ip_output.c revision 252710
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_output.c 252710 2013-07-04 18:38:00Z trociny $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_route.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40#include "opt_sctp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/priv.h>
48#include <sys/proc.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/ucred.h>
54
55#include <net/if.h>
56#include <net/if_llatbl.h>
57#include <net/netisr.h>
58#include <net/pfil.h>
59#include <net/route.h>
60#include <net/flowtable.h>
61#ifdef RADIX_MPATH
62#include <net/radix_mpath.h>
63#endif
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/in_var.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_options.h>
73#ifdef SCTP
74#include <netinet/sctp.h>
75#include <netinet/sctp_crc32.h>
76#endif
77
78#ifdef IPSEC
79#include <netinet/ip_ipsec.h>
80#include <netipsec/ipsec.h>
81#endif /* IPSEC*/
82
83#include <machine/in_cksum.h>
84
85#include <security/mac/mac_framework.h>
86
87VNET_DEFINE(u_short, ip_id);
88
89#ifdef MBUF_STRESS_TEST
90static int mbuf_frag_size = 0;
91SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93#endif
94
95static void	ip_mloopback
96	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
97
98
99extern int in_mcast_loop;
100extern	struct protosw inetsw[];
101
102/*
103 * IP output.  The packet in mbuf chain m contains a skeletal IP
104 * header (with len, off, ttl, proto, tos, src, dst).
105 * The mbuf chain containing the packet will be freed.
106 * The mbuf opt, if present, will not be freed.
107 * If route ro is present and has ro_rt initialized, route lookup would be
108 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
109 * then result of route lookup is stored in ro->ro_rt.
110 *
111 * In the IP forwarding case, the packet will arrive with options already
112 * inserted, so must have a NULL opt pointer.
113 */
114int
115ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
116    struct ip_moptions *imo, struct inpcb *inp)
117{
118	struct ip *ip;
119	struct ifnet *ifp = NULL;	/* keep compiler happy */
120	struct mbuf *m0;
121	int hlen = sizeof (struct ip);
122	int mtu;
123	int n;	/* scratchpad */
124	int error = 0;
125	struct sockaddr_in *dst;
126	const struct sockaddr_in *gw;
127	struct in_ifaddr *ia;
128	int isbroadcast;
129	uint16_t ip_len, ip_off;
130	struct route iproute;
131	struct rtentry *rte;	/* cache for ro->ro_rt */
132	struct in_addr odst;
133	struct m_tag *fwd_tag = NULL;
134#ifdef IPSEC
135	int no_route_but_check_spd = 0;
136#endif
137	M_ASSERTPKTHDR(m);
138
139	if (inp != NULL) {
140		INP_LOCK_ASSERT(inp);
141		M_SETFIB(m, inp->inp_inc.inc_fibnum);
142		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
143			m->m_pkthdr.flowid = inp->inp_flowid;
144			m->m_flags |= M_FLOWID;
145		}
146	}
147
148	if (ro == NULL) {
149		ro = &iproute;
150		bzero(ro, sizeof (*ro));
151	}
152
153#ifdef FLOWTABLE
154	if (ro->ro_rt == NULL) {
155		struct flentry *fle;
156
157		/*
158		 * The flow table returns route entries valid for up to 30
159		 * seconds; we rely on the remainder of ip_output() taking no
160		 * longer than that long for the stability of ro_rt. The
161		 * flow ID assignment must have happened before this point.
