tcp_syncache.c revision 124851
1/*-
2 * Copyright (c) 2001 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Jonathan Lemon
6 * and NAI Labs, the Security Research Division of Network Associates, Inc.
7 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8 * DARPA CHATS research program.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 *    products derived from this software without specific prior written
20 *    permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $FreeBSD: head/sys/netinet/tcp_syncache.c 124851 2004-01-23 01:39:12Z andre $
35 */
36
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40#include "opt_tcpdebug.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/sysctl.h>
46#include <sys/malloc.h>
47#include <sys/mac.h>
48#include <sys/mbuf.h>
49#include <sys/md5.h>
50#include <sys/proc.h>		/* for proc0 declaration */
51#include <sys/random.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54
55#include <net/if.h>
56#include <net/route.h>
57
58#include <netinet/in.h>
59#include <netinet/in_systm.h>
60#include <netinet/ip.h>
61#include <netinet/in_var.h>
62#include <netinet/in_pcb.h>
63#include <netinet/ip_var.h>
64#ifdef INET6
65#include <netinet/ip6.h>
66#include <netinet/icmp6.h>
67#include <netinet6/nd6.h>
68#include <netinet6/ip6_var.h>
69#include <netinet6/in6_pcb.h>
70#endif
71#include <netinet/tcp.h>
72#ifdef TCPDEBUG
73#include <netinet/tcpip.h>
74#endif
75#include <netinet/tcp_fsm.h>
76#include <netinet/tcp_seq.h>
77#include <netinet/tcp_timer.h>
78#include <netinet/tcp_var.h>
79#ifdef TCPDEBUG
80#include <netinet/tcp_debug.h>
81#endif
82#ifdef INET6
83#include <netinet6/tcp6_var.h>
84#endif
85
86#ifdef IPSEC
87#include <netinet6/ipsec.h>
88#ifdef INET6
89#include <netinet6/ipsec6.h>
90#endif
91#endif /*IPSEC*/
92
93#ifdef FAST_IPSEC
94#include <netipsec/ipsec.h>
95#ifdef INET6
96#include <netipsec/ipsec6.h>
97#endif
98#include <netipsec/key.h>
99#endif /*FAST_IPSEC*/
100
101#include <machine/in_cksum.h>
102#include <vm/uma.h>
103
104static int tcp_syncookies = 1;
105SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
106    &tcp_syncookies, 0,
107    "Use TCP SYN cookies if the syncache overflows");
108
109static void	 syncache_drop(struct syncache *, struct syncache_head *);
110static void	 syncache_free(struct syncache *);
111static void	 syncache_insert(struct syncache *, struct syncache_head *);
112struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
113#ifdef TCPDEBUG
114static int	 syncache_respond(struct syncache *, struct mbuf *, struct socket *);
115#else
116static int	 syncache_respond(struct syncache *, struct mbuf *);
117#endif
118static struct 	 socket *syncache_socket(struct syncache *, struct socket *,
119		    struct mbuf *m);
120static void	 syncache_timer(void *);
121static u_int32_t syncookie_generate(struct syncache *);
122static struct syncache *syncookie_lookup(struct in_conninfo *,
123		    struct tcphdr *, struct socket *);
124
125/*
126 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
127 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
128 * the odds are that the user has given up attempting to connect by then.
129 */
130#define SYNCACHE_MAXREXMTS		3
131
132/* Arbitrary values */
133#define TCP_SYNCACHE_HASHSIZE		512
134#define TCP_SYNCACHE_BUCKETLIMIT	30
135
136struct tcp_syncache {
137	struct	syncache_head *hashbase;
138	uma_zone_t zone;
139	u_int	hashsize;
140	u_int	hashmask;
141	u_int	bucket_limit;
142	u_int	cache_count;
143	u_int	cache_limit;
144	u_int	rexmt_limit;
145	u_int	hash_secret;
146	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
147	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
148};
149static struct tcp_syncache tcp_syncache;
150
151SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
152
153SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RDTUN,
154     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
155
156SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RDTUN,
157     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
158
159SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
160     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
161
162SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RDTUN,
163     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
164
165SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
166     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
167
168static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
169
170#define SYNCACHE_HASH(inc, mask) 					\
171	((tcp_syncache.hash_secret ^					\
172	  (inc)->inc_faddr.s_addr ^					\
173	  ((inc)->inc_faddr.s_addr >> 16) ^ 				\
174	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
175
176#define SYNCACHE_HASH6(inc, mask) 					\
177	((tcp_syncache.hash_secret ^					\
178	  (inc)->inc6_faddr.s6_addr32[0] ^ 				\
179	  (inc)->inc6_faddr.s6_addr32[3] ^ 				\
180	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
181
182#define ENDPTS_EQ(a, b) (						\
183	(a)->ie_fport == (b)->ie_fport &&				\
184	(a)->ie_lport == (b)->ie_lport &&				\
185	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
186	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
187)
188
189#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
190
191#define SYNCACHE_TIMEOUT(sc, slot) do {				\
192	sc->sc_rxtslot = (slot);					\
193	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[(slot)];	\
194	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[(slot)], sc, sc_timerq);	\
195	if (!callout_active(&tcp_syncache.tt_timerq[(slot)]))		\
196		callout_reset(&tcp_syncache.tt_timerq[(slot)],		\
197		    TCPTV_RTOBASE * tcp_backoff[(slot)],		\
198		    syncache_timer, (void *)((intptr_t)(slot)));	\
199} while (0)
200
201static void
202syncache_free(struct syncache *sc)
203{
204	if (sc->sc_ipopts)
205		(void) m_free(sc->sc_ipopts);
206
207	uma_zfree(tcp_syncache.zone, sc);
208}
209
210void
211syncache_init(void)
212{
213	int i;
214
215	tcp_syncache.cache_count = 0;
216	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
217	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
218	tcp_syncache.cache_limit =
219	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
220	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
221	tcp_syncache.hash_secret = arc4random();
222
223        TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
224	    &tcp_syncache.hashsize);
225        TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
226	    &tcp_syncache.cache_limit);
227        TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
228	    &tcp_syncache.bucket_limit);
229	if (!powerof2(tcp_syncache.hashsize)) {
230                printf("WARNING: syncache hash size is not a power of 2.\n");
231		tcp_syncache.hashsize = 512;	/* safe default */
232        }
233	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
234
235	/* Allocate the hash table. */
236	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
237	    tcp_syncache.hashsize * sizeof(struct syncache_head),
238	    M_SYNCACHE, M_WAITOK);
239
240	/* Initialize the hash buckets. */
241	for (i = 0; i < tcp_syncache.hashsize; i++) {
242		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
243		tcp_syncache.hashbase[i].sch_length = 0;
244	}
245
246	/* Initialize the timer queues. */
247	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
248		TAILQ_INIT(&tcp_syncache.timerq[i]);
249		callout_init(&tcp_syncache.tt_timerq[i],
250			debug_mpsafenet ? CALLOUT_MPSAFE : 0);
251	}
252
253	/*
254	 * Allocate the syncache entries.  Allow the zone to allocate one
255	 * more entry than cache limit, so a new entry can bump out an
256	 * older one.
