ip_output.c revision 254889
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_output.c 254889 2013-08-25 21:54:41Z markj $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_kdtrace.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40#include "opt_route.h"
41#include "opt_sctp.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/kernel.h>
46#include <sys/malloc.h>
47#include <sys/mbuf.h>
48#include <sys/priv.h>
49#include <sys/proc.h>
50#include <sys/protosw.h>
51#include <sys/sdt.h>
52#include <sys/socket.h>
53#include <sys/socketvar.h>
54#include <sys/sysctl.h>
55#include <sys/ucred.h>
56
57#include <net/if.h>
58#include <net/if_llatbl.h>
59#include <net/netisr.h>
60#include <net/pfil.h>
61#include <net/route.h>
62#include <net/flowtable.h>
63#ifdef RADIX_MPATH
64#include <net/radix_mpath.h>
65#endif
66#include <net/vnet.h>
67
68#include <netinet/in.h>
69#include <netinet/in_kdtrace.h>
70#include <netinet/in_systm.h>
71#include <netinet/ip.h>
72#include <netinet/in_pcb.h>
73#include <netinet/in_var.h>
74#include <netinet/ip_var.h>
75#include <netinet/ip_options.h>
76#ifdef SCTP
77#include <netinet/sctp.h>
78#include <netinet/sctp_crc32.h>
79#endif
80
81#ifdef IPSEC
82#include <netinet/ip_ipsec.h>
83#include <netipsec/ipsec.h>
84#endif /* IPSEC*/
85
86#include <machine/in_cksum.h>
87
88#include <security/mac/mac_framework.h>
89
90VNET_DEFINE(u_short, ip_id);
91
92#ifdef MBUF_STRESS_TEST
93static int mbuf_frag_size = 0;
94SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
95	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
96#endif
97
98static void	ip_mloopback
99	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
100
101
102extern int in_mcast_loop;
103extern	struct protosw inetsw[];
104
105/*
106 * IP output.  The packet in mbuf chain m contains a skeletal IP
107 * header (with len, off, ttl, proto, tos, src, dst).
108 * The mbuf chain containing the packet will be freed.
109 * The mbuf opt, if present, will not be freed.
110 * If route ro is present and has ro_rt initialized, route lookup would be
111 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
112 * then result of route lookup is stored in ro->ro_rt.
113 *
114 * In the IP forwarding case, the packet will arrive with options already
115 * inserted, so must have a NULL opt pointer.
116 */
117int
118ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
119    struct ip_moptions *imo, struct inpcb *inp)
120{
121	struct ip *ip;
122	struct ifnet *ifp = NULL;	/* keep compiler happy */
123	struct mbuf *m0;
124	int hlen = sizeof (struct ip);
125	int mtu;
126	int n;	/* scratchpad */
127	int error = 0;
128	struct sockaddr_in *dst;
129	const struct sockaddr_in *gw;
130	struct in_ifaddr *ia;
131	int isbroadcast;
132	uint16_t ip_len, ip_off;
133	struct route iproute;
134	struct rtentry *rte;	/* cache for ro->ro_rt */
135	struct in_addr odst;
136	struct m_tag *fwd_tag = NULL;
137#ifdef IPSEC
138	int no_route_but_check_spd = 0;
139#endif
140	M_ASSERTPKTHDR(m);
141
142	if (inp != NULL) {
143		INP_LOCK_ASSERT(inp);
144		M_SETFIB(m, inp->inp_inc.inc_fibnum);
145		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
146			m->m_pkthdr.flowid = inp->inp_flowid;
147			m->m_flags |= M_FLOWID;
148		}
149	}
150
151	if (ro == NULL) {
152		ro = &iproute;
153		bzero(ro, sizeof (*ro));
154	}
155
156#ifdef FLOWTABLE
157	if (ro->ro_rt == NULL) {
158		struct flentry *fle;
159
160		/*
161		 * The flow table returns route entries valid for up to 30
162		 * seconds; we rely on the remainder of ip_output() taking no
163		 * longer than that long for the stability of ro_rt. The
164		 * flow ID assignment must have happened before this point.
165		 */
166		fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET);
167		if (fle != NULL)
168			flow_to_route(fle, ro);
169	}
170#endif
171
172	if (opt) {
173		int len = 0;
174		m = ip_insertoptions(m, opt, &len);
175		if (len != 0)
176			hlen = len; /* ip->ip_hl is updated above */
177	}
178	ip = mtod(m, struct ip *);
179	ip_len = ntohs(ip->ip_len);
180	ip_off = ntohs(ip->ip_off);
181
182	/*
183	 * Fill in IP header.  If we are not allowing fragmentation,
184	 * then the ip_id field is meaningless, but we don't set it
185	 * to zero.  Doing so causes various problems when devices along
186	 * the path (routers, load balancers, firewalls, etc.) illegally
187	 * disable DF on our packet.  Note that a 16-bit counter
188	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
189	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
190	 * for Counting NATted Hosts", Proc. IMW'02, available at
191	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
192	 */
193	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
194		ip->ip_v = IPVERSION;
195		ip->ip_hl = hlen >> 2;
196		ip->ip_id = ip_newid();
197		IPSTAT_INC(ips_localout);
198	} else {
199		/* Header already set, fetch hlen from there */
200		hlen = ip->ip_hl << 2;
201	}
202
203	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
204again:
205	ia = NULL;
206	/*
207	 * If there is a cached route,
208	 * check that it is to the same destination
209	 * and is still up.  If not, free it and try again.
