ip_output.c revision 257176
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_output.c 257176 2013-10-26 17:58:36Z glebius $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_kdtrace.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40#include "opt_route.h"
41#include "opt_sctp.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/priv.h>
49#include <sys/proc.h>
50#include <sys/protosw.h>
51#include <sys/sdt.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/sysctl.h>
55#include <sys/ucred.h>
56
57#include <net/if.h>
58#include <net/if_var.h>
59#include <net/if_llatbl.h>
60#include <net/netisr.h>
61#include <net/pfil.h>
62#include <net/route.h>
63#include <net/flowtable.h>
64#ifdef RADIX_MPATH
65#include <net/radix_mpath.h>
66#endif
67#include <net/vnet.h>
68
69#include <netinet/in.h>
70#include <netinet/in_kdtrace.h>
71#include <netinet/in_systm.h>
72#include <netinet/ip.h>
73#include <netinet/in_pcb.h>
74#include <netinet/in_var.h>
75#include <netinet/ip_var.h>
76#include <netinet/ip_options.h>
77#ifdef SCTP
78#include <netinet/sctp.h>
79#include <netinet/sctp_crc32.h>
80#endif
81
82#ifdef IPSEC
83#include <netinet/ip_ipsec.h>
84#include <netipsec/ipsec.h>
85#endif /* IPSEC*/
86
87#include <machine/in_cksum.h>
88
89#include <security/mac/mac_framework.h>
90
91VNET_DEFINE(u_short, ip_id);
92
93#ifdef MBUF_STRESS_TEST
94static int mbuf_frag_size = 0;
95SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
96	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
97#endif
98
99static void	ip_mloopback
100	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
101
102
103extern int in_mcast_loop;
104extern	struct protosw inetsw[];
105
106/*
107 * IP output.  The packet in mbuf chain m contains a skeletal IP
108 * header (with len, off, ttl, proto, tos, src, dst).
109 * The mbuf chain containing the packet will be freed.
110 * The mbuf opt, if present, will not be freed.
111 * If route ro is present and has ro_rt initialized, route lookup would be
112 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
113 * then result of route lookup is stored in ro->ro_rt.
114 *
115 * In the IP forwarding case, the packet will arrive with options already
116 * inserted, so must have a NULL opt pointer.
117 */
118int
119ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
120    struct ip_moptions *imo, struct inpcb *inp)
121{
122	struct ip *ip;
123	struct ifnet *ifp = NULL;	/* keep compiler happy */
124	struct mbuf *m0;
125	int hlen = sizeof (struct ip);
126	int mtu;
127	int n;	/* scratchpad */
128	int error = 0;
129	struct sockaddr_in *dst;
130	const struct sockaddr_in *gw;
131	struct in_ifaddr *ia;
132	int isbroadcast;
133	uint16_t ip_len, ip_off;
134	struct route iproute;
135	struct rtentry *rte;	/* cache for ro->ro_rt */
136	struct in_addr odst;
137	struct m_tag *fwd_tag = NULL;
138#ifdef IPSEC
139	int no_route_but_check_spd = 0;
140#endif
141	M_ASSERTPKTHDR(m);
142
143	if (inp != NULL) {
144		INP_LOCK_ASSERT(inp);
145		M_SETFIB(m, inp->inp_inc.inc_fibnum);
146		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
147			m->m_pkthdr.flowid = inp->inp_flowid;
148			m->m_flags |= M_FLOWID;
149		}
150	}
151
152	if (ro == NULL) {
153		ro = &iproute;
154		bzero(ro, sizeof (*ro));
155	}
156
157#ifdef FLOWTABLE
158	if (ro->ro_rt == NULL) {
159		struct flentry *fle;
160
161		/*
162		 * The flow table returns route entries valid for up to 30
163		 * seconds; we rely on the remainder of ip_output() taking no
164		 * longer than that long for the stability of ro_rt. The
165		 * flow ID assignment must have happened before this point.
166		 */
167		fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET);
168		if (fle != NULL)
169			flow_to_route(fle, ro);
170	}
171#endif
172
173	if (opt) {
174		int len = 0;
175		m = ip_insertoptions(m, opt, &len);
176		if (len != 0)
177			hlen = len; /* ip->ip_hl is updated above */
178	}
179	ip = mtod(m, struct ip *);
180	ip_len = ntohs(ip->ip_len);
181	ip_off = ntohs(ip->ip_off);
182
183	/*
184	 * Fill in IP header.  If we are not allowing fragmentation,
185	 * then the ip_id field is meaningless, but we don't set it
186	 * to zero.  Doing so causes various problems when devices along
187	 * the path (routers, load balancers, firewalls, etc.) illegally
188	 * disable DF on our packet.  Note that a 16-bit counter
189	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
190	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
191	 * for Counting NATted Hosts", Proc. IMW'02, available at
192	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
193	 */
194	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
195		ip->ip_v = IPVERSION;
196		ip->ip_hl = hlen >> 2;
197		ip->ip_id = ip_newid();
198		IPSTAT_INC(ips_localout);
199	} else {
200		/* Header already set, fetch hlen from there */
201		hlen = ip->ip_hl << 2;
202	}
203
204	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
205again:
206	ia = NULL;
207	/*
208	 * If there is a cached route,
209	 * check that it is to the same destination
210	 * and is still up.  If not, free it and try again.
