tcp_syncache.c revision 110023
1/*-
2 * Copyright (c) 2001 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Jonathan Lemon
6 * and NAI Labs, the Security Research Division of Network Associates, Inc.
7 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8 * DARPA CHATS research program.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 *    products derived from this software without specific prior written
20 *    permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $FreeBSD: head/sys/netinet/tcp_syncache.c 110023 2003-01-29 03:49:49Z silby $
35 */
36
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/malloc.h>
46#include <sys/mac.h>
47#include <sys/mbuf.h>
48#include <sys/md5.h>
49#include <sys/proc.h>		/* for proc0 declaration */
50#include <sys/random.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53
54#include <net/if.h>
55#include <net/route.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/in_var.h>
61#include <netinet/in_pcb.h>
62#include <netinet/ip_var.h>
63#ifdef INET6
64#include <netinet/ip6.h>
65#include <netinet/icmp6.h>
66#include <netinet6/nd6.h>
67#include <netinet6/ip6_var.h>
68#include <netinet6/in6_pcb.h>
69#endif
70#include <netinet/tcp.h>
71#include <netinet/tcp_fsm.h>
72#include <netinet/tcp_seq.h>
73#include <netinet/tcp_timer.h>
74#include <netinet/tcp_var.h>
75#ifdef INET6
76#include <netinet6/tcp6_var.h>
77#endif
78
79#ifdef IPSEC
80#include <netinet6/ipsec.h>
81#ifdef INET6
82#include <netinet6/ipsec6.h>
83#endif
84#endif /*IPSEC*/
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#ifdef INET6
89#include <netipsec/ipsec6.h>
90#endif
91#include <netipsec/key.h>
92#define	IPSEC
93#endif /*FAST_IPSEC*/
94
95#include <machine/in_cksum.h>
96#include <vm/uma.h>
97
98static int tcp_syncookies = 1;
99SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
100    &tcp_syncookies, 0,
101    "Use TCP SYN cookies if the syncache overflows");
102
103static void	 syncache_drop(struct syncache *, struct syncache_head *);
104static void	 syncache_free(struct syncache *);
105static void	 syncache_insert(struct syncache *, struct syncache_head *);
106struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
107static int	 syncache_respond(struct syncache *, struct mbuf *);
108static struct 	 socket *syncache_socket(struct syncache *, struct socket *,
109		    struct mbuf *m);
110static void	 syncache_timer(void *);
111static u_int32_t syncookie_generate(struct syncache *);
112static struct syncache *syncookie_lookup(struct in_conninfo *,
113		    struct tcphdr *, struct socket *);
114
115/*
116 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
117 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
118 * the odds are that the user has given up attempting to connect by then.
119 */
120#define SYNCACHE_MAXREXMTS		3
121
122/* Arbitrary values */
123#define TCP_SYNCACHE_HASHSIZE		512
124#define TCP_SYNCACHE_BUCKETLIMIT	30
125
126struct tcp_syncache {
127	struct	syncache_head *hashbase;
128	uma_zone_t zone;
129	u_int	hashsize;
130	u_int	hashmask;
131	u_int	bucket_limit;
132	u_int	cache_count;
133	u_int	cache_limit;
134	u_int	rexmt_limit;
135	u_int	hash_secret;
136	u_int	next_reseed;
137	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
138	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
139};
140static struct tcp_syncache tcp_syncache;
141
142SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
143
144SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
145     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
146
147SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
148     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
149
150SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
151     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
152
153SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
154     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
155
156SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
157     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
158
159static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
160
161#define SYNCACHE_HASH(inc, mask) 					\
162	((tcp_syncache.hash_secret ^					\
163	  (inc)->inc_faddr.s_addr ^					\
164	  ((inc)->inc_faddr.s_addr >> 16) ^ 				\
165	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
166
167#define SYNCACHE_HASH6(inc, mask) 					\
168	((tcp_syncache.hash_secret ^					\
169	  (inc)->inc6_faddr.s6_addr32[0] ^ 				\
170	  (inc)->inc6_faddr.s6_addr32[3] ^ 				\
171	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
172
173#define ENDPTS_EQ(a, b) (						\
174	(a)->ie_fport == (b)->ie_fport &&				\
175	(a)->ie_lport == (b)->ie_lport &&				\
176	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
177	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
178)
179
180#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
181
182#define SYNCACHE_TIMEOUT(sc, slot) do {				\
183	sc->sc_rxtslot = (slot);					\
184	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[(slot)];	\
185	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[(slot)], sc, sc_timerq);	\
186	if (!callout_active(&tcp_syncache.tt_timerq[(slot)]))		\
187		callout_reset(&tcp_syncache.tt_timerq[(slot)],		\
188		    TCPTV_RTOBASE * tcp_backoff[(slot)],		\
189		    syncache_timer, (void *)((intptr_t)(slot)));	\
190} while (0)
191
192static void
193syncache_free(struct syncache *sc)
194{
195	struct rtentry *rt;
196
197	if (sc->sc_ipopts)
198		(void) m_free(sc->sc_ipopts);
199#ifdef INET6
200	if (sc->sc_inc.inc_isipv6)
201		rt = sc->sc_route6.ro_rt;
202	else
203#endif
204		rt = sc->sc_route.ro_rt;
205	if (rt != NULL) {
206		/*
207		 * If this is the only reference to a protocol cloned
208		 * route, remove it immediately.
