/ip6_var.h>
71#include <netinet6/in6_pcb.h>
72#endif
73#include <netinet/tcp.h>
74#ifdef TCPDEBUG
75#include <netinet/tcpip.h>
76#endif
77#include <netinet/tcp_fsm.h>
78#include <netinet/tcp_seq.h>
79#include <netinet/tcp_timer.h>
80#include <netinet/tcp_var.h>
81#ifdef TCPDEBUG
82#include <netinet/tcp_debug.h>
83#endif
84#ifdef INET6
85#include <netinet6/tcp6_var.h>
86#endif
87
88#ifdef IPSEC
89#include <netinet6/ipsec.h>
90#ifdef INET6
91#include <netinet6/ipsec6.h>
92#endif
93#endif /*IPSEC*/
94
95#ifdef FAST_IPSEC
96#include <netipsec/ipsec.h>
97#ifdef INET6
98#include <netipsec/ipsec6.h>
99#endif
100#include <netipsec/key.h>
101#endif /*FAST_IPSEC*/
102
103#include <machine/in_cksum.h>
104#include <vm/uma.h>
105
106static int tcp_syncookies = 1;
107SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
108    &tcp_syncookies, 0,
109    "Use TCP SYN cookies if the syncache overflows");
110
111static void	 syncache_drop(struct syncache *, struct syncache_head *);
112static void	 syncache_free(struct syncache *);
113static void	 syncache_insert(struct syncache *, struct syncache_head *);
114struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
115#ifdef TCPDEBUG
116static int	 syncache_respond(struct syncache *, struct mbuf *, struct socket *);
117#else
118static int	 syncache_respond(struct syncache *, struct mbuf *);
119#endif
120static struct 	 socket *syncache_socket(struct syncache *, struct socket *,
121		    struct mbuf *m);
122static void	 syncache_timer(void *);
123static u_int32_t syncookie_generate(struct syncache *);
124static struct syncache *syncookie_lookup(struct in_conninfo *,
125		    struct tcphdr *, struct socket *);
126
127/*
128 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
129 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
130 * the odds are that the user has given up attempting to connect by then.
131 */
132#define SYNCACHE_MAXREXMTS		3
133
134/* Arbitrary values */
135#define TCP_SYNCACHE_HASHSIZE		512
136#define TCP_SYNCACHE_BUCKETLIMIT	30
137
138struct tcp_syncache {
139	struct	syncache_head *hashbase;
140	uma_zone_t zone;
141	u_int	hashsize;
142	u_int	hashmask;
143	u_int	bucket_limit;
144	u_int	cache_count;
145	u_int	cache_limit;
146	u_int	rexmt_limit;
147	u_int	hash_secret;
148	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
149	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
150};
151static struct tcp_syncache tcp_syncache;
152
153SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
154
155SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
156     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
157
158SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
159     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
160
161SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
162     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
163
164SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
165     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
166
167SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
168     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
169
170static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
171
172#define SYNCACHE_HASH(inc, mask) 					\
173	((tcp_syncache.hash_secret ^					\
174	  (inc)->inc_faddr.s_addr ^					\
175	  ((inc)->inc_faddr.s_addr >> 16) ^ 				\
176	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
177
178#define SYNCACHE_HASH6(inc, mask) 					\
179	((tcp_syncache.hash_secret ^					\
180	  (inc)->inc6_faddr.s6_addr32[0] ^ 				\
181	  (inc)->inc6_faddr.s6_addr32[3] ^ 				\
182	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
183
184#define ENDPTS_EQ(a, b) (						\
185	(a)->ie_fport == (b)->ie_fport &&				\
186	(a)->ie_lport == (b)->ie_lport &&				\
187	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
188	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
189)
190
191#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
192
193#define SYNCACHE_TIMEOUT(sc, slot) do {				\
194	sc->sc_rxtslot = (slot);					\
195	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[(slot)];	\
196	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[(slot)], sc, sc_timerq);	\
197	if (!callout_active(&tcp_syncache.tt_timerq[(slot)]))		\
198		callout_reset(&tcp_syncache.tt_timerq[(slot)],		\
199		    TCPTV_RTOBASE * tcp_backoff[(slot)],		\
200		    syncache_timer, (void *)((intptr_t)(slot)));	\
201} while (0)
202
203static void
204syncache_free(struct syncache *sc)
205{
206	if (sc->sc_ipopts)
207		(void) m_free(sc->sc_ipopts);
208
209	uma_zfree(tcp_syncache.zone, sc);
210}
211
212void
213syncache_init(void)
214{
215	int i;
216
217	tcp_syncache.cache_count = 0;
218	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
219	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
220	tcp_syncache.cache_limit =
221	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
222	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
223	tcp_syncache.hash_secret = arc4random();
224
225        TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
226	    &tcp_syncache.hashsize);
227        TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
228	    &tcp_syncache.cache_limit);
229        TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
230	    &tcp_syncache.bucket_limit);
231	if (!powerof2(tcp_syncache.hashsize)) {
232                printf("WARNING: syncache hash size is not a power of 2.\n");
233		tcp_syncache.hashsize = 512;	/* safe default */
234        }
235	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
236
237	/* Allocate the hash table. */
238	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
239	    tcp_syncache.hashsize * sizeof(struct syncache_head),
240	    M_SYNCACHE, M_WAITOK);
241
242	/* Initialize the hash buckets. */
243	for (i = 0; i < tcp_syncache.hashsize; i++) {
244		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
245		tcp_syncache.hashbase[i].sch_length = 0;
246	}
247
248	/* Initialize the timer queues. */
249	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
250		TAILQ_INIT(&tcp_syncache.timerq[i]);
251		callout_init(&tcp_syncache.tt_timerq[i],
252			debug_mpsafenet ? CALLOUT_MPSAFE : 0);
253	}
254
255	/*
256	 * Allocate the syncache entries.  Allow the zone to allocate one
257	 * more entry than cache limit, so a new entry can bump out an
258	 * older one.