162		 */
163		fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET);
164		if (fle != NULL)
165			flow_to_route(fle, ro);
166	}
167#endif
168
169	if (opt) {
170		int len = 0;
171		m = ip_insertoptions(m, opt, &len);
172		if (len != 0)
173			hlen = len; /* ip->ip_hl is updated above */
174	}
175	ip = mtod(m, struct ip *);
176	ip_len = ntohs(ip->ip_len);
177	ip_off = ntohs(ip->ip_off);
178
179	/*
180	 * Fill in IP header.  If we are not allowing fragmentation,
181	 * then the ip_id field is meaningless, but we don't set it
182	 * to zero.  Doing so causes various problems when devices along
183	 * the path (routers, load balancers, firewalls, etc.) illegally
184	 * disable DF on our packet.  Note that a 16-bit counter
185	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
186	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
187	 * for Counting NATted Hosts", Proc. IMW'02, available at
188	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
189	 */
190	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
191		ip->ip_v = IPVERSION;
192		ip->ip_hl = hlen >> 2;
193		ip->ip_id = ip_newid();
194		IPSTAT_INC(ips_localout);
195	} else {
196		/* Header already set, fetch hlen from there */
197		hlen = ip->ip_hl << 2;
198	}
199
200	gw = dst = (struct sockaddr_in *)&ro->ro_dst;
201again:
202	ia = NULL;
203	/*
204	 * If there is a cached route,
205	 * check that it is to the same destination
206	 * and is still up.  If not, free it and try again.
207	 * The address family should also be checked in case of sharing the
208	 * cache with IPv6.
209	 */
210	rte = ro->ro_rt;
211	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
212		    rte->rt_ifp == NULL ||
213		    !RT_LINK_IS_UP(rte->rt_ifp) ||
214			  dst->sin_family != AF_INET ||
215			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
216		RO_RTFREE(ro);
217		ro->ro_lle = NULL;
218		rte = NULL;
219	}
220	if (rte == NULL && fwd_tag == NULL) {
221		bzero(dst, sizeof(*dst));
222		dst->sin_family = AF_INET;
223		dst->sin_len = sizeof(*dst);
224		dst->sin_addr = ip->ip_dst;
225	}
226	/*
227	 * If routing to interface only, short circuit routing lookup.
228	 * The use of an all-ones broadcast address implies this; an
229	 * interface is specified by the broadcast address of an interface,
230	 * or the destination address of a ptp interface.
231	 */
232	if (flags & IP_SENDONES) {
233		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
234		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
235			IPSTAT_INC(ips_noroute);
236			error = ENETUNREACH;
237			goto bad;
238		}
239		ip->ip_dst.s_addr = INADDR_BROADCAST;
240		dst->sin_addr = ip->ip_dst;
241		ifp = ia->ia_ifp;
242		ip->ip_ttl = 1;
243		isbroadcast = 1;
244	} else if (flags & IP_ROUTETOIF) {
245		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
246		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
247			IPSTAT_INC(ips_noroute);
248			error = ENETUNREACH;
249			goto bad;
250		}
251		ifp = ia->ia_ifp;
252		ip->ip_ttl = 1;
253		isbroadcast = in_broadcast(dst->sin_addr, ifp);
254	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
255	    imo != NULL && imo->imo_multicast_ifp != NULL) {
256		/*
257		 * Bypass the normal routing lookup for multicast
258		 * packets if the interface is specified.
259		 */
260		ifp = imo->imo_multicast_ifp;
261		IFP_TO_IA(ifp, ia);
262		isbroadcast = 0;	/* fool gcc */
263	} else {
264		/*
265		 * We want to do any cloning requested by the link layer,
266		 * as this is probably required in all cases for correct
267		 * operation (as it is for ARP).
268		 */
269		if (rte == NULL) {
270#ifdef RADIX_MPATH
271			rtalloc_mpath_fib(ro,
272			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
273			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
274#else
275			in_rtalloc_ign(ro, 0,
276			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
277#endif
278			rte = ro->ro_rt;
279		}
280		if (rte == NULL ||
281		    rte->rt_ifp == NULL ||
282		    !RT_LINK_IS_UP(rte->rt_ifp)) {
283#ifdef IPSEC
284			/*
285			 * There is no route for this packet, but it is
286			 * possible that a matching SPD entry exists.