210	 * The address family should also be checked in case of sharing the
211	 * cache with IPv6.
212	 */
213	rte = ro->ro_rt;
214	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
215		    rte->rt_ifp == NULL ||
216		    !RT_LINK_IS_UP(rte->rt_ifp) ||
217			  dst->sin_family != AF_INET ||
218			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
219		RO_RTFREE(ro);
220		ro->ro_lle = NULL;
221		rte = NULL;
222	}
223	if (rte == NULL && fwd_tag == NULL) {
224		bzero(dst, sizeof(*dst));
225		dst->sin_family = AF_INET;
226		dst->sin_len = sizeof(*dst);
227		dst->sin_addr = ip->ip_dst;
228	}
229	/*
230	 * If routing to interface only, short circuit routing lookup.
231	 * The use of an all-ones broadcast address implies this; an
232	 * interface is specified by the broadcast address of an interface,
233	 * or the destination address of a ptp interface.
234	 */
235	if (flags & IP_SENDONES) {
236		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
237		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
238			IPSTAT_INC(ips_noroute);
239			error = ENETUNREACH;
240			goto bad;
241		}
242		ip->ip_dst.s_addr = INADDR_BROADCAST;
243		dst->sin_addr = ip->ip_dst;
244		ifp = ia->ia_ifp;
245		ip->ip_ttl = 1;
246		isbroadcast = 1;
247	} else if (flags & IP_ROUTETOIF) {
248		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
249		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
250			IPSTAT_INC(ips_noroute);
251			error = ENETUNREACH;
252			goto bad;
253		}
254		ifp = ia->ia_ifp;
255		ip->ip_ttl = 1;
256		isbroadcast = in_broadcast(dst->sin_addr, ifp);
257	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
258	    imo != NULL && imo->imo_multicast_ifp != NULL) {
259		/*
260		 * Bypass the normal routing lookup for multicast
261		 * packets if the interface is specified.
262		 */
263		ifp = imo->imo_multicast_ifp;
264		IFP_TO_IA(ifp, ia);
265		isbroadcast = 0;	/* fool gcc */
266	} else {
267		/*
268		 * We want to do any cloning requested by the link layer,
269		 * as this is probably required in all cases for correct
270		 * operation (as it is for ARP).
271		 */
272		if (rte == NULL) {
273#ifdef RADIX_MPATH
274			rtalloc_mpath_fib(ro,
275			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
276			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
277#else
278			in_rtalloc_ign(ro, 0,
279			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
280#endif
281			rte = ro->ro_rt;
282		}
283		if (rte == NULL ||
284		    rte->rt_ifp == NULL ||
285		    !RT_LINK_IS_UP(rte->rt_ifp)) {
286#ifdef IPSEC
287			/*
288			 * There is no route for this packet, but it is
289			 * possible that a matching SPD entry exists.
290			 */
291			no_route_but_check_spd = 1;
292			mtu = 0; /* Silence GCC warning. */
293			goto sendit;
294#endif
295			IPSTAT_INC(ips_noroute);
296			error = EHOSTUNREACH;
297			goto bad;
298		}
299		ia = ifatoia(rte->rt_ifa);
300		ifa_ref(&ia->ia_ifa);
301		ifp = rte->rt_ifp;
302		rte->rt_rmx.rmx_pksent++;
303		if (rte->rt_flags & RTF_GATEWAY)
304			gw = (struct sockaddr_in *)rte->rt_gateway;
305		if (rte->rt_flags & RTF_HOST)
306			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
307		else
308			isbroadcast = in_broadcast(gw->sin_addr, ifp);
309	}
310	/*
311	 * Calculate MTU.  If we have a route that is up, use that,
312	 * otherwise use the interface's MTU.
313	 */
314	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
315		/*
316		 * This case can happen if the user changed the MTU
317		 * of an interface after enabling IP on it.  Because
318		 * most netifs don't keep track of routes pointing to
319		 * them, there is no way for one to update all its
320		 * routes when the MTU is changed.
321		 */
322		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
323			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
324		mtu = rte->rt_rmx.rmx_mtu;
325	} else {
326		mtu = ifp->if_mtu;
327	}
328	/* Catch a possible divide by zero later. */
329	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
330	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
331	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
332		m->m_flags |= M_MCAST;
333		/*
334		 * See if the caller provided any multicast options
335		 */
336		if (imo != NULL) {
337			ip->ip_ttl = imo->imo_multicast_ttl;
338			if (imo->imo_multicast_vif != -1)
339				ip->ip_src.s_addr =
340				    ip_mcast_src ?