259	 */
260	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
261	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
262	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
263	tcp_syncache.cache_limit -= 1;
264}
265
266static void
267syncache_insert(sc, sch)
268	struct syncache *sc;
269	struct syncache_head *sch;
270{
271	struct syncache *sc2;
272	int i;
273
274	INP_INFO_WLOCK_ASSERT(&tcbinfo);
275
276	/*
277	 * Make sure that we don't overflow the per-bucket
278	 * limit or the total cache size limit.
279	 */
280	if (sch->sch_length >= tcp_syncache.bucket_limit) {
281		/*
282		 * The bucket is full, toss the oldest element.
283		 */
284		sc2 = TAILQ_FIRST(&sch->sch_bucket);
285		sc2->sc_tp->ts_recent = ticks;
286		syncache_drop(sc2, sch);
287		tcpstat.tcps_sc_bucketoverflow++;
288	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
289		/*
290		 * The cache is full.  Toss the oldest entry in the
291		 * entire cache.  This is the front entry in the
292		 * first non-empty timer queue with the largest
293		 * timeout value.
294		 */
295		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
296			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
297			if (sc2 != NULL)
298				break;
299		}
300		sc2->sc_tp->ts_recent = ticks;
301		syncache_drop(sc2, NULL);
302		tcpstat.tcps_sc_cacheoverflow++;
303	}
304
305	/* Initialize the entry's timer. */
306	SYNCACHE_TIMEOUT(sc, 0);
307
308	/* Put it into the bucket. */
309	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
310	sch->sch_length++;
311	tcp_syncache.cache_count++;
312	tcpstat.tcps_sc_added++;
313}
314
315static void
316syncache_drop(sc, sch)
317	struct syncache *sc;
318	struct syncache_head *sch;
319{
320	INP_INFO_WLOCK_ASSERT(&tcbinfo);
321
322	if (sch == NULL) {
323#ifdef INET6
324		if (sc->sc_inc.inc_isipv6) {
325			sch = &tcp_syncache.hashbase[
326			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
327		} else
328#endif
329		{
330			sch = &tcp_syncache.hashbase[
331			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
332		}
333	}
334
335	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
336	sch->sch_length--;
337	tcp_syncache.cache_count--;
338
339	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
340	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
341		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
342
343	syncache_free(sc);
344}
345
346/*
347 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
348 * If we have retransmitted an entry the maximum number of times, expire it.
349 */
350static void
351syncache_timer(xslot)
352	void *xslot;
353{
354	intptr_t slot = (intptr_t)xslot;
355	struct syncache *sc, *nsc;
356	struct inpcb *inp;
357
358	INP_INFO_WLOCK(&tcbinfo);
359        if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
360            !callout_active(&tcp_syncache.tt_timerq[slot])) {
361		/* XXX can this happen? */
362		INP_INFO_WUNLOCK(&tcbinfo);
363                return;
364        }
365        callout_deactivate(&tcp_syncache.tt_timerq[slot]);
366
367        nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
368	while (nsc != NULL) {
369		if (ticks < nsc->sc_rxttime)
370			break;
371		sc = nsc;
372		inp = sc->sc_tp->t_inpcb;
373		if (slot == SYNCACHE_MAXREXMTS ||
374		    slot >= tcp_syncache.rexmt_limit ||
375		    inp == NULL || inp->inp_gencnt != sc->sc_inp_gencnt) {
376			nsc = TAILQ_NEXT(sc, sc_timerq);
377			syncache_drop(sc, NULL);
378			tcpstat.tcps_sc_stale++;
379			continue;
380		}
381		/*
382		 * syncache_respond() may call back into the syncache to
383		 * to modify another entry, so do not obtain the next
384		 * entry on the timer chain until it has completed.
385		 */
386#ifdef TCPDEBUG
387		(void) syncache_respond(sc, NULL, NULL);
388#else
389		(void) syncache_respond(sc, NULL);
390#endif
391		nsc = TAILQ_NEXT(sc, sc_timerq);
392		tcpstat.tcps_sc_retransmitted++;
393		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
394		SYNCACHE_TIMEOUT(sc, slot + 1);
395	}
396	if (nsc != NULL)
397		callout_reset(&tcp_syncache.tt_timerq[slot],
398		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
399	INP_INFO_WUNLOCK(&tcbinfo);
400}
401
402/*
403 * Find an entry in the syncache.
404 */
405struct syncache *
406syncache_lookup(inc, schp)
407	struct in_conninfo *inc;
408	struct syncache_head **schp;
409{
410	struct syncache *sc;
411	struct syncache_head *sch;
412
413	INP_INFO_WLOCK_ASSERT(&tcbinfo);
414
415#ifdef INET6
416	if (inc->inc_isipv6) {
417		sch = &tcp_syncache.hashbase[
418		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
419		*schp = sch;
420		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
421			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
422				return (sc);
423		}
424	} else
425#endif
426	{
427		sch = &tcp_syncache.hashbase[
428		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
429		*schp = sch;
430		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
431#ifdef INET6
432			if (sc->sc_inc.inc_isipv6)
433				continue;
434#endif
435			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
436				return (sc);
437		}
438	}
439	return (NULL);
440}
441
442/*
443 * This function is called when we get a RST for a
444 * non-existent connection, so that we can see if the
445 * connection is in the syn cache.  If it is, zap it.
