ip_output.c revision 9383
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 * $Id: ip_output.c,v 1.20 1995/06/13 17:51:14 wollman Exp $
35 */
36
37#include <sys/param.h>
38#include <sys/systm.h>
39#include <sys/malloc.h>
40#include <sys/mbuf.h>
41#include <sys/errno.h>
42#include <sys/protosw.h>
43#include <sys/socket.h>
44#include <sys/socketvar.h>
45#include <sys/queue.h>
46
47#include <net/if.h>
48#include <net/route.h>
49
50#include <netinet/in.h>
51#include <netinet/in_systm.h>
52#include <netinet/ip.h>
53#include <netinet/in_pcb.h>
54#include <netinet/in_var.h>
55#include <netinet/ip_var.h>
56
57#include <netinet/ip_fw.h>
58
59#ifdef vax
60#include <machine/mtpr.h>
61#endif
62
63u_short ip_id;
64
65static struct mbuf *ip_insertoptions __P((struct mbuf *, struct mbuf *, int *));
66static void ip_mloopback
67	__P((struct ifnet *, struct mbuf *, struct sockaddr_in *));
68
69/*
70 * IP output.  The packet in mbuf chain m contains a skeletal IP
71 * header (with len, off, ttl, proto, tos, src, dst).
72 * The mbuf chain containing the packet will be freed.
73 * The mbuf opt, if present, will not be freed.
74 */
75int
76ip_output(m0, opt, ro, flags, imo)
77	struct mbuf *m0;
78	struct mbuf *opt;
79	struct route *ro;
80	int flags;
81	struct ip_moptions *imo;
82{
83	register struct ip *ip, *mhip;
84	register struct ifnet *ifp;
85	register struct mbuf *m = m0;
86	register int hlen = sizeof (struct ip);
87	int len, off, error = 0;
88	struct route iproute;
89	struct sockaddr_in *dst;
90	struct in_ifaddr *ia;
91
92#ifdef	DIAGNOSTIC
93	if ((m->m_flags & M_PKTHDR) == 0)
94		panic("ip_output no HDR");
95#endif
96	if (opt) {
97		m = ip_insertoptions(m, opt, &len);
98		hlen = len;
99	}
100	ip = mtod(m, struct ip *);
101	/*
102	 * Fill in IP header.
103	 */
104	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
105		ip->ip_v = IPVERSION;
106		ip->ip_off &= IP_DF;
107		ip->ip_id = htons(ip_id++);
108		ip->ip_hl = hlen >> 2;
109		ipstat.ips_localout++;
110	} else {
111		hlen = ip->ip_hl << 2;
112	}
113	/*
114	 * Route packet.
115	 */
116	if (ro == 0) {
117		ro = &iproute;
118		bzero((caddr_t)ro, sizeof (*ro));
119	}
120	dst = (struct sockaddr_in *)&ro->ro_dst;
121	/*
122	 * If there is a cached route,
123	 * check that it is to the same destination
124	 * and is still up.  If not, free it and try again.
125	 */
126	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
127	   dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
128		RTFREE(ro->ro_rt);
129		ro->ro_rt = (struct rtentry *)0;
130	}
131	if (ro->ro_rt == 0) {
132		dst->sin_family = AF_INET;
133		dst->sin_len = sizeof(*dst);
134		dst->sin_addr = ip->ip_dst;
135	}
136	/*
137	 * If routing to interface only,
138	 * short circuit routing lookup.
139	 */
140#define ifatoia(ifa)	((struct in_ifaddr *)(ifa))
141#define sintosa(sin)	((struct sockaddr *)(sin))
142	if (flags & IP_ROUTETOIF) {
143		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
144		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
145			ipstat.ips_noroute++;
146			error = ENETUNREACH;
147			goto bad;
148		}
149		ifp = ia->ia_ifp;
150		ip->ip_ttl = 1;
151	} else {
152		/*
153		 * If this is the case, we probably don't want to allocate
154		 * a protocol-cloned route since we didn't get one from the
155		 * ULP.  This lets TCP do its thing, while not burdening
156		 * forwarding or ICMP with the overhead of cloning a route.
157		 * Of course, we still want to do any cloning requested by
158		 * the link layer, as this is probably required in all cases
159		 * for correct operation (as it is for ARP).