211	 * The address family should also be checked in case of sharing the
212	 * cache with IPv6.
213	 */
214	rte = ro->ro_rt;
215	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
216		    rte->rt_ifp == NULL ||
217		    !RT_LINK_IS_UP(rte->rt_ifp) ||
218			  dst->sin_family != AF_INET ||
219			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
220		RO_RTFREE(ro);
221		ro->ro_lle = NULL;
222		rte = NULL;
223	}
224	if (rte == NULL && fwd_tag == NULL) {
225		bzero(dst, sizeof(*dst));
226		dst->sin_family = AF_INET;
227		dst->sin_len = sizeof(*dst);
228		dst->sin_addr = ip->ip_dst;
229	}
230	/*
231	 * If routing to interface only, short circuit routing lookup.
232	 * The use of an all-ones broadcast address implies this; an
233	 * interface is specified by the broadcast address of an interface,
234	 * or the destination address of a ptp interface.
235	 */
236	if (flags & IP_SENDONES) {
237		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
238		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
239			IPSTAT_INC(ips_noroute);
240			error = ENETUNREACH;
241			goto bad;
242		}
243		ip->ip_dst.s_addr = INADDR_BROADCAST;
244		dst->sin_addr = ip->ip_dst;
245		ifp = ia->ia_ifp;
246		ip->ip_ttl = 1;
247		isbroadcast = 1;
248	} else if (flags & IP_ROUTETOIF) {
249		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
250		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
251			IPSTAT_INC(ips_noroute);
252			error = ENETUNREACH;
253			goto bad;
254		}
255		ifp = ia->ia_ifp;
256		ip->ip_ttl = 1;
257		isbroadcast = in_broadcast(dst->sin_addr, ifp);
258	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
259	    imo != NULL && imo->imo_multicast_ifp != NULL) {
260		/*
261		 * Bypass the normal routing lookup for multicast
262		 * packets if the interface is specified.
263		 */
264		ifp = imo->imo_multicast_ifp;
265		IFP_TO_IA(ifp, ia);
266		isbroadcast = 0;	/* fool gcc */
267	} else {
268		/*
269		 * We want to do any cloning requested by the link layer,
270		 * as this is probably required in all cases for correct
271		 * operation (as it is for ARP).
272		 */
273		if (rte == NULL) {
274#ifdef RADIX_MPATH
275			rtalloc_mpath_fib(ro,
276			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
277			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
278#else
279			in_rtalloc_ign(ro, 0,
280			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
281#endif
282			rte = ro->ro_rt;
283		}
284		if (rte == NULL ||
285		    rte->rt_ifp == NULL ||
286		    !RT_LINK_IS_UP(rte->rt_ifp)) {
287#ifdef IPSEC
288			/*
289			 * There is no route for this packet, but it is
290			 * possible that a matching SPD entry exists.
291			 */
292			no_route_but_check_spd = 1;
293			mtu = 0; /* Silence GCC warning. */
294			goto sendit;
295#endif
296			IPSTAT_INC(ips_noroute);
297			error = EHOSTUNREACH;
298			goto bad;
299		}
300		ia = ifatoia(rte->rt_ifa);
301		ifa_ref(&ia->ia_ifa);
302		ifp = rte->rt_ifp;
303		rte->rt_rmx.rmx_pksent++;
304		if (rte->rt_flags & RTF_GATEWAY)
305			gw = (struct sockaddr_in *)rte->rt_gateway;
306		if (rte->rt_flags & RTF_HOST)
307			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
308		else
309			isbroadcast = in_broadcast(gw->sin_addr, ifp);
310	}
311	/*
312	 * Calculate MTU.  If we have a route that is up, use that,
313	 * otherwise use the interface's MTU.
314	 */
315	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
316		/*
317		 * This case can happen if the user changed the MTU
318		 * of an interface after enabling IP on it.  Because
319		 * most netifs don't keep track of routes pointing to
320		 * them, there is no way for one to update all its
321		 * routes when the MTU is changed.
322		 */
323		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
324			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
325		mtu = rte->rt_rmx.rmx_mtu;
326	} else {
327		mtu = ifp->if_mtu;
328	}
329	/* Catch a possible divide by zero later. */
330	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
331	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
332	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
333		m->m_flags |= M_MCAST;
334		/*
335		 * See if the caller provided any multicast options
336		 */
337		if (imo != NULL) {
338			ip->ip_ttl = imo->imo_multicast_ttl;
339			if (imo->imo_multicast_vif != -1)
340				ip->ip_src.s_addr =
341				    ip_mcast_src ?
342				    ip_mcast_src(imo->imo_multicast_vif) :
343				    INADDR_ANY;
344		} else
345			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
346		/*
347		 * Confirm that the outgoing interface supports multicast.
