tcp_syncache.c revision 101106
1/*-
2 * Copyright (c) 2001 Networks Associates Technology, Inc.
3 * All rights reserved.
4 *
5 * This software was developed for the FreeBSD Project by Jonathan Lemon
6 * and NAI Labs, the Security Research Division of Network Associates, Inc.
7 * under DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the
8 * DARPA CHATS research program.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 *    products derived from this software without specific prior written
20 *    permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32 * SUCH DAMAGE.
33 *
34 * $FreeBSD: head/sys/netinet/tcp_syncache.c 101106 2002-07-31 19:06:49Z rwatson $
35 */
36
37#include "opt_inet6.h"
38#include "opt_ipsec.h"
39#include "opt_mac.h"
40
41#include <sys/param.h>
42#include <sys/systm.h>
43#include <sys/kernel.h>
44#include <sys/sysctl.h>
45#include <sys/malloc.h>
46#include <sys/mac.h>
47#include <sys/mbuf.h>
48#include <sys/md5.h>
49#include <sys/proc.h>		/* for proc0 declaration */
50#include <sys/random.h>
51#include <sys/socket.h>
52#include <sys/socketvar.h>
53
54#include <net/if.h>
55#include <net/route.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/in_var.h>
61#include <netinet/in_pcb.h>
62#include <netinet/ip_var.h>
63#ifdef INET6
64#include <netinet/ip6.h>
65#include <netinet/icmp6.h>
66#include <netinet6/nd6.h>
67#include <netinet6/ip6_var.h>
68#include <netinet6/in6_pcb.h>
69#endif
70#include <netinet/tcp.h>
71#include <netinet/tcp_fsm.h>
72#include <netinet/tcp_seq.h>
73#include <netinet/tcp_timer.h>
74#include <netinet/tcp_var.h>
75#ifdef INET6
76#include <netinet6/tcp6_var.h>
77#endif
78
79#ifdef IPSEC
80#include <netinet6/ipsec.h>
81#ifdef INET6
82#include <netinet6/ipsec6.h>
83#endif
84#include <netkey/key.h>
85#endif /*IPSEC*/
86
87#include <machine/in_cksum.h>
88#include <vm/uma.h>
89
90static int tcp_syncookies = 1;
91SYSCTL_INT(_net_inet_tcp, OID_AUTO, syncookies, CTLFLAG_RW,
92    &tcp_syncookies, 0,
93    "Use TCP SYN cookies if the syncache overflows");
94
95static void	 syncache_drop(struct syncache *, struct syncache_head *);
96static void	 syncache_free(struct syncache *);
97static void	 syncache_insert(struct syncache *, struct syncache_head *);
98struct syncache *syncache_lookup(struct in_conninfo *, struct syncache_head **);
99static int	 syncache_respond(struct syncache *, struct mbuf *);
100static struct 	 socket *syncache_socket(struct syncache *, struct socket *,
101		    struct mbuf *m);
102static void	 syncache_timer(void *);
103static u_int32_t syncookie_generate(struct syncache *);
104static struct syncache *syncookie_lookup(struct in_conninfo *,
105		    struct tcphdr *, struct socket *);
106
107/*
108 * Transmit the SYN,ACK fewer times than TCP_MAXRXTSHIFT specifies.
109 * 3 retransmits corresponds to a timeout of (1 + 2 + 4 + 8 == 15) seconds,
110 * the odds are that the user has given up attempting to connect by then.
111 */
112#define SYNCACHE_MAXREXMTS		3
113
114/* Arbitrary values */
115#define TCP_SYNCACHE_HASHSIZE		512
116#define TCP_SYNCACHE_BUCKETLIMIT	30
117
118struct tcp_syncache {
119	struct	syncache_head *hashbase;
120	uma_zone_t zone;
121	u_int	hashsize;
122	u_int	hashmask;
123	u_int	bucket_limit;
124	u_int	cache_count;
125	u_int	cache_limit;
126	u_int	rexmt_limit;
127	u_int	hash_secret;
128	u_int	next_reseed;
129	TAILQ_HEAD(, syncache) timerq[SYNCACHE_MAXREXMTS + 1];
130	struct	callout tt_timerq[SYNCACHE_MAXREXMTS + 1];
131};
132static struct tcp_syncache tcp_syncache;
133
134SYSCTL_NODE(_net_inet_tcp, OID_AUTO, syncache, CTLFLAG_RW, 0, "TCP SYN cache");
135
136SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, bucketlimit, CTLFLAG_RD,
137     &tcp_syncache.bucket_limit, 0, "Per-bucket hash limit for syncache");
138
139SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, cachelimit, CTLFLAG_RD,
140     &tcp_syncache.cache_limit, 0, "Overall entry limit for syncache");
141
142SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, count, CTLFLAG_RD,
143     &tcp_syncache.cache_count, 0, "Current number of entries in syncache");
144
145SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, hashsize, CTLFLAG_RD,
146     &tcp_syncache.hashsize, 0, "Size of TCP syncache hashtable");
147
148SYSCTL_INT(_net_inet_tcp_syncache, OID_AUTO, rexmtlimit, CTLFLAG_RW,
149     &tcp_syncache.rexmt_limit, 0, "Limit on SYN/ACK retransmissions");
150
151static MALLOC_DEFINE(M_SYNCACHE, "syncache", "TCP syncache");
152
153#define SYNCACHE_HASH(inc, mask) 					\
154	((tcp_syncache.hash_secret ^					\
155	  (inc)->inc_faddr.s_addr ^					\
156	  ((inc)->inc_faddr.s_addr >> 16) ^ 				\
157	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
158
159#define SYNCACHE_HASH6(inc, mask) 					\
160	((tcp_syncache.hash_secret ^					\
161	  (inc)->inc6_faddr.s6_addr32[0] ^ 				\
162	  (inc)->inc6_faddr.s6_addr32[3] ^ 				\
163	  (inc)->inc_fport ^ (inc)->inc_lport) & mask)
164
165#define ENDPTS_EQ(a, b) (						\
166	(a)->ie_fport == (b)->ie_fport &&				\
167	(a)->ie_lport == (b)->ie_lport &&				\
168	(a)->ie_faddr.s_addr == (b)->ie_faddr.s_addr &&			\
169	(a)->ie_laddr.s_addr == (b)->ie_laddr.s_addr			\
170)
171
172#define ENDPTS6_EQ(a, b) (memcmp(a, b, sizeof(*a)) == 0)
173
174#define SYNCACHE_TIMEOUT(sc, slot) do {					\
175	sc->sc_rxtslot = slot;						\
176	sc->sc_rxttime = ticks + TCPTV_RTOBASE * tcp_backoff[slot];	\
177	TAILQ_INSERT_TAIL(&tcp_syncache.timerq[slot], sc, sc_timerq);	\
178	if (!callout_active(&tcp_syncache.tt_timerq[slot]))		\
179		callout_reset(&tcp_syncache.tt_timerq[slot],		\
180		    TCPTV_RTOBASE * tcp_backoff[slot],			\
181		    syncache_timer, (void *)((intptr_t)slot));		\
182} while (0)
183
184static void
185syncache_free(struct syncache *sc)
186{
187	struct rtentry *rt;
188
189	if (sc->sc_ipopts)
190		(void) m_free(sc->sc_ipopts);
191#ifdef INET6
192	if (sc->sc_inc.inc_isipv6)
193		rt = sc->sc_route6.ro_rt;
194	else
195#endif
196		rt = sc->sc_route.ro_rt;
197	if (rt != NULL) {
198		/*
199		 * If this is the only reference to a protocol cloned
200		 * route, remove it immediately.