287			 */
288			no_route_but_check_spd = 1;
289			mtu = 0; /* Silence GCC warning. */
290			goto sendit;
291#endif
292			IPSTAT_INC(ips_noroute);
293			error = EHOSTUNREACH;
294			goto bad;
295		}
296		ia = ifatoia(rte->rt_ifa);
297		ifa_ref(&ia->ia_ifa);
298		ifp = rte->rt_ifp;
299		rte->rt_rmx.rmx_pksent++;
300		if (rte->rt_flags & RTF_GATEWAY)
301			gw = (struct sockaddr_in *)rte->rt_gateway;
302		if (rte->rt_flags & RTF_HOST)
303			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
304		else
305			isbroadcast = in_broadcast(gw->sin_addr, ifp);
306	}
307	/*
308	 * Calculate MTU.  If we have a route that is up, use that,
309	 * otherwise use the interface's MTU.
310	 */
311	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
312		/*
313		 * This case can happen if the user changed the MTU
314		 * of an interface after enabling IP on it.  Because
315		 * most netifs don't keep track of routes pointing to
316		 * them, there is no way for one to update all its
317		 * routes when the MTU is changed.
318		 */
319		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
320			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
321		mtu = rte->rt_rmx.rmx_mtu;
322	} else {
323		mtu = ifp->if_mtu;
324	}
325	/* Catch a possible divide by zero later. */
326	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
327	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
328	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
329		m->m_flags |= M_MCAST;
330		/*
331		 * See if the caller provided any multicast options
332		 */
333		if (imo != NULL) {
334			ip->ip_ttl = imo->imo_multicast_ttl;
335			if (imo->imo_multicast_vif != -1)
336				ip->ip_src.s_addr =
337				    ip_mcast_src ?
338				    ip_mcast_src(imo->imo_multicast_vif) :
339				    INADDR_ANY;
340		} else
341			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
342		/*
343		 * Confirm that the outgoing interface supports multicast.
344		 */
345		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
346			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
347				IPSTAT_INC(ips_noroute);
348				error = ENETUNREACH;
349				goto bad;
350			}
351		}
352		/*
353		 * If source address not specified yet, use address
354		 * of outgoing interface.
355		 */
356		if (ip->ip_src.s_addr == INADDR_ANY) {
357			/* Interface may have no addresses. */
358			if (ia != NULL)
359				ip->ip_src = IA_SIN(ia)->sin_addr;
360		}
361
362		if ((imo == NULL && in_mcast_loop) ||
363		    (imo && imo->imo_multicast_loop)) {
364			/*
365			 * Loop back multicast datagram if not expressly
366			 * forbidden to do so, even if we are not a member
367			 * of the group; ip_input() will filter it later,
368			 * thus deferring a hash lookup and mutex acquisition
369			 * at the expense of a cheap copy using m_copym().
370			 */
371			ip_mloopback(ifp, m, dst, hlen);
372		} else {
373			/*
374			 * If we are acting as a multicast router, perform
375			 * multicast forwarding as if the packet had just
376			 * arrived on the interface to which we are about
377			 * to send.  The multicast forwarding function
378			 * recursively calls this function, using the
379			 * IP_FORWARDING flag to prevent infinite recursion.
380			 *
381			 * Multicasts that are looped back by ip_mloopback(),
382			 * above, will be forwarded by the ip_input() routine,
383			 * if necessary.
384			 */
385			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
386				/*
387				 * If rsvp daemon is not running, do not
388				 * set ip_moptions. This ensures that the packet
389				 * is multicast and not just sent down one link
390				 * as prescribed by rsvpd.
391				 */
392				if (!V_rsvp_on)
393					imo = NULL;
394				if (ip_mforward &&
395				    ip_mforward(ip, ifp, m, imo) != 0) {
396					m_freem(m);
397					goto done;
398				}
399			}
400		}
401
402		/*
403		 * Multicasts with a time-to-live of zero may be looped-
404		 * back, above, but must not be transmitted on a network.
405		 * Also, multicasts addressed to the loopback interface
406		 * are not sent -- the above call to ip_mloopback() will
407		 * loop back a copy. ip_input() will drop the copy if
408		 * this host does not belong to the destination group on
409		 * the loopback interface.