257	 */
258	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
259	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
260	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
261	tcp_syncache.cache_limit -= 1;
262}
263
264static void
265syncache_insert(sc, sch)
266	struct syncache *sc;
267	struct syncache_head *sch;
268{
269	struct syncache *sc2;
270	int i;
271
272	INP_INFO_WLOCK_ASSERT(&tcbinfo);
273
274	/*
275	 * Make sure that we don't overflow the per-bucket
276	 * limit or the total cache size limit.
277	 */
278	if (sch->sch_length >= tcp_syncache.bucket_limit) {
279		/*
280		 * The bucket is full, toss the oldest element.
281		 */
282		sc2 = TAILQ_FIRST(&sch->sch_bucket);
283		sc2->sc_tp->ts_recent = ticks;
284		syncache_drop(sc2, sch);
285		tcpstat.tcps_sc_bucketoverflow++;
286	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
287		/*
288		 * The cache is full.  Toss the oldest entry in the
289		 * entire cache.  This is the front entry in the
290		 * first non-empty timer queue with the largest
291		 * timeout value.
292		 */
293		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
294			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
295			if (sc2 != NULL)
296				break;
297		}
298		sc2->sc_tp->ts_recent = ticks;
299		syncache_drop(sc2, NULL);
300		tcpstat.tcps_sc_cacheoverflow++;
301	}
302
303	/* Initialize the entry's timer. */
304	SYNCACHE_TIMEOUT(sc, 0);
305
306	/* Put it into the bucket. */
307	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
308	sch->sch_length++;
309	tcp_syncache.cache_count++;
310	tcpstat.tcps_sc_added++;
311}
312
313static void
314syncache_drop(sc, sch)
315	struct syncache *sc;
316	struct syncache_head *sch;
317{
318	INP_INFO_WLOCK_ASSERT(&tcbinfo);
319
320	if (sch == NULL) {
321#ifdef INET6
322		if (sc->sc_inc.inc_isipv6) {
323			sch = &tcp_syncache.hashbase[
324			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
325		} else
326#endif
327		{
328			sch = &tcp_syncache.hashbase[
329			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
330		}
331	}
332
333	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
334	sch->sch_length--;
335	tcp_syncache.cache_count--;
336
337	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
338	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
339		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
340
341	syncache_free(sc);
342}
343
344/*
345 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
346 * If we have retransmitted an entry the maximum number of times, expire it.
347 */
348static void
349syncache_timer(xslot)
350	void *xslot;
351{
352	intptr_t slot = (intptr_t)xslot;
353	struct syncache *sc, *nsc;
354	struct inpcb *inp;
355
356	INP_INFO_WLOCK(&tcbinfo);
357        if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
358            !callout_active(&tcp_syncache.tt_timerq[slot])) {
359		/* XXX can this happen? */
360		INP_INFO_WUNLOCK(&tcbinfo);
361                return;
362        }
363        callout_deactivate(&tcp_syncache.tt_timerq[slot]);
364
365        nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
366	while (nsc != NULL) {
367		if (ticks < nsc->sc_rxttime)
368			break;
369		sc = nsc;
370		inp = sc->sc_tp->t_inpcb;
371		if (slot == SYNCACHE_MAXREXMTS ||
372		    slot >= tcp_syncache.rexmt_limit ||
373		    inp == NULL || inp->inp_gencnt != sc->sc_inp_gencnt) {
374			nsc = TAILQ_NEXT(sc, sc_timerq);
375			syncache_drop(sc, NULL);
376			tcpstat.tcps_sc_stale++;
377			continue;
378		}
379		/*
380		 * syncache_respond() may call back into the syncache to
381		 * to modify another entry, so do not obtain the next
382		 * entry on the timer chain until it has completed.
383		 */
384#ifdef TCPDEBUG
385		(void) syncache_respond(sc, NULL, NULL);
386#else
387		(void) syncache_respond(sc, NULL);
388#endif
389		nsc = TAILQ_NEXT(sc, sc_timerq);
390		tcpstat.tcps_sc_retransmitted++;
391		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
392		SYNCACHE_TIMEOUT(sc, slot + 1);
393	}
394	if (nsc != NULL)
395		callout_reset(&tcp_syncache.tt_timerq[slot],
396		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
397	INP_INFO_WUNLOCK(&tcbinfo);
398}
399
400/*
401 * Find an entry in the syncache.