446 */
447void
448syncache_chkrst(inc, th)
449	struct in_conninfo *inc;
450	struct tcphdr *th;
451{
452	struct syncache *sc;
453	struct syncache_head *sch;
454
455	INP_INFO_WLOCK_ASSERT(&tcbinfo);
456
457	sc = syncache_lookup(inc, &sch);
458	if (sc == NULL)
459		return;
460	/*
461	 * If the RST bit is set, check the sequence number to see
462	 * if this is a valid reset segment.
463	 * RFC 793 page 37:
464	 *   In all states except SYN-SENT, all reset (RST) segments
465	 *   are validated by checking their SEQ-fields.  A reset is
466	 *   valid if its sequence number is in the window.
467	 *
468	 *   The sequence number in the reset segment is normally an
469	 *   echo of our outgoing acknowlegement numbers, but some hosts
470	 *   send a reset with the sequence number at the rightmost edge
471	 *   of our receive window, and we have to handle this case.
472	 */
473	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
474	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
475		syncache_drop(sc, sch);
476		tcpstat.tcps_sc_reset++;
477	}
478}
479
480void
481syncache_badack(inc)
482	struct in_conninfo *inc;
483{
484	struct syncache *sc;
485	struct syncache_head *sch;
486
487	INP_INFO_WLOCK_ASSERT(&tcbinfo);
488
489	sc = syncache_lookup(inc, &sch);
490	if (sc != NULL) {
491		syncache_drop(sc, sch);
492		tcpstat.tcps_sc_badack++;
493	}
494}
495
496void
497syncache_unreach(inc, th)
498	struct in_conninfo *inc;
499	struct tcphdr *th;
500{
501	struct syncache *sc;
502	struct syncache_head *sch;
503
504	INP_INFO_WLOCK_ASSERT(&tcbinfo);
505
506	/* we are called at splnet() here */
507	sc = syncache_lookup(inc, &sch);
508	if (sc == NULL)
509		return;
510
511	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
512	if (ntohl(th->th_seq) != sc->sc_iss)
513		return;
514
515	/*
516	 * If we've rertransmitted 3 times and this is our second error,
517	 * we remove the entry.  Otherwise, we allow it to continue on.
518	 * This prevents us from incorrectly nuking an entry during a
519	 * spurious network outage.
520	 *
521	 * See tcp_notify().
522	 */
523	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
524		sc->sc_flags |= SCF_UNREACH;
525		return;
526	}
527	syncache_drop(sc, sch);
528	tcpstat.tcps_sc_unreach++;
529}
530
531/*
532 * Build a new TCP socket structure from a syncache entry.
533 */
534static struct socket *
535syncache_socket(sc, lso, m)
536	struct syncache *sc;
537	struct socket *lso;
538	struct mbuf *m;
539{
540	struct inpcb *inp = NULL;
541	struct socket *so;
542	struct tcpcb *tp;
543
544	NET_ASSERT_GIANT();
545	INP_INFO_WLOCK_ASSERT(&tcbinfo);
546
547	/*
548	 * Ok, create the full blown connection, and set things up
549	 * as they would have been set up if we had created the
550	 * connection when the SYN arrived.  If we can't create
551	 * the connection, abort it.
552	 */
553	so = sonewconn(lso, SS_ISCONNECTED);
554	if (so == NULL) {
555		/*
556		 * Drop the connection; we will send a RST if the peer
557		 * retransmits the ACK,
558		 */
559		tcpstat.tcps_listendrop++;
560		goto abort2;
561	}
562#ifdef MAC
563	SOCK_LOCK(so);
564	mac_set_socket_peer_from_mbuf(m, so);
565	SOCK_UNLOCK(so);
566#endif
567
568	inp = sotoinpcb(so);
569	INP_LOCK(inp);
570
571	/*
572	 * Insert new socket into hash list.
573	 */
574	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
575#ifdef INET6
576	if (sc->sc_inc.inc_isipv6) {
577		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
578	} else {
579		inp->inp_vflag &= ~INP_IPV6;
580		inp->inp_vflag |= INP_IPV4;
581#endif
582		inp->inp_laddr = sc->sc_inc.inc_laddr;
583#ifdef INET6
584	}
585#endif
586	inp->inp_lport = sc->sc_inc.inc_lport;
587	if (in_pcbinshash(inp) != 0) {
588		/*
589		 * Undo the assignments above if we failed to
590		 * put the PCB on the hash lists.
591		 */
592#ifdef INET6
593		if (sc->sc_inc.inc_isipv6)
594			inp->in6p_laddr = in6addr_any;
595       		else
596#endif
597			inp->inp_laddr.s_addr = INADDR_ANY;
598		inp->inp_lport = 0;
599		goto abort;
600	}
601#ifdef IPSEC
602	/* copy old policy into new socket's */
603	if (ipsec_copy_pcbpolicy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
604		printf("syncache_expand: could not copy policy\n");
605#endif
606#ifdef FAST_IPSEC
607	/* copy old policy into new socket's */
608	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
609		printf("syncache_expand: could not copy policy\n");
610#endif
611#ifdef INET6
612	if (sc->sc_inc.inc_isipv6) {
613		struct inpcb *oinp = sotoinpcb(lso);
614		struct in6_addr laddr6;
615		struct sockaddr_in6 sin6;
616		/*
617		 * Inherit socket options from the listening socket.
618		 * Note that in6p_inputopts are not (and should not be)
619		 * copied, since it stores previously received options and is
620		 * used to detect if each new option is different than the
621		 * previous one and hence should be passed to a user.
622                 * If we copied in6p_inputopts, a user would not be able to
623		 * receive options just after calling the accept system call.