348		 */
349		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
350			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
351				IPSTAT_INC(ips_noroute);
352				error = ENETUNREACH;
353				goto bad;
354			}
355		}
356		/*
357		 * If source address not specified yet, use address
358		 * of outgoing interface.
359		 */
360		if (ip->ip_src.s_addr == INADDR_ANY) {
361			/* Interface may have no addresses. */
362			if (ia != NULL)
363				ip->ip_src = IA_SIN(ia)->sin_addr;
364		}
365
366		if ((imo == NULL && in_mcast_loop) ||
367		    (imo && imo->imo_multicast_loop)) {
368			/*
369			 * Loop back multicast datagram if not expressly
370			 * forbidden to do so, even if we are not a member
371			 * of the group; ip_input() will filter it later,
372			 * thus deferring a hash lookup and mutex acquisition
373			 * at the expense of a cheap copy using m_copym().
374			 */
375			ip_mloopback(ifp, m, dst, hlen);
376		} else {
377			/*
378			 * If we are acting as a multicast router, perform
379			 * multicast forwarding as if the packet had just
380			 * arrived on the interface to which we are about
381			 * to send.  The multicast forwarding function
382			 * recursively calls this function, using the
383			 * IP_FORWARDING flag to prevent infinite recursion.
384			 *
385			 * Multicasts that are looped back by ip_mloopback(),
386			 * above, will be forwarded by the ip_input() routine,
387			 * if necessary.
388			 */
389			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
390				/*
391				 * If rsvp daemon is not running, do not
392				 * set ip_moptions. This ensures that the packet
393				 * is multicast and not just sent down one link
394				 * as prescribed by rsvpd.
395				 */
396				if (!V_rsvp_on)
397					imo = NULL;
398				if (ip_mforward &&
399				    ip_mforward(ip, ifp, m, imo) != 0) {
400					m_freem(m);
401					goto done;
402				}
403			}
404		}
405
406		/*
407		 * Multicasts with a time-to-live of zero may be looped-
408		 * back, above, but must not be transmitted on a network.
409		 * Also, multicasts addressed to the loopback interface
410		 * are not sent -- the above call to ip_mloopback() will
411		 * loop back a copy. ip_input() will drop the copy if
412		 * this host does not belong to the destination group on
413		 * the loopback interface.
414		 */
415		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
416			m_freem(m);
417			goto done;
418		}
419
420		goto sendit;
421	}
422
423	/*
424	 * If the source address is not specified yet, use the address
425	 * of the outoing interface.
426	 */
427	if (ip->ip_src.s_addr == INADDR_ANY) {
428		/* Interface may have no addresses. */
429		if (ia != NULL) {
430			ip->ip_src = IA_SIN(ia)->sin_addr;
431		}
432	}
433
434	/*
435	 * Verify that we have any chance at all of being able to queue the
436	 * packet or packet fragments, unless ALTQ is enabled on the given
437	 * interface in which case packetdrop should be done by queueing.
438	 */
439	n = ip_len / mtu + 1; /* how many fragments ? */
440	if (
441#ifdef ALTQ
442	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
443#endif /* ALTQ */
444	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
445		error = ENOBUFS;
446		IPSTAT_INC(ips_odropped);
447		ifp->if_snd.ifq_drops += n;
448		goto bad;
449	}
450
451	/*
452	 * Look for broadcast address and
453	 * verify user is allowed to send
454	 * such a packet.
455	 */
456	if (isbroadcast) {
457		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
458			error = EADDRNOTAVAIL;
459			goto bad;
460		}
461		if ((flags & IP_ALLOWBROADCAST) == 0) {
462			error = EACCES;
463			goto bad;
464		}
465		/* don't allow broadcast messages to be fragmented */
466		if (ip_len > mtu) {
467			error = EMSGSIZE;
468			goto bad;
469		}
470		m->m_flags |= M_BCAST;
471	} else {
472		m->m_flags &= ~M_BCAST;
473	}
474
475sendit:
476#ifdef IPSEC
477	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
478	case 1:
479		goto bad;
480	case -1:
481		goto done;
482	case 0:
483	default:
484		break;	/* Continue with packet processing. */
485	}
486	/*
487	 * Check if there was a route for this packet; return error if not.