160		 */
161		if (ro->ro_rt == 0)
162			rtalloc_ign(ro, RTF_PRCLONING);
163		if (ro->ro_rt == 0) {
164			ipstat.ips_noroute++;
165			error = EHOSTUNREACH;
166			goto bad;
167		}
168		ia = ifatoia(ro->ro_rt->rt_ifa);
169		ifp = ro->ro_rt->rt_ifp;
170		ro->ro_rt->rt_use++;
171		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
172			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
173	}
174	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
175		struct in_multi *inm;
176
177		m->m_flags |= M_MCAST;
178		/*
179		 * IP destination address is multicast.  Make sure "dst"
180		 * still points to the address in "ro".  (It may have been
181		 * changed to point to a gateway address, above.)
182		 */
183		dst = (struct sockaddr_in *)&ro->ro_dst;
184		/*
185		 * See if the caller provided any multicast options
186		 */
187		if (imo != NULL) {
188			ip->ip_ttl = imo->imo_multicast_ttl;
189			if (imo->imo_multicast_ifp != NULL)
190				ifp = imo->imo_multicast_ifp;
191			if (imo->imo_multicast_vif != -1)
192				ip->ip_src.s_addr =
193				    ip_mcast_src(imo->imo_multicast_vif);
194		} else
195			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
196		/*
197		 * Confirm that the outgoing interface supports multicast.
198		 */
199		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
200			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
201				ipstat.ips_noroute++;
202				error = ENETUNREACH;
203				goto bad;
204			}
205		}
206		/*
207		 * If source address not specified yet, use address
208		 * of outgoing interface.
209		 */
210		if (ip->ip_src.s_addr == INADDR_ANY) {
211			register struct in_ifaddr *ia;
212
213			for (ia = in_ifaddr; ia; ia = ia->ia_next)
214				if (ia->ia_ifp == ifp) {
215					ip->ip_src = IA_SIN(ia)->sin_addr;
216					break;
217				}
218		}
219
220		IN_LOOKUP_MULTI(ip->ip_dst, ifp, inm);
221		if (inm != NULL &&
222		   (imo == NULL || imo->imo_multicast_loop)) {
223			/*
224			 * If we belong to the destination multicast group
225			 * on the outgoing interface, and the caller did not
226			 * forbid loopback, loop back a copy.
227			 */
228			ip_mloopback(ifp, m, dst);
229		}
230		else {
231			/*
232			 * If we are acting as a multicast router, perform
233			 * multicast forwarding as if the packet had just
234			 * arrived on the interface to which we are about
235			 * to send.  The multicast forwarding function
236			 * recursively calls this function, using the
237			 * IP_FORWARDING flag to prevent infinite recursion.
238			 *
239			 * Multicasts that are looped back by ip_mloopback(),
240			 * above, will be forwarded by the ip_input() routine,
241			 * if necessary.
242			 */
243			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
244				/*
245				 * Check if rsvp daemon is running. If not, don't
246				 * set ip_moptions. This ensures that the packet
247				 * is multicast and not just sent down one link
248				 * as prescribed by rsvpd.
249				 */
250				if (ip_rsvpd == NULL)
251				  imo = NULL;
252				if (ip_mforward(ip, ifp, m, imo) != 0) {
253					m_freem(m);
254					goto done;
255				}
256			}
257		}
258
259		/*
260		 * Multicasts with a time-to-live of zero may be looped-
261		 * back, above, but must not be transmitted on a network.
262		 * Also, multicasts addressed to the loopback interface
263		 * are not sent -- the above call to ip_mloopback() will
264		 * loop back a copy if this host actually belongs to the
265		 * destination group on the loopback interface.
266		 */
267		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
268			m_freem(m);
269			goto done;
270		}
271
272		goto sendit;
273	}
274#ifndef notdef
275	/*
276	 * If source address not specified yet, use address
277	 * of outgoing interface.
278	 */
279	if (ip->ip_src.s_addr == INADDR_ANY)
280		ip->ip_src = IA_SIN(ia)->sin_addr;
281#endif
282	/*
283	 * Verify that we have any chance at all of being able to queue
284	 *      the packet or packet fragments
285	 */
286	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
287		ifp->if_snd.ifq_maxlen) {
288			error = ENOBUFS;
289			goto bad;
290	}
291
292	/*
293	 * Look for broadcast address and
294	 * and verify user is allowed to send
295	 * such a packet.
296	 */
297	if (in_broadcast(dst->sin_addr, ifp)) {
298		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
299			error = EADDRNOTAVAIL;
300			goto bad;
301		}
302		if ((flags & IP_ALLOWBROADCAST) == 0) {
303			error = EACCES;
304			goto bad;
305		}
306		/* don't allow broadcast messages to be fragmented */
307		if ((u_short)ip->ip_len > ifp->if_mtu) {
308			error = EMSGSIZE;
309			goto bad;
310		}
311		m->m_flags |= M_BCAST;
312	} else
313		m->m_flags &= ~M_BCAST;
314
315sendit:
316	/*
317	 * If small enough for interface, can just send directly.