624		 */
625		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
626		if (oinp->in6p_outputopts)
627			inp->in6p_outputopts =
628			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
629
630		sin6.sin6_family = AF_INET6;
631		sin6.sin6_len = sizeof(sin6);
632		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
633		sin6.sin6_port = sc->sc_inc.inc_fport;
634		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
635		laddr6 = inp->in6p_laddr;
636		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
637			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
638		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6,
639		    thread0.td_ucred)) {
640			inp->in6p_laddr = laddr6;
641			goto abort;
642		}
643	} else
644#endif
645	{
646		struct in_addr laddr;
647		struct sockaddr_in sin;
648
649		inp->inp_options = ip_srcroute();
650		if (inp->inp_options == NULL) {
651			inp->inp_options = sc->sc_ipopts;
652			sc->sc_ipopts = NULL;
653		}
654
655		sin.sin_family = AF_INET;
656		sin.sin_len = sizeof(sin);
657		sin.sin_addr = sc->sc_inc.inc_faddr;
658		sin.sin_port = sc->sc_inc.inc_fport;
659		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
660		laddr = inp->inp_laddr;
661		if (inp->inp_laddr.s_addr == INADDR_ANY)
662			inp->inp_laddr = sc->sc_inc.inc_laddr;
663		if (in_pcbconnect(inp, (struct sockaddr *)&sin,
664		    thread0.td_ucred)) {
665			inp->inp_laddr = laddr;
666			goto abort;
667		}
668	}
669
670	tp = intotcpcb(inp);
671	tp->t_state = TCPS_SYN_RECEIVED;
672	tp->iss = sc->sc_iss;
673	tp->irs = sc->sc_irs;
674	tcp_rcvseqinit(tp);
675	tcp_sendseqinit(tp);
676	tp->snd_wl1 = sc->sc_irs;
677	tp->rcv_up = sc->sc_irs + 1;
678	tp->rcv_wnd = sc->sc_wnd;
679	tp->rcv_adv += tp->rcv_wnd;
680
681	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
682	if (sc->sc_flags & SCF_NOOPT)
683		tp->t_flags |= TF_NOOPT;
684	if (sc->sc_flags & SCF_WINSCALE) {
685		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
686		tp->requested_s_scale = sc->sc_requested_s_scale;
687		tp->request_r_scale = sc->sc_request_r_scale;
688	}
689	if (sc->sc_flags & SCF_TIMESTAMP) {
690		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
691		tp->ts_recent = sc->sc_tsrecent;
692		tp->ts_recent_age = ticks;
693	}
694	if (sc->sc_flags & SCF_CC) {
695		/*
696		 * Initialization of the tcpcb for transaction;
697		 *   set SND.WND = SEG.WND,
698		 *   initialize CCsend and CCrecv.
699		 */
700		tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
701		tp->cc_send = sc->sc_cc_send;
702		tp->cc_recv = sc->sc_cc_recv;
703	}
704#ifdef TCP_SIGNATURE
705	if (sc->sc_flags & SCF_SIGNATURE)
706		tp->t_flags |= TF_SIGNATURE;
707#endif
708	if (sc->sc_flags & SCF_SACK) {
709		tp->sack_enable = 1;
710		tp->t_flags |= TF_SACK_PERMIT;
711	}
712	/*
713	 * Set up MSS and get cached values from tcp_hostcache.
714	 * This might overwrite some of the defaults we just set.
715	 */
716	tcp_mss(tp, sc->sc_peer_mss);
717
718	/*
719	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
720	 */
721	if (sc->sc_rxtslot != 0)
722                tp->snd_cwnd = tp->t_maxseg;
723	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
724
725	INP_UNLOCK(inp);
726
727	tcpstat.tcps_accepts++;
728	return (so);
729
730abort:
731	INP_UNLOCK(inp);
732abort2:
733	if (so != NULL)
734		(void) soabort(so);
735	return (NULL);
736}
737
738/*
739 * This function gets called when we receive an ACK for a
740 * socket in the LISTEN state.  We look up the connection
741 * in the syncache, and if its there, we pull it out of
742 * the cache and turn it into a full-blown connection in
743 * the SYN-RECEIVED state.
744 */
745int
746syncache_expand(inc, th, sop, m)
747	struct in_conninfo *inc;
748	struct tcphdr *th;
749	struct socket **sop;
750	struct mbuf *m;
751{
752	struct syncache *sc;
753	struct syncache_head *sch;
754	struct socket *so;
755
756	INP_INFO_WLOCK_ASSERT(&tcbinfo);
757
758	sc = syncache_lookup(inc, &sch);
759	if (sc == NULL) {
760		/*
761		 * There is no syncache entry, so see if this ACK is
762		 * a returning syncookie.  To do this, first:
763		 *  A. See if this socket has had a syncache entry dropped in
764		 *     the past.  We don't want to accept a bogus syncookie
765 		 *     if we've never received a SYN.
766		 *  B. check that the syncookie is valid.  If it is, then
767		 *     cobble up a fake syncache entry, and return.
768		 */
769		if (!tcp_syncookies)
770			return (0);
771		sc = syncookie_lookup(inc, th, *sop);
772		if (sc == NULL)
773			return (0);
774		sch = NULL;
775		tcpstat.tcps_sc_recvcookie++;
776	}
777
778	/*
779	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
780	 */
781	if (th->th_ack != sc->sc_iss + 1)
782		return (0);
783
784	so = syncache_socket(sc, *sop, m);
785	if (so == NULL) {
786#if 0
787resetandabort:
788		/* XXXjlemon check this - is this correct? */
789		(void) tcp_respond(NULL, m, m, th,
790		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
791#endif
792		m_freem(m);			/* XXX only needed for above */
793		tcpstat.tcps_sc_aborted++;
794	} else
795		tcpstat.tcps_sc_completed++;
796
797	if (sch == NULL)
798		syncache_free(sc);
799	else
800		syncache_drop(sc, sch);
801	*sop = so;
802	return (1);
803}
804
805/*
806 * Given a LISTEN socket and an inbound SYN request, add
807 * this to the syn cache, and send back a segment:
808 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
809 * to the source.