488	 */
489	if (no_route_but_check_spd) {
490		IPSTAT_INC(ips_noroute);
491		error = EHOSTUNREACH;
492		goto bad;
493	}
494	/* Update variables that are affected by ipsec4_output(). */
495	ip = mtod(m, struct ip *);
496	hlen = ip->ip_hl << 2;
497#endif /* IPSEC */
498
499	/* Jump over all PFIL processing if hooks are not active. */
500	if (!PFIL_HOOKED(&V_inet_pfil_hook))
501		goto passout;
502
503	/* Run through list of hooks for output packets. */
504	odst.s_addr = ip->ip_dst.s_addr;
505	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
506	if (error != 0 || m == NULL)
507		goto done;
508
509	ip = mtod(m, struct ip *);
510
511	/* See if destination IP address was changed by packet filter. */
512	if (odst.s_addr != ip->ip_dst.s_addr) {
513		m->m_flags |= M_SKIP_FIREWALL;
514		/* If destination is now ourself drop to ip_input(). */
515		if (in_localip(ip->ip_dst)) {
516			m->m_flags |= M_FASTFWD_OURS;
517			if (m->m_pkthdr.rcvif == NULL)
518				m->m_pkthdr.rcvif = V_loif;
519			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
520				m->m_pkthdr.csum_flags |=
521				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
522				m->m_pkthdr.csum_data = 0xffff;
523			}
524			m->m_pkthdr.csum_flags |=
525			    CSUM_IP_CHECKED | CSUM_IP_VALID;
526#ifdef SCTP
527			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
528				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
529#endif
530			error = netisr_queue(NETISR_IP, m);
531			goto done;
532		} else {
533			if (ia != NULL)
534				ifa_free(&ia->ia_ifa);
535			goto again;	/* Redo the routing table lookup. */
536		}
537	}
538
539	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
540	if (m->m_flags & M_FASTFWD_OURS) {
541		if (m->m_pkthdr.rcvif == NULL)
542			m->m_pkthdr.rcvif = V_loif;
543		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
544			m->m_pkthdr.csum_flags |=
545			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
546			m->m_pkthdr.csum_data = 0xffff;
547		}
548#ifdef SCTP
549		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
550			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
551#endif
552		m->m_pkthdr.csum_flags |=
553			    CSUM_IP_CHECKED | CSUM_IP_VALID;
554
555		error = netisr_queue(NETISR_IP, m);
556		goto done;
557	}
558	/* Or forward to some other address? */
559	if ((m->m_flags & M_IP_NEXTHOP) &&
560	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
561		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
562		m->m_flags |= M_SKIP_FIREWALL;
563		m->m_flags &= ~M_IP_NEXTHOP;
564		m_tag_delete(m, fwd_tag);
565		if (ia != NULL)
566			ifa_free(&ia->ia_ifa);
567		goto again;
568	}
569
570passout:
571	/* 127/8 must not appear on wire - RFC1122. */
572	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
573	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
574		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
575			IPSTAT_INC(ips_badaddr);
576			error = EADDRNOTAVAIL;
577			goto bad;
578		}
579	}
580
581	m->m_pkthdr.csum_flags |= CSUM_IP;
582	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
583		in_delayed_cksum(m);
584		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
585	}
586#ifdef SCTP
587	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
588		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
589		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
590	}
591#endif
592
593	/*
594	 * If small enough for interface, or the interface will take
595	 * care of the fragmentation for us, we can just send directly.
596	 */
597	if (ip_len <= mtu ||
598	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
599	    ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
600		ip->ip_sum = 0;
601		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
602			ip->ip_sum = in_cksum(m, hlen);
603			m->m_pkthdr.csum_flags &= ~CSUM_IP;
604		}
605
606		/*
607		 * Record statistics for this interface address.
608		 * With CSUM_TSO the byte/packet count will be slightly
609		 * incorrect because we count the IP+TCP headers only
610		 * once instead of for every generated packet.
611		 */
612		if (!(flags & IP_FORWARDING) && ia) {
613			if (m->m_pkthdr.csum_flags & CSUM_TSO)
614				counter_u64_add(ia->ia_ifa.ifa_opackets,
615				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz);
616			else
617				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
618
619			counter_u64_add(ia->ia_ifa.ifa_obytes, m->m_pkthdr.len);
620		}
621#ifdef MBUF_STRESS_TEST
622		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
623			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
624#endif
625		/*
626		 * Reset layer specific mbuf flags
627		 * to avoid confusing lower layers.
628		 */
629		m_clrprotoflags(m);
630		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
631		error = (*ifp->if_output)(ifp, m,
632		    (const struct sockaddr *)gw, ro);
633		goto done;
634	}
635
636	/* Balk when DF bit is set or the interface didn't support TSO. */
637	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
638		error = EMSGSIZE;
639		IPSTAT_INC(ips_cantfrag);
640		goto bad;
641	}
642
643	/*
644	 * Too large for interface; fragment if possible. If successful,
645	 * on return, m will point to a list of packets to be sent.
646	 */
647	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
648	if (error)
649		goto bad;
650	for (; m; m = m0) {
651		m0 = m->m_nextpkt;
652		m->m_nextpkt = 0;
653		if (error == 0) {
654			/* Record statistics for this interface address. */
655			if (ia != NULL) {
656				counter_u64_add(ia->ia_ifa.ifa_opackets, 1);
657				counter_u64_add(ia->ia_ifa.ifa_obytes,
658				    m->m_pkthdr.len);
659			}
660			/*
661			 * Reset layer specific mbuf flags
662			 * to avoid confusing upper layers.