402 */
403struct syncache *
404syncache_lookup(inc, schp)
405	struct in_conninfo *inc;
406	struct syncache_head **schp;
407{
408	struct syncache *sc;
409	struct syncache_head *sch;
410
411	INP_INFO_WLOCK_ASSERT(&tcbinfo);
412
413#ifdef INET6
414	if (inc->inc_isipv6) {
415		sch = &tcp_syncache.hashbase[
416		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
417		*schp = sch;
418		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
419			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
420				return (sc);
421		}
422	} else
423#endif
424	{
425		sch = &tcp_syncache.hashbase[
426		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
427		*schp = sch;
428		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
429#ifdef INET6
430			if (sc->sc_inc.inc_isipv6)
431				continue;
432#endif
433			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie))
434				return (sc);
435		}
436	}
437	return (NULL);
438}
439
440/*
441 * This function is called when we get a RST for a
442 * non-existent connection, so that we can see if the
443 * connection is in the syn cache.  If it is, zap it.
444 */
445void
446syncache_chkrst(inc, th)
447	struct in_conninfo *inc;
448	struct tcphdr *th;
449{
450	struct syncache *sc;
451	struct syncache_head *sch;
452
453	INP_INFO_WLOCK_ASSERT(&tcbinfo);
454
455	sc = syncache_lookup(inc, &sch);
456	if (sc == NULL)
457		return;
458	/*
459	 * If the RST bit is set, check the sequence number to see
460	 * if this is a valid reset segment.
461	 * RFC 793 page 37:
462	 *   In all states except SYN-SENT, all reset (RST) segments
463	 *   are validated by checking their SEQ-fields.  A reset is
464	 *   valid if its sequence number is in the window.
465	 *
466	 *   The sequence number in the reset segment is normally an
467	 *   echo of our outgoing acknowlegement numbers, but some hosts
468	 *   send a reset with the sequence number at the rightmost edge
469	 *   of our receive window, and we have to handle this case.
470	 */
471	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
472	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
473		syncache_drop(sc, sch);
474		tcpstat.tcps_sc_reset++;
475	}
476}
477
478void
479syncache_badack(inc)
480	struct in_conninfo *inc;
481{
482	struct syncache *sc;
483	struct syncache_head *sch;
484
485	INP_INFO_WLOCK_ASSERT(&tcbinfo);
486
487	sc = syncache_lookup(inc, &sch);
488	if (sc != NULL) {
489		syncache_drop(sc, sch);
490		tcpstat.tcps_sc_badack++;
491	}
492}
493
494void
495syncache_unreach(inc, th)
496	struct in_conninfo *inc;
497	struct tcphdr *th;
498{
499	struct syncache *sc;
500	struct syncache_head *sch;
501
502	INP_INFO_WLOCK_ASSERT(&tcbinfo);
503
504	/* we are called at splnet() here */
505	sc = syncache_lookup(inc, &sch);
506	if (sc == NULL)
507		return;
508
509	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
510	if (ntohl(th->th_seq) != sc->sc_iss)
511		return;
512
513	/*
514	 * If we've rertransmitted 3 times and this is our second error,
515	 * we remove the entry.  Otherwise, we allow it to continue on.
516	 * This prevents us from incorrectly nuking an entry during a
517	 * spurious network outage.
518	 *
519	 * See tcp_notify().
520	 */
521	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
522		sc->sc_flags |= SCF_UNREACH;
523		return;
524	}
525	syncache_drop(sc, sch);
526	tcpstat.tcps_sc_unreach++;
527}
528
529/*
530 * Build a new TCP socket structure from a syncache entry.
531 */
532static struct socket *
533syncache_socket(sc, lso, m)
534	struct syncache *sc;
535	struct socket *lso;
536	struct mbuf *m;
537{
538	struct inpcb *inp = NULL;
539	struct socket *so;
540	struct tcpcb *tp;
541
542	GIANT_REQUIRED;			/* XXX until socket locking */
543	INP_INFO_WLOCK_ASSERT(&tcbinfo);
544
545	/*
546	 * Ok, create the full blown connection, and set things up
547	 * as they would have been set up if we had created the
548	 * connection when the SYN arrived.  If we can't create
549	 * the connection, abort it.
550	 */
551	so = sonewconn(lso, SS_ISCONNECTED);
552	if (so == NULL) {
553		/*
554		 * Drop the connection; we will send a RST if the peer
555		 * retransmits the ACK,
556		 */
557		tcpstat.tcps_listendrop++;
558		goto abort2;
559	}
560#ifdef MAC
561	mac_set_socket_peer_from_mbuf(m, so);
562#endif
563
564	inp = sotoinpcb(so);
565	INP_LOCK(inp);
566
567	/*
568	 * Insert new socket into hash list.
569	 */
570	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
571#ifdef INET6
572	if (sc->sc_inc.inc_isipv6) {
573		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
574	} else {
575		inp->inp_vflag &= ~INP_IPV6;
576		inp->inp_vflag |= INP_IPV4;
577#endif
578		inp->inp_laddr = sc->sc_inc.inc_laddr;
579#ifdef INET6
580	}
581#endif
582	inp->inp_lport = sc->sc_inc.inc_lport;
583	if (in_pcbinshash(inp) != 0) {
584		/*
585		 * Undo the assignments above if we failed to
586		 * put the PCB on the hash lists.