810 *
811 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
812 * Doing so would require that we hold onto the data and deliver it
813 * to the application.  However, if we are the target of a SYN-flood
814 * DoS attack, an attacker could send data which would eventually
815 * consume all available buffer space if it were ACKed.  By not ACKing
816 * the data, we avoid this DoS scenario.
817 */
818int
819syncache_add(inc, to, th, sop, m)
820	struct in_conninfo *inc;
821	struct tcpopt *to;
822	struct tcphdr *th;
823	struct socket **sop;
824	struct mbuf *m;
825{
826	struct tcpcb *tp;
827	struct socket *so;
828	struct syncache *sc = NULL;
829	struct syncache_head *sch;
830	struct mbuf *ipopts = NULL;
831	struct rmxp_tao tao;
832	int i, win;
833
834	INP_INFO_WLOCK_ASSERT(&tcbinfo);
835
836	so = *sop;
837	tp = sototcpcb(so);
838	bzero(&tao, sizeof(tao));
839
840	/*
841	 * Remember the IP options, if any.
842	 */
843#ifdef INET6
844	if (!inc->inc_isipv6)
845#endif
846		ipopts = ip_srcroute();
847
848	/*
849	 * See if we already have an entry for this connection.
850	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
851	 *
852	 * XXX
853	 * should the syncache be re-initialized with the contents
854	 * of the new SYN here (which may have different options?)
855	 */
856	sc = syncache_lookup(inc, &sch);
857	if (sc != NULL) {
858		tcpstat.tcps_sc_dupsyn++;
859		if (ipopts) {
860			/*
861			 * If we were remembering a previous source route,
862			 * forget it and use the new one we've been given.
863			 */
864			if (sc->sc_ipopts)
865				(void) m_free(sc->sc_ipopts);
866			sc->sc_ipopts = ipopts;
867		}
868		/*
869		 * Update timestamp if present.
870		 */
871		if (sc->sc_flags & SCF_TIMESTAMP)
872			sc->sc_tsrecent = to->to_tsval;
873		/*
874		 * PCB may have changed, pick up new values.
875		 */
876		sc->sc_tp = tp;
877		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
878#ifdef TCPDEBUG
879		if (syncache_respond(sc, m, so) == 0) {
880#else
881		if (syncache_respond(sc, m) == 0) {
882#endif
883			/* NB: guarded by INP_INFO_WLOCK(&tcbinfo) */
884			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
885			    sc, sc_timerq);
886			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
887		 	tcpstat.tcps_sndacks++;
888			tcpstat.tcps_sndtotal++;
889		}
890		*sop = NULL;
891		return (1);
892	}
893
894	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
895	if (sc == NULL) {
896		/*
897		 * The zone allocator couldn't provide more entries.
898		 * Treat this as if the cache was full; drop the oldest
899		 * entry and insert the new one.
900		 */
901		/* NB: guarded by INP_INFO_WLOCK(&tcbinfo) */
902		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
903			sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
904			if (sc != NULL)
905				break;
906		}
907		sc->sc_tp->ts_recent = ticks;
908		syncache_drop(sc, NULL);
909		tcpstat.tcps_sc_zonefail++;
910		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
911		if (sc == NULL) {
912			if (ipopts)
913				(void) m_free(ipopts);
914			return (0);
915		}
916	}
917
918	/*
919	 * Fill in the syncache values.
920	 */
921	bzero(sc, sizeof(*sc));
922	sc->sc_tp = tp;
923	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
924	sc->sc_ipopts = ipopts;
925	sc->sc_inc.inc_fport = inc->inc_fport;
926	sc->sc_inc.inc_lport = inc->inc_lport;
927#ifdef INET6
928	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
929	if (inc->inc_isipv6) {
930		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
931		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
932	} else
933#endif
934	{
935		sc->sc_inc.inc_faddr = inc->inc_faddr;
936		sc->sc_inc.inc_laddr = inc->inc_laddr;
937	}
938	sc->sc_irs = th->th_seq;
939	sc->sc_flags = 0;
940	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
941	if (tcp_syncookies)
942		sc->sc_iss = syncookie_generate(sc);
943	else
944		sc->sc_iss = arc4random();
945
946	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
947	win = sbspace(&so->so_rcv);
948	win = imax(win, 0);
949	win = imin(win, TCP_MAXWIN);
950	sc->sc_wnd = win;
951
952	if (tcp_do_rfc1323) {
953		/*
954		 * A timestamp received in a SYN makes
955		 * it ok to send timestamp requests and replies.
956		 */
957		if (to->to_flags & TOF_TS) {
958			sc->sc_tsrecent = to->to_tsval;
959			sc->sc_flags |= SCF_TIMESTAMP;
960		}
961		if (to->to_flags & TOF_SCALE) {
962			int wscale = 0;
963
964			/* Compute proper scaling value from buffer space */
965			while (wscale < TCP_MAX_WINSHIFT &&
966			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
967				wscale++;
968			sc->sc_request_r_scale = wscale;
969			sc->sc_requested_s_scale = to->to_requested_s_scale;
970			sc->sc_flags |= SCF_WINSCALE;
971		}
972	}
973	if (tcp_do_rfc1644) {
974		/*
975		 * A CC or CC.new option received in a SYN makes
976		 * it ok to send CC in subsequent segments.
