ip_output.c revision 272984
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_output.c 272984 2014-10-12 15:49:52Z rwatson $");
34
35#include "opt_inet.h"
36#include "opt_ipfw.h"
37#include "opt_ipsec.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40#include "opt_route.h"
41#include "opt_sctp.h"
42#include "opt_rss.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/kernel.h>
47#include <sys/malloc.h>
48#include <sys/mbuf.h>
49#include <sys/priv.h>
50#include <sys/proc.h>
51#include <sys/protosw.h>
52#include <sys/sdt.h>
53#include <sys/socket.h>
54#include <sys/socketvar.h>
55#include <sys/sysctl.h>
56#include <sys/ucred.h>
57
58#include <net/if.h>
59#include <net/if_var.h>
60#include <net/if_llatbl.h>
61#include <net/netisr.h>
62#include <net/pfil.h>
63#include <net/route.h>
64#include <net/flowtable.h>
65#ifdef RADIX_MPATH
66#include <net/radix_mpath.h>
67#endif
68#include <net/vnet.h>
69
70#include <netinet/in.h>
71#include <netinet/in_kdtrace.h>
72#include <netinet/in_systm.h>
73#include <netinet/ip.h>
74#include <netinet/in_pcb.h>
75#include <netinet/in_rss.h>
76#include <netinet/in_var.h>
77#include <netinet/ip_var.h>
78#include <netinet/ip_options.h>
79#ifdef SCTP
80#include <netinet/sctp.h>
81#include <netinet/sctp_crc32.h>
82#endif
83
84#ifdef IPSEC
85#include <netinet/ip_ipsec.h>
86#include <netipsec/ipsec.h>
87#endif /* IPSEC*/
88
89#include <machine/in_cksum.h>
90
91#include <security/mac/mac_framework.h>
92
93VNET_DEFINE(u_short, ip_id);
94
95#ifdef MBUF_STRESS_TEST
96static int mbuf_frag_size = 0;
97SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
98	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
99#endif
100
101static void	ip_mloopback
102	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
103
104
105extern int in_mcast_loop;
106extern	struct protosw inetsw[];
107
108/*
109 * IP output.  The packet in mbuf chain m contains a skeletal IP
110 * header (with len, off, ttl, proto, tos, src, dst).
111 * The mbuf chain containing the packet will be freed.
112 * The mbuf opt, if present, will not be freed.
113 * If route ro is present and has ro_rt initialized, route lookup would be
114 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
115 * then result of route lookup is stored in ro->ro_rt.
116 *
117 * In the IP forwarding case, the packet will arrive with options already
118 * inserted, so must have a NULL opt pointer.
119 */
120int
121ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
122    struct ip_moptions *imo, struct inpcb *inp)
123{
124	struct ip *ip;
125	struct ifnet *ifp = NULL;	/* keep compiler happy */
126	struct mbuf *m0;
127	int hlen = sizeof (struct ip);
128	int mtu;
129	int error = 0;
130	struct sockaddr_in *dst;
131	const struct sockaddr_in *gw;
132	struct in_ifaddr *ia;
133	int isbroadcast;
134	uint16_t ip_len, ip_off;
135	struct route iproute;
136	struct rtentry *rte;	/* cache for ro->ro_rt */
137	struct in_addr odst;
138	struct m_tag *fwd_tag = NULL;
139	uint32_t fibnum;
140	int have_ia_ref;
141	int needfiblookup;
142#ifdef IPSEC
143	int no_route_but_check_spd = 0;
144#endif
145	M_ASSERTPKTHDR(m);
146
147	if (inp != NULL) {
148		INP_LOCK_ASSERT(inp);
149		M_SETFIB(m, inp->inp_inc.inc_fibnum);
150		if (((flags & IP_NODEFAULTFLOWID) == 0) &&
151		    inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
152			m->m_pkthdr.flowid = inp->inp_flowid;
153			M_HASHTYPE_SET(m, inp->inp_flowtype);
154			m->m_flags |= M_FLOWID;
155		}
156	}
157
158	if (ro == NULL) {
159		ro = &iproute;
160		bzero(ro, sizeof (*ro));
161	}
162
163#ifdef FLOWTABLE
164	if (ro->ro_rt == NULL)
165		(void )flowtable_lookup(AF_INET, m, ro);
166#endif
167
168	if (opt) {
169		int len = 0;
170		m = ip_insertoptions(m, opt, &len);
171		if (len != 0)
172			hlen = len; /* ip->ip_hl is updated above */
173	}
174	ip = mtod(m, struct ip *);
175	ip_len = ntohs(ip->ip_len);
176	ip_off = ntohs(ip->ip_off);
177
178	/*
179	 * Fill in IP header.  If we are not allowing fragmentation,
180	 * then the ip_id field is meaningless, but we don't set it
181	 * to zero.  Doing so causes various problems when devices along
182	 * the path (routers, load balancers, firewalls, etc.) illegally
183	 * disable DF on our packet.  Note that a 16-bit counter
184	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
185	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
186	 * for Counting NATted Hosts", Proc. IMW'02, available at
187	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
188	 */
189	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
190		ip->ip_v = IPVERSION;
191		ip->ip_hl = hlen >> 2;
192		ip->ip_id = ip_newid();
193		IPSTAT_INC(ips_localout);
194	} else {
195		/* Header already set, fetch hlen from there */
196		hlen = ip->ip_hl << 2;
197	}
198
199	/*
200	 * dst/gw handling:
201	 *
202	 * dst can be rewritten but always points to &ro->ro_dst.