209		 */
210		if (rt->rt_flags & RTF_WASCLONED &&
211		    (sc->sc_flags & SCF_KEEPROUTE) == 0 &&
212		    rt->rt_refcnt == 1)
213			rtrequest(RTM_DELETE, rt_key(rt),
214			    rt->rt_gateway, rt_mask(rt),
215			    rt->rt_flags, NULL);
216		RTFREE(rt);
217	}
218	uma_zfree(tcp_syncache.zone, sc);
219}
220
221void
222syncache_init(void)
223{
224	int i;
225
226	tcp_syncache.cache_count = 0;
227	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
228	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
229	tcp_syncache.cache_limit =
230	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
231	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
232	tcp_syncache.next_reseed = 0;
233	tcp_syncache.hash_secret = arc4random();
234
235        TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
236	    &tcp_syncache.hashsize);
237        TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
238	    &tcp_syncache.cache_limit);
239        TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
240	    &tcp_syncache.bucket_limit);
241	if (!powerof2(tcp_syncache.hashsize)) {
242                printf("WARNING: syncache hash size is not a power of 2.\n");
243		tcp_syncache.hashsize = 512;	/* safe default */
244        }
245	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
246
247	/* Allocate the hash table. */
248	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
249	    tcp_syncache.hashsize * sizeof(struct syncache_head),
250	    M_SYNCACHE, 0);
251
252	/* Initialize the hash buckets. */
253	for (i = 0; i < tcp_syncache.hashsize; i++) {
254		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
255		tcp_syncache.hashbase[i].sch_length = 0;
256	}
257
258	/* Initialize the timer queues. */
259	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
260		TAILQ_INIT(&tcp_syncache.timerq[i]);
261		callout_init(&tcp_syncache.tt_timerq[i], 0);
262	}
263
264	/*
265	 * Allocate the syncache entries.  Allow the zone to allocate one
266	 * more entry than cache limit, so a new entry can bump out an
267	 * older one.
268	 */
269	tcp_syncache.cache_limit -= 1;
270	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
271	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
272	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
273}
274
275static void
276syncache_insert(sc, sch)
277	struct syncache *sc;
278	struct syncache_head *sch;
279{
280	struct syncache *sc2;
281	int s, i;
282
283	/*
284	 * Make sure that we don't overflow the per-bucket
285	 * limit or the total cache size limit.
286	 */
287	s = splnet();
288	if (sch->sch_length >= tcp_syncache.bucket_limit) {
289		/*
290		 * The bucket is full, toss the oldest element.
291		 */
292		sc2 = TAILQ_FIRST(&sch->sch_bucket);
293		sc2->sc_tp->ts_recent = ticks;
294		syncache_drop(sc2, sch);
295		tcpstat.tcps_sc_bucketoverflow++;
296	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
297		/*
298		 * The cache is full.  Toss the oldest entry in the
299		 * entire cache.  This is the front entry in the
300		 * first non-empty timer queue with the largest
301		 * timeout value.
302		 */
303		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
304			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
305			if (sc2 != NULL)
306				break;
307		}
308		sc2->sc_tp->ts_recent = ticks;
309		syncache_drop(sc2, NULL);
310		tcpstat.tcps_sc_cacheoverflow++;
311	}
312
313	/* Initialize the entry's timer. */
314	SYNCACHE_TIMEOUT(sc, 0);
315
316	/* Put it into the bucket. */
317	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
318	sch->sch_length++;
319	tcp_syncache.cache_count++;
320	tcpstat.tcps_sc_added++;
321	splx(s);
322}
323
324static void
325syncache_drop(sc, sch)
326	struct syncache *sc;
327	struct syncache_head *sch;
328{
329	int s;
330
331	if (sch == NULL) {
332#ifdef INET6
333		if (sc->sc_inc.inc_isipv6) {
334			sch = &tcp_syncache.hashbase[
335			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
336		} else
337#endif
338		{
339			sch = &tcp_syncache.hashbase[
340			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
341		}
342	}
343
344	s = splnet();
345
346	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
347	sch->sch_length--;
348	tcp_syncache.cache_count--;
349
350	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
351	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
352		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
353	splx(s);
354
355	syncache_free(sc);
356}
357
358/*
359 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
360 * If we have retransmitted an entry the maximum number of times, expire it.
361 */
362static void
363syncache_timer(xslot)
364	void *xslot;
365{
366	intptr_t slot = (intptr_t)xslot;
367	struct syncache *sc, *nsc;
368	struct inpcb *inp;
369	int s;
370
371	s = splnet();
372	INP_INFO_RLOCK(&tcbinfo);
373        if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
374            !callout_active(&tcp_syncache.tt_timerq[slot])) {
375		INP_INFO_RUNLOCK(&tcbinfo);
376                splx(s);
377                return;
378        }
379        callout_deactivate(&tcp_syncache.tt_timerq[slot]);
380
381        nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
382	while (nsc != NULL) {
383		if (ticks < nsc->sc_rxttime)
384			break;
385		sc = nsc;
386		inp = sc->sc_tp->t_inpcb;
387		if (slot == SYNCACHE_MAXREXMTS ||
388		    slot >= tcp_syncache.rexmt_limit ||
389		    inp == NULL || inp->inp_gencnt != sc->sc_inp_gencnt) {
390			nsc = TAILQ_NEXT(sc, sc_timerq);
391			syncache_drop(sc, NULL);
392			tcpstat.tcps_sc_stale++;
393			continue;
394		}
395		/*
396		 * syncache_respond() may call back into the syncache to
397		 * to modify another entry, so do not obtain the next
398		 * entry on the timer chain until it has completed.