201		 */
202		if (rt->rt_flags & RTF_WASCLONED &&
203		    (sc->sc_flags & SCF_KEEPROUTE) == 0 &&
204		    rt->rt_refcnt == 1)
205			rtrequest(RTM_DELETE, rt_key(rt),
206			    rt->rt_gateway, rt_mask(rt),
207			    rt->rt_flags, NULL);
208		RTFREE(rt);
209	}
210	uma_zfree(tcp_syncache.zone, sc);
211}
212
213void
214syncache_init(void)
215{
216	int i;
217
218	tcp_syncache.cache_count = 0;
219	tcp_syncache.hashsize = TCP_SYNCACHE_HASHSIZE;
220	tcp_syncache.bucket_limit = TCP_SYNCACHE_BUCKETLIMIT;
221	tcp_syncache.cache_limit =
222	    tcp_syncache.hashsize * tcp_syncache.bucket_limit;
223	tcp_syncache.rexmt_limit = SYNCACHE_MAXREXMTS;
224	tcp_syncache.next_reseed = 0;
225	tcp_syncache.hash_secret = arc4random();
226
227        TUNABLE_INT_FETCH("net.inet.tcp.syncache.hashsize",
228	    &tcp_syncache.hashsize);
229        TUNABLE_INT_FETCH("net.inet.tcp.syncache.cachelimit",
230	    &tcp_syncache.cache_limit);
231        TUNABLE_INT_FETCH("net.inet.tcp.syncache.bucketlimit",
232	    &tcp_syncache.bucket_limit);
233	if (!powerof2(tcp_syncache.hashsize)) {
234                printf("WARNING: syncache hash size is not a power of 2.\n");
235		tcp_syncache.hashsize = 512;	/* safe default */
236        }
237	tcp_syncache.hashmask = tcp_syncache.hashsize - 1;
238
239	/* Allocate the hash table. */
240	MALLOC(tcp_syncache.hashbase, struct syncache_head *,
241	    tcp_syncache.hashsize * sizeof(struct syncache_head),
242	    M_SYNCACHE, M_WAITOK);
243
244	/* Initialize the hash buckets. */
245	for (i = 0; i < tcp_syncache.hashsize; i++) {
246		TAILQ_INIT(&tcp_syncache.hashbase[i].sch_bucket);
247		tcp_syncache.hashbase[i].sch_length = 0;
248	}
249
250	/* Initialize the timer queues. */
251	for (i = 0; i <= SYNCACHE_MAXREXMTS; i++) {
252		TAILQ_INIT(&tcp_syncache.timerq[i]);
253		callout_init(&tcp_syncache.tt_timerq[i], 0);
254	}
255
256	/*
257	 * Allocate the syncache entries.  Allow the zone to allocate one
258	 * more entry than cache limit, so a new entry can bump out an
259	 * older one.
260	 */
261	tcp_syncache.cache_limit -= 1;
262	tcp_syncache.zone = uma_zcreate("syncache", sizeof(struct syncache),
263	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
264	uma_zone_set_max(tcp_syncache.zone, tcp_syncache.cache_limit);
265}
266
267static void
268syncache_insert(sc, sch)
269	struct syncache *sc;
270	struct syncache_head *sch;
271{
272	struct syncache *sc2;
273	int s, i;
274
275	/*
276	 * Make sure that we don't overflow the per-bucket
277	 * limit or the total cache size limit.
278	 */
279	s = splnet();
280	if (sch->sch_length >= tcp_syncache.bucket_limit) {
281		/*
282		 * The bucket is full, toss the oldest element.
283		 */
284		sc2 = TAILQ_FIRST(&sch->sch_bucket);
285		sc2->sc_tp->ts_recent = ticks;
286		syncache_drop(sc2, sch);
287		tcpstat.tcps_sc_bucketoverflow++;
288	} else if (tcp_syncache.cache_count >= tcp_syncache.cache_limit) {
289		/*
290		 * The cache is full.  Toss the oldest entry in the
291		 * entire cache.  This is the front entry in the
292		 * first non-empty timer queue with the largest
293		 * timeout value.
294		 */
295		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
296			sc2 = TAILQ_FIRST(&tcp_syncache.timerq[i]);
297			if (sc2 != NULL)
298				break;
299		}
300		sc2->sc_tp->ts_recent = ticks;
301		syncache_drop(sc2, NULL);
302		tcpstat.tcps_sc_cacheoverflow++;
303	}
304
305	/* Initialize the entry's timer. */
306	SYNCACHE_TIMEOUT(sc, 0);
307
308	/* Put it into the bucket. */
309	TAILQ_INSERT_TAIL(&sch->sch_bucket, sc, sc_hash);
310	sch->sch_length++;
311	tcp_syncache.cache_count++;
312	tcpstat.tcps_sc_added++;
313	splx(s);
314}
315
316static void
317syncache_drop(sc, sch)
318	struct syncache *sc;
319	struct syncache_head *sch;
320{
321	int s;
322
323	if (sch == NULL) {
324#ifdef INET6
325		if (sc->sc_inc.inc_isipv6) {
326			sch = &tcp_syncache.hashbase[
327			    SYNCACHE_HASH6(&sc->sc_inc, tcp_syncache.hashmask)];
328		} else
329#endif
330		{
331			sch = &tcp_syncache.hashbase[
332			    SYNCACHE_HASH(&sc->sc_inc, tcp_syncache.hashmask)];
333		}
334	}
335
336	s = splnet();
337
338	TAILQ_REMOVE(&sch->sch_bucket, sc, sc_hash);
339	sch->sch_length--;
340	tcp_syncache.cache_count--;
341
342	TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot], sc, sc_timerq);
343	if (TAILQ_EMPTY(&tcp_syncache.timerq[sc->sc_rxtslot]))
344		callout_stop(&tcp_syncache.tt_timerq[sc->sc_rxtslot]);
345	splx(s);
346
347	syncache_free(sc);
348}
349
350/*
351 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
352 * If we have retransmitted an entry the maximum number of times, expire it.