663			 */
664			m_clrprotoflags(m);
665
666			IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
667			error = (*ifp->if_output)(ifp, m,
668			    (const struct sockaddr *)gw, ro);
669		} else
670			m_freem(m);
671	}
672
673	if (error == 0)
674		IPSTAT_INC(ips_fragmented);
675
676done:
677	if (ro == &iproute)
678		RO_RTFREE(ro);
679	if (ia != NULL)
680		ifa_free(&ia->ia_ifa);
681	return (error);
682bad:
683	m_freem(m);
684	goto done;
685}
686
687/*
688 * Create a chain of fragments which fit the given mtu. m_frag points to the
689 * mbuf to be fragmented; on return it points to the chain with the fragments.
690 * Return 0 if no error. If error, m_frag may contain a partially built
691 * chain of fragments that should be freed by the caller.
692 *
693 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
694 */
695int
696ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
697    u_long if_hwassist_flags)
698{
699	int error = 0;
700	int hlen = ip->ip_hl << 2;
701	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
702	int off;
703	struct mbuf *m0 = *m_frag;	/* the original packet		*/
704	int firstlen;
705	struct mbuf **mnext;
706	int nfrags;
707	uint16_t ip_len, ip_off;
708
709	ip_len = ntohs(ip->ip_len);
710	ip_off = ntohs(ip->ip_off);
711
712	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
713		IPSTAT_INC(ips_cantfrag);
714		return EMSGSIZE;
715	}
716
717	/*
718	 * Must be able to put at least 8 bytes per fragment.
719	 */
720	if (len < 8)
721		return EMSGSIZE;
722
723	/*
724	 * If the interface will not calculate checksums on
725	 * fragmented packets, then do it here.
726	 */
727	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
728		in_delayed_cksum(m0);
729		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
730	}
731#ifdef SCTP
732	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
733		sctp_delayed_cksum(m0, hlen);
734		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
735	}
736#endif
737	if (len > PAGE_SIZE) {
738		/*
739		 * Fragment large datagrams such that each segment
740		 * contains a multiple of PAGE_SIZE amount of data,
741		 * plus headers. This enables a receiver to perform
742		 * page-flipping zero-copy optimizations.
743		 *
744		 * XXX When does this help given that sender and receiver
745		 * could have different page sizes, and also mtu could
746		 * be less than the receiver's page size ?
747		 */
748		int newlen;
749		struct mbuf *m;
750
751		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
752			off += m->m_len;
753
754		/*
755		 * firstlen (off - hlen) must be aligned on an
756		 * 8-byte boundary
757		 */
758		if (off < hlen)
759			goto smart_frag_failure;
760		off = ((off - hlen) & ~7) + hlen;
761		newlen = (~PAGE_MASK) & mtu;
762		if ((newlen + sizeof (struct ip)) > mtu) {
763			/* we failed, go back the default */
764smart_frag_failure:
765			newlen = len;
766			off = hlen + len;
767		}
768		len = newlen;
769
770	} else {
771		off = hlen + len;
772	}
773
774	firstlen = off - hlen;
775	mnext = &m0->m_nextpkt;		/* pointer to next packet */
776
777	/*
778	 * Loop through length of segment after first fragment,
779	 * make new header and copy data of each part and link onto chain.
780	 * Here, m0 is the original packet, m is the fragment being created.
781	 * The fragments are linked off the m_nextpkt of the original
782	 * packet, which after processing serves as the first fragment.
783	 */
784	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
785		struct ip *mhip;	/* ip header on the fragment */
786		struct mbuf *m;
787		int mhlen = sizeof (struct ip);
788
789		m = m_gethdr(M_NOWAIT, MT_DATA);
790		if (m == NULL) {
791			error = ENOBUFS;
792			IPSTAT_INC(ips_odropped);
793			goto done;
794		}
795		m->m_flags |= (m0->m_flags & M_MCAST);
796		/*
797		 * In the first mbuf, leave room for the link header, then
798		 * copy the original IP header including options. The payload
799		 * goes into an additional mbuf chain returned by m_copym().
800		 */
801		m->m_data += max_linkhdr;
802		mhip = mtod(m, struct ip *);
803		*mhip = *ip;
804		if (hlen > sizeof (struct ip)) {
805			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
806			mhip->ip_v = IPVERSION;
807			mhip->ip_hl = mhlen >> 2;
808		}
809		m->m_len = mhlen;
810		/* XXX do we need to add ip_off below ? */
811		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
812		if (off + len >= ip_len)
813			len = ip_len - off;
814		else
815			mhip->ip_off |= IP_MF;
816		mhip->ip_len = htons((u_short)(len + mhlen));
817		m->m_next = m_copym(m0, off, len, M_NOWAIT);
818		if (m->m_next == NULL) {	/* copy failed */
819			m_free(m);
820			error = ENOBUFS;	/* ??? */
821			IPSTAT_INC(ips_odropped);
822			goto done;
823		}
824		m->m_pkthdr.len = mhlen + len;
825		m->m_pkthdr.rcvif = NULL;
826#ifdef MAC
827		mac_netinet_fragment(m0, m);
828#endif
829		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
830		mhip->ip_off = htons(mhip->ip_off);
831		mhip->ip_sum = 0;
832		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
833			mhip->ip_sum = in_cksum(m, mhlen);
834			m->m_pkthdr.csum_flags &= ~CSUM_IP;
835		}
836		*mnext = m;
837		mnext = &m->m_nextpkt;
838	}
839	IPSTAT_ADD(ips_ofragments, nfrags);
840
841	/*
842	 * Update first fragment by trimming what's been copied out
843	 * and updating header.