203	 * gw is readonly but can point either to dst OR rt_gateway,
204	 * therefore we need restore gw if we're redoing lookup.
205	 */
206	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
207	fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m);
208again:
209	ia = NULL;
210	have_ia_ref = 0;
211	/*
212	 * If there is a cached route, check that it is to the same
213	 * destination and is still up.  If not, free it and try again.
214	 * The address family should also be checked in case of sharing
215	 * the cache with IPv6.
216	 */
217	rte = ro->ro_rt;
218	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
219		    rte->rt_ifp == NULL ||
220		    !RT_LINK_IS_UP(rte->rt_ifp) ||
221			  dst->sin_family != AF_INET ||
222			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
223		RO_RTFREE(ro);
224		ro->ro_lle = NULL;
225		rte = NULL;
226		gw = dst;
227	}
228	if (rte == NULL && fwd_tag == NULL) {
229		bzero(dst, sizeof(*dst));
230		dst->sin_family = AF_INET;
231		dst->sin_len = sizeof(*dst);
232		dst->sin_addr = ip->ip_dst;
233	}
234	/*
235	 * If routing to interface only, short circuit routing lookup.
236	 * The use of an all-ones broadcast address implies this; an
237	 * interface is specified by the broadcast address of an interface,
238	 * or the destination address of a ptp interface.
239	 */
240	if (flags & IP_SENDONES) {
241		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst),
242						      M_GETFIB(m)))) == NULL &&
243		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
244						    M_GETFIB(m)))) == NULL) {
245			IPSTAT_INC(ips_noroute);
246			error = ENETUNREACH;
247			goto bad;
248		}
249		have_ia_ref = 1;
250		ip->ip_dst.s_addr = INADDR_BROADCAST;
251		dst->sin_addr = ip->ip_dst;
252		ifp = ia->ia_ifp;
253		ip->ip_ttl = 1;
254		isbroadcast = 1;
255	} else if (flags & IP_ROUTETOIF) {
256		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst),
257						    M_GETFIB(m)))) == NULL &&
258		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0,
259						M_GETFIB(m)))) == NULL) {
260			IPSTAT_INC(ips_noroute);
261			error = ENETUNREACH;
262			goto bad;
263		}
264		have_ia_ref = 1;
265		ifp = ia->ia_ifp;
266		ip->ip_ttl = 1;
267		isbroadcast = in_broadcast(dst->sin_addr, ifp);
268	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
269	    imo != NULL && imo->imo_multicast_ifp != NULL) {
270		/*
271		 * Bypass the normal routing lookup for multicast
272		 * packets if the interface is specified.
273		 */
274		ifp = imo->imo_multicast_ifp;
275		IFP_TO_IA(ifp, ia);
276		if (ia)
277			have_ia_ref = 1;
278		isbroadcast = 0;	/* fool gcc */
279	} else {
280		/*
281		 * We want to do any cloning requested by the link layer,
282		 * as this is probably required in all cases for correct
283		 * operation (as it is for ARP).
284		 */
285		if (rte == NULL) {
286#ifdef RADIX_MPATH
287			rtalloc_mpath_fib(ro,
288			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
289			    fibnum);
290#else
291			in_rtalloc_ign(ro, 0, fibnum);
292#endif
293			rte = ro->ro_rt;
294		}
295		if (rte == NULL ||
296		    rte->rt_ifp == NULL ||
297		    !RT_LINK_IS_UP(rte->rt_ifp)) {
298#ifdef IPSEC
299			/*
300			 * There is no route for this packet, but it is
301			 * possible that a matching SPD entry exists.
302			 */
303			no_route_but_check_spd = 1;
304			mtu = 0; /* Silence GCC warning. */
305			goto sendit;
306#endif
307			IPSTAT_INC(ips_noroute);
308			error = EHOSTUNREACH;
309			goto bad;
310		}
311		ia = ifatoia(rte->rt_ifa);
312		ifp = rte->rt_ifp;
313		counter_u64_add(rte->rt_pksent, 1);
314		if (rte->rt_flags & RTF_GATEWAY)
315			gw = (struct sockaddr_in *)rte->rt_gateway;
316		if (rte->rt_flags & RTF_HOST)
317			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
318		else
319			isbroadcast = in_broadcast(gw->sin_addr, ifp);
320	}
321	/*
322	 * Calculate MTU.  If we have a route that is up, use that,
323	 * otherwise use the interface's MTU.
324	 */
325	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
326		/*
327		 * This case can happen if the user changed the MTU
328		 * of an interface after enabling IP on it.  Because
329		 * most netifs don't keep track of routes pointing to
330		 * them, there is no way for one to update all its
331		 * routes when the MTU is changed.
332		 */
333		if (rte->rt_mtu > ifp->if_mtu)
334			rte->rt_mtu = ifp->if_mtu;
335		mtu = rte->rt_mtu;
336	} else {
337		mtu = ifp->if_mtu;
338	}
339	/* Catch a possible divide by zero later. */
340	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
341	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
342	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
343		m->m_flags |= M_MCAST;
344		/*
345		 * IP destination address is multicast.  Make sure "gw"
346		 * still points to the address in "ro".  (It may have been
347		 * changed to point to a gateway address, above.)
348		 */
349		gw = dst;
350		/*
351		 * See if the caller provided any multicast options
352		 */
353		if (imo != NULL) {
354			ip->ip_ttl = imo->imo_multicast_ttl;
355			if (imo->imo_multicast_vif != -1)
356				ip->ip_src.s_addr =
357				    ip_mcast_src ?