399		 */
400		(void) syncache_respond(sc, NULL);
401		nsc = TAILQ_NEXT(sc, sc_timerq);
402		tcpstat.tcps_sc_retransmitted++;
403		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
404		SYNCACHE_TIMEOUT(sc, slot + 1);
405	}
406	if (nsc != NULL)
407		callout_reset(&tcp_syncache.tt_timerq[slot],
408		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
409	INP_INFO_RUNLOCK(&tcbinfo);
410	splx(s);
411}
412
413/*
414 * Find an entry in the syncache.
415 */
416struct syncache *
417syncache_lookup(inc, schp)
418	struct in_conninfo *inc;
419	struct syncache_head **schp;
420{
421	struct syncache *sc;
422	struct syncache_head *sch;
423	int s;
424
425#ifdef INET6
426	if (inc->inc_isipv6) {
427		sch = &tcp_syncache.hashbase[
428		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
429		*schp = sch;
430		s = splnet();
431		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
432			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
433				splx(s);
434				return (sc);
435			}
436		}
437		splx(s);
438	} else
439#endif
440	{
441		sch = &tcp_syncache.hashbase[
442		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
443		*schp = sch;
444		s = splnet();
445		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
446#ifdef INET6
447			if (sc->sc_inc.inc_isipv6)
448				continue;
449#endif
450			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
451				splx(s);
452				return (sc);
453			}
454		}
455		splx(s);
456	}
457	return (NULL);
458}
459
460/*
461 * This function is called when we get a RST for a
462 * non-existent connection, so that we can see if the
463 * connection is in the syn cache.  If it is, zap it.
464 */
465void
466syncache_chkrst(inc, th)
467	struct in_conninfo *inc;
468	struct tcphdr *th;
469{
470	struct syncache *sc;
471	struct syncache_head *sch;
472
473	sc = syncache_lookup(inc, &sch);
474	if (sc == NULL)
475		return;
476	/*
477	 * If the RST bit is set, check the sequence number to see
478	 * if this is a valid reset segment.
479	 * RFC 793 page 37:
480	 *   In all states except SYN-SENT, all reset (RST) segments
481	 *   are validated by checking their SEQ-fields.  A reset is
482	 *   valid if its sequence number is in the window.
483	 *
484	 *   The sequence number in the reset segment is normally an
485	 *   echo of our outgoing acknowlegement numbers, but some hosts
486	 *   send a reset with the sequence number at the rightmost edge
487	 *   of our receive window, and we have to handle this case.
488	 */
489	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
490	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
491		syncache_drop(sc, sch);
492		tcpstat.tcps_sc_reset++;
493	}
494}
495
496void
497syncache_badack(inc)
498	struct in_conninfo *inc;
499{
500	struct syncache *sc;
501	struct syncache_head *sch;
502
503	sc = syncache_lookup(inc, &sch);
504	if (sc != NULL) {
505		syncache_drop(sc, sch);
506		tcpstat.tcps_sc_badack++;
507	}
508}
509
510void
511syncache_unreach(inc, th)
512	struct in_conninfo *inc;
513	struct tcphdr *th;
514{
515	struct syncache *sc;
516	struct syncache_head *sch;
517
518	/* we are called at splnet() here */
519	sc = syncache_lookup(inc, &sch);
520	if (sc == NULL)
521		return;
522
523	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
524	if (ntohl(th->th_seq) != sc->sc_iss)
525		return;
526
527	/*
528	 * If we've rertransmitted 3 times and this is our second error,
529	 * we remove the entry.  Otherwise, we allow it to continue on.
530	 * This prevents us from incorrectly nuking an entry during a
531	 * spurious network outage.
532	 *
533	 * See tcp_notify().
534	 */
535	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
536		sc->sc_flags |= SCF_UNREACH;
537		return;
538	}
539	syncache_drop(sc, sch);
540	tcpstat.tcps_sc_unreach++;
541}
542
543/*
544 * Build a new TCP socket structure from a syncache entry.
545 */
546static struct socket *
547syncache_socket(sc, lso, m)
548	struct syncache *sc;
549	struct socket *lso;
550	struct mbuf *m;
551{
552	struct inpcb *inp = NULL;
553	struct socket *so;
554	struct tcpcb *tp;
555
556	/*
557	 * Ok, create the full blown connection, and set things up
558	 * as they would have been set up if we had created the
559	 * connection when the SYN arrived.  If we can't create
560	 * the connection, abort it.
561	 */
562	so = sonewconn(lso, SS_ISCONNECTED);
563	if (so == NULL) {
564		/*
565		 * Drop the connection; we will send a RST if the peer
566		 * retransmits the ACK,
567		 */
568		tcpstat.tcps_listendrop++;
569		goto abort;
570	}
571#ifdef MAC
572	mac_set_socket_peer_from_mbuf(m, so);
573#endif
574
575	inp = sotoinpcb(so);
576
577	/*
578	 * Insert new socket into hash list.
579	 */
580	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
581#ifdef INET6
582	if (sc->sc_inc.inc_isipv6) {
583		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
584	} else {
585		inp->inp_vflag &= ~INP_IPV6;
586		inp->inp_vflag |= INP_IPV4;
587#endif
588		inp->inp_laddr = sc->sc_inc.inc_laddr;
589#ifdef INET6
590	}
591#endif
592	inp->inp_lport = sc->sc_inc.inc_lport;
593	if (in_pcbinshash(inp) != 0) {
594		/*
595		 * Undo the assignments above if we failed to
596		 * put the PCB on the hash lists.