341				    ip_mcast_src(imo->imo_multicast_vif) :
342				    INADDR_ANY;
343		} else
344			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
345		/*
346		 * Confirm that the outgoing interface supports multicast.
347		 */
348		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
349			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
350				IPSTAT_INC(ips_noroute);
351				error = ENETUNREACH;
352				goto bad;
353			}
354		}
355		/*
356		 * If source address not specified yet, use address
357		 * of outgoing interface.
358		 */
359		if (ip->ip_src.s_addr == INADDR_ANY) {
360			/* Interface may have no addresses. */
361			if (ia != NULL)
362				ip->ip_src = IA_SIN(ia)->sin_addr;
363		}
364
365		if ((imo == NULL && in_mcast_loop) ||
366		    (imo && imo->imo_multicast_loop)) {
367			/*
368			 * Loop back multicast datagram if not expressly
369			 * forbidden to do so, even if we are not a member
370			 * of the group; ip_input() will filter it later,
371			 * thus deferring a hash lookup and mutex acquisition
372			 * at the expense of a cheap copy using m_copym().
373			 */
374			ip_mloopback(ifp, m, dst, hlen);
375		} else {
376			/*
377			 * If we are acting as a multicast router, perform
378			 * multicast forwarding as if the packet had just
379			 * arrived on the interface to which we are about
380			 * to send.  The multicast forwarding function
381			 * recursively calls this function, using the
382			 * IP_FORWARDING flag to prevent infinite recursion.
383			 *
384			 * Multicasts that are looped back by ip_mloopback(),
385			 * above, will be forwarded by the ip_input() routine,
386			 * if necessary.
387			 */
388			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
389				/*
390				 * If rsvp daemon is not running, do not
391				 * set ip_moptions. This ensures that the packet
392				 * is multicast and not just sent down one link
393				 * as prescribed by rsvpd.
394				 */
395				if (!V_rsvp_on)
396					imo = NULL;
397				if (ip_mforward &&
398				    ip_mforward(ip, ifp, m, imo) != 0) {
399					m_freem(m);
400					goto done;
401				}
402			}
403		}
404
405		/*
406		 * Multicasts with a time-to-live of zero may be looped-
407		 * back, above, but must not be transmitted on a network.
408		 * Also, multicasts addressed to the loopback interface
409		 * are not sent -- the above call to ip_mloopback() will
410		 * loop back a copy. ip_input() will drop the copy if
411		 * this host does not belong to the destination group on
412		 * the loopback interface.
413		 */
414		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
415			m_freem(m);
416			goto done;
417		}
418
419		goto sendit;
420	}
421
422	/*
423	 * If the source address is not specified yet, use the address
424	 * of the outoing interface.
425	 */
426	if (ip->ip_src.s_addr == INADDR_ANY) {
427		/* Interface may have no addresses. */
428		if (ia != NULL) {
429			ip->ip_src = IA_SIN(ia)->sin_addr;
430		}
431	}
432
433	/*
434	 * Verify that we have any chance at all of being able to queue the
435	 * packet or packet fragments, unless ALTQ is enabled on the given
436	 * interface in which case packetdrop should be done by queueing.
437	 */
438	n = ip_len / mtu + 1; /* how many fragments ? */
439	if (
440#ifdef ALTQ
441	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
442#endif /* ALTQ */
443	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
444		error = ENOBUFS;
445		IPSTAT_INC(ips_odropped);
446		ifp->if_snd.ifq_drops += n;
447		goto bad;
448	}
449
450	/*
451	 * Look for broadcast address and
452	 * verify user is allowed to send
453	 * such a packet.
454	 */
455	if (isbroadcast) {
456		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
457			error = EADDRNOTAVAIL;
458			goto bad;
459		}
460		if ((flags & IP_ALLOWBROADCAST) == 0) {
461			error = EACCES;
462			goto bad;
463		}
464		/* don't allow broadcast messages to be fragmented */
465		if (ip_len > mtu) {
466			error = EMSGSIZE;
467			goto bad;
468		}
469		m->m_flags |= M_BCAST;
470	} else {
471		m->m_flags &= ~M_BCAST;
472	}
473
474sendit:
475#ifdef IPSEC
476	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
477	case 1:
478		goto bad;
479	case -1:
480		goto done;
481	case 0:
482	default:
483		break;	/* Continue with packet processing. */
484	}
485	/*
486	 * Check if there was a route for this packet; return error if not.