358				    ip_mcast_src(imo->imo_multicast_vif) :
359				    INADDR_ANY;
360		} else
361			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
362		/*
363		 * Confirm that the outgoing interface supports multicast.
364		 */
365		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
366			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
367				IPSTAT_INC(ips_noroute);
368				error = ENETUNREACH;
369				goto bad;
370			}
371		}
372		/*
373		 * If source address not specified yet, use address
374		 * of outgoing interface.
375		 */
376		if (ip->ip_src.s_addr == INADDR_ANY) {
377			/* Interface may have no addresses. */
378			if (ia != NULL)
379				ip->ip_src = IA_SIN(ia)->sin_addr;
380		}
381
382		if ((imo == NULL && in_mcast_loop) ||
383		    (imo && imo->imo_multicast_loop)) {
384			/*
385			 * Loop back multicast datagram if not expressly
386			 * forbidden to do so, even if we are not a member
387			 * of the group; ip_input() will filter it later,
388			 * thus deferring a hash lookup and mutex acquisition
389			 * at the expense of a cheap copy using m_copym().
390			 */
391			ip_mloopback(ifp, m, dst, hlen);
392		} else {
393			/*
394			 * If we are acting as a multicast router, perform
395			 * multicast forwarding as if the packet had just
396			 * arrived on the interface to which we are about
397			 * to send.  The multicast forwarding function
398			 * recursively calls this function, using the
399			 * IP_FORWARDING flag to prevent infinite recursion.
400			 *
401			 * Multicasts that are looped back by ip_mloopback(),
402			 * above, will be forwarded by the ip_input() routine,
403			 * if necessary.
404			 */
405			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
406				/*
407				 * If rsvp daemon is not running, do not
408				 * set ip_moptions. This ensures that the packet
409				 * is multicast and not just sent down one link
410				 * as prescribed by rsvpd.
411				 */
412				if (!V_rsvp_on)
413					imo = NULL;
414				if (ip_mforward &&
415				    ip_mforward(ip, ifp, m, imo) != 0) {
416					m_freem(m);
417					goto done;
418				}
419			}
420		}
421
422		/*
423		 * Multicasts with a time-to-live of zero may be looped-
424		 * back, above, but must not be transmitted on a network.
425		 * Also, multicasts addressed to the loopback interface
426		 * are not sent -- the above call to ip_mloopback() will
427		 * loop back a copy. ip_input() will drop the copy if
428		 * this host does not belong to the destination group on
429		 * the loopback interface.
430		 */
431		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
432			m_freem(m);
433			goto done;
434		}
435
436		goto sendit;
437	}
438
439	/*
440	 * If the source address is not specified yet, use the address
441	 * of the outoing interface.
442	 */
443	if (ip->ip_src.s_addr == INADDR_ANY) {
444		/* Interface may have no addresses. */
445		if (ia != NULL) {
446			ip->ip_src = IA_SIN(ia)->sin_addr;
447		}
448	}
449
450	/*
451	 * Look for broadcast address and
452	 * verify user is allowed to send
453	 * such a packet.
454	 */
455	if (isbroadcast) {
456		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
457			error = EADDRNOTAVAIL;
458			goto bad;
459		}
460		if ((flags & IP_ALLOWBROADCAST) == 0) {
461			error = EACCES;
462			goto bad;
463		}
464		/* don't allow broadcast messages to be fragmented */
465		if (ip_len > mtu) {
466			error = EMSGSIZE;
467			goto bad;
468		}
469		m->m_flags |= M_BCAST;
470	} else {
471		m->m_flags &= ~M_BCAST;
472	}
473
474sendit:
475#ifdef IPSEC
476	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
477	case 1:
478		goto bad;
479	case -1:
480		goto done;
481	case 0:
482	default:
483		break;	/* Continue with packet processing. */
484	}
485	/*
486	 * Check if there was a route for this packet; return error if not.
487	 */
488	if (no_route_but_check_spd) {
489		IPSTAT_INC(ips_noroute);
490		error = EHOSTUNREACH;
491		goto bad;
492	}
493	/* Update variables that are affected by ipsec4_output(). */
494	ip = mtod(m, struct ip *);
495	hlen = ip->ip_hl << 2;
496#endif /* IPSEC */
497
498	/* Jump over all PFIL processing if hooks are not active. */
499	if (!PFIL_HOOKED(&V_inet_pfil_hook))
500		goto passout;
501
502	/* Run through list of hooks for output packets. */
503	odst.s_addr = ip->ip_dst.s_addr;
504	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
505	if (error != 0 || m == NULL)
506		goto done;
507
508	ip = mtod(m, struct ip *);
509	needfiblookup = 0;
510
511	/* See if destination IP address was changed by packet filter. */
512	if (odst.s_addr != ip->ip_dst.s_addr) {
513		m->m_flags |= M_SKIP_FIREWALL;
514		/* If destination is now ourself drop to ip_input(). */
515		if (in_localip(ip->ip_dst)) {
516			m->m_flags |= M_FASTFWD_OURS;
517			if (m->m_pkthdr.rcvif == NULL)
518				m->m_pkthdr.rcvif = V_loif;
519			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
520				m->m_pkthdr.csum_flags |=
521				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
522				m->m_pkthdr.csum_data = 0xffff;
523			}
524			m->m_pkthdr.csum_flags |=
525			    CSUM_IP_CHECKED | CSUM_IP_VALID;
526#ifdef SCTP
527			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
528				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
529#endif
530			error = netisr_queue(NETISR_IP, m);
531			goto done;
532		} else {
533			if (have_ia_ref)
534				ifa_free(&ia->ia_ifa);
535			needfiblookup = 1; /* Redo the routing table lookup. */
536		}
537	}
538	/* See if fib was changed by packet filter. */
539	if (fibnum != M_GETFIB(m)) {
540		m->m_flags |= M_SKIP_FIREWALL;
541		fibnum = M_GETFIB(m);