318	 */
319	if ((u_short)ip->ip_len <= ifp->if_mtu) {
320		ip->ip_len = htons((u_short)ip->ip_len);
321		ip->ip_off = htons((u_short)ip->ip_off);
322		ip->ip_sum = 0;
323		ip->ip_sum = in_cksum(m, hlen);
324		error = (*ifp->if_output)(ifp, m,
325				(struct sockaddr *)dst, ro->ro_rt);
326		goto done;
327	}
328	/*
329	 * Too large for interface; fragment if possible.
330	 * Must be able to put at least 8 bytes per fragment.
331	 */
332	if (ip->ip_off & IP_DF) {
333		error = EMSGSIZE;
334		ipstat.ips_cantfrag++;
335		goto bad;
336	}
337	len = (ifp->if_mtu - hlen) &~ 7;
338	if (len < 8) {
339		error = EMSGSIZE;
340		goto bad;
341	}
342
343    {
344	int mhlen, firstlen = len;
345	struct mbuf **mnext = &m->m_nextpkt;
346
347	/*
348	 * Loop through length of segment after first fragment,
349	 * make new header and copy data of each part and link onto chain.
350	 */
351	m0 = m;
352	mhlen = sizeof (struct ip);
353	for (off = hlen + len; off < (u_short)ip->ip_len; off += len) {
354		MGETHDR(m, M_DONTWAIT, MT_HEADER);
355		if (m == 0) {
356			error = ENOBUFS;
357			ipstat.ips_odropped++;
358			goto sendorfree;
359		}
360		m->m_data += max_linkhdr;
361		mhip = mtod(m, struct ip *);
362		*mhip = *ip;
363		if (hlen > sizeof (struct ip)) {
364			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
365			mhip->ip_hl = mhlen >> 2;
366		}
367		m->m_len = mhlen;
368		mhip->ip_off = ((off - hlen) >> 3) + (ip->ip_off & ~IP_MF);
369		if (ip->ip_off & IP_MF)
370			mhip->ip_off |= IP_MF;
371		if (off + len >= (u_short)ip->ip_len)
372			len = (u_short)ip->ip_len - off;
373		else
374			mhip->ip_off |= IP_MF;
375		mhip->ip_len = htons((u_short)(len + mhlen));
376		m->m_next = m_copy(m0, off, len);
377		if (m->m_next == 0) {
378			(void) m_free(m);
379			error = ENOBUFS;	/* ??? */
380			ipstat.ips_odropped++;
381			goto sendorfree;
382		}
383		m->m_pkthdr.len = mhlen + len;
384		m->m_pkthdr.rcvif = (struct ifnet *)0;
385		mhip->ip_off = htons((u_short)mhip->ip_off);
386		mhip->ip_sum = 0;
387		mhip->ip_sum = in_cksum(m, mhlen);
388		*mnext = m;
389		mnext = &m->m_nextpkt;
390		ipstat.ips_ofragments++;
391	}
392	/*
393	 * Update first fragment by trimming what's been copied out
394	 * and updating header, then send each fragment (in order).
395	 */
396	m = m0;
397	m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
398	m->m_pkthdr.len = hlen + firstlen;
399	ip->ip_len = htons((u_short)m->m_pkthdr.len);
400	ip->ip_off = htons((u_short)(ip->ip_off | IP_MF));
401	ip->ip_sum = 0;
402	ip->ip_sum = in_cksum(m, hlen);
403sendorfree:
404	for (m = m0; m; m = m0) {
405		m0 = m->m_nextpkt;
406		m->m_nextpkt = 0;
407		if (error == 0)
408			error = (*ifp->if_output)(ifp, m,
409			    (struct sockaddr *)dst, ro->ro_rt);
410		else
411			m_freem(m);
412	}
413
414	if (error == 0)
415		ipstat.ips_fragmented++;
416    }
417done:
418	if (ro == &iproute && (flags & IP_ROUTETOIF) == 0 && ro->ro_rt)
419		RTFREE(ro->ro_rt);
420	/*
421	 * Count outgoing packet,here we count both our packets and
422	 * those we forward.
423	 * Here we want to convert ip_len to host byte order when counting
424	 * so we set 3rd arg to 1.
425	 * This is locally generated packet so it has not
426	 * incoming interface.