410		 */
411		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
412			m_freem(m);
413			goto done;
414		}
415
416		goto sendit;
417	}
418
419	/*
420	 * If the source address is not specified yet, use the address
421	 * of the outoing interface.
422	 */
423	if (ip->ip_src.s_addr == INADDR_ANY) {
424		/* Interface may have no addresses. */
425		if (ia != NULL) {
426			ip->ip_src = IA_SIN(ia)->sin_addr;
427		}
428	}
429
430	/*
431	 * Verify that we have any chance at all of being able to queue the
432	 * packet or packet fragments, unless ALTQ is enabled on the given
433	 * interface in which case packetdrop should be done by queueing.
434	 */
435	n = ip_len / mtu + 1; /* how many fragments ? */
436	if (
437#ifdef ALTQ
438	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
439#endif /* ALTQ */
440	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
441		error = ENOBUFS;
442		IPSTAT_INC(ips_odropped);
443		ifp->if_snd.ifq_drops += n;
444		goto bad;
445	}
446
447	/*
448	 * Look for broadcast address and
449	 * verify user is allowed to send
450	 * such a packet.
451	 */
452	if (isbroadcast) {
453		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
454			error = EADDRNOTAVAIL;
455			goto bad;
456		}
457		if ((flags & IP_ALLOWBROADCAST) == 0) {
458			error = EACCES;
459			goto bad;
460		}
461		/* don't allow broadcast messages to be fragmented */
462		if (ip_len > mtu) {
463			error = EMSGSIZE;
464			goto bad;
465		}
466		m->m_flags |= M_BCAST;
467	} else {
468		m->m_flags &= ~M_BCAST;
469	}
470
471sendit:
472#ifdef IPSEC
473	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
474	case 1:
475		goto bad;
476	case -1:
477		goto done;
478	case 0:
479	default:
480		break;	/* Continue with packet processing. */
481	}
482	/*
483	 * Check if there was a route for this packet; return error if not.
484	 */
485	if (no_route_but_check_spd) {
486		IPSTAT_INC(ips_noroute);
487		error = EHOSTUNREACH;
488		goto bad;
489	}
490	/* Update variables that are affected by ipsec4_output(). */
491	ip = mtod(m, struct ip *);
492	hlen = ip->ip_hl << 2;
493#endif /* IPSEC */
494
495	/* Jump over all PFIL processing if hooks are not active. */
496	if (!PFIL_HOOKED(&V_inet_pfil_hook))
497		goto passout;
498
499	/* Run through list of hooks for output packets. */
500	odst.s_addr = ip->ip_dst.s_addr;
501	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
502	if (error != 0 || m == NULL)
503		goto done;
504
505	ip = mtod(m, struct ip *);
506
507	/* See if destination IP address was changed by packet filter. */
508	if (odst.s_addr != ip->ip_dst.s_addr) {
509		m->m_flags |= M_SKIP_FIREWALL;
510		/* If destination is now ourself drop to ip_input(). */
511		if (in_localip(ip->ip_dst)) {
512			m->m_flags |= M_FASTFWD_OURS;
513			if (m->m_pkthdr.rcvif == NULL)
514				m->m_pkthdr.rcvif = V_loif;
515			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
516				m->m_pkthdr.csum_flags |=
517				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
518				m->m_pkthdr.csum_data = 0xffff;
519			}
520			m->m_pkthdr.csum_flags |=
521			    CSUM_IP_CHECKED | CSUM_IP_VALID;
522#ifdef SCTP
523			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
524				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
525#endif
526			error = netisr_queue(NETISR_IP, m);
527			goto done;
528		} else {
529			if (ia != NULL)
530				ifa_free(&ia->ia_ifa);
531			goto again;	/* Redo the routing table lookup. */
532		}
533	}
534
535	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
536	if (m->m_flags & M_FASTFWD_OURS) {
537		if (m->m_pkthdr.rcvif == NULL)
538			m->m_pkthdr.rcvif = V_loif;
539		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
540			m->m_pkthdr.csum_flags |=