353 */
354static void
355syncache_timer(xslot)
356	void *xslot;
357{
358	intptr_t slot = (intptr_t)xslot;
359	struct syncache *sc, *nsc;
360	struct inpcb *inp;
361	int s;
362
363	s = splnet();
364        if (callout_pending(&tcp_syncache.tt_timerq[slot]) ||
365            !callout_active(&tcp_syncache.tt_timerq[slot])) {
366                splx(s);
367                return;
368        }
369        callout_deactivate(&tcp_syncache.tt_timerq[slot]);
370
371        nsc = TAILQ_FIRST(&tcp_syncache.timerq[slot]);
372	INP_INFO_RLOCK(&tcbinfo);
373	while (nsc != NULL) {
374		if (ticks < nsc->sc_rxttime)
375			break;
376		sc = nsc;
377		inp = sc->sc_tp->t_inpcb;
378		INP_LOCK(inp);
379		if (slot == SYNCACHE_MAXREXMTS ||
380		    slot >= tcp_syncache.rexmt_limit ||
381		    inp->inp_gencnt != sc->sc_inp_gencnt) {
382			nsc = TAILQ_NEXT(sc, sc_timerq);
383			syncache_drop(sc, NULL);
384			tcpstat.tcps_sc_stale++;
385			INP_UNLOCK(inp);
386			continue;
387		}
388		/*
389		 * syncache_respond() may call back into the syncache to
390		 * to modify another entry, so do not obtain the next
391		 * entry on the timer chain until it has completed.
392		 */
393		(void) syncache_respond(sc, NULL);
394		INP_UNLOCK(inp);
395		nsc = TAILQ_NEXT(sc, sc_timerq);
396		tcpstat.tcps_sc_retransmitted++;
397		TAILQ_REMOVE(&tcp_syncache.timerq[slot], sc, sc_timerq);
398		SYNCACHE_TIMEOUT(sc, slot + 1);
399	}
400	INP_INFO_RUNLOCK(&tcbinfo);
401	if (nsc != NULL)
402		callout_reset(&tcp_syncache.tt_timerq[slot],
403		    nsc->sc_rxttime - ticks, syncache_timer, (void *)(slot));
404	splx(s);
405}
406
407/*
408 * Find an entry in the syncache.
409 */
410struct syncache *
411syncache_lookup(inc, schp)
412	struct in_conninfo *inc;
413	struct syncache_head **schp;
414{
415	struct syncache *sc;
416	struct syncache_head *sch;
417	int s;
418
419#ifdef INET6
420	if (inc->inc_isipv6) {
421		sch = &tcp_syncache.hashbase[
422		    SYNCACHE_HASH6(inc, tcp_syncache.hashmask)];
423		*schp = sch;
424		s = splnet();
425		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
426			if (ENDPTS6_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
427				splx(s);
428				return (sc);
429			}
430		}
431		splx(s);
432	} else
433#endif
434	{
435		sch = &tcp_syncache.hashbase[
436		    SYNCACHE_HASH(inc, tcp_syncache.hashmask)];
437		*schp = sch;
438		s = splnet();
439		TAILQ_FOREACH(sc, &sch->sch_bucket, sc_hash) {
440#ifdef INET6
441			if (sc->sc_inc.inc_isipv6)
442				continue;
443#endif
444			if (ENDPTS_EQ(&inc->inc_ie, &sc->sc_inc.inc_ie)) {
445				splx(s);
446				return (sc);
447			}
448		}
449		splx(s);
450	}
451	return (NULL);
452}
453
454/*
455 * This function is called when we get a RST for a
456 * non-existent connection, so that we can see if the
457 * connection is in the syn cache.  If it is, zap it.
458 */
459void
460syncache_chkrst(inc, th)
461	struct in_conninfo *inc;
462	struct tcphdr *th;
463{
464	struct syncache *sc;
465	struct syncache_head *sch;
466
467	sc = syncache_lookup(inc, &sch);
468	if (sc == NULL)
469		return;
470	/*
471	 * If the RST bit is set, check the sequence number to see
472	 * if this is a valid reset segment.
473	 * RFC 793 page 37:
474	 *   In all states except SYN-SENT, all reset (RST) segments
475	 *   are validated by checking their SEQ-fields.  A reset is
476	 *   valid if its sequence number is in the window.
477	 *
478	 *   The sequence number in the reset segment is normally an
479	 *   echo of our outgoing acknowlegement numbers, but some hosts
480	 *   send a reset with the sequence number at the rightmost edge
481	 *   of our receive window, and we have to handle this case.
482	 */
483	if (SEQ_GEQ(th->th_seq, sc->sc_irs) &&
484	    SEQ_LEQ(th->th_seq, sc->sc_irs + sc->sc_wnd)) {
485		syncache_drop(sc, sch);
486		tcpstat.tcps_sc_reset++;
487	}
488}
489
490void
491syncache_badack(inc)
492	struct in_conninfo *inc;
493{
494	struct syncache *sc;
495	struct syncache_head *sch;
496
497	sc = syncache_lookup(inc, &sch);
498	if (sc != NULL) {
499		syncache_drop(sc, sch);
500		tcpstat.tcps_sc_badack++;
501	}
502}
503
504void
505syncache_unreach(inc, th)
506	struct in_conninfo *inc;
507	struct tcphdr *th;
508{
509	struct syncache *sc;
510	struct syncache_head *sch;
511
512	/* we are called at splnet() here */
513	sc = syncache_lookup(inc, &sch);
514	if (sc == NULL)
515		return;
516
517	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
518	if (ntohl(th->th_seq) != sc->sc_iss)
519		return;
520
521	/*
522	 * If we've rertransmitted 3 times and this is our second error,
523	 * we remove the entry.  Otherwise, we allow it to continue on.
524	 * This prevents us from incorrectly nuking an entry during a
525	 * spurious network outage.
526	 *
527	 * See tcp_notify().
528	 */
529	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtslot < 3) {
530		sc->sc_flags |= SCF_UNREACH;
531		return;
532	}
533	syncache_drop(sc, sch);
534	tcpstat.tcps_sc_unreach++;
535}
536
537/*
538 * Build a new TCP socket structure from a syncache entry.
539 */
540static struct socket *
541syncache_socket(sc, lso, m)
542	struct syncache *sc;
543	struct socket *lso;
544	struct mbuf *m;
545{
546	struct inpcb *inp = NULL;
547	struct socket *so;
548	struct tcpcb *tp;
549
550	/*
551	 * Ok, create the full blown connection, and set things up
552	 * as they would have been set up if we had created the
553	 * connection when the SYN arrived.  If we can't create
554	 * the connection, abort it.