587		 */
588#ifdef INET6
589		if (sc->sc_inc.inc_isipv6)
590			inp->in6p_laddr = in6addr_any;
591       		else
592#endif
593			inp->inp_laddr.s_addr = INADDR_ANY;
594		inp->inp_lport = 0;
595		goto abort;
596	}
597#ifdef IPSEC
598	/* copy old policy into new socket's */
599	if (ipsec_copy_pcbpolicy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
600		printf("syncache_expand: could not copy policy\n");
601#endif
602#ifdef FAST_IPSEC
603	/* copy old policy into new socket's */
604	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
605		printf("syncache_expand: could not copy policy\n");
606#endif
607#ifdef INET6
608	if (sc->sc_inc.inc_isipv6) {
609		struct inpcb *oinp = sotoinpcb(lso);
610		struct in6_addr laddr6;
611		struct sockaddr_in6 sin6;
612		/*
613		 * Inherit socket options from the listening socket.
614		 * Note that in6p_inputopts are not (and should not be)
615		 * copied, since it stores previously received options and is
616		 * used to detect if each new option is different than the
617		 * previous one and hence should be passed to a user.
618                 * If we copied in6p_inputopts, a user would not be able to
619		 * receive options just after calling the accept system call.
620		 */
621		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
622		if (oinp->in6p_outputopts)
623			inp->in6p_outputopts =
624			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
625
626		sin6.sin6_family = AF_INET6;
627		sin6.sin6_len = sizeof(sin6);
628		sin6.sin6_addr = sc->sc_inc.inc6_faddr;
629		sin6.sin6_port = sc->sc_inc.inc_fport;
630		sin6.sin6_flowinfo = sin6.sin6_scope_id = 0;
631		laddr6 = inp->in6p_laddr;
632		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
633			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
634		if (in6_pcbconnect(inp, (struct sockaddr *)&sin6, &thread0)) {
635			inp->in6p_laddr = laddr6;
636			goto abort;
637		}
638	} else
639#endif
640	{
641		struct in_addr laddr;
642		struct sockaddr_in sin;
643
644		inp->inp_options = ip_srcroute();
645		if (inp->inp_options == NULL) {
646			inp->inp_options = sc->sc_ipopts;
647			sc->sc_ipopts = NULL;
648		}
649
650		sin.sin_family = AF_INET;
651		sin.sin_len = sizeof(sin);
652		sin.sin_addr = sc->sc_inc.inc_faddr;
653		sin.sin_port = sc->sc_inc.inc_fport;
654		bzero((caddr_t)sin.sin_zero, sizeof(sin.sin_zero));
655		laddr = inp->inp_laddr;
656		if (inp->inp_laddr.s_addr == INADDR_ANY)
657			inp->inp_laddr = sc->sc_inc.inc_laddr;
658		if (in_pcbconnect(inp, (struct sockaddr *)&sin, &thread0)) {
659			inp->inp_laddr = laddr;
660			goto abort;
661		}
662	}
663
664	tp = intotcpcb(inp);
665	tp->t_state = TCPS_SYN_RECEIVED;
666	tp->iss = sc->sc_iss;
667	tp->irs = sc->sc_irs;
668	tcp_rcvseqinit(tp);
669	tcp_sendseqinit(tp);
670	tp->snd_wl1 = sc->sc_irs;
671	tp->rcv_up = sc->sc_irs + 1;
672	tp->rcv_wnd = sc->sc_wnd;
673	tp->rcv_adv += tp->rcv_wnd;
674
675	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
676	if (sc->sc_flags & SCF_NOOPT)
677		tp->t_flags |= TF_NOOPT;
678	if (sc->sc_flags & SCF_WINSCALE) {
679		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
680		tp->requested_s_scale = sc->sc_requested_s_scale;
681		tp->request_r_scale = sc->sc_request_r_scale;
682	}
683	if (sc->sc_flags & SCF_TIMESTAMP) {
684		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
685		tp->ts_recent = sc->sc_tsrecent;
686		tp->ts_recent_age = ticks;
687	}
688	if (sc->sc_flags & SCF_CC) {
689		/*
690		 * Initialization of the tcpcb for transaction;
691		 *   set SND.WND = SEG.WND,
692		 *   initialize CCsend and CCrecv.
693		 */
694		tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
695		tp->cc_send = sc->sc_cc_send;
696		tp->cc_recv = sc->sc_cc_recv;
697	}
698
699	/*
700	 * Set up MSS and get cached values from tcp_hostcache.
701	 * This might overwrite some of the defaults we just set.
702	 */
703	tcp_mss(tp, sc->sc_peer_mss);
704
705	/*
706	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
707	 */
708	if (sc->sc_rxtslot != 0)
709                tp->snd_cwnd = tp->t_maxseg;
710	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
711
712	INP_UNLOCK(inp);
713
714	tcpstat.tcps_accepts++;
715	return (so);
716
717abort:
718	INP_UNLOCK(inp);
719abort2:
720	if (so != NULL)
721		(void) soabort(so);
722	return (NULL);
723}
724
725/*
726 * This function gets called when we receive an ACK for a
727 * socket in the LISTEN state.  We look up the connection
728 * in the syncache, and if its there, we pull it out of
729 * the cache and turn it into a full-blown connection in
730 * the SYN-RECEIVED state.
731 */
732int
733syncache_expand(inc, th, sop, m)
734	struct in_conninfo *inc;
735	struct tcphdr *th;
736	struct socket **sop;
737	struct mbuf *m;
738{
739	struct syncache *sc;
740	struct syncache_head *sch;
741	struct socket *so;
742
743	INP_INFO_WLOCK_ASSERT(&tcbinfo);
744
745	sc = syncache_lookup(inc, &sch);
746	if (sc == NULL) {
747		/*
748		 * There is no syncache entry, so see if this ACK is
749		 * a returning syncookie.  To do this, first:
750		 *  A. See if this socket has had a syncache entry dropped in
751		 *     the past.  We don't want to accept a bogus syncookie
752 		 *     if we've never received a SYN.
753		 *  B. check that the syncookie is valid.  If it is, then
754		 *     cobble up a fake syncache entry, and return.