597		 */
598#ifdef INET6
599		if (sc->sc_inc.inc_isipv6)
600			inp->in6p_laddr = in6addr_any;
601       		else
602#endif
603			inp->inp_laddr.s_addr = INADDR_ANY;
604		inp->inp_lport = 0;
605		goto abort;
606	}
607#ifdef IPSEC
608	/* copy old policy into new socket's */
609	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
610		printf("syncache_expand: could not copy policy\n");
611#endif
612#ifdef INET6
613	if (sc->sc_inc.inc_isipv6) {
614		struct inpcb *oinp = sotoinpcb(lso);
615		struct in6_addr laddr6;
616		struct sockaddr_in6 *sin6;
617		/*
618		 * Inherit socket options from the listening socket.
619		 * Note that in6p_inputopts are not (and should not be)
620		 * copied, since it stores previously received options and is
621		 * used to detect if each new option is different than the
622		 * previous one and hence should be passed to a user.
623                 * If we copied in6p_inputopts, a user would not be able to
624		 * receive options just after calling the accept system call.
625		 */
626		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
627		if (oinp->in6p_outputopts)
628			inp->in6p_outputopts =
629			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
630		inp->in6p_route = sc->sc_route6;
631		sc->sc_route6.ro_rt = NULL;
632
633		MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
634		    M_SONAME, M_NOWAIT | M_ZERO);
635		if (sin6 == NULL)
636			goto abort;
637		sin6->sin6_family = AF_INET6;
638		sin6->sin6_len = sizeof(*sin6);
639		sin6->sin6_addr = sc->sc_inc.inc6_faddr;
640		sin6->sin6_port = sc->sc_inc.inc_fport;
641		laddr6 = inp->in6p_laddr;
642		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
643			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
644		if (in6_pcbconnect(inp, (struct sockaddr *)sin6, &thread0)) {
645			inp->in6p_laddr = laddr6;
646			FREE(sin6, M_SONAME);
647			goto abort;
648		}
649		FREE(sin6, M_SONAME);
650	} else
651#endif
652	{
653		struct in_addr laddr;
654		struct sockaddr_in *sin;
655
656		inp->inp_options = ip_srcroute();
657		if (inp->inp_options == NULL) {
658			inp->inp_options = sc->sc_ipopts;
659			sc->sc_ipopts = NULL;
660		}
661		inp->inp_route = sc->sc_route;
662		sc->sc_route.ro_rt = NULL;
663
664		MALLOC(sin, struct sockaddr_in *, sizeof *sin,
665		    M_SONAME, M_NOWAIT | M_ZERO);
666		if (sin == NULL)
667			goto abort;
668		sin->sin_family = AF_INET;
669		sin->sin_len = sizeof(*sin);
670		sin->sin_addr = sc->sc_inc.inc_faddr;
671		sin->sin_port = sc->sc_inc.inc_fport;
672		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
673		laddr = inp->inp_laddr;
674		if (inp->inp_laddr.s_addr == INADDR_ANY)
675			inp->inp_laddr = sc->sc_inc.inc_laddr;
676		if (in_pcbconnect(inp, (struct sockaddr *)sin, &thread0)) {
677			inp->inp_laddr = laddr;
678			FREE(sin, M_SONAME);
679			goto abort;
680		}
681		FREE(sin, M_SONAME);
682	}
683
684	tp = intotcpcb(inp);
685	tp->t_state = TCPS_SYN_RECEIVED;
686	tp->iss = sc->sc_iss;
687	tp->irs = sc->sc_irs;
688	tcp_rcvseqinit(tp);
689	tcp_sendseqinit(tp);
690	tp->snd_wl1 = sc->sc_irs;
691	tp->rcv_up = sc->sc_irs + 1;
692	tp->rcv_wnd = sc->sc_wnd;
693	tp->rcv_adv += tp->rcv_wnd;
694
695	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
696	if (sc->sc_flags & SCF_NOOPT)
697		tp->t_flags |= TF_NOOPT;
698	if (sc->sc_flags & SCF_WINSCALE) {
699		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
700		tp->requested_s_scale = sc->sc_requested_s_scale;
701		tp->request_r_scale = sc->sc_request_r_scale;
702	}
703	if (sc->sc_flags & SCF_TIMESTAMP) {
704		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
705		tp->ts_recent = sc->sc_tsrecent;
706		tp->ts_recent_age = ticks;
707	}
708	if (sc->sc_flags & SCF_CC) {
709		/*
710		 * Initialization of the tcpcb for transaction;
711		 *   set SND.WND = SEG.WND,
712		 *   initialize CCsend and CCrecv.
713		 */
714		tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
715		tp->cc_send = sc->sc_cc_send;
716		tp->cc_recv = sc->sc_cc_recv;
717	}
718
719	tcp_mss(tp, sc->sc_peer_mss);
720
721	/*
722	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
723	 */
724	if (sc->sc_rxtslot != 0)
725                tp->snd_cwnd = tp->t_maxseg;
726	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
727
728	tcpstat.tcps_accepts++;
729	return (so);
730
731abort:
732	if (so != NULL)
733		(void) soabort(so);
734	return (NULL);
735}
736
737/*
738 * This function gets called when we receive an ACK for a
739 * socket in the LISTEN state.  We look up the connection
740 * in the syncache, and if its there, we pull it out of
741 * the cache and turn it into a full-blown connection in
742 * the SYN-RECEIVED state.