542		RO_RTFREE(ro);
543		needfiblookup = 1;
544	}
545	if (needfiblookup)
546		goto again;
547
548	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
549	if (m->m_flags & M_FASTFWD_OURS) {
550		if (m->m_pkthdr.rcvif == NULL)
551			m->m_pkthdr.rcvif = V_loif;
552		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
553			m->m_pkthdr.csum_flags |=
554			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
555			m->m_pkthdr.csum_data = 0xffff;
556		}
557#ifdef SCTP
558		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
559			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
560#endif
561		m->m_pkthdr.csum_flags |=
562			    CSUM_IP_CHECKED | CSUM_IP_VALID;
563
564		error = netisr_queue(NETISR_IP, m);
565		goto done;
566	}
567	/* Or forward to some other address? */
568	if ((m->m_flags & M_IP_NEXTHOP) &&
569	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
570		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
571		m->m_flags |= M_SKIP_FIREWALL;
572		m->m_flags &= ~M_IP_NEXTHOP;
573		m_tag_delete(m, fwd_tag);
574		if (have_ia_ref)
575			ifa_free(&ia->ia_ifa);
576		goto again;
577	}
578
579passout:
580	/* 127/8 must not appear on wire - RFC1122. */
581	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
582	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
583		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
584			IPSTAT_INC(ips_badaddr);
585			error = EADDRNOTAVAIL;
586			goto bad;
587		}
588	}
589
590	m->m_pkthdr.csum_flags |= CSUM_IP;
591	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
592		in_delayed_cksum(m);
593		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
594	}
595#ifdef SCTP
596	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
597		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
598		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
599	}
600#endif
601
602	/*
603	 * If small enough for interface, or the interface will take
604	 * care of the fragmentation for us, we can just send directly.
605	 */
606	if (ip_len <= mtu ||
607	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) {
608		ip->ip_sum = 0;
609		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
610			ip->ip_sum = in_cksum(m, hlen);
611			m->m_pkthdr.csum_flags &= ~CSUM_IP;
612		}
613
614		/*
615		 * Record statistics for this interface address.
616		 * With CSUM_TSO the byte/packet count will be slightly
617		 * incorrect because we count the IP+TCP headers only
618		 * once instead of for every generated packet.
619		 */
620		if (!(flags & IP_FORWARDING) && ia) {
621			if (m->m_pkthdr.csum_flags & CSUM_TSO)
622				counter_u64_add(ia->ia_ifa.ifa_opackets,
623				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
624			else
625				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
626
627			counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
628		}
629#ifdef MBUF_STRESS_TEST
630		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
631			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
632#endif
633		/*
634		 * Reset layer specific mbuf flags
635		 * to avoid confusing lower layers.
636		 */
637		m_clrprotoflags(m);
638		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
639		error = (*ifp->if_output)(ifp, m,
640		    (const struct sockaddr *)gw, ro);
641		goto done;
642	}
643
644	/* Balk when DF bit is set or the interface didn't support TSO. */
645	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
646		error = EMSGSIZE;
647		IPSTAT_INC(ips_cantfrag);
648		goto bad;
649	}
650
651	/*
652	 * Too large for interface; fragment if possible. If successful,
653	 * on return, m will point to a list of packets to be sent.
654	 */
655	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
656	if (error)
657		goto bad;
658	for (; m; m = m0) {
659		m0 = m->m_nextpkt;
660		m->m_nextpkt = 0;
661		if (error == 0) {
662			/* Record statistics for this interface address. */
663			if (ia != NULL) {
664				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
665				counter_u64_add(ia->ia_ifa.ifa_obytes,
666				    m->m_pkthdr.len);
667			}
668			/*
669			 * Reset layer specific mbuf flags
670			 * to avoid confusing upper layers.
671			 */
672			m_clrprotoflags(m);
673
674			IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
675			error = (*ifp->if_output)(ifp, m,
676			    (const struct sockaddr *)gw, ro);
677		} else
678			m_freem(m);
679	}
680
681	if (error == 0)
682		IPSTAT_INC(ips_fragmented);
683
684done:
685	if (ro == &iproute)
686		RO_RTFREE(ro);
687	if (have_ia_ref)
688		ifa_free(&ia->ia_ifa);
689	return (error);
690bad:
691	m_freem(m);
692	goto done;
693}
694
695/*
696 * Create a chain of fragments which fit the given mtu. m_frag points to the
697 * mbuf to be fragmented; on return it points to the chain with the fragments.
698 * Return 0 if no error. If error, m_frag may contain a partially built
699 * chain of fragments that should be freed by the caller.
700 *
701 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
702 */
703int
704ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
705    u_long if_hwassist_flags)
706{
707	int error = 0;
708	int hlen = ip->ip_hl << 2;
709	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
710	int off;
711	struct mbuf *m0 = *m_frag;	/* the original packet		*/
712	int firstlen;
713	struct mbuf **mnext;
714	int nfrags;
715	uint16_t ip_len, ip_off;
716
717	ip_len = ntohs(ip->ip_len);
718	ip_off = ntohs(ip->ip_off);
719
720	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
721		IPSTAT_INC(ips_cantfrag);
722		return EMSGSIZE;
723	}
724
725	/*
726	 * Must be able to put at least 8 bytes per fragment.