487	 */
488	if (no_route_but_check_spd) {
489		IPSTAT_INC(ips_noroute);
490		error = EHOSTUNREACH;
491		goto bad;
492	}
493	/* Update variables that are affected by ipsec4_output(). */
494	ip = mtod(m, struct ip *);
495	hlen = ip->ip_hl << 2;
496#endif /* IPSEC */
497
498	/* Jump over all PFIL processing if hooks are not active. */
499	if (!PFIL_HOOKED(&V_inet_pfil_hook))
500		goto passout;
501
502	/* Run through list of hooks for output packets. */
503	odst.s_addr = ip->ip_dst.s_addr;
504	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
505	if (error != 0 || m == NULL)
506		goto done;
507
508	ip = mtod(m, struct ip *);
509
510	/* See if destination IP address was changed by packet filter. */
511	if (odst.s_addr != ip->ip_dst.s_addr) {
512		m->m_flags |= M_SKIP_FIREWALL;
513		/* If destination is now ourself drop to ip_input(). */
514		if (in_localip(ip->ip_dst)) {
515			m->m_flags |= M_FASTFWD_OURS;
516			if (m->m_pkthdr.rcvif == NULL)
517				m->m_pkthdr.rcvif = V_loif;
518			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
519				m->m_pkthdr.csum_flags |=
520				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
521				m->m_pkthdr.csum_data = 0xffff;
522			}
523			m->m_pkthdr.csum_flags |=
524			    CSUM_IP_CHECKED | CSUM_IP_VALID;
525#ifdef SCTP
526			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
527				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
528#endif
529			error = netisr_queue(NETISR_IP, m);
530			goto done;
531		} else {
532			if (ia != NULL)
533				ifa_free(&ia->ia_ifa);
534			goto again;	/* Redo the routing table lookup. */
535		}
536	}
537
538	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
539	if (m->m_flags & M_FASTFWD_OURS) {
540		if (m->m_pkthdr.rcvif == NULL)
541			m->m_pkthdr.rcvif = V_loif;
542		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
543			m->m_pkthdr.csum_flags |=
544			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
545			m->m_pkthdr.csum_data = 0xffff;
546		}
547#ifdef SCTP
548		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
549			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
550#endif
551		m->m_pkthdr.csum_flags |=
552			    CSUM_IP_CHECKED | CSUM_IP_VALID;
553
554		error = netisr_queue(NETISR_IP, m);
555		goto done;
556	}
557	/* Or forward to some other address? */
558	if ((m->m_flags & M_IP_NEXTHOP) &&
559	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
560		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
561		m->m_flags |= M_SKIP_FIREWALL;
562		m->m_flags &= ~M_IP_NEXTHOP;
563		m_tag_delete(m, fwd_tag);
564		if (ia != NULL)
565			ifa_free(&ia->ia_ifa);
566		goto again;
567	}
568
569passout:
570	/* 127/8 must not appear on wire - RFC1122. */
571	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
572	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
573		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
574			IPSTAT_INC(ips_badaddr);
575			error = EADDRNOTAVAIL;
576			goto bad;
577		}
578	}
579
580	m->m_pkthdr.csum_flags |= CSUM_IP;
581	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
582		in_delayed_cksum(m);
583		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
584	}
585#ifdef SCTP
586	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
587		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
588		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
589	}
590#endif
591
592	/*
593	 * If small enough for interface, or the interface will take
594	 * care of the fragmentation for us, we can just send directly.
595	 */
596	if (ip_len <= mtu ||
597	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
598	    ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
599		ip->ip_sum = 0;
600		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
601			ip->ip_sum = in_cksum(m, hlen);
602			m->m_pkthdr.csum_flags &= ~CSUM_IP;
603		}
604
605		/*
606		 * Record statistics for this interface address.
607		 * With CSUM_TSO the byte/packet count will be slightly
608		 * incorrect because we count the IP+TCP headers only
609		 * once instead of for every generated packet.
610		 */
611		if (!(flags & IP_FORWARDING) && ia) {
612			if (m->m_pkthdr.csum_flags & CSUM_TSO)
613				ia->ia_ifa.if_opackets +=
614				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
615			else
616				ia->ia_ifa.if_opackets++;
617			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
618		}
619#ifdef MBUF_STRESS_TEST
620		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
621			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
622#endif
623		/*
624		 * Reset layer specific mbuf flags
625		 * to avoid confusing lower layers.
626		 */
627		m_clrprotoflags(m);
628		IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
629		error = (*ifp->if_output)(ifp, m,
630		    (const struct sockaddr *)gw, ro);
631		goto done;
632	}
633
634	/* Balk when DF bit is set or the interface didn't support TSO. */
635	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
636		error = EMSGSIZE;
637		IPSTAT_INC(ips_cantfrag);
638		goto bad;
639	}
640
641	/*
642	 * Too large for interface; fragment if possible. If successful,
643	 * on return, m will point to a list of packets to be sent.
644	 */
645	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
646	if (error)
647		goto bad;
648	for (; m; m = m0) {
649		m0 = m->m_nextpkt;
650		m->m_nextpkt = 0;
651		if (error == 0) {
652			/* Record statistics for this interface address. */
653			if (ia != NULL) {
654				ia->ia_ifa.if_opackets++;
655				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
656			}
657			/*
658			 * Reset layer specific mbuf flags
659			 * to avoid confusing upper layers.