755		 */
756		if (!tcp_syncookies)
757			return (0);
758		sc = syncookie_lookup(inc, th, *sop);
759		if (sc == NULL)
760			return (0);
761		sch = NULL;
762		tcpstat.tcps_sc_recvcookie++;
763	}
764
765	/*
766	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
767	 */
768	if (th->th_ack != sc->sc_iss + 1)
769		return (0);
770
771	so = syncache_socket(sc, *sop, m);
772	if (so == NULL) {
773#if 0
774resetandabort:
775		/* XXXjlemon check this - is this correct? */
776		(void) tcp_respond(NULL, m, m, th,
777		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
778#endif
779		m_freem(m);			/* XXX only needed for above */
780		tcpstat.tcps_sc_aborted++;
781	} else
782		tcpstat.tcps_sc_completed++;
783
784	if (sch == NULL)
785		syncache_free(sc);
786	else
787		syncache_drop(sc, sch);
788	*sop = so;
789	return (1);
790}
791
792/*
793 * Given a LISTEN socket and an inbound SYN request, add
794 * this to the syn cache, and send back a segment:
795 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
796 * to the source.
797 *
798 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
799 * Doing so would require that we hold onto the data and deliver it
800 * to the application.  However, if we are the target of a SYN-flood
801 * DoS attack, an attacker could send data which would eventually
802 * consume all available buffer space if it were ACKed.  By not ACKing
803 * the data, we avoid this DoS scenario.
804 */
805int
806syncache_add(inc, to, th, sop, m)
807	struct in_conninfo *inc;
808	struct tcpopt *to;
809	struct tcphdr *th;
810	struct socket **sop;
811	struct mbuf *m;
812{
813	struct tcpcb *tp;
814	struct socket *so;
815	struct syncache *sc = NULL;
816	struct syncache_head *sch;
817	struct mbuf *ipopts = NULL;
818	struct rmxp_tao tao;
819	int i, win;
820
821	INP_INFO_WLOCK_ASSERT(&tcbinfo);
822
823	so = *sop;
824	tp = sototcpcb(so);
825	bzero(&tao, sizeof(tao));
826
827	/*
828	 * Remember the IP options, if any.
829	 */
830#ifdef INET6
831	if (!inc->inc_isipv6)
832#endif
833		ipopts = ip_srcroute();
834
835	/*
836	 * See if we already have an entry for this connection.
837	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
838	 *
839	 * XXX
840	 * should the syncache be re-initialized with the contents
841	 * of the new SYN here (which may have different options?)
842	 */
843	sc = syncache_lookup(inc, &sch);
844	if (sc != NULL) {
845		tcpstat.tcps_sc_dupsyn++;
846		if (ipopts) {
847			/*
848			 * If we were remembering a previous source route,
849			 * forget it and use the new one we've been given.
850			 */
851			if (sc->sc_ipopts)
852				(void) m_free(sc->sc_ipopts);
853			sc->sc_ipopts = ipopts;
854		}
855		/*
856		 * Update timestamp if present.
857		 */
858		if (sc->sc_flags & SCF_TIMESTAMP)
859			sc->sc_tsrecent = to->to_tsval;
860		/*
861		 * PCB may have changed, pick up new values.
862		 */
863		sc->sc_tp = tp;
864		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
865#ifdef TCPDEBUG
866		if (syncache_respond(sc, m, so) == 0) {
867#else
868		if (syncache_respond(sc, m) == 0) {
869#endif
870			/* NB: guarded by INP_INFO_WLOCK(&tcbinfo) */
871			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
872			    sc, sc_timerq);
873			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
874		 	tcpstat.tcps_sndacks++;
875			tcpstat.tcps_sndtotal++;
876		}
877		*sop = NULL;
878		return (1);
879	}
880
881	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
882	if (sc == NULL) {
883		/*
884		 * The zone allocator couldn't provide more entries.
885		 * Treat this as if the cache was full; drop the oldest
886		 * entry and insert the new one.
887		 */
888		/* NB: guarded by INP_INFO_WLOCK(&tcbinfo) */
889		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
890			sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
891			if (sc != NULL)
892				break;
893		}
894		sc->sc_tp->ts_recent = ticks;
895		syncache_drop(sc, NULL);
896		tcpstat.tcps_sc_zonefail++;
897		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
898		if (sc == NULL) {
899			if (ipopts)
900				(void) m_free(ipopts);
901			return (0);
902		}
903	}
904
905	/*
906	 * Fill in the syncache values.
907	 */
908	bzero(sc, sizeof(*sc));
909	sc->sc_tp = tp;
910	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
911	sc->sc_ipopts = ipopts;
912	sc->sc_inc.inc_fport = inc->inc_fport;
913	sc->sc_inc.inc_lport = inc->inc_lport;
914#ifdef INET6
915	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
916	if (inc->inc_isipv6) {
917		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
918		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
919	} else
920#endif
921	{
922		sc->sc_inc.inc_faddr = inc->inc_faddr;
923		sc->sc_inc.inc_laddr = inc->inc_laddr;
924	}
925	sc->sc_irs = th->th_seq;
926	sc->sc_flags = 0;
927	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
928	if (tcp_syncookies)
929		sc->sc_iss = syncookie_generate(sc);
930	else
931		sc->sc_iss = arc4random();
932
933	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
934	win = sbspace(&so->so_rcv);
935	win = imax(win, 0);
936	win = imin(win, TCP_MAXWIN);
937	sc->sc_wnd = win;
938
939	if (tcp_do_rfc1323) {
940		/*
941		 * A timestamp received in a SYN makes
942		 * it ok to send timestamp requests and replies.