743 */
744int
745syncache_expand(inc, th, sop, m)
746	struct in_conninfo *inc;
747	struct tcphdr *th;
748	struct socket **sop;
749	struct mbuf *m;
750{
751	struct syncache *sc;
752	struct syncache_head *sch;
753	struct socket *so;
754
755	sc = syncache_lookup(inc, &sch);
756	if (sc == NULL) {
757		/*
758		 * There is no syncache entry, so see if this ACK is
759		 * a returning syncookie.  To do this, first:
760		 *  A. See if this socket has had a syncache entry dropped in
761		 *     the past.  We don't want to accept a bogus syncookie
762 		 *     if we've never received a SYN.
763		 *  B. check that the syncookie is valid.  If it is, then
764		 *     cobble up a fake syncache entry, and return.
765		 */
766		if (!tcp_syncookies)
767			return (0);
768		sc = syncookie_lookup(inc, th, *sop);
769		if (sc == NULL)
770			return (0);
771		sch = NULL;
772		tcpstat.tcps_sc_recvcookie++;
773	}
774
775	/*
776	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
777	 */
778	if (th->th_ack != sc->sc_iss + 1)
779		return (0);
780
781	so = syncache_socket(sc, *sop, m);
782	if (so == NULL) {
783#if 0
784resetandabort:
785		/* XXXjlemon check this - is this correct? */
786		(void) tcp_respond(NULL, m, m, th,
787		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
788#endif
789		m_freem(m);			/* XXX only needed for above */
790		tcpstat.tcps_sc_aborted++;
791	} else {
792		sc->sc_flags |= SCF_KEEPROUTE;
793		tcpstat.tcps_sc_completed++;
794	}
795	if (sch == NULL)
796		syncache_free(sc);
797	else
798		syncache_drop(sc, sch);
799	*sop = so;
800	return (1);
801}
802
803/*
804 * Given a LISTEN socket and an inbound SYN request, add
805 * this to the syn cache, and send back a segment:
806 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
807 * to the source.
808 *
809 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
810 * Doing so would require that we hold onto the data and deliver it
811 * to the application.  However, if we are the target of a SYN-flood
812 * DoS attack, an attacker could send data which would eventually
813 * consume all available buffer space if it were ACKed.  By not ACKing
814 * the data, we avoid this DoS scenario.
815 */
816int
817syncache_add(inc, to, th, sop, m)
818	struct in_conninfo *inc;
819	struct tcpopt *to;
820	struct tcphdr *th;
821	struct socket **sop;
822	struct mbuf *m;
823{
824	struct tcpcb *tp;
825	struct socket *so;
826	struct syncache *sc = NULL;
827	struct syncache_head *sch;
828	struct mbuf *ipopts = NULL;
829	struct rmxp_tao *taop;
830	int i, s, win;
831
832	so = *sop;
833	tp = sototcpcb(so);
834
835	/*
836	 * Remember the IP options, if any.
837	 */
838#ifdef INET6
839	if (!inc->inc_isipv6)
840#endif
841		ipopts = ip_srcroute();
842
843	/*
844	 * See if we already have an entry for this connection.
845	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
846	 *
847	 * XXX
848	 * should the syncache be re-initialized with the contents
849	 * of the new SYN here (which may have different options?)
850	 */
851	sc = syncache_lookup(inc, &sch);
852	if (sc != NULL) {
853		tcpstat.tcps_sc_dupsyn++;
854		if (ipopts) {
855			/*
856			 * If we were remembering a previous source route,
857			 * forget it and use the new one we've been given.
858			 */
859			if (sc->sc_ipopts)
860				(void) m_free(sc->sc_ipopts);
861			sc->sc_ipopts = ipopts;
862		}
863		/*
864		 * Update timestamp if present.
865		 */
866		if (sc->sc_flags & SCF_TIMESTAMP)
867			sc->sc_tsrecent = to->to_tsval;
868		/*
869		 * PCB may have changed, pick up new values.
870		 */
871		sc->sc_tp = tp;
872		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
873		if (syncache_respond(sc, m) == 0) {
874		        s = splnet();
875			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
876			    sc, sc_timerq);
877			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
878		        splx(s);
879		 	tcpstat.tcps_sndacks++;
880			tcpstat.tcps_sndtotal++;
881		}
882		*sop = NULL;
883		return (1);
884	}
885
886	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
887	if (sc == NULL) {
888		/*
889		 * The zone allocator couldn't provide more entries.
890		 * Treat this as if the cache was full; drop the oldest
891		 * entry and insert the new one.
892		 */
893		s = splnet();
894		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
895			sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
896			if (sc != NULL)
897				break;
898		}
899		sc->sc_tp->ts_recent = ticks;
900		syncache_drop(sc, NULL);
901		splx(s);
902		tcpstat.tcps_sc_zonefail++;
903		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
904		if (sc == NULL) {
905			if (ipopts)
906				(void) m_free(ipopts);
907			return (0);
908		}
909	}
910
911	/*
912	 * Fill in the syncache values.
913	 */
914	bzero(sc, sizeof(*sc));
915	sc->sc_tp = tp;
916	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
917	sc->sc_ipopts = ipopts;
918	sc->sc_inc.inc_fport = inc->inc_fport;
919	sc->sc_inc.inc_lport = inc->inc_lport;
920#ifdef INET6
921	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
922	if (inc->inc_isipv6) {
923		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
924		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
925		sc->sc_route6.ro_rt = NULL;
926	} else
927#endif
928	{
929		sc->sc_inc.inc_faddr = inc->inc_faddr;
930		sc->sc_inc.inc_laddr = inc->inc_laddr;
931		sc->sc_route.ro_rt = NULL;
932	}
933	sc->sc_irs = th->th_seq;
934	sc->sc_flags = 0;
935	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
936	if (tcp_syncookies)
937		sc->sc_iss = syncookie_generate(sc);
938	else
939		sc->sc_iss = arc4random();
940
941	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
942	win = sbspace(&so->so_rcv);
943	win = imax(win, 0);
944	win = imin(win, TCP_MAXWIN);
945	sc->sc_wnd = win;
946
947	if (tcp_do_rfc1323) {
948		/*
949		 * A timestamp received in a SYN makes
950		 * it ok to send timestamp requests and replies.