844	 */
845	m_adj(m0, hlen + firstlen - ip_len);
846	m0->m_pkthdr.len = hlen + firstlen;
847	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
848	ip->ip_off = htons(ip_off | IP_MF);
849	ip->ip_sum = 0;
850	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
851		ip->ip_sum = in_cksum(m0, hlen);
852		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
853	}
854
855done:
856	*m_frag = m0;
857	return error;
858}
859
860void
861in_delayed_cksum(struct mbuf *m)
862{
863	struct ip *ip;
864	uint16_t csum, offset, ip_len;
865
866	ip = mtod(m, struct ip *);
867	offset = ip->ip_hl << 2 ;
868	ip_len = ntohs(ip->ip_len);
869	csum = in_cksum_skip(m, ip_len, offset);
870	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
871		csum = 0xffff;
872	offset += m->m_pkthdr.csum_data;	/* checksum offset */
873
874	if (offset + sizeof(u_short) > m->m_len) {
875		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
876		    m->m_len, offset, ip->ip_p);
877		/*
878		 * XXX
879		 * this shouldn't happen, but if it does, the
880		 * correct behavior may be to insert the checksum
881		 * in the appropriate next mbuf in the chain.
882		 */
883		return;
884	}
885	*(u_short *)(m->m_data + offset) = csum;
886}
887
888/*
889 * IP socket option processing.
890 */
891int
892ip_ctloutput(struct socket *so, struct sockopt *sopt)
893{
894	struct	inpcb *inp = sotoinpcb(so);
895	int	error, optval;
896
897	error = optval = 0;
898	if (sopt->sopt_level != IPPROTO_IP) {
899		error = EINVAL;
900
901		if (sopt->sopt_level == SOL_SOCKET &&
902		    sopt->sopt_dir == SOPT_SET) {
903			switch (sopt->sopt_name) {
904			case SO_REUSEADDR:
905				INP_WLOCK(inp);
906				if ((so->so_options & SO_REUSEADDR) != 0)
907					inp->inp_flags2 |= INP_REUSEADDR;
908				else
909					inp->inp_flags2 &= ~INP_REUSEADDR;
910				INP_WUNLOCK(inp);
911				error = 0;
912				break;
913			case SO_REUSEPORT:
914				INP_WLOCK(inp);
915				if ((so->so_options & SO_REUSEPORT) != 0)
916					inp->inp_flags2 |= INP_REUSEPORT;
917				else
918					inp->inp_flags2 &= ~INP_REUSEPORT;
919				INP_WUNLOCK(inp);
920				error = 0;
921				break;
922			case SO_SETFIB:
923				INP_WLOCK(inp);
924				inp->inp_inc.inc_fibnum = so->so_fibnum;
925				INP_WUNLOCK(inp);
926				error = 0;
927				break;
928			default:
929				break;
930			}
931		}
932		return (error);
933	}
934
935	switch (sopt->sopt_dir) {
936	case SOPT_SET:
937		switch (sopt->sopt_name) {
938		case IP_OPTIONS:
939#ifdef notyet
940		case IP_RETOPTS:
941#endif
942		{
943			struct mbuf *m;
944			if (sopt->sopt_valsize > MLEN) {
945				error = EMSGSIZE;
946				break;
947			}
948			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
949			if (m == NULL) {
950				error = ENOBUFS;
951				break;
952			}
953			m->m_len = sopt->sopt_valsize;
954			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
955					    m->m_len);
956			if (error) {
957				m_free(m);
958				break;
959			}
960			INP_WLOCK(inp);
961			error = ip_pcbopts(inp, sopt->sopt_name, m);
962			INP_WUNLOCK(inp);
963			return (error);
964		}
965
966		case IP_BINDANY:
967			if (sopt->sopt_td != NULL) {
968				error = priv_check(sopt->sopt_td,
969				    PRIV_NETINET_BINDANY);
970				if (error)
971					break;
972			}
973			/* FALLTHROUGH */
974		case IP_TOS:
975		case IP_TTL:
976		case IP_MINTTL:
977		case IP_RECVOPTS:
978		case IP_RECVRETOPTS:
979		case IP_RECVDSTADDR:
980		case IP_RECVTTL:
981		case IP_RECVIF:
982		case IP_FAITH:
983		case IP_ONESBCAST:
984		case IP_DONTFRAG:
985		case IP_RECVTOS:
986			error = sooptcopyin(sopt, &optval, sizeof optval,
987					    sizeof optval);
988			if (error)
989				break;
990
991			switch (sopt->sopt_name) {
992			case IP_TOS:
993				inp->inp_ip_tos = optval;
994				break;
995
996			case IP_TTL:
997				inp->inp_ip_ttl = optval;
998				break;
999
1000			case IP_MINTTL:
1001				if (optval >= 0 && optval <= MAXTTL)
1002					inp->inp_ip_minttl = optval;
1003				else
1004					error = EINVAL;
1005				break;
1006
1007#define	OPTSET(bit) do {						\
1008	INP_WLOCK(inp);							\
1009	if (optval)							\
1010		inp->inp_flags |= bit;					\
1011	else								\
1012		inp->inp_flags &= ~bit;					\
1013	INP_WUNLOCK(inp);						\
1014} while (0)
1015
1016			case IP_RECVOPTS:
1017				OPTSET(INP_RECVOPTS);
1018				break;
1019
1020			case IP_RECVRETOPTS:
1021				OPTSET(INP_RECVRETOPTS);
1022				break;
1023
1024			case IP_RECVDSTADDR:
1025				OPTSET(INP_RECVDSTADDR);
1026				break;
1027
1028			case IP_RECVTTL:
1029				OPTSET(INP_RECVTTL);
1030				break;
1031
1032			case IP_RECVIF:
1033				OPTSET(INP_RECVIF);
1034				break;
1035
1036			case IP_FAITH:
1037				OPTSET(INP_FAITH);
1038				break;
1039
1040			case IP_ONESBCAST:
1041				OPTSET(INP_ONESBCAST);
1042				break;
1043			case IP_DONTFRAG:
1044				OPTSET(INP_DONTFRAG);
1045				break;
1046			case IP_BINDANY:
1047				OPTSET(INP_BINDANY);
1048				break;
1049			case IP_RECVTOS:
1050				OPTSET(INP_RECVTOS);
1051				break;
1052			}
1053			break;
1054#undef OPTSET
1055
1056		/*
1057		 * Multicast socket options are processed by the in_mcast
1058		 * module.
1059		 */
1060		case IP_MULTICAST_IF:
1061		case IP_MULTICAST_VIF:
1062		case IP_MULTICAST_TTL:
1063		case IP_MULTICAST_LOOP:
1064		case IP_ADD_MEMBERSHIP:
1065		case IP_DROP_MEMBERSHIP:
1066		case IP_ADD_SOURCE_MEMBERSHIP:
1067		case IP_DROP_SOURCE_MEMBERSHIP:
1068		case IP_BLOCK_SOURCE:
1069		case IP_UNBLOCK_SOURCE:
1070		case IP_MSFILTER:
1071		case MCAST_JOIN_GROUP:
1072		case MCAST_LEAVE_GROUP:
1073		case MCAST_JOIN_SOURCE_GROUP:
1074		case MCAST_LEAVE_SOURCE_GROUP:
1075		case MCAST_BLOCK_SOURCE:
1076		case MCAST_UNBLOCK_SOURCE:
1077			error = inp_setmoptions(inp, sopt);
1078			break;
1079
1080		case IP_PORTRANGE:
1081			error = sooptcopyin(sopt, &optval, sizeof optval,
1082					    sizeof optval);
1083			if (error)
1084				break;
1085
1086			INP_WLOCK(inp);
1087			switch (optval) {
1088			case IP_PORTRANGE_DEFAULT:
1089				inp->inp_flags &= ~(INP_LOWPORT);
1090				inp->inp_flags &= ~(INP_HIGHPORT);
1091				break;
1092
1093			case IP_PORTRANGE_HIGH:
1094				inp->inp_flags &= ~(INP_LOWPORT);
1095				inp->inp_flags |= INP_HIGHPORT;
1096				break;
1097
1098			case IP_PORTRANGE_LOW:
1099				inp->inp_flags &= ~(INP_HIGHPORT);
1100				inp->inp_flags |= INP_LOWPORT;
1101				break;
1102
1103			default:
1104				error = EINVAL;
1105				break;
1106			}
1107			INP_WUNLOCK(inp);
1108			break;
1109
1110#ifdef IPSEC
1111		case IP_IPSEC_POLICY:
1112		{
1113			caddr_t req;
1114			struct mbuf *m;
1115
1116			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1117				break;
1118			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1119				break;
1120			req = mtod(m, caddr_t);
1121			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1122			    m->m_len, (sopt->sopt_td != NULL) ?