427	 */
428	if (ip_acct_cnt_ptr!=NULL)
429		(*ip_acct_cnt_ptr)(ip,NULL,ip_acct_chain,1);
430
431	return (error);
432bad:
433	m_freem(m0);
434	goto done;
435}
436
437/*
438 * Insert IP options into preformed packet.
439 * Adjust IP destination as required for IP source routing,
440 * as indicated by a non-zero in_addr at the start of the options.
441 */
442static struct mbuf *
443ip_insertoptions(m, opt, phlen)
444	register struct mbuf *m;
445	struct mbuf *opt;
446	int *phlen;
447{
448	register struct ipoption *p = mtod(opt, struct ipoption *);
449	struct mbuf *n;
450	register struct ip *ip = mtod(m, struct ip *);
451	unsigned optlen;
452
453	optlen = opt->m_len - sizeof(p->ipopt_dst);
454	if (optlen + (u_short)ip->ip_len > IP_MAXPACKET)
455		return (m);		/* XXX should fail */
456	if (p->ipopt_dst.s_addr)
457		ip->ip_dst = p->ipopt_dst;
458	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
459		MGETHDR(n, M_DONTWAIT, MT_HEADER);
460		if (n == 0)
461			return (m);
462		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
463		m->m_len -= sizeof(struct ip);
464		m->m_data += sizeof(struct ip);
465		n->m_next = m;
466		m = n;
467		m->m_len = optlen + sizeof(struct ip);
468		m->m_data += max_linkhdr;
469		(void)memcpy(mtod(m, void *), ip, sizeof(struct ip));
470	} else {
471		m->m_data -= optlen;
472		m->m_len += optlen;
473		m->m_pkthdr.len += optlen;
474		ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
475	}
476	ip = mtod(m, struct ip *);
477	(void)memcpy(ip + 1, p->ipopt_list, (unsigned)optlen);
478	*phlen = sizeof(struct ip) + optlen;
479	ip->ip_len += optlen;
480	return (m);
481}
482
483/*
484 * Copy options from ip to jp,
485 * omitting those not copied during fragmentation.
486 */
487int
488ip_optcopy(ip, jp)
489	struct ip *ip, *jp;
490{
491	register u_char *cp, *dp;
492	int opt, optlen, cnt;
493
494	cp = (u_char *)(ip + 1);
495	dp = (u_char *)(jp + 1);
496	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
497	for (; cnt > 0; cnt -= optlen, cp += optlen) {
498		opt = cp[0];
499		if (opt == IPOPT_EOL)
500			break;
501		if (opt == IPOPT_NOP) {
502			/* Preserve for IP mcast tunnel's LSRR alignment. */
503			*dp++ = IPOPT_NOP;
504			optlen = 1;
505			continue;
506		} else
507			optlen = cp[IPOPT_OLEN];
508		/* bogus lengths should have been caught by ip_dooptions */
509		if (optlen > cnt)
510			optlen = cnt;
511		if (IPOPT_COPIED(opt)) {
512			(void)memcpy(dp, cp, (unsigned)optlen);
513			dp += optlen;
514		}
515	}
516	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
517		*dp++ = IPOPT_EOL;
518	return (optlen);
519}
520
521/*
522 * IP socket option processing.
523 */
524int
525ip_ctloutput(op, so, level, optname, mp)
526	int op;
527	struct socket *so;
528	int level, optname;
529	struct mbuf **mp;
530{
531	register struct inpcb *inp = sotoinpcb(so);
532	register struct mbuf *m = *mp;
533	register int optval = 0;
534	int error = 0;
535
536	if (level != IPPROTO_IP) {
537		error = EINVAL;
538		if (op == PRCO_SETOPT && *mp)
539			(void) m_free(*mp);
540	} else switch (op) {
541
542	case PRCO_SETOPT:
543		switch (optname) {
544		case IP_OPTIONS:
545#ifdef notyet
546		case IP_RETOPTS:
547			return (ip_pcbopts(optname, &inp->inp_options, m));
548#else
549			return (ip_pcbopts(&inp->inp_options, m));
550#endif
551
552		case IP_TOS:
553		case IP_TTL:
554		case IP_RECVOPTS:
555		case IP_RECVRETOPTS:
556		case IP_RECVDSTADDR:
557			if (m == 0)
558				error = EFAULT;