951		 */
952		if (to->to_flags & TOF_TS) {
953			sc->sc_tsrecent = to->to_tsval;
954			sc->sc_flags |= SCF_TIMESTAMP;
955		}
956		if (to->to_flags & TOF_SCALE) {
957			int wscale = 0;
958
959			/* Compute proper scaling value from buffer space */
960			while (wscale < TCP_MAX_WINSHIFT &&
961			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
962				wscale++;
963			sc->sc_request_r_scale = wscale;
964			sc->sc_requested_s_scale = to->to_requested_s_scale;
965			sc->sc_flags |= SCF_WINSCALE;
966		}
967	}
968	if (tcp_do_rfc1644) {
969		/*
970		 * A CC or CC.new option received in a SYN makes
971		 * it ok to send CC in subsequent segments.
972		 */
973		if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
974			sc->sc_cc_recv = to->to_cc;
975			sc->sc_cc_send = CC_INC(tcp_ccgen);
976			sc->sc_flags |= SCF_CC;
977		}
978	}
979	if (tp->t_flags & TF_NOOPT)
980		sc->sc_flags = SCF_NOOPT;
981
982	/*
983	 * XXX
984	 * We have the option here of not doing TAO (even if the segment
985	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
986	 * This allows us to apply synflood protection to TAO-qualifying SYNs
987	 * also. However, there should be a hueristic to determine when to
988	 * do this, and is not present at the moment.
989	 */
990
991	/*
992	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
993	 * - compare SEG.CC against cached CC from the same host, if any.
994	 * - if SEG.CC > chached value, SYN must be new and is accepted
995	 *	immediately: save new CC in the cache, mark the socket
996	 *	connected, enter ESTABLISHED state, turn on flag to
997	 *	send a SYN in the next segment.
998	 *	A virtual advertised window is set in rcv_adv to
999	 *	initialize SWS prevention.  Then enter normal segment
1000	 *	processing: drop SYN, process data and FIN.
1001	 * - otherwise do a normal 3-way handshake.
1002	 */
1003	taop = tcp_gettaocache(&sc->sc_inc);
1004	if ((to->to_flags & TOF_CC) != 0) {
1005		if (((tp->t_flags & TF_NOPUSH) != 0) &&
1006		    sc->sc_flags & SCF_CC &&
1007		    taop != NULL && taop->tao_cc != 0 &&
1008		    CC_GT(to->to_cc, taop->tao_cc)) {
1009			sc->sc_rxtslot = 0;
1010			so = syncache_socket(sc, *sop, m);
1011			if (so != NULL) {
1012				sc->sc_flags |= SCF_KEEPROUTE;
1013				taop->tao_cc = to->to_cc;
1014				*sop = so;
1015			}
1016			syncache_free(sc);
1017			return (so != NULL);
1018		}
1019	} else {
1020		/*
1021		 * No CC option, but maybe CC.NEW: invalidate cached value.
1022		 */
1023		if (taop != NULL)
1024			taop->tao_cc = 0;
1025	}
1026	/*
1027	 * TAO test failed or there was no CC option,
1028	 *    do a standard 3-way handshake.
1029	 */
1030	if (syncache_respond(sc, m) == 0) {
1031		syncache_insert(sc, sch);
1032		tcpstat.tcps_sndacks++;
1033		tcpstat.tcps_sndtotal++;
1034	} else {
1035		syncache_free(sc);
1036		tcpstat.tcps_sc_dropped++;
1037	}
1038	*sop = NULL;
1039	return (1);
1040}
1041
1042static int
1043syncache_respond(sc, m)
1044	struct syncache *sc;
1045	struct mbuf *m;
1046{
1047	u_int8_t *optp;
1048	int optlen, error;
1049	u_int16_t tlen, hlen, mssopt;
1050	struct ip *ip = NULL;
1051	struct rtentry *rt;
1052	struct tcphdr *th;
1053#ifdef INET6
1054	struct ip6_hdr *ip6 = NULL;
1055#endif
1056
1057#ifdef INET6
1058	if (sc->sc_inc.inc_isipv6) {
1059		rt = tcp_rtlookup6(&sc->sc_inc);
1060		if (rt != NULL)
1061			mssopt = rt->rt_ifp->if_mtu -
1062			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1063		else
1064			mssopt = tcp_v6mssdflt;
1065		hlen = sizeof(struct ip6_hdr);
1066	} else
1067#endif
1068	{
1069		rt = tcp_rtlookup(&sc->sc_inc);
1070		if (rt != NULL)
1071			mssopt = rt->rt_ifp->if_mtu -
1072			     (sizeof(struct ip) + sizeof(struct tcphdr));
1073		else
1074			mssopt = tcp_mssdflt;
1075		hlen = sizeof(struct ip);
1076	}
1077
1078	/* Compute the size of the TCP options. */
1079	if (sc->sc_flags & SCF_NOOPT) {
1080		optlen = 0;
1081	} else {
1082		optlen = TCPOLEN_MAXSEG +
1083		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1084		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1085		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1086	}
1087	tlen = hlen + sizeof(struct tcphdr) + optlen;
1088
1089	/*
1090	 * XXX
1091	 * assume that the entire packet will fit in a header mbuf
1092	 */
1093	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1094
1095	/*
1096	 * XXX shouldn't this reuse the mbuf if possible ?