660			 */
661			m_clrprotoflags(m);
662
663			IP_PROBE(send, NULL, NULL, ip, ifp, ip, NULL);
664			error = (*ifp->if_output)(ifp, m,
665			    (const struct sockaddr *)gw, ro);
666		} else
667			m_freem(m);
668	}
669
670	if (error == 0)
671		IPSTAT_INC(ips_fragmented);
672
673done:
674	if (ro == &iproute)
675		RO_RTFREE(ro);
676	if (ia != NULL)
677		ifa_free(&ia->ia_ifa);
678	return (error);
679bad:
680	m_freem(m);
681	goto done;
682}
683
684/*
685 * Create a chain of fragments which fit the given mtu. m_frag points to the
686 * mbuf to be fragmented; on return it points to the chain with the fragments.
687 * Return 0 if no error. If error, m_frag may contain a partially built
688 * chain of fragments that should be freed by the caller.
689 *
690 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
691 */
692int
693ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
694    u_long if_hwassist_flags)
695{
696	int error = 0;
697	int hlen = ip->ip_hl << 2;
698	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
699	int off;
700	struct mbuf *m0 = *m_frag;	/* the original packet		*/
701	int firstlen;
702	struct mbuf **mnext;
703	int nfrags;
704	uint16_t ip_len, ip_off;
705
706	ip_len = ntohs(ip->ip_len);
707	ip_off = ntohs(ip->ip_off);
708
709	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
710		IPSTAT_INC(ips_cantfrag);
711		return EMSGSIZE;
712	}
713
714	/*
715	 * Must be able to put at least 8 bytes per fragment.
716	 */
717	if (len < 8)
718		return EMSGSIZE;
719
720	/*
721	 * If the interface will not calculate checksums on
722	 * fragmented packets, then do it here.
723	 */
724	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
725		in_delayed_cksum(m0);
726		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
727	}
728#ifdef SCTP
729	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
730		sctp_delayed_cksum(m0, hlen);
731		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
732	}
733#endif
734	if (len > PAGE_SIZE) {
735		/*
736		 * Fragment large datagrams such that each segment
737		 * contains a multiple of PAGE_SIZE amount of data,
738		 * plus headers. This enables a receiver to perform
739		 * page-flipping zero-copy optimizations.
740		 *
741		 * XXX When does this help given that sender and receiver
742		 * could have different page sizes, and also mtu could
743		 * be less than the receiver's page size ?
744		 */
745		int newlen;
746		struct mbuf *m;
747
748		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
749			off += m->m_len;
750
751		/*
752		 * firstlen (off - hlen) must be aligned on an
753		 * 8-byte boundary
754		 */
755		if (off < hlen)
756			goto smart_frag_failure;
757		off = ((off - hlen) & ~7) + hlen;
758		newlen = (~PAGE_MASK) & mtu;
759		if ((newlen + sizeof (struct ip)) > mtu) {
760			/* we failed, go back the default */
761smart_frag_failure:
762			newlen = len;
763			off = hlen + len;
764		}
765		len = newlen;
766
767	} else {
768		off = hlen + len;
769	}
770
771	firstlen = off - hlen;
772	mnext = &m0->m_nextpkt;		/* pointer to next packet */
773
774	/*
775	 * Loop through length of segment after first fragment,
776	 * make new header and copy data of each part and link onto chain.
777	 * Here, m0 is the original packet, m is the fragment being created.
778	 * The fragments are linked off the m_nextpkt of the original
779	 * packet, which after processing serves as the first fragment.
780	 */
781	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
782		struct ip *mhip;	/* ip header on the fragment */
783		struct mbuf *m;
784		int mhlen = sizeof (struct ip);
785
786		m = m_gethdr(M_NOWAIT, MT_DATA);
787		if (m == NULL) {
788			error = ENOBUFS;
789			IPSTAT_INC(ips_odropped);
790			goto done;
791		}
792		m->m_flags |= (m0->m_flags & M_MCAST);
793		/*
794		 * In the first mbuf, leave room for the link header, then
795		 * copy the original IP header including options. The payload
796		 * goes into an additional mbuf chain returned by m_copym().
797		 */
798		m->m_data += max_linkhdr;
799		mhip = mtod(m, struct ip *);
800		*mhip = *ip;
801		if (hlen > sizeof (struct ip)) {
802			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
803			mhip->ip_v = IPVERSION;
804			mhip->ip_hl = mhlen >> 2;
805		}
806		m->m_len = mhlen;
807		/* XXX do we need to add ip_off below ? */
808		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
809		if (off + len >= ip_len)
810			len = ip_len - off;
811		else
812			mhip->ip_off |= IP_MF;
813		mhip->ip_len = htons((u_short)(len + mhlen));
814		m->m_next = m_copym(m0, off, len, M_NOWAIT);
815		if (m->m_next == NULL) {	/* copy failed */
816			m_free(m);
817			error = ENOBUFS;	/* ??? */
818			IPSTAT_INC(ips_odropped);
819			goto done;
820		}
821		m->m_pkthdr.len = mhlen + len;
822		m->m_pkthdr.rcvif = NULL;
823#ifdef MAC
824		mac_netinet_fragment(m0, m);
825#endif
826		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
827		mhip->ip_off = htons(mhip->ip_off);
828		mhip->ip_sum = 0;
829		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
830			mhip->ip_sum = in_cksum(m, mhlen);
831			m->m_pkthdr.csum_flags &= ~CSUM_IP;
832		}
833		*mnext = m;
834		mnext = &m->m_nextpkt;
835	}
836	IPSTAT_ADD(ips_ofragments, nfrags);
837
838	/*
839	 * Update first fragment by trimming what's been copied out
840	 * and updating header.