541			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
542			m->m_pkthdr.csum_data = 0xffff;
543		}
544#ifdef SCTP
545		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
546			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
547#endif
548		m->m_pkthdr.csum_flags |=
549			    CSUM_IP_CHECKED | CSUM_IP_VALID;
550
551		error = netisr_queue(NETISR_IP, m);
552		goto done;
553	}
554	/* Or forward to some other address? */
555	if ((m->m_flags & M_IP_NEXTHOP) &&
556	    (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) {
557		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
558		m->m_flags |= M_SKIP_FIREWALL;
559		m->m_flags &= ~M_IP_NEXTHOP;
560		m_tag_delete(m, fwd_tag);
561		if (ia != NULL)
562			ifa_free(&ia->ia_ifa);
563		goto again;
564	}
565
566passout:
567	/* 127/8 must not appear on wire - RFC1122. */
568	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
569	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
570		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
571			IPSTAT_INC(ips_badaddr);
572			error = EADDRNOTAVAIL;
573			goto bad;
574		}
575	}
576
577	m->m_pkthdr.csum_flags |= CSUM_IP;
578	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) {
579		in_delayed_cksum(m);
580		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
581	}
582#ifdef SCTP
583	if (m->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) {
584		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
585		m->m_pkthdr.csum_flags &= ~CSUM_SCTP;
586	}
587#endif
588
589	/*
590	 * If small enough for interface, or the interface will take
591	 * care of the fragmentation for us, we can just send directly.
592	 */
593	if (ip_len <= mtu ||
594	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
595	    ((ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
596		ip->ip_sum = 0;
597		if (m->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) {
598			ip->ip_sum = in_cksum(m, hlen);
599			m->m_pkthdr.csum_flags &= ~CSUM_IP;
600		}
601
602		/*
603		 * Record statistics for this interface address.
604		 * With CSUM_TSO the byte/packet count will be slightly
605		 * incorrect because we count the IP+TCP headers only
606		 * once instead of for every generated packet.
607		 */
608		if (!(flags & IP_FORWARDING) && ia) {
609			if (m->m_pkthdr.csum_flags & CSUM_TSO)
610				ia->ia_ifa.if_opackets +=
611				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
612			else
613				ia->ia_ifa.if_opackets++;
614			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
615		}
616#ifdef MBUF_STRESS_TEST
617		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
618			m = m_fragment(m, M_NOWAIT, mbuf_frag_size);
619#endif
620		/*
621		 * Reset layer specific mbuf flags
622		 * to avoid confusing lower layers.
623		 */
624		m->m_flags &= ~(M_PROTOFLAGS);
625		error = (*ifp->if_output)(ifp, m,
626		    (const struct sockaddr *)gw, ro);
627		goto done;
628	}
629
630	/* Balk when DF bit is set or the interface didn't support TSO. */
631	if ((ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
632		error = EMSGSIZE;
633		IPSTAT_INC(ips_cantfrag);
634		goto bad;
635	}
636
637	/*
638	 * Too large for interface; fragment if possible. If successful,
639	 * on return, m will point to a list of packets to be sent.
640	 */
641	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist);
642	if (error)
643		goto bad;
644	for (; m; m = m0) {
645		m0 = m->m_nextpkt;
646		m->m_nextpkt = 0;
647		if (error == 0) {
648			/* Record statistics for this interface address. */
649			if (ia != NULL) {
650				ia->ia_ifa.if_opackets++;
651				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
652			}
653			/*
654			 * Reset layer specific mbuf flags
655			 * to avoid confusing upper layers.