977		 */
978		if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
979			sc->sc_cc_recv = to->to_cc;
980			sc->sc_cc_send = CC_INC(tcp_ccgen);
981			sc->sc_flags |= SCF_CC;
982		}
983	}
984	if (tp->t_flags & TF_NOOPT)
985		sc->sc_flags = SCF_NOOPT;
986#ifdef TCP_SIGNATURE
987	/*
988	 * If listening socket requested TCP digests, and received SYN
989	 * contains the option, flag this in the syncache so that
990	 * syncache_respond() will do the right thing with the SYN+ACK.
991	 * XXX Currently we always record the option by default and will
992	 * attempt to use it in syncache_respond().
993	 */
994	if (to->to_flags & TOF_SIGNATURE)
995		sc->sc_flags = SCF_SIGNATURE;
996#endif
997
998	if (to->to_flags & TOF_SACK)
999		sc->sc_flags |= SCF_SACK;
1000
1001	/*
1002	 * XXX
1003	 * We have the option here of not doing TAO (even if the segment
1004	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
1005	 * This allows us to apply synflood protection to TAO-qualifying SYNs
1006	 * also. However, there should be a hueristic to determine when to
1007	 * do this, and is not present at the moment.
1008	 */
1009
1010	/*
1011	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
1012	 * - compare SEG.CC against cached CC from the same host, if any.
1013	 * - if SEG.CC > chached value, SYN must be new and is accepted
1014	 *	immediately: save new CC in the cache, mark the socket
1015	 *	connected, enter ESTABLISHED state, turn on flag to
1016	 *	send a SYN in the next segment.
1017	 *	A virtual advertised window is set in rcv_adv to
1018	 *	initialize SWS prevention.  Then enter normal segment
1019	 *	processing: drop SYN, process data and FIN.
1020	 * - otherwise do a normal 3-way handshake.
1021	 */
1022	if (tcp_do_rfc1644)
1023		tcp_hc_gettao(&sc->sc_inc, &tao);
1024
1025	if ((to->to_flags & TOF_CC) != 0) {
1026		if (((tp->t_flags & TF_NOPUSH) != 0) &&
1027		    sc->sc_flags & SCF_CC && tao.tao_cc != 0 &&
1028		    CC_GT(to->to_cc, tao.tao_cc)) {
1029			sc->sc_rxtslot = 0;
1030			so = syncache_socket(sc, *sop, m);
1031			if (so != NULL) {
1032				tao.tao_cc = to->to_cc;
1033				tcp_hc_updatetao(&sc->sc_inc, TCP_HC_TAO_CC,
1034						 tao.tao_cc, 0);
1035				*sop = so;
1036			}
1037			syncache_free(sc);
1038			return (so != NULL);
1039		}
1040	} else {
1041		/*
1042		 * No CC option, but maybe CC.NEW: invalidate cached value.
1043		 */
1044		if (tcp_do_rfc1644) {
1045			tao.tao_cc = 0;
1046			tcp_hc_updatetao(&sc->sc_inc, TCP_HC_TAO_CC,
1047					 tao.tao_cc, 0);
1048		}
1049	}
1050
1051	/*
1052	 * TAO test failed or there was no CC option,
1053	 *    do a standard 3-way handshake.
1054	 */
1055#ifdef TCPDEBUG
1056	if (syncache_respond(sc, m, so) == 0) {
1057#else
1058	if (syncache_respond(sc, m) == 0) {
1059#endif
1060		syncache_insert(sc, sch);
1061		tcpstat.tcps_sndacks++;
1062		tcpstat.tcps_sndtotal++;
1063	} else {
1064		syncache_free(sc);
1065		tcpstat.tcps_sc_dropped++;
1066	}
1067	*sop = NULL;
1068	return (1);
1069}
1070
1071#ifdef TCPDEBUG
1072static int
1073syncache_respond(sc, m, so)
1074	struct syncache *sc;
1075	struct mbuf *m;
1076	struct socket *so;
1077#else
1078static int
1079syncache_respond(sc, m)
1080	struct syncache *sc;
1081	struct mbuf *m;
1082#endif
1083{
1084	u_int8_t *optp;
1085	int optlen, error;
1086	u_int16_t tlen, hlen, mssopt;
1087	struct ip *ip = NULL;
1088	struct tcphdr *th;
1089	struct inpcb *inp;
1090#ifdef INET6
1091	struct ip6_hdr *ip6 = NULL;
1092#endif
1093
1094	hlen =
1095#ifdef INET6
1096	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1097#endif
1098		sizeof(struct ip);
1099
1100	KASSERT((&sc->sc_inc) != NULL, ("syncache_respond with NULL in_conninfo pointer"));
1101
1102	/* Determine MSS we advertize to other end of connection */
1103	mssopt = tcp_mssopt(&sc->sc_inc);
1104
1105	/* Compute the size of the TCP options. */
1106	if (sc->sc_flags & SCF_NOOPT) {
1107		optlen = 0;
1108	} else {
1109		optlen = TCPOLEN_MAXSEG +
1110		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1111		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1112		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1113#ifdef TCP_SIGNATURE
1114		optlen += (sc->sc_flags & SCF_SIGNATURE) ?
1115		    TCPOLEN_SIGNATURE + 2 : 0;
1116#endif
1117		optlen += ((sc->sc_flags & SCF_SACK) ? 4 : 0);
1118	}
1119	tlen = hlen + sizeof(struct tcphdr) + optlen;
1120
1121	/*
1122	 * XXX
1123	 * assume that the entire packet will fit in a header mbuf
1124	 */
1125	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1126
1127	/*
1128	 * XXX shouldn't this reuse the mbuf if possible ?
1129	 * Create the IP+TCP header from scratch.