841	 */
842	m_adj(m0, hlen + firstlen - ip_len);
843	m0->m_pkthdr.len = hlen + firstlen;
844	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
845	ip->ip_off = htons(ip_off | IP_MF);
846	ip->ip_sum = 0;
847	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
848		ip->ip_sum = in_cksum(m0, hlen);
849		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
850	}
851
852done:
853	*m_frag = m0;
854	return error;
855}
856
857void
858in_delayed_cksum(struct mbuf *m)
859{
860	struct ip *ip;
861	uint16_t csum, offset, ip_len;
862
863	ip = mtod(m, struct ip *);
864	offset = ip->ip_hl << 2 ;
865	ip_len = ntohs(ip->ip_len);
866	csum = in_cksum_skip(m, ip_len, offset);
867	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
868		csum = 0xffff;
869	offset += m->m_pkthdr.csum_data;	/* checksum offset */
870
871	if (offset + sizeof(u_short) > m->m_len) {
872		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
873		    m->m_len, offset, ip->ip_p);
874		/*
875		 * XXX
876		 * this shouldn't happen, but if it does, the
877		 * correct behavior may be to insert the checksum
878		 * in the appropriate next mbuf in the chain.
879		 */
880		return;
881	}
882	*(u_short *)(m->m_data + offset) = csum;
883}
884
885/*
886 * IP socket option processing.
887 */
888int
889ip_ctloutput(struct socket *so, struct sockopt *sopt)
890{
891	struct	inpcb *inp = sotoinpcb(so);
892	int	error, optval;
893
894	error = optval = 0;
895	if (sopt->sopt_level != IPPROTO_IP) {
896		error = EINVAL;
897
898		if (sopt->sopt_level == SOL_SOCKET &&
899		    sopt->sopt_dir == SOPT_SET) {
900			switch (sopt->sopt_name) {
901			case SO_REUSEADDR:
902				INP_WLOCK(inp);
903				if ((so->so_options & SO_REUSEADDR) != 0)
904					inp->inp_flags2 |= INP_REUSEADDR;
905				else
906					inp->inp_flags2 &= ~INP_REUSEADDR;
907				INP_WUNLOCK(inp);
908				error = 0;
909				break;
910			case SO_REUSEPORT:
911				INP_WLOCK(inp);
912				if ((so->so_options & SO_REUSEPORT) != 0)
913					inp->inp_flags2 |= INP_REUSEPORT;
914				else
915					inp->inp_flags2 &= ~INP_REUSEPORT;
916				INP_WUNLOCK(inp);
917				error = 0;
918				break;
919			case SO_SETFIB:
920				INP_WLOCK(inp);
921				inp->inp_inc.inc_fibnum = so->so_fibnum;
922				INP_WUNLOCK(inp);
923				error = 0;
924				break;
925			default:
926				break;
927			}
928		}
929		return (error);
930	}
931
932	switch (sopt->sopt_dir) {
933	case SOPT_SET:
934		switch (sopt->sopt_name) {
935		case IP_OPTIONS:
936#ifdef notyet
937		case IP_RETOPTS:
938#endif
939		{
940			struct mbuf *m;
941			if (sopt->sopt_valsize > MLEN) {
942				error = EMSGSIZE;
943				break;
944			}
945			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
946			if (m == NULL) {
947				error = ENOBUFS;
948				break;
949			}
950			m->m_len = sopt->sopt_valsize;
951			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
952					    m->m_len);
953			if (error) {
954				m_free(m);
955				break;
956			}
957			INP_WLOCK(inp);
958			error = ip_pcbopts(inp, sopt->sopt_name, m);
959			INP_WUNLOCK(inp);
960			return (error);
961		}
962
963		case IP_BINDANY:
964			if (sopt->sopt_td != NULL) {
965				error = priv_check(sopt->sopt_td,
966				    PRIV_NETINET_BINDANY);
967				if (error)
968					break;
969			}
970			/* FALLTHROUGH */
971		case IP_TOS:
972		case IP_TTL:
973		case IP_MINTTL:
974		case IP_RECVOPTS:
975		case IP_RECVRETOPTS:
976		case IP_RECVDSTADDR:
977		case IP_RECVTTL:
978		case IP_RECVIF:
979		case IP_FAITH:
980		case IP_ONESBCAST:
981		case IP_DONTFRAG:
982		case IP_RECVTOS:
983			error = sooptcopyin(sopt, &optval, sizeof optval,
984					    sizeof optval);
985			if (error)
986				break;
987
988			switch (sopt->sopt_name) {
989			case IP_TOS:
990				inp->inp_ip_tos = optval;
991				break;
992
993			case IP_TTL:
994				inp->inp_ip_ttl = optval;
995				break;
996
997			case IP_MINTTL:
998				if (optval >= 0 && optval <= MAXTTL)
999					inp->inp_ip_minttl = optval;
1000				else
1001					error = EINVAL;
1002				break;
1003
1004#define	OPTSET(bit) do {						\
1005	INP_WLOCK(inp);							\
1006	if (optval)							\
1007		inp->inp_flags |= bit;					\
1008	else								\
1009		inp->inp_flags &= ~bit;					\
1010	INP_WUNLOCK(inp);						\
1011} while (0)
1012
1013			case IP_RECVOPTS:
1014				OPTSET(INP_RECVOPTS);
1015				break;
1016
1017			case IP_RECVRETOPTS:
1018				OPTSET(INP_RECVRETOPTS);
1019				break;
1020
1021			case IP_RECVDSTADDR:
1022				OPTSET(INP_RECVDSTADDR);
1023				break;
1024
1025			case IP_RECVTTL:
1026				OPTSET(INP_RECVTTL);
1027				break;
1028
1029			case IP_RECVIF:
1030				OPTSET(INP_RECVIF);
1031				break;
1032
1033			case IP_FAITH:
1034				OPTSET(INP_FAITH);
1035				break;
1036
1037			case IP_ONESBCAST:
1038				OPTSET(INP_ONESBCAST);
1039				break;
1040			case IP_DONTFRAG:
1041				OPTSET(INP_DONTFRAG);
1042				break;
1043			case IP_BINDANY:
1044				OPTSET(INP_BINDANY);
1045				break;
1046			case IP_RECVTOS:
1047				OPTSET(INP_RECVTOS);
1048				break;
1049			}
1050			break;
1051#undef OPTSET
1052
1053		/*
1054		 * Multicast socket options are processed by the in_mcast
1055		 * module.
1056		 */
1057		case IP_MULTICAST_IF:
1058		case IP_MULTICAST_VIF:
1059		case IP_MULTICAST_TTL:
1060		case IP_MULTICAST_LOOP:
1061		case IP_ADD_MEMBERSHIP:
1062		case IP_DROP_MEMBERSHIP:
1063		case IP_ADD_SOURCE_MEMBERSHIP:
1064		case IP_DROP_SOURCE_MEMBERSHIP:
1065		case IP_BLOCK_SOURCE:
1066		case IP_UNBLOCK_SOURCE:
1067		case IP_MSFILTER:
1068		case MCAST_JOIN_GROUP:
1069		case MCAST_LEAVE_GROUP:
1070		case MCAST_JOIN_SOURCE_GROUP:
1071		case MCAST_LEAVE_SOURCE_GROUP:
1072		case MCAST_BLOCK_SOURCE:
1073		case MCAST_UNBLOCK_SOURCE:
1074			error = inp_setmoptions(inp, sopt);
1075			break;
1076
1077		case IP_PORTRANGE:
1078			error = sooptcopyin(sopt, &optval, sizeof optval,
1079					    sizeof optval);
1080			if (error)
1081				break;
1082
1083			INP_WLOCK(inp);
1084			switch (optval) {
1085			case IP_PORTRANGE_DEFAULT:
1086				inp->inp_flags &= ~(INP_LOWPORT);
1087				inp->inp_flags &= ~(INP_HIGHPORT);
1088				break;
1089
1090			case IP_PORTRANGE_HIGH:
1091				inp->inp_flags &= ~(INP_LOWPORT);
1092				inp->inp_flags |= INP_HIGHPORT;
1093				break;
1094
1095			case IP_PORTRANGE_LOW:
1096				inp->inp_flags &= ~(INP_HIGHPORT);
1097				inp->inp_flags |= INP_LOWPORT;
1098				break;
1099
1100			default:
1101				error = EINVAL;
1102				break;
1103			}
1104			INP_WUNLOCK(inp);
1105			break;
1106
1107#ifdef IPSEC
1108		case IP_IPSEC_POLICY:
1109		{
1110			caddr_t req;
1111			struct mbuf *m;
1112
1113			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1114				break;
1115			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1116				break;
1117			req = mtod(m, caddr_t);
1118			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1119			    m->m_len, (sopt->sopt_td != NULL) ?