727	 */
728	if (len < 8)
729		return EMSGSIZE;
730
731	/*
732	 * If the interface will not calculate checksums on
733	 * fragmented packets, then do it here.
734	 */
735	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
736		in_delayed_cksum(m0);
737		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
738	}
739#ifdef SCTP
740	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
741		sctp_delayed_cksum(m0, hlen);
742		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
743	}
744#endif
745	if (len > PAGE_SIZE) {
746		/*
747		 * Fragment large datagrams such that each segment
748		 * contains a multiple of PAGE_SIZE amount of data,
749		 * plus headers. This enables a receiver to perform
750		 * page-flipping zero-copy optimizations.
751		 *
752		 * XXX When does this help given that sender and receiver
753		 * could have different page sizes, and also mtu could
754		 * be less than the receiver's page size ?
755		 */
756		int newlen;
757		struct mbuf *m;
758
759		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
760			off += m->m_len;
761
762		/*
763		 * firstlen (off - hlen) must be aligned on an
764		 * 8-byte boundary
765		 */
766		if (off < hlen)
767			goto smart_frag_failure;
768		off = ((off - hlen) & ~7) + hlen;
769		newlen = (~PAGE_MASK) & mtu;
770		if ((newlen + sizeof (struct ip)) > mtu) {
771			/* we failed, go back the default */
772smart_frag_failure:
773			newlen = len;
774			off = hlen + len;
775		}
776		len = newlen;
777
778	} else {
779		off = hlen + len;
780	}
781
782	firstlen = off - hlen;
783	mnext = &m0->m_nextpkt;		/* pointer to next packet */
784
785	/*
786	 * Loop through length of segment after first fragment,
787	 * make new header and copy data of each part and link onto chain.
788	 * Here, m0 is the original packet, m is the fragment being created.
789	 * The fragments are linked off the m_nextpkt of the original
790	 * packet, which after processing serves as the first fragment.
791	 */
792	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
793		struct ip *mhip;	/* ip header on the fragment */
794		struct mbuf *m;
795		int mhlen = sizeof (struct ip);
796
797		m = m_gethdr(M_NOWAIT, MT_DATA);
798		if (m == NULL) {
799			error = ENOBUFS;
800			IPSTAT_INC(ips_odropped);
801			goto done;
802		}
803		m->m_flags |= (m0->m_flags & M_MCAST);
804		/*
805		 * In the first mbuf, leave room for the link header, then
806		 * copy the original IP header including options. The payload
807		 * goes into an additional mbuf chain returned by m_copym().
808		 */
809		m->m_data += max_linkhdr;
810		mhip = mtod(m, struct ip *);
811		*mhip = *ip;
812		if (hlen > sizeof (struct ip)) {
813			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
814			mhip->ip_v = IPVERSION;
815			mhip->ip_hl = mhlen >> 2;
816		}
817		m->m_len = mhlen;
818		/* XXX do we need to add ip_off below ? */
819		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
820		if (off + len >= ip_len)
821			len = ip_len - off;
822		else
823			mhip->ip_off |= IP_MF;
824		mhip->ip_len = htons((u_short)(len + mhlen));
825		m->m_next = m_copym(m0, off, len, M_NOWAIT);
826		if (m->m_next == NULL) {	/* copy failed */
827			m_free(m);
828			error = ENOBUFS;	/* ??? */
829			IPSTAT_INC(ips_odropped);
830			goto done;
831		}
832		m->m_pkthdr.len = mhlen + len;
833		m->m_pkthdr.rcvif = NULL;
834#ifdef MAC
835		mac_netinet_fragment(m0, m);
836#endif
837		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
838		mhip->ip_off = htons(mhip->ip_off);
839		mhip->ip_sum = 0;
840		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
841			mhip->ip_sum = in_cksum(m, mhlen);
842			m->m_pkthdr.csum_flags &= ~CSUM_IP;
843		}
844		*mnext = m;
845		mnext = &m->m_nextpkt;
846	}
847	IPSTAT_ADD(ips_ofragments, nfrags);
848
849	/*
850	 * Update first fragment by trimming what's been copied out
851	 * and updating header.
852	 */
853	m_adj(m0, hlen + firstlen - ip_len);
854	m0->m_pkthdr.len = hlen + firstlen;
855	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
856	ip->ip_off = htons(ip_off | IP_MF);
857	ip->ip_sum = 0;
858	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
859		ip->ip_sum = in_cksum(m0, hlen);
860		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
861	}
862
863done:
864	*m_frag = m0;
865	return error;
866}
867
868void
869in_delayed_cksum(struct mbuf *m)
870{
871	struct ip *ip;
872	uint16_t csum, offset, ip_len;
873
874	ip = mtod(m, struct ip *);
875	offset = ip->ip_hl << 2 ;
876	ip_len = ntohs(ip->ip_len);
877	csum = in_cksum_skip(m, ip_len, offset);
878	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
879		csum = 0xffff;
880	offset += m->m_pkthdr.csum_data;	/* checksum offset */
881
882	/* find the mbuf in the chain where the checksum starts*/
883	while ((m != NULL) && (offset >= m->m_len)) {
884		offset -= m->m_len;
885		m = m->m_next;
886	}
887	KASSERT(m != NULL, ("in_delayed_cksum: checksum outside mbuf chain."));
888	KASSERT(offset + sizeof(u_short) <= m->m_len, ("in_delayed_cksum: checksum split between mbufs."));
889	*(u_short *)(m->m_data + offset) = csum;
890}
891
892/*
893 * IP socket option processing.