943		 */
944		if (to->to_flags & TOF_TS) {
945			sc->sc_tsrecent = to->to_tsval;
946			sc->sc_flags |= SCF_TIMESTAMP;
947		}
948		if (to->to_flags & TOF_SCALE) {
949			int wscale = 0;
950
951			/* Compute proper scaling value from buffer space */
952			while (wscale < TCP_MAX_WINSHIFT &&
953			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
954				wscale++;
955			sc->sc_request_r_scale = wscale;
956			sc->sc_requested_s_scale = to->to_requested_s_scale;
957			sc->sc_flags |= SCF_WINSCALE;
958		}
959	}
960	if (tcp_do_rfc1644) {
961		/*
962		 * A CC or CC.new option received in a SYN makes
963		 * it ok to send CC in subsequent segments.
964		 */
965		if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
966			sc->sc_cc_recv = to->to_cc;
967			sc->sc_cc_send = CC_INC(tcp_ccgen);
968			sc->sc_flags |= SCF_CC;
969		}
970	}
971	if (tp->t_flags & TF_NOOPT)
972		sc->sc_flags = SCF_NOOPT;
973
974	/*
975	 * XXX
976	 * We have the option here of not doing TAO (even if the segment
977	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
978	 * This allows us to apply synflood protection to TAO-qualifying SYNs
979	 * also. However, there should be a hueristic to determine when to
980	 * do this, and is not present at the moment.
981	 */
982
983	/*
984	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
985	 * - compare SEG.CC against cached CC from the same host, if any.
986	 * - if SEG.CC > chached value, SYN must be new and is accepted
987	 *	immediately: save new CC in the cache, mark the socket
988	 *	connected, enter ESTABLISHED state, turn on flag to
989	 *	send a SYN in the next segment.
990	 *	A virtual advertised window is set in rcv_adv to
991	 *	initialize SWS prevention.  Then enter normal segment
992	 *	processing: drop SYN, process data and FIN.
993	 * - otherwise do a normal 3-way handshake.
994	 */
995	if (tcp_do_rfc1644)
996		tcp_hc_gettao(&sc->sc_inc, &tao);
997
998	if ((to->to_flags & TOF_CC) != 0) {
999		if (((tp->t_flags & TF_NOPUSH) != 0) &&
1000		    sc->sc_flags & SCF_CC && tao.tao_cc != 0 &&
1001		    CC_GT(to->to_cc, tao.tao_cc)) {
1002			sc->sc_rxtslot = 0;
1003			so = syncache_socket(sc, *sop, m);
1004			if (so != NULL) {
1005				tao.tao_cc = to->to_cc;
1006				tcp_hc_updatetao(&sc->sc_inc, TCP_HC_TAO_CC,
1007						 tao.tao_cc, 0);
1008				*sop = so;
1009			}
1010			syncache_free(sc);
1011			return (so != NULL);
1012		}
1013	} else {
1014		/*
1015		 * No CC option, but maybe CC.NEW: invalidate cached value.
1016		 */
1017		if (tcp_do_rfc1644) {
1018			tao.tao_cc = 0;
1019			tcp_hc_updatetao(&sc->sc_inc, TCP_HC_TAO_CC,
1020					 tao.tao_cc, 0);
1021		}
1022	}
1023
1024	/*
1025	 * TAO test failed or there was no CC option,
1026	 *    do a standard 3-way handshake.
1027	 */
1028#ifdef TCPDEBUG
1029	if (syncache_respond(sc, m, so) == 0) {
1030#else
1031	if (syncache_respond(sc, m) == 0) {
1032#endif
1033		syncache_insert(sc, sch);
1034		tcpstat.tcps_sndacks++;
1035		tcpstat.tcps_sndtotal++;
1036	} else {
1037		syncache_free(sc);
1038		tcpstat.tcps_sc_dropped++;
1039	}
1040	*sop = NULL;
1041	return (1);
1042}
1043
1044#ifdef TCPDEBUG
1045static int
1046syncache_respond(sc, m, so)
1047	struct syncache *sc;
1048	struct mbuf *m;
1049	struct socket *so;
1050#else
1051static int
1052syncache_respond(sc, m)
1053	struct syncache *sc;
1054	struct mbuf *m;
1055#endif
1056{
1057	u_int8_t *optp;
1058	int optlen, error;
1059	u_int16_t tlen, hlen, mssopt;
1060	struct ip *ip = NULL;
1061	struct tcphdr *th;
1062	struct inpcb *inp;
1063#ifdef INET6
1064	struct ip6_hdr *ip6 = NULL;
1065#endif
1066
1067	hlen =
1068#ifdef INET6
1069	       (sc->sc_inc.inc_isipv6) ? sizeof(struct ip6_hdr) :
1070#endif
1071		sizeof(struct ip);
1072
1073	KASSERT((&sc->sc_inc) != NULL, ("syncache_respond with NULL in_conninfo pointer"));
1074
1075	/* Determine MSS we advertize to other end of connection */
1076	mssopt = tcp_mssopt(&sc->sc_inc);
1077
1078	/* Compute the size of the TCP options. */
1079	if (sc->sc_flags & SCF_NOOPT) {
1080		optlen = 0;
1081	} else {
1082		optlen = TCPOLEN_MAXSEG +
1083		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1084		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1085		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1086	}
1087	tlen = hlen + sizeof(struct tcphdr) + optlen;
1088
1089	/*
1090	 * XXX
1091	 * assume that the entire packet will fit in a header mbuf
1092	 */
1093	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1094
1095	/*
1096	 * XXX shouldn't this reuse the mbuf if possible ?
1097	 * Create the IP+TCP header from scratch.