1123			    sopt->sopt_td->td_ucred : NULL);
1124			m_freem(m);
1125			break;
1126		}
1127#endif /* IPSEC */
1128
1129		default:
1130			error = ENOPROTOOPT;
1131			break;
1132		}
1133		break;
1134
1135	case SOPT_GET:
1136		switch (sopt->sopt_name) {
1137		case IP_OPTIONS:
1138		case IP_RETOPTS:
1139			if (inp->inp_options)
1140				error = sooptcopyout(sopt,
1141						     mtod(inp->inp_options,
1142							  char *),
1143						     inp->inp_options->m_len);
1144			else
1145				sopt->sopt_valsize = 0;
1146			break;
1147
1148		case IP_TOS:
1149		case IP_TTL:
1150		case IP_MINTTL:
1151		case IP_RECVOPTS:
1152		case IP_RECVRETOPTS:
1153		case IP_RECVDSTADDR:
1154		case IP_RECVTTL:
1155		case IP_RECVIF:
1156		case IP_PORTRANGE:
1157		case IP_FAITH:
1158		case IP_ONESBCAST:
1159		case IP_DONTFRAG:
1160		case IP_BINDANY:
1161		case IP_RECVTOS:
1162			switch (sopt->sopt_name) {
1163
1164			case IP_TOS:
1165				optval = inp->inp_ip_tos;
1166				break;
1167
1168			case IP_TTL:
1169				optval = inp->inp_ip_ttl;
1170				break;
1171
1172			case IP_MINTTL:
1173				optval = inp->inp_ip_minttl;
1174				break;
1175
1176#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1177
1178			case IP_RECVOPTS:
1179				optval = OPTBIT(INP_RECVOPTS);
1180				break;
1181
1182			case IP_RECVRETOPTS:
1183				optval = OPTBIT(INP_RECVRETOPTS);
1184				break;
1185
1186			case IP_RECVDSTADDR:
1187				optval = OPTBIT(INP_RECVDSTADDR);
1188				break;
1189
1190			case IP_RECVTTL:
1191				optval = OPTBIT(INP_RECVTTL);
1192				break;
1193
1194			case IP_RECVIF:
1195				optval = OPTBIT(INP_RECVIF);
1196				break;
1197
1198			case IP_PORTRANGE:
1199				if (inp->inp_flags & INP_HIGHPORT)
1200					optval = IP_PORTRANGE_HIGH;
1201				else if (inp->inp_flags & INP_LOWPORT)
1202					optval = IP_PORTRANGE_LOW;
1203				else
1204					optval = 0;
1205				break;
1206
1207			case IP_FAITH:
1208				optval = OPTBIT(INP_FAITH);
1209				break;
1210
1211			case IP_ONESBCAST:
1212				optval = OPTBIT(INP_ONESBCAST);
1213				break;
1214			case IP_DONTFRAG:
1215				optval = OPTBIT(INP_DONTFRAG);
1216				break;
1217			case IP_BINDANY:
1218				optval = OPTBIT(INP_BINDANY);
1219				break;
1220			case IP_RECVTOS:
1221				optval = OPTBIT(INP_RECVTOS);
1222				break;
1223			}
1224			error = sooptcopyout(sopt, &optval, sizeof optval);
1225			break;
1226
1227		/*
1228		 * Multicast socket options are processed by the in_mcast
1229		 * module.
1230		 */
1231		case IP_MULTICAST_IF:
1232		case IP_MULTICAST_VIF:
1233		case IP_MULTICAST_TTL:
1234		case IP_MULTICAST_LOOP:
1235		case IP_MSFILTER:
1236			error = inp_getmoptions(inp, sopt);
1237			break;
1238
1239#ifdef IPSEC
1240		case IP_IPSEC_POLICY:
1241		{
1242			struct mbuf *m = NULL;
1243			caddr_t req = NULL;
1244			size_t len = 0;
1245
1246			if (m != 0) {
1247				req = mtod(m, caddr_t);
1248				len = m->m_len;
1249			}
1250			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1251			if (error == 0)
1252				error = soopt_mcopyout(sopt, m); /* XXX */
1253			if (error == 0)
1254				m_freem(m);
1255			break;
1256		}
1257#endif /* IPSEC */
1258
1259		default:
1260			error = ENOPROTOOPT;
1261			break;
1262		}
1263		break;
1264	}
1265	return (error);
1266}
1267
1268/*
1269 * Routine called from ip_output() to loop back a copy of an IP multicast
1270 * packet to the input queue of a specified interface.  Note that this
1271 * calls the output routine of the loopback "driver", but with an interface
1272 * pointer that might NOT be a loopback interface -- evil, but easier than
1273 * replicating that code here.
1274 */
1275static void
1276ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1277    int hlen)
1278{
1279	register struct ip *ip;
1280	struct mbuf *copym;
1281
1282	/*
1283	 * Make a deep copy of the packet because we're going to
1284	 * modify the pack in order to generate checksums.
1285	 */
1286	copym = m_dup(m, M_NOWAIT);
1287	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1288		copym = m_pullup(copym, hlen);
1289	if (copym != NULL) {
1290		/* If needed, compute the checksum and mark it as valid. */
1291		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1292			in_delayed_cksum(copym);
1293			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1294			copym->m_pkthdr.csum_flags |=
1295			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1296			copym->m_pkthdr.csum_data = 0xffff;
1297		}
1298		/*
1299		 * We don't bother to fragment if the IP length is greater
1300		 * than the interface's MTU.  Can this possibly matter?
1301		 */
1302		ip = mtod(copym, struct ip *);
1303		ip->ip_sum = 0;
1304		ip->ip_sum = in_cksum(copym, hlen);
1305#if 1 /* XXX */
1306		if (dst->sin_family != AF_INET) {
1307			printf("ip_mloopback: bad address family %d\n",
1308						dst->sin_family);
1309			dst->sin_family = AF_INET;
1310		}
1311#endif
1312		if_simloop(ifp, copym, dst->sin_family, 0);
1313	}
1314}
1315