555	 */
556	so = sonewconn(lso, SS_ISCONNECTED);
557	if (so == NULL) {
558		/*
559		 * Drop the connection; we will send a RST if the peer
560		 * retransmits the ACK,
561		 */
562		tcpstat.tcps_listendrop++;
563		goto abort;
564	}
565#ifdef MAC
566	mac_set_socket_peer_from_mbuf(m, so);
567#endif
568
569	inp = sotoinpcb(so);
570
571	/*
572	 * Insert new socket into hash list.
573	 */
574	inp->inp_inc.inc_isipv6 = sc->sc_inc.inc_isipv6;
575#ifdef INET6
576	if (sc->sc_inc.inc_isipv6) {
577		inp->in6p_laddr = sc->sc_inc.inc6_laddr;
578	} else {
579		inp->inp_vflag &= ~INP_IPV6;
580		inp->inp_vflag |= INP_IPV4;
581#endif
582		inp->inp_laddr = sc->sc_inc.inc_laddr;
583#ifdef INET6
584	}
585#endif
586	inp->inp_lport = sc->sc_inc.inc_lport;
587	if (in_pcbinshash(inp) != 0) {
588		/*
589		 * Undo the assignments above if we failed to
590		 * put the PCB on the hash lists.
591		 */
592#ifdef INET6
593		if (sc->sc_inc.inc_isipv6)
594			inp->in6p_laddr = in6addr_any;
595       		else
596#endif
597			inp->inp_laddr.s_addr = INADDR_ANY;
598		inp->inp_lport = 0;
599		goto abort;
600	}
601#ifdef IPSEC
602	/* copy old policy into new socket's */
603	if (ipsec_copy_policy(sotoinpcb(lso)->inp_sp, inp->inp_sp))
604		printf("syncache_expand: could not copy policy\n");
605#endif
606#ifdef INET6
607	if (sc->sc_inc.inc_isipv6) {
608		struct inpcb *oinp = sotoinpcb(lso);
609		struct in6_addr laddr6;
610		struct sockaddr_in6 *sin6;
611		/*
612		 * Inherit socket options from the listening socket.
613		 * Note that in6p_inputopts are not (and should not be)
614		 * copied, since it stores previously received options and is
615		 * used to detect if each new option is different than the
616		 * previous one and hence should be passed to a user.
617                 * If we copied in6p_inputopts, a user would not be able to
618		 * receive options just after calling the accept system call.
619		 */
620		inp->inp_flags |= oinp->inp_flags & INP_CONTROLOPTS;
621		if (oinp->in6p_outputopts)
622			inp->in6p_outputopts =
623			    ip6_copypktopts(oinp->in6p_outputopts, M_NOWAIT);
624		inp->in6p_route = sc->sc_route6;
625		sc->sc_route6.ro_rt = NULL;
626
627		MALLOC(sin6, struct sockaddr_in6 *, sizeof *sin6,
628		    M_SONAME, M_NOWAIT | M_ZERO);
629		if (sin6 == NULL)
630			goto abort;
631		sin6->sin6_family = AF_INET6;
632		sin6->sin6_len = sizeof(*sin6);
633		sin6->sin6_addr = sc->sc_inc.inc6_faddr;
634		sin6->sin6_port = sc->sc_inc.inc_fport;
635		laddr6 = inp->in6p_laddr;
636		if (IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr))
637			inp->in6p_laddr = sc->sc_inc.inc6_laddr;
638		if (in6_pcbconnect(inp, (struct sockaddr *)sin6, &thread0)) {
639			inp->in6p_laddr = laddr6;
640			FREE(sin6, M_SONAME);
641			goto abort;
642		}
643		FREE(sin6, M_SONAME);
644	} else
645#endif
646	{
647		struct in_addr laddr;
648		struct sockaddr_in *sin;
649
650		inp->inp_options = ip_srcroute();
651		if (inp->inp_options == NULL) {
652			inp->inp_options = sc->sc_ipopts;
653			sc->sc_ipopts = NULL;
654		}
655		inp->inp_route = sc->sc_route;
656		sc->sc_route.ro_rt = NULL;
657
658		MALLOC(sin, struct sockaddr_in *, sizeof *sin,
659		    M_SONAME, M_NOWAIT | M_ZERO);
660		if (sin == NULL)
661			goto abort;
662		sin->sin_family = AF_INET;
663		sin->sin_len = sizeof(*sin);
664		sin->sin_addr = sc->sc_inc.inc_faddr;
665		sin->sin_port = sc->sc_inc.inc_fport;
666		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
667		laddr = inp->inp_laddr;
668		if (inp->inp_laddr.s_addr == INADDR_ANY)
669			inp->inp_laddr = sc->sc_inc.inc_laddr;
670		if (in_pcbconnect(inp, (struct sockaddr *)sin, &thread0)) {
671			inp->inp_laddr = laddr;
672			FREE(sin, M_SONAME);
673			goto abort;
674		}
675		FREE(sin, M_SONAME);
676	}
677
678	tp = intotcpcb(inp);
679	tp->t_state = TCPS_SYN_RECEIVED;
680	tp->iss = sc->sc_iss;
681	tp->irs = sc->sc_irs;
682	tcp_rcvseqinit(tp);
683	tcp_sendseqinit(tp);
684	tp->snd_wl1 = sc->sc_irs;
685	tp->rcv_up = sc->sc_irs + 1;
686	tp->rcv_wnd = sc->sc_wnd;
687	tp->rcv_adv += tp->rcv_wnd;
688
689	tp->t_flags = sototcpcb(lso)->t_flags & (TF_NOPUSH|TF_NODELAY);
690	if (sc->sc_flags & SCF_NOOPT)
691		tp->t_flags |= TF_NOOPT;
692	if (sc->sc_flags & SCF_WINSCALE) {
693		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
694		tp->requested_s_scale = sc->sc_requested_s_scale;
695		tp->request_r_scale = sc->sc_request_r_scale;
696	}
697	if (sc->sc_flags & SCF_TIMESTAMP) {
698		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
699		tp->ts_recent = sc->sc_tsrecent;
700		tp->ts_recent_age = ticks;
701	}
702	if (sc->sc_flags & SCF_CC) {
703		/*
704		 * Initialization of the tcpcb for transaction;
705		 *   set SND.WND = SEG.WND,
706		 *   initialize CCsend and CCrecv.
707		 */
708		tp->t_flags |= TF_REQ_CC|TF_RCVD_CC;
709		tp->cc_send = sc->sc_cc_send;
710		tp->cc_recv = sc->sc_cc_recv;
711	}
712
713	tcp_mss(tp, sc->sc_peer_mss);
714
715	/*
716	 * If the SYN,ACK was retransmitted, reset cwnd to 1 segment.