1130	 */
1131	if (m)
1132		m_freem(m);
1133
1134	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1135	if (m == NULL)
1136		return (ENOBUFS);
1137	m->m_data += max_linkhdr;
1138	m->m_len = tlen;
1139	m->m_pkthdr.len = tlen;
1140	m->m_pkthdr.rcvif = NULL;
1141	inp = sc->sc_tp->t_inpcb;
1142	INP_LOCK(inp);
1143#ifdef MAC
1144	mac_create_mbuf_from_inpcb(inp, m);
1145#endif
1146
1147#ifdef INET6
1148	if (sc->sc_inc.inc_isipv6) {
1149		ip6 = mtod(m, struct ip6_hdr *);
1150		ip6->ip6_vfc = IPV6_VERSION;
1151		ip6->ip6_nxt = IPPROTO_TCP;
1152		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1153		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1154		ip6->ip6_plen = htons(tlen - hlen);
1155		/* ip6_hlim is set after checksum */
1156		/* ip6_flow = ??? */
1157
1158		th = (struct tcphdr *)(ip6 + 1);
1159	} else
1160#endif
1161	{
1162		ip = mtod(m, struct ip *);
1163		ip->ip_v = IPVERSION;
1164		ip->ip_hl = sizeof(struct ip) >> 2;
1165		ip->ip_len = tlen;
1166		ip->ip_id = 0;
1167		ip->ip_off = 0;
1168		ip->ip_sum = 0;
1169		ip->ip_p = IPPROTO_TCP;
1170		ip->ip_src = sc->sc_inc.inc_laddr;
1171		ip->ip_dst = sc->sc_inc.inc_faddr;
1172		ip->ip_ttl = inp->inp_ip_ttl;   /* XXX */
1173		ip->ip_tos = inp->inp_ip_tos;   /* XXX */
1174
1175		/*
1176		 * See if we should do MTU discovery.  Route lookups are
1177		 * expensive, so we will only unset the DF bit if:
1178		 *
1179		 *	1) path_mtu_discovery is disabled
1180		 *	2) the SCF_UNREACH flag has been set
1181		 */
1182		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1183		       ip->ip_off |= IP_DF;
1184
1185		th = (struct tcphdr *)(ip + 1);
1186	}
1187	th->th_sport = sc->sc_inc.inc_lport;
1188	th->th_dport = sc->sc_inc.inc_fport;
1189
1190	th->th_seq = htonl(sc->sc_iss);
1191	th->th_ack = htonl(sc->sc_irs + 1);
1192	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1193	th->th_x2 = 0;
1194	th->th_flags = TH_SYN|TH_ACK;
1195	th->th_win = htons(sc->sc_wnd);
1196	th->th_urp = 0;
1197
1198	/* Tack on the TCP options. */
1199	if (optlen != 0) {
1200		optp = (u_int8_t *)(th + 1);
1201		*optp++ = TCPOPT_MAXSEG;
1202		*optp++ = TCPOLEN_MAXSEG;
1203		*optp++ = (mssopt >> 8) & 0xff;
1204		*optp++ = mssopt & 0xff;
1205
1206		if (sc->sc_flags & SCF_WINSCALE) {
1207			*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1208			    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1209			    sc->sc_request_r_scale);
1210			optp += 4;
1211		}
1212
1213		if (sc->sc_flags & SCF_TIMESTAMP) {
1214			u_int32_t *lp = (u_int32_t *)(optp);
1215
1216			/* Form timestamp option per appendix A of RFC 1323. */
1217			*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1218			*lp++ = htonl(ticks);
1219			*lp   = htonl(sc->sc_tsrecent);
1220			optp += TCPOLEN_TSTAMP_APPA;
1221		}
1222
1223		/*
1224		 * Send CC and CC.echo if we received CC from our peer.
1225		 */
1226		if (sc->sc_flags & SCF_CC) {
1227			u_int32_t *lp = (u_int32_t *)(optp);
1228
1229			*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1230			*lp++ = htonl(sc->sc_cc_send);
1231			*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1232			*lp   = htonl(sc->sc_cc_recv);
1233			optp += TCPOLEN_CC_APPA * 2;
1234		}
1235
1236#ifdef TCP_SIGNATURE
1237		/*
1238		 * Handle TCP-MD5 passive opener response.
1239		 */
1240		if (sc->sc_flags & SCF_SIGNATURE) {
1241			u_int8_t *bp = optp;
1242			int i;
1243
1244			*bp++ = TCPOPT_SIGNATURE;
1245			*bp++ = TCPOLEN_SIGNATURE;
1246			for (i = 0; i < TCP_SIGLEN; i++)
1247				*bp++ = 0;
1248			tcp_signature_compute(m, sizeof(struct ip), 0, optlen,
1249			    optp + 2, IPSEC_DIR_OUTBOUND);
1250			*bp++ = TCPOPT_NOP;
1251			*bp++ = TCPOPT_EOL;
1252			optp += TCPOLEN_SIGNATURE + 2;
1253		}
1254#endif /* TCP_SIGNATURE */
1255
1256	if (sc->sc_flags & SCF_SACK) {
1257		*(u_int32_t *)optp = htonl(TCPOPT_SACK_PERMIT_HDR);
1258		optp += 4;
1259	}
1260	}
1261
1262#ifdef INET6
1263	if (sc->sc_inc.inc_isipv6) {
1264		th->th_sum = 0;
1265		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1266		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1267		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
1268	} else
1269#endif
1270	{
1271        	th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1272		    htons(tlen - hlen + IPPROTO_TCP));
1273		m->m_pkthdr.csum_flags = CSUM_TCP;
1274		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1275#ifdef TCPDEBUG
1276		/*
1277		 * Trace.