894 */
895int
896ip_ctloutput(struct socket *so, struct sockopt *sopt)
897{
898	struct	inpcb *inp = sotoinpcb(so);
899	int	error, optval;
900#ifdef	RSS
901	uint32_t rss_bucket;
902	int retval;
903#endif
904
905	error = optval = 0;
906	if (sopt->sopt_level != IPPROTO_IP) {
907		error = EINVAL;
908
909		if (sopt->sopt_level == SOL_SOCKET &&
910		    sopt->sopt_dir == SOPT_SET) {
911			switch (sopt->sopt_name) {
912			case SO_REUSEADDR:
913				INP_WLOCK(inp);
914				if ((so->so_options & SO_REUSEADDR) != 0)
915					inp->inp_flags2 |= INP_REUSEADDR;
916				else
917					inp->inp_flags2 &= ~INP_REUSEADDR;
918				INP_WUNLOCK(inp);
919				error = 0;
920				break;
921			case SO_REUSEPORT:
922				INP_WLOCK(inp);
923				if ((so->so_options & SO_REUSEPORT) != 0)
924					inp->inp_flags2 |= INP_REUSEPORT;
925				else
926					inp->inp_flags2 &= ~INP_REUSEPORT;
927				INP_WUNLOCK(inp);
928				error = 0;
929				break;
930			case SO_SETFIB:
931				INP_WLOCK(inp);
932				inp->inp_inc.inc_fibnum = so->so_fibnum;
933				INP_WUNLOCK(inp);
934				error = 0;
935				break;
936			default:
937				break;
938			}
939		}
940		return (error);
941	}
942
943	switch (sopt->sopt_dir) {
944	case SOPT_SET:
945		switch (sopt->sopt_name) {
946		case IP_OPTIONS:
947#ifdef notyet
948		case IP_RETOPTS:
949#endif
950		{
951			struct mbuf *m;
952			if (sopt->sopt_valsize > MLEN) {
953				error = EMSGSIZE;
954				break;
955			}
956			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
957			if (m == NULL) {
958				error = ENOBUFS;
959				break;
960			}
961			m->m_len = sopt->sopt_valsize;
962			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
963					    m->m_len);
964			if (error) {
965				m_free(m);
966				break;
967			}
968			INP_WLOCK(inp);
969			error = ip_pcbopts(inp, sopt->sopt_name, m);
970			INP_WUNLOCK(inp);
971			return (error);
972		}
973
974		case IP_BINDANY:
975			if (sopt->sopt_td != NULL) {
976				error = priv_check(sopt->sopt_td,
977				    PRIV_NETINET_BINDANY);
978				if (error)
979					break;
980			}
981			/* FALLTHROUGH */
982		case IP_BINDMULTI:
983#ifdef	RSS
984		case IP_RSS_LISTEN_BUCKET:
985#endif
986		case IP_TOS:
987		case IP_TTL:
988		case IP_MINTTL:
989		case IP_RECVOPTS:
990		case IP_RECVRETOPTS:
991		case IP_RECVDSTADDR:
992		case IP_RECVTTL:
993		case IP_RECVIF:
994		case IP_FAITH:
995		case IP_ONESBCAST:
996		case IP_DONTFRAG:
997		case IP_RECVTOS:
998		case IP_RECVFLOWID:
999#ifdef	RSS
1000		case IP_RECVRSSBUCKETID:
1001#endif
1002			error = sooptcopyin(sopt, &optval, sizeof optval,
1003					    sizeof optval);
1004			if (error)
1005				break;
1006
1007			switch (sopt->sopt_name) {
1008			case IP_TOS:
1009				inp->inp_ip_tos = optval;
1010				break;
1011
1012			case IP_TTL:
1013				inp->inp_ip_ttl = optval;
1014				break;
1015
1016			case IP_MINTTL:
1017				if (optval >= 0 && optval <= MAXTTL)
1018					inp->inp_ip_minttl = optval;
1019				else
1020					error = EINVAL;
1021				break;
1022
1023#define	OPTSET(bit) do {						\
1024	INP_WLOCK(inp);							\
1025	if (optval)							\
1026		inp->inp_flags |= bit;					\
1027	else								\
1028		inp->inp_flags &= ~bit;					\
1029	INP_WUNLOCK(inp);						\
1030} while (0)
1031
1032#define	OPTSET2(bit, val) do {						\
1033	INP_WLOCK(inp);							\
1034	if (val)							\
1035		inp->inp_flags2 |= bit;					\
1036	else								\
1037		inp->inp_flags2 &= ~bit;				\
1038	INP_WUNLOCK(inp);						\
1039} while (0)
1040
1041			case IP_RECVOPTS:
1042				OPTSET(INP_RECVOPTS);
1043				break;
1044
1045			case IP_RECVRETOPTS:
1046				OPTSET(INP_RECVRETOPTS);
1047				break;
1048
1049			case IP_RECVDSTADDR:
1050				OPTSET(INP_RECVDSTADDR);
1051				break;
1052
1053			case IP_RECVTTL:
1054				OPTSET(INP_RECVTTL);
1055				break;
1056
1057			case IP_RECVIF:
1058				OPTSET(INP_RECVIF);
1059				break;
1060
1061			case IP_FAITH:
1062				OPTSET(INP_FAITH);
1063				break;
1064
1065			case IP_ONESBCAST:
1066				OPTSET(INP_ONESBCAST);
1067				break;
1068			case IP_DONTFRAG:
1069				OPTSET(INP_DONTFRAG);
1070				break;
1071			case IP_BINDANY:
1072				OPTSET(INP_BINDANY);
1073				break;
1074			case IP_RECVTOS:
1075				OPTSET(INP_RECVTOS);
1076				break;
1077			case IP_BINDMULTI:
1078				OPTSET2(INP_BINDMULTI, optval);
1079				break;
1080			case IP_RECVFLOWID:
1081				OPTSET2(INP_RECVFLOWID, optval);
1082				break;
1083#ifdef	RSS
1084			case IP_RSS_LISTEN_BUCKET:
1085				if ((optval >= 0) &&
1086				    (optval < rss_getnumbuckets())) {
1087					inp->inp_rss_listen_bucket = optval;
1088					OPTSET2(INP_RSS_BUCKET_SET, 1);
1089				} else {
1090					error = EINVAL;
1091				}
1092				break;
1093			case IP_RECVRSSBUCKETID:
1094				OPTSET2(INP_RECVRSSBUCKETID, optval);
1095				break;
1096#endif
1097			}
1098			break;
1099#undef OPTSET
1100#undef OPTSET2
1101
1102		/*
1103		 * Multicast socket options are processed by the in_mcast
1104		 * module.