717	 */
718	if (sc->sc_rxtslot != 0)
719                tp->snd_cwnd = tp->t_maxseg;
720	callout_reset(tp->tt_keep, tcp_keepinit, tcp_timer_keep, tp);
721
722	tcpstat.tcps_accepts++;
723	return (so);
724
725abort:
726	if (so != NULL)
727		(void) soabort(so);
728	return (NULL);
729}
730
731/*
732 * This function gets called when we receive an ACK for a
733 * socket in the LISTEN state.  We look up the connection
734 * in the syncache, and if its there, we pull it out of
735 * the cache and turn it into a full-blown connection in
736 * the SYN-RECEIVED state.
737 */
738int
739syncache_expand(inc, th, sop, m)
740	struct in_conninfo *inc;
741	struct tcphdr *th;
742	struct socket **sop;
743	struct mbuf *m;
744{
745	struct syncache *sc;
746	struct syncache_head *sch;
747	struct socket *so;
748
749	sc = syncache_lookup(inc, &sch);
750	if (sc == NULL) {
751		/*
752		 * There is no syncache entry, so see if this ACK is
753		 * a returning syncookie.  To do this, first:
754		 *  A. See if this socket has had a syncache entry dropped in
755		 *     the past.  We don't want to accept a bogus syncookie
756 		 *     if we've never received a SYN.
757		 *  B. check that the syncookie is valid.  If it is, then
758		 *     cobble up a fake syncache entry, and return.
759		 */
760		if (!tcp_syncookies)
761			return (0);
762		sc = syncookie_lookup(inc, th, *sop);
763		if (sc == NULL)
764			return (0);
765		sch = NULL;
766		tcpstat.tcps_sc_recvcookie++;
767	}
768
769	/*
770	 * If seg contains an ACK, but not for our SYN/ACK, send a RST.
771	 */
772	if (th->th_ack != sc->sc_iss + 1)
773		return (0);
774
775	so = syncache_socket(sc, *sop, m);
776	if (so == NULL) {
777#if 0
778resetandabort:
779		/* XXXjlemon check this - is this correct? */
780		(void) tcp_respond(NULL, m, m, th,
781		    th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
782#endif
783		m_freem(m);			/* XXX only needed for above */
784		tcpstat.tcps_sc_aborted++;
785	} else {
786		sc->sc_flags |= SCF_KEEPROUTE;
787		tcpstat.tcps_sc_completed++;
788	}
789	if (sch == NULL)
790		syncache_free(sc);
791	else
792		syncache_drop(sc, sch);
793	*sop = so;
794	return (1);
795}
796
797/*
798 * Given a LISTEN socket and an inbound SYN request, add
799 * this to the syn cache, and send back a segment:
800 *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
801 * to the source.
802 *
803 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
804 * Doing so would require that we hold onto the data and deliver it
805 * to the application.  However, if we are the target of a SYN-flood
806 * DoS attack, an attacker could send data which would eventually
807 * consume all available buffer space if it were ACKed.  By not ACKing
808 * the data, we avoid this DoS scenario.
809 */
810int
811syncache_add(inc, to, th, sop, m)
812	struct in_conninfo *inc;
813	struct tcpopt *to;
814	struct tcphdr *th;
815	struct socket **sop;
816	struct mbuf *m;
817{
818	struct tcpcb *tp;
819	struct socket *so;
820	struct syncache *sc = NULL;
821	struct syncache_head *sch;
822	struct mbuf *ipopts = NULL;
823	struct rmxp_tao *taop;
824	int i, s, win;
825
826	so = *sop;
827	tp = sototcpcb(so);
828
829	/*
830	 * Remember the IP options, if any.
831	 */
832#ifdef INET6
833	if (!inc->inc_isipv6)
834#endif
835		ipopts = ip_srcroute();
836
837	/*
838	 * See if we already have an entry for this connection.
839	 * If we do, resend the SYN,ACK, and reset the retransmit timer.
840	 *
841	 * XXX
842	 * should the syncache be re-initialized with the contents
843	 * of the new SYN here (which may have different options?)
844	 */
845	sc = syncache_lookup(inc, &sch);
846	if (sc != NULL) {
847		tcpstat.tcps_sc_dupsyn++;
848		if (ipopts) {
849			/*
850			 * If we were remembering a previous source route,
851			 * forget it and use the new one we've been given.
852			 */
853			if (sc->sc_ipopts)
854				(void) m_free(sc->sc_ipopts);
855			sc->sc_ipopts = ipopts;
856		}
857		/*
858		 * Update timestamp if present.
859		 */
860		if (sc->sc_flags & SCF_TIMESTAMP)
861			sc->sc_tsrecent = to->to_tsval;
862		/*
863		 * PCB may have changed, pick up new values.
864		 */
865		sc->sc_tp = tp;
866		sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
867		if (syncache_respond(sc, m) == 0) {
868		        s = splnet();
869			TAILQ_REMOVE(&tcp_syncache.timerq[sc->sc_rxtslot],
870			    sc, sc_timerq);
871			SYNCACHE_TIMEOUT(sc, sc->sc_rxtslot);
872		        splx(s);
873		 	tcpstat.tcps_sndacks++;
874			tcpstat.tcps_sndtotal++;
875		}
876		*sop = NULL;
877		return (1);
878	}
879
880	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
881	if (sc == NULL) {
882		/*
883		 * The zone allocator couldn't provide more entries.
884		 * Treat this as if the cache was full; drop the oldest
885		 * entry and insert the new one.
886		 */
887		s = splnet();
888		for (i = SYNCACHE_MAXREXMTS; i >= 0; i--) {
889			sc = TAILQ_FIRST(&tcp_syncache.timerq[i]);
890			if (sc != NULL)
891				break;
892		}
893		sc->sc_tp->ts_recent = ticks;
894		syncache_drop(sc, NULL);
895		splx(s);
896		tcpstat.tcps_sc_zonefail++;
897		sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
898		if (sc == NULL) {
899			if (ipopts)
900				(void) m_free(ipopts);
901			return (0);
902		}
903	}
904
905	/*
906	 * Fill in the syncache values.