1097	 * Create the IP+TCP header from scratch.
1098	 */
1099	if (m)
1100		m_freem(m);
1101
1102	m = m_gethdr(M_NOWAIT, MT_HEADER);
1103	if (m == NULL)
1104		return (ENOBUFS);
1105	m->m_data += max_linkhdr;
1106	m->m_len = tlen;
1107	m->m_pkthdr.len = tlen;
1108	m->m_pkthdr.rcvif = NULL;
1109#ifdef MAC
1110	mac_create_mbuf_from_socket(sc->sc_tp->t_inpcb->inp_socket, m);
1111#endif
1112
1113#ifdef INET6
1114	if (sc->sc_inc.inc_isipv6) {
1115		ip6 = mtod(m, struct ip6_hdr *);
1116		ip6->ip6_vfc = IPV6_VERSION;
1117		ip6->ip6_nxt = IPPROTO_TCP;
1118		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1119		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1120		ip6->ip6_plen = htons(tlen - hlen);
1121		/* ip6_hlim is set after checksum */
1122		/* ip6_flow = ??? */
1123
1124		th = (struct tcphdr *)(ip6 + 1);
1125	} else
1126#endif
1127	{
1128		ip = mtod(m, struct ip *);
1129		ip->ip_v = IPVERSION;
1130		ip->ip_hl = sizeof(struct ip) >> 2;
1131		ip->ip_len = tlen;
1132		ip->ip_id = 0;
1133		ip->ip_off = 0;
1134		ip->ip_sum = 0;
1135		ip->ip_p = IPPROTO_TCP;
1136		ip->ip_src = sc->sc_inc.inc_laddr;
1137		ip->ip_dst = sc->sc_inc.inc_faddr;
1138		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1139		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1140
1141		/*
1142		 * See if we should do MTU discovery.  Route lookups are
1143		 * expensive, so we will only unset the DF bit if:
1144		 *
1145		 *	1) path_mtu_discovery is disabled
1146		 *	2) the SCF_UNREACH flag has been set
1147		 */
1148		if (path_mtu_discovery && ((sc->sc_flags & SCF_UNREACH) == 0))
1149		       ip->ip_off |= IP_DF;
1150
1151		th = (struct tcphdr *)(ip + 1);
1152	}
1153	th->th_sport = sc->sc_inc.inc_lport;
1154	th->th_dport = sc->sc_inc.inc_fport;
1155
1156	th->th_seq = htonl(sc->sc_iss);
1157	th->th_ack = htonl(sc->sc_irs + 1);
1158	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1159	th->th_x2 = 0;
1160	th->th_flags = TH_SYN|TH_ACK;
1161	th->th_win = htons(sc->sc_wnd);
1162	th->th_urp = 0;
1163
1164	/* Tack on the TCP options. */
1165	if (optlen != 0) {
1166		optp = (u_int8_t *)(th + 1);
1167		*optp++ = TCPOPT_MAXSEG;
1168		*optp++ = TCPOLEN_MAXSEG;
1169		*optp++ = (mssopt >> 8) & 0xff;
1170		*optp++ = mssopt & 0xff;
1171
1172		if (sc->sc_flags & SCF_WINSCALE) {
1173			*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1174			    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1175			    sc->sc_request_r_scale);
1176			optp += 4;
1177		}
1178
1179		if (sc->sc_flags & SCF_TIMESTAMP) {
1180			u_int32_t *lp = (u_int32_t *)(optp);
1181
1182			/* Form timestamp option per appendix A of RFC 1323. */
1183			*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1184			*lp++ = htonl(ticks);
1185			*lp   = htonl(sc->sc_tsrecent);
1186			optp += TCPOLEN_TSTAMP_APPA;
1187		}
1188
1189		/*
1190		 * Send CC and CC.echo if we received CC from our peer.
1191		 */
1192		if (sc->sc_flags & SCF_CC) {
1193			u_int32_t *lp = (u_int32_t *)(optp);
1194
1195			*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1196			*lp++ = htonl(sc->sc_cc_send);
1197			*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1198			*lp   = htonl(sc->sc_cc_recv);
1199			optp += TCPOLEN_CC_APPA * 2;
1200		}
1201	}
1202
1203#ifdef INET6
1204	if (sc->sc_inc.inc_isipv6) {
1205		struct route_in6 *ro6 = &sc->sc_route6;
1206
1207		th->th_sum = 0;
1208		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1209		ip6->ip6_hlim = in6_selecthlim(NULL,
1210		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1211		error = ip6_output(m, NULL, ro6, 0, NULL, NULL,
1212				sc->sc_tp->t_inpcb);
1213	} else
1214#endif
1215	{
1216        	th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1217		    htons(tlen - hlen + IPPROTO_TCP));
1218		m->m_pkthdr.csum_flags = CSUM_TCP;
1219		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1220		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL,
1221				sc->sc_tp->t_inpcb);
1222	}
1223	return (error);
1224}
1225
1226/*
1227 * cookie layers:
1228 *
1229 *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1230 *	| peer iss                                                      |
1231 *	| MD5(laddr,faddr,lport,fport,secret)             |. . . . . . .|
1232 *	|                     0                       |(A)|             |
1233 * (A): peer mss index
1234 */
1235
1236/*
1237 * The values below are chosen to minimize the size of the tcp_secret
1238 * table, as well as providing roughly a 4 second lifetime for the cookie.