1105		 */
1106		case IP_MULTICAST_IF:
1107		case IP_MULTICAST_VIF:
1108		case IP_MULTICAST_TTL:
1109		case IP_MULTICAST_LOOP:
1110		case IP_ADD_MEMBERSHIP:
1111		case IP_DROP_MEMBERSHIP:
1112		case IP_ADD_SOURCE_MEMBERSHIP:
1113		case IP_DROP_SOURCE_MEMBERSHIP:
1114		case IP_BLOCK_SOURCE:
1115		case IP_UNBLOCK_SOURCE:
1116		case IP_MSFILTER:
1117		case MCAST_JOIN_GROUP:
1118		case MCAST_LEAVE_GROUP:
1119		case MCAST_JOIN_SOURCE_GROUP:
1120		case MCAST_LEAVE_SOURCE_GROUP:
1121		case MCAST_BLOCK_SOURCE:
1122		case MCAST_UNBLOCK_SOURCE:
1123			error = inp_setmoptions(inp, sopt);
1124			break;
1125
1126		case IP_PORTRANGE:
1127			error = sooptcopyin(sopt, &optval, sizeof optval,
1128					    sizeof optval);
1129			if (error)
1130				break;
1131
1132			INP_WLOCK(inp);
1133			switch (optval) {
1134			case IP_PORTRANGE_DEFAULT:
1135				inp->inp_flags &= ~(INP_LOWPORT);
1136				inp->inp_flags &= ~(INP_HIGHPORT);
1137				break;
1138
1139			case IP_PORTRANGE_HIGH:
1140				inp->inp_flags &= ~(INP_LOWPORT);
1141				inp->inp_flags |= INP_HIGHPORT;
1142				break;
1143
1144			case IP_PORTRANGE_LOW:
1145				inp->inp_flags &= ~(INP_HIGHPORT);
1146				inp->inp_flags |= INP_LOWPORT;
1147				break;
1148
1149			default:
1150				error = EINVAL;
1151				break;
1152			}
1153			INP_WUNLOCK(inp);
1154			break;
1155
1156#ifdef IPSEC
1157		case IP_IPSEC_POLICY:
1158		{
1159			caddr_t req;
1160			struct mbuf *m;
1161
1162			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1163				break;
1164			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1165				break;
1166			req = mtod(m, caddr_t);
1167			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1168			    m->m_len, (sopt->sopt_td != NULL) ?
1169			    sopt->sopt_td->td_ucred : NULL);
1170			m_freem(m);
1171			break;
1172		}
1173#endif /* IPSEC */
1174
1175		default:
1176			error = ENOPROTOOPT;
1177			break;
1178		}
1179		break;
1180
1181	case SOPT_GET:
1182		switch (sopt->sopt_name) {
1183		case IP_OPTIONS:
1184		case IP_RETOPTS:
1185			if (inp->inp_options)
1186				error = sooptcopyout(sopt,
1187						     mtod(inp->inp_options,
1188							  char *),
1189						     inp->inp_options->m_len);
1190			else
1191				sopt->sopt_valsize = 0;
1192			break;
1193
1194		case IP_TOS:
1195		case IP_TTL:
1196		case IP_MINTTL:
1197		case IP_RECVOPTS:
1198		case IP_RECVRETOPTS:
1199		case IP_RECVDSTADDR:
1200		case IP_RECVTTL:
1201		case IP_RECVIF:
1202		case IP_PORTRANGE:
1203		case IP_FAITH:
1204		case IP_ONESBCAST:
1205		case IP_DONTFRAG:
1206		case IP_BINDANY:
1207		case IP_RECVTOS:
1208		case IP_BINDMULTI:
1209		case IP_FLOWID:
1210		case IP_FLOWTYPE:
1211		case IP_RECVFLOWID:
1212#ifdef	RSS
1213		case IP_RSSBUCKETID:
1214		case IP_RECVRSSBUCKETID:
1215#endif
1216			switch (sopt->sopt_name) {
1217
1218			case IP_TOS:
1219				optval = inp->inp_ip_tos;
1220				break;
1221
1222			case IP_TTL:
1223				optval = inp->inp_ip_ttl;
1224				break;
1225
1226			case IP_MINTTL:
1227				optval = inp->inp_ip_minttl;
1228				break;
1229
1230#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1231#define	OPTBIT2(bit)	(inp->inp_flags2 & bit ? 1 : 0)
1232
1233			case IP_RECVOPTS:
1234				optval = OPTBIT(INP_RECVOPTS);
1235				break;
1236
1237			case IP_RECVRETOPTS:
1238				optval = OPTBIT(INP_RECVRETOPTS);
1239				break;
1240
1241			case IP_RECVDSTADDR:
1242				optval = OPTBIT(INP_RECVDSTADDR);
1243				break;
1244
1245			case IP_RECVTTL:
1246				optval = OPTBIT(INP_RECVTTL);
1247				break;
1248
1249			case IP_RECVIF:
1250				optval = OPTBIT(INP_RECVIF);
1251				break;
1252
1253			case IP_PORTRANGE:
1254				if (inp->inp_flags & INP_HIGHPORT)
1255					optval = IP_PORTRANGE_HIGH;
1256				else if (inp->inp_flags & INP_LOWPORT)
1257					optval = IP_PORTRANGE_LOW;
1258				else