907	 */
908	bzero(sc, sizeof(*sc));
909	sc->sc_tp = tp;
910	sc->sc_inp_gencnt = tp->t_inpcb->inp_gencnt;
911	sc->sc_ipopts = ipopts;
912	sc->sc_inc.inc_fport = inc->inc_fport;
913	sc->sc_inc.inc_lport = inc->inc_lport;
914#ifdef INET6
915	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
916	if (inc->inc_isipv6) {
917		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
918		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
919		sc->sc_route6.ro_rt = NULL;
920	} else
921#endif
922	{
923		sc->sc_inc.inc_faddr = inc->inc_faddr;
924		sc->sc_inc.inc_laddr = inc->inc_laddr;
925		sc->sc_route.ro_rt = NULL;
926	}
927	sc->sc_irs = th->th_seq;
928	if (tcp_syncookies)
929		sc->sc_iss = syncookie_generate(sc);
930	else
931		sc->sc_iss = arc4random();
932
933	/* Initial receive window: clip sbspace to [0 .. TCP_MAXWIN] */
934	win = sbspace(&so->so_rcv);
935	win = imax(win, 0);
936	win = imin(win, TCP_MAXWIN);
937	sc->sc_wnd = win;
938
939	sc->sc_flags = 0;
940	sc->sc_peer_mss = to->to_flags & TOF_MSS ? to->to_mss : 0;
941	if (tcp_do_rfc1323) {
942		/*
943		 * A timestamp received in a SYN makes
944		 * it ok to send timestamp requests and replies.
945		 */
946		if (to->to_flags & TOF_TS) {
947			sc->sc_tsrecent = to->to_tsval;
948			sc->sc_flags |= SCF_TIMESTAMP;
949		}
950		if (to->to_flags & TOF_SCALE) {
951			int wscale = 0;
952
953			/* Compute proper scaling value from buffer space */
954			while (wscale < TCP_MAX_WINSHIFT &&
955			    (TCP_MAXWIN << wscale) < so->so_rcv.sb_hiwat)
956				wscale++;
957			sc->sc_request_r_scale = wscale;
958			sc->sc_requested_s_scale = to->to_requested_s_scale;
959			sc->sc_flags |= SCF_WINSCALE;
960		}
961	}
962	if (tcp_do_rfc1644) {
963		/*
964		 * A CC or CC.new option received in a SYN makes
965		 * it ok to send CC in subsequent segments.
966		 */
967		if (to->to_flags & (TOF_CC|TOF_CCNEW)) {
968			sc->sc_cc_recv = to->to_cc;
969			sc->sc_cc_send = CC_INC(tcp_ccgen);
970			sc->sc_flags |= SCF_CC;
971		}
972	}
973	if (tp->t_flags & TF_NOOPT)
974		sc->sc_flags = SCF_NOOPT;
975
976	/*
977	 * XXX
978	 * We have the option here of not doing TAO (even if the segment
979	 * qualifies) and instead fall back to a normal 3WHS via the syncache.
980	 * This allows us to apply synflood protection to TAO-qualifying SYNs
981	 * also. However, there should be a hueristic to determine when to
982	 * do this, and is not present at the moment.
983	 */
984
985	/*
986	 * Perform TAO test on incoming CC (SEG.CC) option, if any.
987	 * - compare SEG.CC against cached CC from the same host, if any.
988	 * - if SEG.CC > chached value, SYN must be new and is accepted
989	 *	immediately: save new CC in the cache, mark the socket
990	 *	connected, enter ESTABLISHED state, turn on flag to
991	 *	send a SYN in the next segment.
992	 *	A virtual advertised window is set in rcv_adv to
993	 *	initialize SWS prevention.  Then enter normal segment
994	 *	processing: drop SYN, process data and FIN.
995	 * - otherwise do a normal 3-way handshake.
996	 */
997	taop = tcp_gettaocache(&sc->sc_inc);
998	if ((to->to_flags & TOF_CC) != 0) {
999		if (((tp->t_flags & TF_NOPUSH) != 0) &&
1000		    sc->sc_flags & SCF_CC &&
1001		    taop != NULL && taop->tao_cc != 0 &&
1002		    CC_GT(to->to_cc, taop->tao_cc)) {
1003			sc->sc_rxtslot = 0;
1004			so = syncache_socket(sc, *sop, m);
1005			if (so != NULL) {
1006				sc->sc_flags |= SCF_KEEPROUTE;
1007				taop->tao_cc = to->to_cc;
1008				*sop = so;
1009			}
1010			syncache_free(sc);
1011			return (so != NULL);
1012		}
1013	} else {
1014		/*
1015		 * No CC option, but maybe CC.NEW: invalidate cached value.
1016		 */
1017		if (taop != NULL)
1018			taop->tao_cc = 0;
1019	}
1020	/*
1021	 * TAO test failed or there was no CC option,
1022	 *    do a standard 3-way handshake.
1023	 */
1024	if (syncache_respond(sc, m) == 0) {
1025		syncache_insert(sc, sch);
1026		tcpstat.tcps_sndacks++;
1027		tcpstat.tcps_sndtotal++;
1028	} else {
1029		syncache_free(sc);
1030		tcpstat.tcps_sc_dropped++;
1031	}
1032	*sop = NULL;
1033	return (1);
1034}
1035
1036static int
1037syncache_respond(sc, m)
1038	struct syncache *sc;
1039	struct mbuf *m;
1040{
1041	u_int8_t *optp;
1042	int optlen, error;
1043	u_int16_t tlen, hlen, mssopt;
1044	struct ip *ip = NULL;
1045	struct rtentry *rt;
1046	struct tcphdr *th;
1047#ifdef INET6
1048	struct ip6_hdr *ip6 = NULL;
1049#endif
1050
1051#ifdef INET6
1052	if (sc->sc_inc.inc_isipv6) {
1053		rt = tcp_rtlookup6(&sc->sc_inc);
1054		if (rt != NULL)
1055			mssopt = rt->rt_ifp->if_mtu -
1056			     (sizeof(struct ip6_hdr) + sizeof(struct tcphdr));
1057		else
1058			mssopt = tcp_v6mssdflt;
1059		hlen = sizeof(struct ip6_hdr);
1060	} else
1061#endif
1062	{
1063		rt = tcp_rtlookup(&sc->sc_inc);
1064		if (rt != NULL)
1065			mssopt = rt->rt_ifp->if_mtu -
1066			     (sizeof(struct ip) + sizeof(struct tcphdr));
1067		else
1068			mssopt = tcp_mssdflt;
1069		hlen = sizeof(struct ip);
1070	}
1071
1072	/* Compute the size of the TCP options. */
1073	if (sc->sc_flags & SCF_NOOPT) {
1074		optlen = 0;
1075	} else {
1076		optlen = TCPOLEN_MAXSEG +
1077		    ((sc->sc_flags & SCF_WINSCALE) ? 4 : 0) +
1078		    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0) +
1079		    ((sc->sc_flags & SCF_CC) ? TCPOLEN_CC_APPA * 2 : 0);
1080	}
1081	tlen = hlen + sizeof(struct tcphdr) + optlen;
1082
1083	/*
1084	 * XXX
1085	 * assume that the entire packet will fit in a header mbuf
1086	 */
1087	KASSERT(max_linkhdr + tlen <= MHLEN, ("syncache: mbuf too small"));
1088
1089	/*
1090	 * XXX shouldn't this reuse the mbuf if possible ?