656			 */
657			m->m_flags &= ~(M_PROTOFLAGS);
658
659			error = (*ifp->if_output)(ifp, m,
660			    (const struct sockaddr *)gw, ro);
661		} else
662			m_freem(m);
663	}
664
665	if (error == 0)
666		IPSTAT_INC(ips_fragmented);
667
668done:
669	if (ro == &iproute)
670		RO_RTFREE(ro);
671	if (ia != NULL)
672		ifa_free(&ia->ia_ifa);
673	return (error);
674bad:
675	m_freem(m);
676	goto done;
677}
678
679/*
680 * Create a chain of fragments which fit the given mtu. m_frag points to the
681 * mbuf to be fragmented; on return it points to the chain with the fragments.
682 * Return 0 if no error. If error, m_frag may contain a partially built
683 * chain of fragments that should be freed by the caller.
684 *
685 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
686 */
687int
688ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
689    u_long if_hwassist_flags)
690{
691	int error = 0;
692	int hlen = ip->ip_hl << 2;
693	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
694	int off;
695	struct mbuf *m0 = *m_frag;	/* the original packet		*/
696	int firstlen;
697	struct mbuf **mnext;
698	int nfrags;
699	uint16_t ip_len, ip_off;
700
701	ip_len = ntohs(ip->ip_len);
702	ip_off = ntohs(ip->ip_off);
703
704	if (ip_off & IP_DF) {	/* Fragmentation not allowed */
705		IPSTAT_INC(ips_cantfrag);
706		return EMSGSIZE;
707	}
708
709	/*
710	 * Must be able to put at least 8 bytes per fragment.
711	 */
712	if (len < 8)
713		return EMSGSIZE;
714
715	/*
716	 * If the interface will not calculate checksums on
717	 * fragmented packets, then do it here.
718	 */
719	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
720		in_delayed_cksum(m0);
721		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
722	}
723#ifdef SCTP
724	if (m0->m_pkthdr.csum_flags & CSUM_SCTP) {
725		sctp_delayed_cksum(m0, hlen);
726		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
727	}
728#endif
729	if (len > PAGE_SIZE) {
730		/*
731		 * Fragment large datagrams such that each segment
732		 * contains a multiple of PAGE_SIZE amount of data,
733		 * plus headers. This enables a receiver to perform
734		 * page-flipping zero-copy optimizations.
735		 *
736		 * XXX When does this help given that sender and receiver
737		 * could have different page sizes, and also mtu could
738		 * be less than the receiver's page size ?
739		 */
740		int newlen;
741		struct mbuf *m;
742
743		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
744			off += m->m_len;
745
746		/*
747		 * firstlen (off - hlen) must be aligned on an
748		 * 8-byte boundary
749		 */
750		if (off < hlen)
751			goto smart_frag_failure;
752		off = ((off - hlen) & ~7) + hlen;
753		newlen = (~PAGE_MASK) & mtu;
754		if ((newlen + sizeof (struct ip)) > mtu) {
755			/* we failed, go back the default */
756smart_frag_failure:
757			newlen = len;
758			off = hlen + len;
759		}
760		len = newlen;
761
762	} else {
763		off = hlen + len;
764	}
765
766	firstlen = off - hlen;
767	mnext = &m0->m_nextpkt;		/* pointer to next packet */
768
769	/*
770	 * Loop through length of segment after first fragment,
771	 * make new header and copy data of each part and link onto chain.
772	 * Here, m0 is the original packet, m is the fragment being created.
773	 * The fragments are linked off the m_nextpkt of the original
774	 * packet, which after processing serves as the first fragment.
775	 */
776	for (nfrags = 1; off < ip_len; off += len, nfrags++) {
777		struct ip *mhip;	/* ip header on the fragment */
778		struct mbuf *m;
779		int mhlen = sizeof (struct ip);
780
781		m = m_gethdr(M_NOWAIT, MT_DATA);
782		if (m == NULL) {
783			error = ENOBUFS;
784			IPSTAT_INC(ips_odropped);
785			goto done;
786		}
787		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
788		/*
789		 * In the first mbuf, leave room for the link header, then
790		 * copy the original IP header including options. The payload
791		 * goes into an additional mbuf chain returned by m_copym().