559			else if (m->m_len != sizeof(int))
560				error = EINVAL;
561			else {
562				optval = *mtod(m, int *);
563				switch (optname) {
564
565				case IP_TOS:
566					inp->inp_ip.ip_tos = optval;
567					break;
568
569				case IP_TTL:
570					inp->inp_ip.ip_ttl = optval;
571					break;
572#define	OPTSET(bit) \
573	if (optval) \
574		inp->inp_flags |= bit; \
575	else \
576		inp->inp_flags &= ~bit;
577
578				case IP_RECVOPTS:
579					OPTSET(INP_RECVOPTS);
580					break;
581
582				case IP_RECVRETOPTS:
583					OPTSET(INP_RECVRETOPTS);
584					break;
585
586				case IP_RECVDSTADDR:
587					OPTSET(INP_RECVDSTADDR);
588					break;
589				}
590			}
591			break;
592#undef OPTSET
593
594		case IP_MULTICAST_IF:
595		case IP_MULTICAST_VIF:
596		case IP_MULTICAST_TTL:
597		case IP_MULTICAST_LOOP:
598		case IP_ADD_MEMBERSHIP:
599		case IP_DROP_MEMBERSHIP:
600			error = ip_setmoptions(optname, &inp->inp_moptions, m);
601			break;
602
603		default:
604			error = ENOPROTOOPT;
605			break;
606		}
607		if (m)
608			(void)m_free(m);
609		break;
610
611	case PRCO_GETOPT:
612		switch (optname) {
613		case IP_OPTIONS:
614		case IP_RETOPTS:
615			*mp = m = m_get(M_WAIT, MT_SOOPTS);
616			if (inp->inp_options) {
617				m->m_len = inp->inp_options->m_len;
618				(void)memcpy(mtod(m, void *),
619				    mtod(inp->inp_options, void *), (unsigned)m->m_len);
620			} else
621				m->m_len = 0;
622			break;
623
624		case IP_TOS:
625		case IP_TTL:
626		case IP_RECVOPTS:
627		case IP_RECVRETOPTS:
628		case IP_RECVDSTADDR:
629			*mp = m = m_get(M_WAIT, MT_SOOPTS);
630			m->m_len = sizeof(int);
631			switch (optname) {
632
633			case IP_TOS:
634				optval = inp->inp_ip.ip_tos;
635				break;
636
637			case IP_TTL:
638				optval = inp->inp_ip.ip_ttl;
639				break;
640
641#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
642
643			case IP_RECVOPTS:
644				optval = OPTBIT(INP_RECVOPTS);
645				break;
646
647			case IP_RECVRETOPTS:
648				optval = OPTBIT(INP_RECVRETOPTS);
649				break;
650
651			case IP_RECVDSTADDR:
652				optval = OPTBIT(INP_RECVDSTADDR);
653				break;
654			}
655			*mtod(m, int *) = optval;
656			break;
657
658		case IP_MULTICAST_IF:
659		case IP_MULTICAST_VIF:
660		case IP_MULTICAST_TTL:
661		case IP_MULTICAST_LOOP:
662		case IP_ADD_MEMBERSHIP:
663		case IP_DROP_MEMBERSHIP:
664			error = ip_getmoptions(optname, inp->inp_moptions, mp);
665			break;
666
667		default:
668			error = ENOPROTOOPT;
669			break;
670		}
671		break;
672	}
673	return (error);
674}
675
676/*
677 * Set up IP options in pcb for insertion in output packets.
678 * Store in mbuf with pointer in pcbopt, adding pseudo-option
679 * with destination address if source routed.
680 */
681int
682#ifdef notyet
683ip_pcbopts(optname, pcbopt, m)
684	int optname;
685#else
686ip_pcbopts(pcbopt, m)
687#endif
688	struct mbuf **pcbopt;
689	register struct mbuf *m;
690{
691	register cnt, optlen;
692	register u_char *cp;
693	u_char opt;
694
695	/* turn off any old options */
696	if (*pcbopt)
697		(void)m_free(*pcbopt);
698	*pcbopt = 0;
699	if (m == (struct mbuf *)0 || m->m_len == 0) {
700		/*
701		 * Only turning off any previous options.
702		 */
703		if (m)
704			(void)m_free(m);
705		return (0);
706	}
707
708#ifndef	vax
709	if (m->m_len % sizeof(long))
710		goto bad;
711#endif
712	/*
713	 * IP first-hop destination address will be stored before
714	 * actual options; move other options back
715	 * and clear it when none present.