1091	 * Create the IP+TCP header from scratch.
1092	 */
1093	if (m)
1094		m_freem(m);
1095
1096	m = m_gethdr(M_DONTWAIT, MT_HEADER);
1097	if (m == NULL)
1098		return (ENOBUFS);
1099	m->m_data += max_linkhdr;
1100	m->m_len = tlen;
1101	m->m_pkthdr.len = tlen;
1102	m->m_pkthdr.rcvif = NULL;
1103#ifdef MAC
1104	mac_create_mbuf_from_socket(sc->sc_tp->t_inpcb->inp_socket, m);
1105#endif
1106
1107#ifdef IPSEC
1108	/* use IPsec policy on listening socket to send SYN,ACK */
1109	if (ipsec_setsocket(m, sc->sc_tp->t_inpcb->inp_socket) != 0) {
1110		m_freem(m);
1111		return (ENOBUFS);
1112	}
1113#endif
1114
1115#ifdef INET6
1116	if (sc->sc_inc.inc_isipv6) {
1117		ip6 = mtod(m, struct ip6_hdr *);
1118		ip6->ip6_vfc = IPV6_VERSION;
1119		ip6->ip6_nxt = IPPROTO_TCP;
1120		ip6->ip6_src = sc->sc_inc.inc6_laddr;
1121		ip6->ip6_dst = sc->sc_inc.inc6_faddr;
1122		ip6->ip6_plen = htons(tlen - hlen);
1123		/* ip6_hlim is set after checksum */
1124		/* ip6_flow = ??? */
1125
1126		th = (struct tcphdr *)(ip6 + 1);
1127	} else
1128#endif
1129	{
1130		ip = mtod(m, struct ip *);
1131		ip->ip_v = IPVERSION;
1132		ip->ip_hl = sizeof(struct ip) >> 2;
1133		ip->ip_len = tlen;
1134		ip->ip_id = 0;
1135		ip->ip_off = 0;
1136		ip->ip_sum = 0;
1137		ip->ip_p = IPPROTO_TCP;
1138		ip->ip_src = sc->sc_inc.inc_laddr;
1139		ip->ip_dst = sc->sc_inc.inc_faddr;
1140		ip->ip_ttl = sc->sc_tp->t_inpcb->inp_ip_ttl;   /* XXX */
1141		ip->ip_tos = sc->sc_tp->t_inpcb->inp_ip_tos;   /* XXX */
1142
1143		/*
1144		 * See if we should do MTU discovery.  We do it only if the following
1145		 * are true:
1146		 *      1) we have a valid route to the destination
1147		 *      2) the MTU is not locked (if it is, then discovery has been
1148		 *         disabled)
1149		 */
1150		if (path_mtu_discovery
1151		    && (rt != NULL)
1152		    && rt->rt_flags & RTF_UP
1153		    && !(rt->rt_rmx.rmx_locks & RTV_MTU)) {
1154		       ip->ip_off |= IP_DF;
1155		}
1156
1157		th = (struct tcphdr *)(ip + 1);
1158	}
1159	th->th_sport = sc->sc_inc.inc_lport;
1160	th->th_dport = sc->sc_inc.inc_fport;
1161
1162	th->th_seq = htonl(sc->sc_iss);
1163	th->th_ack = htonl(sc->sc_irs + 1);
1164	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
1165	th->th_x2 = 0;
1166	th->th_flags = TH_SYN|TH_ACK;
1167	th->th_win = htons(sc->sc_wnd);
1168	th->th_urp = 0;
1169
1170	/* Tack on the TCP options. */
1171	if (optlen == 0)
1172		goto no_options;
1173	optp = (u_int8_t *)(th + 1);
1174	*optp++ = TCPOPT_MAXSEG;
1175	*optp++ = TCPOLEN_MAXSEG;
1176	*optp++ = (mssopt >> 8) & 0xff;
1177	*optp++ = mssopt & 0xff;
1178
1179	if (sc->sc_flags & SCF_WINSCALE) {
1180		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
1181		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
1182		    sc->sc_request_r_scale);
1183		optp += 4;
1184	}
1185
1186	if (sc->sc_flags & SCF_TIMESTAMP) {
1187		u_int32_t *lp = (u_int32_t *)(optp);
1188
1189		/* Form timestamp option as shown in appendix A of RFC 1323. */
1190		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
1191		*lp++ = htonl(ticks);
1192		*lp   = htonl(sc->sc_tsrecent);
1193		optp += TCPOLEN_TSTAMP_APPA;
1194	}
1195
1196	/*
1197         * Send CC and CC.echo if we received CC from our peer.
1198         */
1199        if (sc->sc_flags & SCF_CC) {
1200		u_int32_t *lp = (u_int32_t *)(optp);
1201
1202		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CC));
1203		*lp++ = htonl(sc->sc_cc_send);
1204		*lp++ = htonl(TCPOPT_CC_HDR(TCPOPT_CCECHO));
1205		*lp   = htonl(sc->sc_cc_recv);
1206		optp += TCPOLEN_CC_APPA * 2;
1207	}
1208no_options:
1209
1210#ifdef INET6
1211	if (sc->sc_inc.inc_isipv6) {
1212		struct route_in6 *ro6 = &sc->sc_route6;
1213
1214		th->th_sum = 0;
1215		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
1216		ip6->ip6_hlim = in6_selecthlim(NULL,
1217		    ro6->ro_rt ? ro6->ro_rt->rt_ifp : NULL);
1218		error = ip6_output(m, NULL, ro6, 0, NULL, NULL);
1219	} else
1220#endif
1221	{
1222        	th->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
1223		    htons(tlen - hlen + IPPROTO_TCP));
1224		m->m_pkthdr.csum_flags = CSUM_TCP;
1225		m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
1226		error = ip_output(m, sc->sc_ipopts, &sc->sc_route, 0, NULL);
1227	}
1228	return (error);
1229}
1230
1231/*
1232 * cookie layers:
1233 *
1234 *	|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .|
1235 *	| peer iss                                                      |
1236 *	| MD5(laddr,faddr,lport,fport,secret)             |. . . . . . .|
1237 *	|                     0                       |(A)|             |
1238 * (A): peer mss index
1239 */
1240
1241/*
1242 * The values below are chosen to minimize the size of the tcp_secret
1243 * table, as well as providing roughly a 4 second lifetime for the cookie.