1278		 */
1279		if (so != NULL && so->so_options & SO_DEBUG) {
1280			struct tcpcb *tp = sototcpcb(so);
1281			tcp_trace(TA_OUTPUT, tp->t_state, tp,
1282			    mtod(m, void *), th, 0);
1283		}
1284#endif
1285		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, inp);
1286	}
1287	INP_UNLOCK(inp);
1288	return (error);
1289}
1290
1291/*
1292 * cookie layers:
1293 *
1294 *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1295 *	| peer iss                                                      |
1296 *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1297 *	|                     0                       |(A)|             |
1298 * (A): peer mss index
1299 */
1300
1301/*
1302 * The values below are chosen to minimize the size of the tcp_secret
1303 * table, as well as providing roughly a 16 second lifetime for the cookie.
1304 */
1305
1306#define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1307#define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1308
1309#define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1310#define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1311#define SYNCOOKIE_TIMEOUT \
1312    (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1313#define SYNCOOKIE_DATAMASK 	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1314
1315static struct {
1316	u_int32_t	ts_secbits[4];
1317	u_int		ts_expire;
1318} tcp_secret[SYNCOOKIE_NSECRETS];
1319
1320static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1321
1322static MD5_CTX syn_ctx;
1323
1324#define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1325
1326struct md5_add {
1327	u_int32_t laddr, faddr;
1328	u_int32_t secbits[4];
1329	u_int16_t lport, fport;
1330};
1331
1332#ifdef CTASSERT
1333CTASSERT(sizeof(struct md5_add) == 28);
1334#endif
1335
1336/*
1337 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1338 * original SYN was accepted, the connection is established.  The second
1339 * SYN is inflight, and if it arrives with an ISN that falls within the
1340 * receive window, the connection is killed.
1341 *
1342 * However, since cookies have other problems, this may not be worth
1343 * worrying about.
1344 */
1345
1346static u_int32_t
1347syncookie_generate(struct syncache *sc)
1348{
1349	u_int32_t md5_buffer[4];
1350	u_int32_t data;
1351	int idx, i;
1352	struct md5_add add;
1353
1354	/* NB: single threaded; could add INP_INFO_WLOCK_ASSERT(&tcbinfo) */
1355
1356	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1357	if (tcp_secret[idx].ts_expire < ticks) {
1358		for (i = 0; i < 4; i++)
1359			tcp_secret[idx].ts_secbits[i] = arc4random();
1360		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1361	}
1362	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1363		if (tcp_msstab[data] <= sc->sc_peer_mss)
1364			break;
1365	data = (data << SYNCOOKIE_WNDBITS) | idx;
1366	data ^= sc->sc_irs;				/* peer's iss */
1367	MD5Init(&syn_ctx);
1368#ifdef INET6
1369	if (sc->sc_inc.inc_isipv6) {
1370		MD5Add(sc->sc_inc.inc6_laddr);
1371		MD5Add(sc->sc_inc.inc6_faddr);
1372		add.laddr = 0;
1373		add.faddr = 0;
1374	} else
1375#endif
1376	{
1377		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1378		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1379	}
1380	add.lport = sc->sc_inc.inc_lport;
1381	add.fport = sc->sc_inc.inc_fport;
1382	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1383	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1384	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1385	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1386	MD5Add(add);
1387	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1388	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1389	return (data);
1390}
1391
1392static struct syncache *
1393syncookie_lookup(inc, th, so)
1394	struct in_conninfo *inc;
1395	struct tcphdr *th;
1396	struct socket *so;
1397{
1398	u_int32_t md5_buffer[4];
1399	struct syncache *sc;
1400	u_int32_t data;
1401	int wnd, idx;
1402	struct md5_add add;
1403
1404	/* NB: single threaded; could add INP_INFO_WLOCK_ASSERT(&tcbinfo) */
1405
1406	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1407	idx = data & SYNCOOKIE_WNDMASK;
1408	if (tcp_secret[idx].ts_expire < ticks ||
1409	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1410		return (NULL);
1411	MD5Init(&syn_ctx);
1412#ifdef INET6
1413	if (inc->inc_isipv6) {
1414		MD5Add(inc->inc6_laddr);
1415		MD5Add(inc->inc6_faddr);
1416		add.laddr = 0;
1417		add.faddr = 0;
1418	} else
1419#endif
1420	{
1421		add.laddr = inc->inc_laddr.s_addr;
1422		add.faddr = inc->inc_faddr.s_addr;
1423	}
1424	add.lport = inc->inc_lport;
1425	add.fport = inc->inc_fport;
1426	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1427	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1428	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1429	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1430	MD5Add(add);
1431	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1432	data ^= md5_buffer[0];
1433	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1434		return (NULL);
1435	data = data >> SYNCOOKIE_WNDBITS;
1436
1437	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1438	if (sc == NULL)
1439		return (NULL);
1440	/*
1441	 * Fill in the syncache values.
1442	 * XXX duplicate code from syncache_add
1443	 */
1444	sc->sc_ipopts = NULL;
1445	sc->sc_inc.inc_fport = inc->inc_fport;
1446	sc->sc_inc.inc_lport = inc->inc_lport;
1447#ifdef INET6
1448	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1449	if (inc->inc_isipv6) {
1450		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1451		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1452	} else
1453#endif
1454	{
1455		sc->sc_inc.inc_faddr = inc->inc_faddr;
1456		sc->sc_inc.inc_laddr = inc->inc_laddr;
1457	}
1458	sc->sc_irs = th->th_seq - 1;
1459	sc->sc_iss = th->th_ack - 1;
1460	wnd = sbspace(&so->so_rcv);
1461	wnd = imax(wnd, 0);
1462	wnd = imin(wnd, TCP_MAXWIN);
1463	sc->sc_wnd = wnd;
1464	sc->sc_flags = 0;
1465	sc->sc_rxtslot = 0;
1466	sc->sc_peer_mss = tcp_msstab[data];
1467	return (sc);
1468}
1469