1120			    sopt->sopt_td->td_ucred : NULL);
1121			m_freem(m);
1122			break;
1123		}
1124#endif /* IPSEC */
1125
1126		default:
1127			error = ENOPROTOOPT;
1128			break;
1129		}
1130		break;
1131
1132	case SOPT_GET:
1133		switch (sopt->sopt_name) {
1134		case IP_OPTIONS:
1135		case IP_RETOPTS:
1136			if (inp->inp_options)
1137				error = sooptcopyout(sopt,
1138						     mtod(inp->inp_options,
1139							  char *),
1140						     inp->inp_options->m_len);
1141			else
1142				sopt->sopt_valsize = 0;
1143			break;
1144
1145		case IP_TOS:
1146		case IP_TTL:
1147		case IP_MINTTL:
1148		case IP_RECVOPTS:
1149		case IP_RECVRETOPTS:
1150		case IP_RECVDSTADDR:
1151		case IP_RECVTTL:
1152		case IP_RECVIF:
1153		case IP_PORTRANGE:
1154		case IP_FAITH:
1155		case IP_ONESBCAST:
1156		case IP_DONTFRAG:
1157		case IP_BINDANY:
1158		case IP_RECVTOS:
1159			switch (sopt->sopt_name) {
1160
1161			case IP_TOS:
1162				optval = inp->inp_ip_tos;
1163				break;
1164
1165			case IP_TTL:
1166				optval = inp->inp_ip_ttl;
1167				break;
1168
1169			case IP_MINTTL:
1170				optval = inp->inp_ip_minttl;
1171				break;
1172
1173#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1174
1175			case IP_RECVOPTS:
1176				optval = OPTBIT(INP_RECVOPTS);
1177				break;
1178
1179			case IP_RECVRETOPTS:
1180				optval = OPTBIT(INP_RECVRETOPTS);
1181				break;
1182
1183			case IP_RECVDSTADDR:
1184				optval = OPTBIT(INP_RECVDSTADDR);
1185				break;
1186
1187			case IP_RECVTTL:
1188				optval = OPTBIT(INP_RECVTTL);
1189				break;
1190
1191			case IP_RECVIF:
1192				optval = OPTBIT(INP_RECVIF);
1193				break;
1194
1195			case IP_PORTRANGE:
1196				if (inp->inp_flags & INP_HIGHPORT)
1197					optval = IP_PORTRANGE_HIGH;
1198				else if (inp->inp_flags & INP_LOWPORT)
1199					optval = IP_PORTRANGE_LOW;
1200				else
1201					optval = 0;
1202				break;
1203
1204			case IP_FAITH:
1205				optval = OPTBIT(INP_FAITH);
1206				break;
1207
1208			case IP_ONESBCAST:
1209				optval = OPTBIT(INP_ONESBCAST);
1210				break;
1211			case IP_DONTFRAG:
1212				optval = OPTBIT(INP_DONTFRAG);
1213				break;
1214			case IP_BINDANY:
1215				optval = OPTBIT(INP_BINDANY);
1216				break;
1217			case IP_RECVTOS:
1218				optval = OPTBIT(INP_RECVTOS);
1219				break;
1220			}
1221			error = sooptcopyout(sopt, &optval, sizeof optval);
1222			break;
1223
1224		/*
1225		 * Multicast socket options are processed by the in_mcast
1226		 * module.
1227		 */
1228		case IP_MULTICAST_IF:
1229		case IP_MULTICAST_VIF:
1230		case IP_MULTICAST_TTL:
1231		case IP_MULTICAST_LOOP:
1232		case IP_MSFILTER:
1233			error = inp_getmoptions(inp, sopt);
1234			break;
1235
1236#ifdef IPSEC
1237		case IP_IPSEC_POLICY:
1238		{
1239			struct mbuf *m = NULL;
1240			caddr_t req = NULL;
1241			size_t len = 0;
1242
1243			if (m != 0) {
1244				req = mtod(m, caddr_t);
1245				len = m->m_len;
1246			}
1247			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1248			if (error == 0)
1249				error = soopt_mcopyout(sopt, m); /* XXX */
1250			if (error == 0)
1251				m_freem(m);
1252			break;
1253		}
1254#endif /* IPSEC */
1255
1256		default:
1257			error = ENOPROTOOPT;
1258			break;
1259		}
1260		break;
1261	}
1262	return (error);
1263}
1264
1265/*
1266 * Routine called from ip_output() to loop back a copy of an IP multicast
1267 * packet to the input queue of a specified interface.  Note that this
1268 * calls the output routine of the loopback "driver", but with an interface
1269 * pointer that might NOT be a loopback interface -- evil, but easier than
1270 * replicating that code here.
1271 */
1272static void
1273ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1274    int hlen)
1275{
1276	register struct ip *ip;
1277	struct mbuf *copym;
1278
1279	/*
1280	 * Make a deep copy of the packet because we're going to
1281	 * modify the pack in order to generate checksums.
1282	 */
1283	copym = m_dup(m, M_NOWAIT);
1284	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1285		copym = m_pullup(copym, hlen);
1286	if (copym != NULL) {
1287		/* If needed, compute the checksum and mark it as valid. */
1288		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1289			in_delayed_cksum(copym);
1290			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1291			copym->m_pkthdr.csum_flags |=
1292			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1293			copym->m_pkthdr.csum_data = 0xffff;
1294		}
1295		/*
1296		 * We don't bother to fragment if the IP length is greater
1297		 * than the interface's MTU.  Can this possibly matter?
1298		 */
1299		ip = mtod(copym, struct ip *);
1300		ip->ip_sum = 0;
1301		ip->ip_sum = in_cksum(copym, hlen);
1302#if 1 /* XXX */
1303		if (dst->sin_family != AF_INET) {
1304			printf("ip_mloopback: bad address family %d\n",
1305						dst->sin_family);
1306			dst->sin_family = AF_INET;
1307		}
1308#endif
1309		if_simloop(ifp, copym, dst->sin_family, 0);
1310	}
1311}
1312