716	 */
717	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
718		goto bad;
719	cnt = m->m_len;
720	m->m_len += sizeof(struct in_addr);
721	cp = mtod(m, u_char *) + sizeof(struct in_addr);
722	ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
723	bzero(mtod(m, caddr_t), sizeof(struct in_addr));
724
725	for (; cnt > 0; cnt -= optlen, cp += optlen) {
726		opt = cp[IPOPT_OPTVAL];
727		if (opt == IPOPT_EOL)
728			break;
729		if (opt == IPOPT_NOP)
730			optlen = 1;
731		else {
732			optlen = cp[IPOPT_OLEN];
733			if (optlen <= IPOPT_OLEN || optlen > cnt)
734				goto bad;
735		}
736		switch (opt) {
737
738		default:
739			break;
740
741		case IPOPT_LSRR:
742		case IPOPT_SSRR:
743			/*
744			 * user process specifies route as:
745			 *	->A->B->C->D
746			 * D must be our final destination (but we can't
747			 * check that since we may not have connected yet).
748			 * A is first hop destination, which doesn't appear in
749			 * actual IP option, but is stored before the options.
750			 */
751			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
752				goto bad;
753			m->m_len -= sizeof(struct in_addr);
754			cnt -= sizeof(struct in_addr);
755			optlen -= sizeof(struct in_addr);
756			cp[IPOPT_OLEN] = optlen;
757			/*
758			 * Move first hop before start of options.
759			 */
760			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
761			    sizeof(struct in_addr));
762			/*
763			 * Then copy rest of options back
764			 * to close up the deleted entry.
765			 */
766			ovbcopy((caddr_t)(&cp[IPOPT_OFFSET+1] +
767			    sizeof(struct in_addr)),
768			    (caddr_t)&cp[IPOPT_OFFSET+1],
769			    (unsigned)cnt + sizeof(struct in_addr));
770			break;
771		}
772	}
773	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
774		goto bad;
775	*pcbopt = m;
776	return (0);
777
778bad:
779	(void)m_free(m);
780	return (EINVAL);
781}
782
783/*
784 * Set the IP multicast options in response to user setsockopt().
785 */
786int
787ip_setmoptions(optname, imop, m)
788	int optname;
789	struct ip_moptions **imop;
790	struct mbuf *m;
791{
792	register int error = 0;
793	u_char loop;
794	register int i;
795	struct in_addr addr;
796	register struct ip_mreq *mreq;
797	register struct ifnet *ifp;
798	register struct ip_moptions *imo = *imop;
799	struct route ro;
800	register struct sockaddr_in *dst;
801	int s;
802
803	if (imo == NULL) {
804		/*
805		 * No multicast option buffer attached to the pcb;
806		 * allocate one and initialize to default values.
807		 */
808		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
809		    M_WAITOK);
810
811		if (imo == NULL)
812			return (ENOBUFS);
813		*imop = imo;
814		imo->imo_multicast_ifp = NULL;
815		imo->imo_multicast_vif = -1;
816		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
817		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
818		imo->imo_num_memberships = 0;
819	}
820
821	switch (optname) {
822	/* store an index number for the vif you wanna use in the send */
823	case IP_MULTICAST_VIF:
824		if (!legal_vif_num) {
825			error = EOPNOTSUPP;
826			break;
827		}
828		if (m == NULL || m->m_len != sizeof(int)) {
829			error = EINVAL;
830			break;
831		}
832		i = *(mtod(m, int *));
833		if (!legal_vif_num(i) && (i != -1)) {
834			error = EINVAL;
835			break;
836		}
837		imo->imo_multicast_vif = i;
838		break;
839
840	case IP_MULTICAST_IF:
841		/*
842		 * Select the interface for outgoing multicast packets.
843		 */
844		if (m == NULL || m->m_len != sizeof(struct in_addr)) {
845			error = EINVAL;
846			break;
847		}
848		addr = *(mtod(m, struct in_addr *));
849		/*
850		 * INADDR_ANY is used to remove a previous selection.
851		 * When no interface is selected, a default one is
852		 * chosen every time a multicast packet is sent.
853		 */
854		if (addr.s_addr == INADDR_ANY) {
855			imo->imo_multicast_ifp = NULL;
856			break;
857		}
858		/*
859		 * The selected interface is identified by its local
860		 * IP address.  Find the interface and confirm that
861		 * it supports multicasting.
862		 */
863		s = splimp();
864		INADDR_TO_IFP(addr, ifp);
865		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
866			error = EADDRNOTAVAIL;
867			break;
868		}
869		imo->imo_multicast_ifp = ifp;
870		splx(s);
871		break;
872
873	case IP_MULTICAST_TTL:
874		/*
875		 * Set the IP time-to-live for outgoing multicast packets.
876		 */
877		if (m == NULL || m->m_len != 1) {
878			error = EINVAL;
879			break;
880		}
881		imo->imo_multicast_ttl = *(mtod(m, u_char *));
882		break;
883
884	case IP_MULTICAST_LOOP:
885		/*
886		 * Set the loopback flag for outgoing multicast packets.