1244 */
1245
1246#define SYNCOOKIE_HASHSHIFT	2	/* log2(# of 32bit words from hash) */
1247#define SYNCOOKIE_WNDBITS	7	/* exposed bits for window indexing */
1248#define SYNCOOKIE_TIMESHIFT	5	/* scale ticks to window time units */
1249
1250#define SYNCOOKIE_HASHMASK	((1 << SYNCOOKIE_HASHSHIFT) - 1)
1251#define SYNCOOKIE_WNDMASK	((1 << SYNCOOKIE_WNDBITS) - 1)
1252#define SYNCOOKIE_NSECRETS	(1 << (SYNCOOKIE_WNDBITS - SYNCOOKIE_HASHSHIFT))
1253#define SYNCOOKIE_TIMEOUT \
1254    (hz * (1 << SYNCOOKIE_WNDBITS) / (1 << SYNCOOKIE_TIMESHIFT))
1255#define SYNCOOKIE_DATAMASK 	((3 << SYNCOOKIE_WNDBITS) | SYNCOOKIE_WNDMASK)
1256
1257static struct {
1258	u_int32_t	ts_secbits;
1259	u_int		ts_expire;
1260} tcp_secret[SYNCOOKIE_NSECRETS];
1261
1262static int tcp_msstab[] = { 0, 536, 1460, 8960 };
1263
1264static MD5_CTX syn_ctx;
1265
1266#define MD5Add(v)	MD5Update(&syn_ctx, (u_char *)&v, sizeof(v))
1267
1268/*
1269 * Consider the problem of a recreated (and retransmitted) cookie.  If the
1270 * original SYN was accepted, the connection is established.  The second
1271 * SYN is inflight, and if it arrives with an ISN that falls within the
1272 * receive window, the connection is killed.
1273 *
1274 * However, since cookies have other problems, this may not be worth
1275 * worrying about.
1276 */
1277
1278static u_int32_t
1279syncookie_generate(struct syncache *sc)
1280{
1281	u_int32_t md5_buffer[4];
1282	u_int32_t data;
1283	int wnd, idx;
1284
1285	wnd = ((ticks << SYNCOOKIE_TIMESHIFT) / hz) & SYNCOOKIE_WNDMASK;
1286	idx = wnd >> SYNCOOKIE_HASHSHIFT;
1287	if (tcp_secret[idx].ts_expire < ticks) {
1288		tcp_secret[idx].ts_secbits = arc4random();
1289		tcp_secret[idx].ts_expire = ticks + SYNCOOKIE_TIMEOUT;
1290	}
1291	for (data = sizeof(tcp_msstab) / sizeof(int) - 1; data > 0; data--)
1292		if (tcp_msstab[data] <= sc->sc_peer_mss)
1293			break;
1294	data = (data << SYNCOOKIE_WNDBITS) | wnd;
1295	data ^= sc->sc_irs;				/* peer's iss */
1296	MD5Init(&syn_ctx);
1297#ifdef INET6
1298	if (sc->sc_inc.inc_isipv6) {
1299		MD5Add(sc->sc_inc.inc6_laddr);
1300		MD5Add(sc->sc_inc.inc6_faddr);
1301	} else
1302#endif
1303	{
1304		MD5Add(sc->sc_inc.inc_laddr);
1305		MD5Add(sc->sc_inc.inc_faddr);
1306	}
1307	MD5Add(sc->sc_inc.inc_lport);
1308	MD5Add(sc->sc_inc.inc_fport);
1309	MD5Add(tcp_secret[idx].ts_secbits);
1310	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1311	data ^= (md5_buffer[wnd & SYNCOOKIE_HASHMASK] & ~SYNCOOKIE_WNDMASK);
1312	return (data);
1313}
1314
1315static struct syncache *
1316syncookie_lookup(inc, th, so)
1317	struct in_conninfo *inc;
1318	struct tcphdr *th;
1319	struct socket *so;
1320{
1321	u_int32_t md5_buffer[4];
1322	struct syncache *sc;
1323	u_int32_t data;
1324	int wnd, idx;
1325
1326	data = (th->th_ack - 1) ^ (th->th_seq - 1);	/* remove ISS */
1327	wnd = data & SYNCOOKIE_WNDMASK;
1328	idx = wnd >> SYNCOOKIE_HASHSHIFT;
1329	if (tcp_secret[idx].ts_expire < ticks ||
1330	    sototcpcb(so)->ts_recent + SYNCOOKIE_TIMEOUT < ticks)
1331		return (NULL);
1332	MD5Init(&syn_ctx);
1333#ifdef INET6
1334	if (inc->inc_isipv6) {
1335		MD5Add(inc->inc6_laddr);
1336		MD5Add(inc->inc6_faddr);
1337	} else
1338#endif
1339	{
1340		MD5Add(inc->inc_laddr);
1341		MD5Add(inc->inc_faddr);
1342	}
1343	MD5Add(inc->inc_lport);
1344	MD5Add(inc->inc_fport);
1345	MD5Add(tcp_secret[idx].ts_secbits);
1346	MD5Final((u_char *)&md5_buffer, &syn_ctx);
1347	data ^= md5_buffer[wnd & SYNCOOKIE_HASHMASK];
1348	if ((data & ~SYNCOOKIE_DATAMASK) != 0)
1349		return (NULL);
1350	data = data >> SYNCOOKIE_WNDBITS;
1351
1352	sc = uma_zalloc(tcp_syncache.zone, M_NOWAIT);
1353	if (sc == NULL)
1354		return (NULL);
1355	/*
1356	 * Fill in the syncache values.
1357	 * XXX duplicate code from syncache_add
1358	 */
1359	sc->sc_ipopts = NULL;
1360	sc->sc_inc.inc_fport = inc->inc_fport;
1361	sc->sc_inc.inc_lport = inc->inc_lport;
1362#ifdef INET6
1363	sc->sc_inc.inc_isipv6 = inc->inc_isipv6;
1364	if (inc->inc_isipv6) {
1365		sc->sc_inc.inc6_faddr = inc->inc6_faddr;
1366		sc->sc_inc.inc6_laddr = inc->inc6_laddr;
1367		sc->sc_route6.ro_rt = NULL;
1368	} else
1369#endif
1370	{
1371		sc->sc_inc.inc_faddr = inc->inc_faddr;
1372		sc->sc_inc.inc_laddr = inc->inc_laddr;
1373		sc->sc_route.ro_rt = NULL;
1374	}
1375	sc->sc_irs = th->th_seq - 1;
1376	sc->sc_iss = th->th_ack - 1;
1377	wnd = sbspace(&so->so_rcv);
1378	wnd = imax(wnd, 0);
1379	wnd = imin(wnd, TCP_MAXWIN);
1380	sc->sc_wnd = wnd;
1381	sc->sc_flags = 0;
1382	sc->sc_rxtslot = 0;
1383	sc->sc_peer_mss = tcp_msstab[data];
1384	return (sc);
1385}
1386