1098	 */
1099	if (m)
1100		m_freem(m);
1101
1102	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1103	if (m == NULL)
1104		return (ENOBUFS);
1105	m->m_data += max_linkhdr;
1106	m->m_len = tlen;
1107	m->m_pkthdr.len = tlen;
1108	m->m_pkthdr.rcvif = NULL;
1109	inp = sc->sc_tp->t_inpcb;
1110	INP_LOCK(inp);
1111#ifdef MAC
1112	mac_create_mbuf_from_socket(inp->inp_socket, m);
1113#endif
1114
1115#ifdef INET6
1116	if (sc->sc_inc.inc_isipv6) {
1117		ip6 = mtod(m, struct ip6_hdr *);
1118		ip6->ip6_vfc = IPV6_VERSION;
1119		ip6->ip6_nxt = IPPROTO_TCP;
1120		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1121		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1122		ip6->ip6_plen = htons(tlen - hlen);
1123		/* ip6_hlim is set after checksum */
1124		/* ip6_flow = ??? */
1125
1126		th = (struct tcphdr *)(ip6 + 1);
1127	} else
1128#endif
1129	{
1130		ip = mtod(m, struct ip *);
1131		ip->ip_v = IPVERSION;
1132		ip->ip_hl = sizeof(struct ip) >> 2;
1133		ip->ip_len = tlen;
1134		ip->ip_id = 0;
1135		ip->ip_off = 0;
1136		ip->ip_sum = 0;
1137		ip->ip_p = IPPROTO_TCP;
1138		ip->ip_src = sc->sc_inc.inc_laddr;
1139		ip->ip_dst = sc->sc_inc.inc_faddr;
1140		ip->ip_ttl = inp->inp_ip_ttl;   /* XXX */
1141		ip->ip_tos = inp->inp_ip_tos;   /* XXX */
1142
1143		/*
1144		 * See if we should do MTU discovery.  Route lookups are
1145		 * expensive, so we will only unset the DF bit if:
1146		 *
1147		 *	1) path_mtu_discovery is disabled
1148		 *	2) the SCF_UNREACH flag has been set
1149		 */
1150		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1151		       ip->ip_off |= IP_DF;
1152
1153		th = (struct tcphdr *)(ip + 1);
1154	}
1155	th->th_sport = sc->sc_inc.inc_lport;
1156	th->th_dport = sc->sc_inc.inc_fport;
1157
1158	th->th_seq = htonl(sc->sc_iss);
1159	th->th_ack = htonl(sc->sc_irs + 1);
1160	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1161	th->th_x2 = 0;
1162	th->th_flags = TH_SYN|TH_ACK;
1163	th->th_win = htons(sc->sc_wnd);
1164	th->th_urp = 0;
1165
1166	/* Tack on the TCP options. */
1167	if (optlen != 0) {
1168		optp = (u_int8_t *)(th + 1);
1169		*optp++ = TCPOPT_MAXSEG;
1170		*optp++ = TCPOLEN_MAXSEG;
1171		*optp++ = (mssopt >> 8) & 0xff;
1172		*optp++ = mssopt & 0xff;
1173
1174		if (sc->sc_flags & SCF_WINSCALE) {
1175			*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1176			    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1177			    sc->sc_request_r_scale);
1178			optp += 4;
1179		}
1180
1181		if (sc->sc_flags & SCF_TIMESTAMP) {
1182			u_int32_t *lp = (u_int32_t *)(optp);
1183
1184			/* Form timestamp option per appendix A of RFC 1323. */
1185			*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1186			*lp++ = htonl(ticks);
1187			*lp   = htonl(sc->sc_tsrecent);
1188			optp += TCPOLEN_TSTAMP_APPA;
1189		}
1190
1191		/*
1192		 * Send CC and CC.echo if we received CC from our peer.
1193		 */
1194		if (sc->sc_flags & SCF_CC) {
1195			u_int32_t *lp = (u_int32_t *)(optp);
1196
1197			*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1198			*lp++ = htonl(sc->sc_cc_send);
1199			*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1200			*lp   = htonl(sc->sc_cc_recv);
1201			optp += TCPOLEN_CC_APPA * 2;
1202		}
1203	}
1204
1205#ifdef INET6
1206	if (sc->sc_inc.inc_isipv6) {
1207		th->th_sum = 0;
1208		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1209		ip6->ip6_hlim = in6_selecthlim(NULL, NULL);
1210		error = ip6_output(m, NULL, NULL, 0, NULL, NULL, inp);
1211	} else
1212#endif
1213	{
1214        	th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1215		    htons(tlen - hlen + IPPROTO_TCP));
1216		m->m_pkthdr.csum_flags = CSUM_TCP;
1217		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1218#ifdef TCPDEBUG
1219		/*
1220		 * Trace.
1221		 */
1222		if (so != NULL && so->so_options & SO_DEBUG) {
1223			struct tcpcb *tp = sototcpcb(so);
1224			tcp_trace(TA_OUTPUT, tp->t_state, tp,
1225			    mtod(m, void *), th, 0);
1226		}
1227#endif
1228		error = ip_output(m, sc->sc_ipopts, NULL, 0, NULL, inp);
1229	}
1230	INP_UNLOCK(inp);
1231	return (error);
1232}
1233
1234/*
1235 * cookie layers:
1236 *
1237 *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1238 *	| peer iss                                                      |
1239 *	| MD5(laddr,faddr,secret,lport,fport)             |. . . . . . .|
1240 *	|                     0                       |(A)|             |
1241 * (A): peer mss index
1242 */
1243
1244/*
1245 * The values below are chosen to minimize the size of the tcp_secret
1246 * table, as well as providing roughly a 16 second lifetime for the cookie.