887		 * Must be zero or one.
888		 */
889		if (m == NULL || m->m_len != 1 ||
890		   (loop = *(mtod(m, u_char *))) > 1) {
891			error = EINVAL;
892			break;
893		}
894		imo->imo_multicast_loop = loop;
895		break;
896
897	case IP_ADD_MEMBERSHIP:
898		/*
899		 * Add a multicast group membership.
900		 * Group must be a valid IP multicast address.
901		 */
902		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
903			error = EINVAL;
904			break;
905		}
906		mreq = mtod(m, struct ip_mreq *);
907		if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {
908			error = EINVAL;
909			break;
910		}
911		s = splimp();
912		/*
913		 * If no interface address was provided, use the interface of
914		 * the route to the given multicast address.
915		 */
916		if (mreq->imr_interface.s_addr == INADDR_ANY) {
917			bzero((caddr_t)&ro, sizeof(ro));
918			dst = (struct sockaddr_in *)&ro.ro_dst;
919			dst->sin_len = sizeof(*dst);
920			dst->sin_family = AF_INET;
921			dst->sin_addr = mreq->imr_multiaddr;
922			rtalloc(&ro);
923			if (ro.ro_rt == NULL) {
924				error = EADDRNOTAVAIL;
925				splx(s);
926				break;
927			}
928			ifp = ro.ro_rt->rt_ifp;
929			rtfree(ro.ro_rt);
930		}
931		else {
932			INADDR_TO_IFP(mreq->imr_interface, ifp);
933		}
934
935		/*
936		 * See if we found an interface, and confirm that it
937		 * supports multicast.
938		 */
939		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
940			error = EADDRNOTAVAIL;
941			splx(s);
942			break;
943		}
944		/*
945		 * See if the membership already exists or if all the
946		 * membership slots are full.
947		 */
948		for (i = 0; i < imo->imo_num_memberships; ++i) {
949			if (imo->imo_membership[i]->inm_ifp == ifp &&
950			    imo->imo_membership[i]->inm_addr.s_addr
951						== mreq->imr_multiaddr.s_addr)
952				break;
953		}
954		if (i < imo->imo_num_memberships) {
955			error = EADDRINUSE;
956			splx(s);
957			break;
958		}
959		if (i == IP_MAX_MEMBERSHIPS) {
960			error = ETOOMANYREFS;
961			splx(s);
962			break;
963		}
964		/*
965		 * Everything looks good; add a new record to the multicast
966		 * address list for the given interface.
967		 */
968		if ((imo->imo_membership[i] =
969		    in_addmulti(&mreq->imr_multiaddr, ifp)) == NULL) {
970			error = ENOBUFS;
971			splx(s);
972			break;
973		}
974		++imo->imo_num_memberships;
975		splx(s);
976		break;
977
978	case IP_DROP_MEMBERSHIP:
979		/*
980		 * Drop a multicast group membership.
981		 * Group must be a valid IP multicast address.
982		 */
983		if (m == NULL || m->m_len != sizeof(struct ip_mreq)) {
984			error = EINVAL;
985			break;
986		}
987		mreq = mtod(m, struct ip_mreq *);
988		if (!IN_MULTICAST(ntohl(mreq->imr_multiaddr.s_addr))) {
989			error = EINVAL;
990			break;
991		}
992
993		s = splimp();
994		/*
995		 * If an interface address was specified, get a pointer
996		 * to its ifnet structure.
997		 */
998		if (mreq->imr_interface.s_addr == INADDR_ANY)
999			ifp = NULL;
1000		else {
1001			INADDR_TO_IFP(mreq->imr_interface, ifp);
1002			if (ifp == NULL) {
1003				error = EADDRNOTAVAIL;
1004				splx(s);
1005				break;
1006			}
1007		}
1008		/*
1009		 * Find the membership in the membership array.
1010		 */
1011		for (i = 0; i < imo->imo_num_memberships; ++i) {
1012			if ((ifp == NULL ||
1013			     imo->imo_membership[i]->inm_ifp == ifp) &&
1014			     imo->imo_membership[i]->inm_addr.s_addr ==
1015			     mreq->imr_multiaddr.s_addr)
1016				break;
1017		}
1018		if (i == imo->imo_num_memberships) {
1019			error = EADDRNOTAVAIL;
1020			splx(s);
1021			break;
1022		}
1023		/*
1024		 * Give up the multicast address record to which the
1025		 * membership points.
1026		 */
1027		in_delmulti(imo->imo_membership[i]);
1028		/*
1029		 * Remove the gap in the membership array.