1259					optval = 0;
1260				break;
1261
1262			case IP_FAITH:
1263				optval = OPTBIT(INP_FAITH);
1264				break;
1265
1266			case IP_ONESBCAST:
1267				optval = OPTBIT(INP_ONESBCAST);
1268				break;
1269			case IP_DONTFRAG:
1270				optval = OPTBIT(INP_DONTFRAG);
1271				break;
1272			case IP_BINDANY:
1273				optval = OPTBIT(INP_BINDANY);
1274				break;
1275			case IP_RECVTOS:
1276				optval = OPTBIT(INP_RECVTOS);
1277				break;
1278			case IP_FLOWID:
1279				optval = inp->inp_flowid;
1280				break;
1281			case IP_FLOWTYPE:
1282				optval = inp->inp_flowtype;
1283				break;
1284			case IP_RECVFLOWID:
1285				optval = OPTBIT2(INP_RECVFLOWID);
1286				break;
1287#ifdef	RSS
1288			case IP_RSSBUCKETID:
1289				retval = rss_hash2bucket(inp->inp_flowid,
1290				    inp->inp_flowtype,
1291				    &rss_bucket);
1292				if (retval == 0)
1293					optval = rss_bucket;
1294				else
1295					error = EINVAL;
1296				break;
1297			case IP_RECVRSSBUCKETID:
1298				optval = OPTBIT2(INP_RECVRSSBUCKETID);
1299				break;
1300#endif
1301			case IP_BINDMULTI:
1302				optval = OPTBIT2(INP_BINDMULTI);
1303				break;
1304			}
1305			error = sooptcopyout(sopt, &optval, sizeof optval);
1306			break;
1307
1308		/*
1309		 * Multicast socket options are processed by the in_mcast
1310		 * module.
1311		 */
1312		case IP_MULTICAST_IF:
1313		case IP_MULTICAST_VIF:
1314		case IP_MULTICAST_TTL:
1315		case IP_MULTICAST_LOOP:
1316		case IP_MSFILTER:
1317			error = inp_getmoptions(inp, sopt);
1318			break;
1319
1320#ifdef IPSEC
1321		case IP_IPSEC_POLICY:
1322		{
1323			struct mbuf *m = NULL;
1324			caddr_t req = NULL;
1325			size_t len = 0;
1326
1327			if (m != 0) {
1328				req = mtod(m, caddr_t);
1329				len = m->m_len;
1330			}
1331			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1332			if (error == 0)
1333				error = soopt_mcopyout(sopt, m); /* XXX */
1334			if (error == 0)
1335				m_freem(m);
1336			break;
1337		}
1338#endif /* IPSEC */
1339
1340		default:
1341			error = ENOPROTOOPT;
1342			break;
1343		}
1344		break;
1345	}
1346	return (error);
1347}
1348
1349/*
1350 * Routine called from ip_output() to loop back a copy of an IP multicast
1351 * packet to the input queue of a specified interface.  Note that this
1352 * calls the output routine of the loopback "driver", but with an interface
1353 * pointer that might NOT be a loopback interface -- evil, but easier than
1354 * replicating that code here.
1355 */
1356static void
1357ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1358    int hlen)
1359{
1360	register struct ip *ip;
1361	struct mbuf *copym;
1362
1363	/*
1364	 * Make a deep copy of the packet because we're going to
1365	 * modify the pack in order to generate checksums.
1366	 */
1367	copym = m_dup(m, M_NOWAIT);
1368	if (copym != NULL && (!M_WRITABLE(copym) || copym->m_len < hlen))
1369		copym = m_pullup(copym, hlen);
1370	if (copym != NULL) {
1371		/* If needed, compute the checksum and mark it as valid. */
1372		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1373			in_delayed_cksum(copym);
1374			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1375			copym->m_pkthdr.csum_flags |=
1376			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1377			copym->m_pkthdr.csum_data = 0xffff;
1378		}
1379		/*
1380		 * We don't bother to fragment if the IP length is greater
1381		 * than the interface's MTU.  Can this possibly matter?
1382		 */
1383		ip = mtod(copym, struct ip *);
1384		ip->ip_sum = 0;
1385		ip->ip_sum = in_cksum(copym, hlen);
1386#if 1 /* XXX */
1387		if (dst->sin_family != AF_INET) {
1388			printf("ip_mloopback: bad address family %d\n",
1389						dst->sin_family);
1390			dst->sin_family = AF_INET;
1391		}
1392#endif
1393		if_simloop(ifp, copym, dst->sin_family, 0);
1394	}
1395}
1396