1247 */
1248
1249#define SYNCOOKIE_WNDBITS	5	/* exposed bits for window indexing */
1250#define SYNCOOKIE_TIMESHIFT	1	/* scale ticks to window time units */
1251
1252#define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1253#define SYNCOOKIE_NSECRETS	(1 << SYNCOOKIE_WNDBITS)
1254#define SYNCOOKIE_TIMEOUT \
1255    (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1256#define SYNCOOKIE_DATAMASK 	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1257
1258static struct {
1259	u_int32_t	ts_secbits[4];
1260	u_int		ts_expire;
1261} tcp_secret[SYNCOOKIE_NSECRETS];
1262
1263static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1264
1265static MD5_CTX syn_ctx;
1266
1267#define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1268
1269struct md5_add {
1270	u_int32_t laddr, faddr;
1271	u_int32_t secbits[4];
1272	u_int16_t lport, fport;
1273};
1274
1275#ifdef CTASSERT
1276CTASSERT(sizeof(struct md5_add) == 28);
1277#endif
1278
1279/*
1280 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1281 * original SYN was accepted, the connection is established.  The second
1282 * SYN is inflight, and if it arrives with an ISN that falls within the
1283 * receive window, the connection is killed.
1284 *
1285 * However, since cookies have other problems, this may not be worth
1286 * worrying about.
1287 */
1288
1289static u_int32_t
1290syncookie_generate(struct syncache *sc)
1291{
1292	u_int32_t md5_buffer[4];
1293	u_int32_t data;
1294	int idx, i;
1295	struct md5_add add;
1296
1297	/* NB: single threaded; could add INP_INFO_WLOCK_ASSERT(&tcbinfo) */
1298
1299	idx = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1300	if (tcp_secret[idx].ts_expire < ticks) {
1301		for (i = 0; i < 4; i++)
1302			tcp_secret[idx].ts_secbits[i] = arc4random();
1303		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1304	}
1305	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1306		if (tcp_msstab[data] <= sc->sc_peer_mss)
1307			break;
1308	data = (data << SYNCOOKIE_WNDBITS) | idx;
1309	data ^= sc->sc_irs;				/* peer's iss */
1310	MD5Init(&syn_ctx);
1311#ifdef INET6
1312	if (sc->sc_inc.inc_isipv6) {
1313		MD5Add(sc->sc_inc.inc6_laddr);
1314		MD5Add(sc->sc_inc.inc6_faddr);
1315		add.laddr = 0;
1316		add.faddr = 0;
1317	} else
1318#endif
1319	{
1320		add.laddr = sc->sc_inc.inc_laddr.s_addr;
1321		add.faddr = sc->sc_inc.inc_faddr.s_addr;
1322	}
1323	add.lport = sc->sc_inc.inc_lport;
1324	add.fport = sc->sc_inc.inc_fport;
1325	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1326	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1327	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1328	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1329	MD5Add(add);
1330	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1331	data ^= (md5_buffer[0] & ~SYNCOOKIE_WNDMASK);
1332	return (data);
1333}
1334
1335static struct syncache *
1336syncookie_lookup(inc, th, so)
1337	struct in_conninfo *inc;
1338	struct tcphdr *th;
1339	struct socket *so;
1340{
1341	u_int32_t md5_buffer[4];
1342	struct syncache *sc;
1343	u_int32_t data;
1344	int wnd, idx;
1345	struct md5_add add;
1346
1347	/* NB: single threaded; could add INP_INFO_WLOCK_ASSERT(&tcbinfo) */
1348
1349	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1350	idx = data & SYNCOOKIE_WNDMASK;
1351	if (tcp_secret[idx].ts_expire < ticks ||
1352	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1353		return (NULL);
1354	MD5Init(&syn_ctx);
1355#ifdef INET6
1356	if (inc->inc_isipv6) {
1357		MD5Add(inc->inc6_laddr);
1358		MD5Add(inc->inc6_faddr);
1359		add.laddr = 0;
1360		add.faddr = 0;
1361	} else
1362#endif
1363	{
1364		add.laddr = inc->inc_laddr.s_addr;
1365		add.faddr = inc->inc_faddr.s_addr;
1366	}
1367	add.lport = inc->inc_lport;
1368	add.fport = inc->inc_fport;
1369	add.secbits[0] = tcp_secret[idx].ts_secbits[0];
1370	add.secbits[1] = tcp_secret[idx].ts_secbits[1];
1371	add.secbits[2] = tcp_secret[idx].ts_secbits[2];
1372	add.secbits[3] = tcp_secret[idx].ts_secbits[3];
1373	MD5Add(add);
1374	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1375	data ^= md5_buffer[0];
1376	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1377		return (NULL);
1378	data = data >> SYNCOOKIE_WNDBITS;
1379
1380	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1381	if (sc == NULL)
1382		return (NULL);
1383	/*
1384	 * Fill in the syncache values.
1385	 * XXX duplicate code from syncache_add
1386	 */
1387	sc->sc_ipopts = NULL;
1388	sc->sc_inc.inc_fport = inc->inc_fport;
1389	sc->sc_inc.inc_lport = inc->inc_lport;
1390#ifdef INET6
1391	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1392	if (inc->inc_isipv6) {
1393		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1394		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1395	} else
1396#endif
1397	{
1398		sc->sc_inc.inc_faddr = inc->inc_faddr;
1399		sc->sc_inc.inc_laddr = inc->inc_laddr;
1400	}
1401	sc->sc_irs = th->th_seq - 1;
1402	sc->sc_iss = th->th_ack - 1;
1403	wnd = sbspace(&so->so_rcv);
1404	wnd = imax(wnd, 0);
1405	wnd = imin(wnd, TCP_MAXWIN);
1406	sc->sc_wnd = wnd;
1407	sc->sc_flags = 0;
1408	sc->sc_rxtslot = 0;
1409	sc->sc_peer_mss = tcp_msstab[data];
1410	return (sc);
1411}
1412