1030		 */
1031		for (++i; i < imo->imo_num_memberships; ++i)
1032			imo->imo_membership[i-1] = imo->imo_membership[i];
1033		--imo->imo_num_memberships;
1034		splx(s);
1035		break;
1036
1037	default:
1038		error = EOPNOTSUPP;
1039		break;
1040	}
1041
1042	/*
1043	 * If all options have default values, no need to keep the mbuf.
1044	 */
1045	if (imo->imo_multicast_ifp == NULL &&
1046	    imo->imo_multicast_vif == -1 &&
1047	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
1048	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
1049	    imo->imo_num_memberships == 0) {
1050		free(*imop, M_IPMOPTS);
1051		*imop = NULL;
1052	}
1053
1054	return (error);
1055}
1056
1057/*
1058 * Return the IP multicast options in response to user getsockopt().
1059 */
1060int
1061ip_getmoptions(optname, imo, mp)
1062	int optname;
1063	register struct ip_moptions *imo;
1064	register struct mbuf **mp;
1065{
1066	u_char *ttl;
1067	u_char *loop;
1068	struct in_addr *addr;
1069	struct in_ifaddr *ia;
1070
1071	*mp = m_get(M_WAIT, MT_SOOPTS);
1072
1073	switch (optname) {
1074
1075	case IP_MULTICAST_VIF:
1076		if (imo != NULL)
1077			*(mtod(*mp, int *)) = imo->imo_multicast_vif;
1078		else
1079			*(mtod(*mp, int *)) = -1;
1080		(*mp)->m_len = sizeof(int);
1081		return(0);
1082
1083	case IP_MULTICAST_IF:
1084		addr = mtod(*mp, struct in_addr *);
1085		(*mp)->m_len = sizeof(struct in_addr);
1086		if (imo == NULL || imo->imo_multicast_ifp == NULL)
1087			addr->s_addr = INADDR_ANY;
1088		else {
1089			IFP_TO_IA(imo->imo_multicast_ifp, ia);
1090			addr->s_addr = (ia == NULL) ? INADDR_ANY
1091					: IA_SIN(ia)->sin_addr.s_addr;
1092		}
1093		return (0);
1094
1095	case IP_MULTICAST_TTL:
1096		ttl = mtod(*mp, u_char *);
1097		(*mp)->m_len = 1;
1098		*ttl = (imo == NULL) ? IP_DEFAULT_MULTICAST_TTL
1099				     : imo->imo_multicast_ttl;
1100		return (0);
1101
1102	case IP_MULTICAST_LOOP:
1103		loop = mtod(*mp, u_char *);
1104		(*mp)->m_len = 1;
1105		*loop = (imo == NULL) ? IP_DEFAULT_MULTICAST_LOOP
1106				      : imo->imo_multicast_loop;
1107		return (0);
1108
1109	default:
1110		return (EOPNOTSUPP);
1111	}
1112}
1113
1114/*
1115 * Discard the IP multicast options.
1116 */
1117void
1118ip_freemoptions(imo)
1119	register struct ip_moptions *imo;
1120{
1121	register int i;
1122
1123	if (imo != NULL) {
1124		for (i = 0; i < imo->imo_num_memberships; ++i)
1125			in_delmulti(imo->imo_membership[i]);
1126		free(imo, M_IPMOPTS);
1127	}
1128}
1129
1130/*
1131 * Routine called from ip_output() to loop back a copy of an IP multicast
1132 * packet to the input queue of a specified interface.  Note that this
1133 * calls the output routine of the loopback "driver", but with an interface
1134 * pointer that might NOT be a loopback interface -- evil, but easier than
1135 * replicating that code here.
1136 */
1137static void
1138ip_mloopback(ifp, m, dst)
1139	struct ifnet *ifp;
1140	register struct mbuf *m;
1141	register struct sockaddr_in *dst;
1142{
1143	register struct ip *ip;
1144	struct mbuf *copym;
1145
1146	copym = m_copy(m, 0, M_COPYALL);
1147	if (copym != NULL) {
1148		/*
1149		 * We don't bother to fragment if the IP length is greater
1150		 * than the interface's MTU.  Can this possibly matter?
1151		 */
1152		ip = mtod(copym, struct ip *);
1153		ip->ip_len = htons((u_short)ip->ip_len);
1154		ip->ip_off = htons((u_short)ip->ip_off);
1155		ip->ip_sum = 0;
1156		ip->ip_sum = in_cksum(copym, ip->ip_hl << 2);
1157		(void) looutput(ifp, copym, (struct sockaddr *)dst, NULL);
1158	}
1159}
1160