1239 */
1240
1241#define SYNCOOKIE_HASHSHIFT	2	/* log2(# of 32bit words from hash) */
1242#define SYNCOOKIE_WNDBITS	7	/* exposed bits for window indexing */
1243#define SYNCOOKIE_TIMESHIFT	5	/* scale ticks to window time units */
1244
1245#define SYNCOOKIE_HASHMASK	((1 << SYNCOOKIE_HASHSHIFT) - 1)
1246#define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1247#define SYNCOOKIE_NSECRETS	(1 << (SYNCOOKIE_WNDBITS - SYNCOOKIE_HASHSHIFT))
1248#define SYNCOOKIE_TIMEOUT \
1249    (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1250#define SYNCOOKIE_DATAMASK 	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1251
1252static struct {
1253	u_int32_t	ts_secbits;
1254	u_int		ts_expire;
1255} tcp_secret[SYNCOOKIE_NSECRETS];
1256
1257static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1258
1259static MD5_CTX syn_ctx;
1260
1261#define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1262
1263/*
1264 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1265 * original SYN was accepted, the connection is established.  The second
1266 * SYN is inflight, and if it arrives with an ISN that falls within the
1267 * receive window, the connection is killed.
1268 *
1269 * However, since cookies have other problems, this may not be worth
1270 * worrying about.
1271 */
1272
1273static u_int32_t
1274syncookie_generate(struct syncache *sc)
1275{
1276	u_int32_t md5_buffer[4];
1277	u_int32_t data;
1278	int wnd, idx;
1279
1280	wnd = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1281	idx = wnd >> SYNCOOKIE_HASHSHIFT;
1282	if (tcp_secret[idx].ts_expire < ticks) {
1283		tcp_secret[idx].ts_secbits = arc4random();
1284		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1285	}
1286	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1287		if (tcp_msstab[data] <= sc->sc_peer_mss)
1288			break;
1289	data = (data << SYNCOOKIE_WNDBITS) | wnd;
1290	data ^= sc->sc_irs;				/* peer's iss */
1291	MD5Init(&syn_ctx);
1292#ifdef INET6
1293	if (sc->sc_inc.inc_isipv6) {
1294		MD5Add(sc->sc_inc.inc6_laddr);
1295		MD5Add(sc->sc_inc.inc6_faddr);
1296	} else
1297#endif
1298	{
1299		MD5Add(sc->sc_inc.inc_laddr);
1300		MD5Add(sc->sc_inc.inc_faddr);
1301	}
1302	MD5Add(sc->sc_inc.inc_lport);
1303	MD5Add(sc->sc_inc.inc_fport);
1304	MD5Add(tcp_secret[idx].ts_secbits);
1305	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1306	data ^= (md5_buffer[wnd & SYNCOOKIE_HASHMASK] & ~SYNCOOKIE_WNDMASK);
1307	return (data);
1308}
1309
1310static struct syncache *
1311syncookie_lookup(inc, th, so)
1312	struct in_conninfo *inc;
1313	struct tcphdr *th;
1314	struct socket *so;
1315{
1316	u_int32_t md5_buffer[4];
1317	struct syncache *sc;
1318	u_int32_t data;
1319	int wnd, idx;
1320
1321	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1322	wnd = data & SYNCOOKIE_WNDMASK;
1323	idx = wnd >> SYNCOOKIE_HASHSHIFT;
1324	if (tcp_secret[idx].ts_expire < ticks ||
1325	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1326		return (NULL);
1327	MD5Init(&syn_ctx);
1328#ifdef INET6
1329	if (inc->inc_isipv6) {
1330		MD5Add(inc->inc6_laddr);
1331		MD5Add(inc->inc6_faddr);
1332	} else
1333#endif
1334	{
1335		MD5Add(inc->inc_laddr);
1336		MD5Add(inc->inc_faddr);
1337	}
1338	MD5Add(inc->inc_lport);
1339	MD5Add(inc->inc_fport);
1340	MD5Add(tcp_secret[idx].ts_secbits);
1341	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1342	data ^= md5_buffer[wnd & SYNCOOKIE_HASHMASK];
1343	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1344		return (NULL);
1345	data = data >> SYNCOOKIE_WNDBITS;
1346
1347	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1348	if (sc == NULL)
1349		return (NULL);
1350	/*
1351	 * Fill in the syncache values.
1352	 * XXX duplicate code from syncache_add
1353	 */
1354	sc->sc_ipopts = NULL;
1355	sc->sc_inc.inc_fport = inc->inc_fport;
1356	sc->sc_inc.inc_lport = inc->inc_lport;
1357#ifdef INET6
1358	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1359	if (inc->inc_isipv6) {
1360		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1361		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1362		sc->sc_route6.ro_rt = NULL;
1363	} else
1364#endif
1365	{
1366		sc->sc_inc.inc_faddr = inc->inc_faddr;
1367		sc->sc_inc.inc_laddr = inc->inc_laddr;
1368		sc->sc_route.ro_rt = NULL;
1369	}
1370	sc->sc_irs = th->th_seq - 1;
1371	sc->sc_iss = th->th_ack - 1;
1372	wnd = sbspace(&so->so_rcv);
1373	wnd = imax(wnd, 0);
1374	wnd = imin(wnd, TCP_MAXWIN);
1375	sc->sc_wnd = wnd;
1376	sc->sc_flags = 0;
1377	sc->sc_rxtslot = 0;
1378	sc->sc_peer_mss = tcp_msstab[data];
1379	return (sc);
1380}
1381