792		 */
793		m->m_data += max_linkhdr;
794		mhip = mtod(m, struct ip *);
795		*mhip = *ip;
796		if (hlen > sizeof (struct ip)) {
797			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
798			mhip->ip_v = IPVERSION;
799			mhip->ip_hl = mhlen >> 2;
800		}
801		m->m_len = mhlen;
802		/* XXX do we need to add ip_off below ? */
803		mhip->ip_off = ((off - hlen) >> 3) + ip_off;
804		if (off + len >= ip_len) {	/* last fragment */
805			len = ip_len - off;
806			m->m_flags |= M_LASTFRAG;
807		} else
808			mhip->ip_off |= IP_MF;
809		mhip->ip_len = htons((u_short)(len + mhlen));
810		m->m_next = m_copym(m0, off, len, M_NOWAIT);
811		if (m->m_next == NULL) {	/* copy failed */
812			m_free(m);
813			error = ENOBUFS;	/* ??? */
814			IPSTAT_INC(ips_odropped);
815			goto done;
816		}
817		m->m_pkthdr.len = mhlen + len;
818		m->m_pkthdr.rcvif = NULL;
819#ifdef MAC
820		mac_netinet_fragment(m0, m);
821#endif
822		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
823		mhip->ip_off = htons(mhip->ip_off);
824		mhip->ip_sum = 0;
825		if (m->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
826			mhip->ip_sum = in_cksum(m, mhlen);
827			m->m_pkthdr.csum_flags &= ~CSUM_IP;
828		}
829		*mnext = m;
830		mnext = &m->m_nextpkt;
831	}
832	IPSTAT_ADD(ips_ofragments, nfrags);
833
834	/* set first marker for fragment chain */
835	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
836	m0->m_pkthdr.csum_data = nfrags;
837
838	/*
839	 * Update first fragment by trimming what's been copied out
840	 * and updating header.
841	 */
842	m_adj(m0, hlen + firstlen - ip_len);
843	m0->m_pkthdr.len = hlen + firstlen;
844	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
845	ip->ip_off = htons(ip_off | IP_MF);
846	ip->ip_sum = 0;
847	if (m0->m_pkthdr.csum_flags & CSUM_IP & ~if_hwassist_flags) {
848		ip->ip_sum = in_cksum(m0, hlen);
849		m0->m_pkthdr.csum_flags &= ~CSUM_IP;
850	}
851
852done:
853	*m_frag = m0;
854	return error;
855}
856
857void
858in_delayed_cksum(struct mbuf *m)
859{
860	struct ip *ip;
861	uint16_t csum, offset, ip_len;
862
863	ip = mtod(m, struct ip *);
864	offset = ip->ip_hl << 2 ;
865	ip_len = ntohs(ip->ip_len);
866	csum = in_cksum_skip(m, ip_len, offset);
867	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
868		csum = 0xffff;
869	offset += m->m_pkthdr.csum_data;	/* checksum offset */
870
871	if (offset + sizeof(u_short) > m->m_len) {
872		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
873		    m->m_len, offset, ip->ip_p);
874		/*
875		 * XXX
876		 * this shouldn't happen, but if it does, the
877		 * correct behavior may be to insert the checksum
878		 * in the appropriate next mbuf in the chain.
879		 */
880		return;
881	}
882	*(u_short *)(m->m_data + offset) = csum;
883}
884
885/*
886 * IP socket option processing.
887 */
888int
889ip_ctloutput(struct socket *so, struct sockopt *sopt)
890{
891	struct	inpcb *inp = sotoinpcb(so);
892	int	error, optval;
893
894	error = optval = 0;
895	if (sopt->sopt_level != IPPROTO_IP) {
896		error = EINVAL;
897
898		if (sopt->sopt_level == SOL_SOCKET &&
899		    sopt->sopt_dir == SOPT_SET) {
900			switch (sopt->sopt_name) {
901			case SO_REUSEADDR:
902				INP_WLOCK(inp);
903				if ((so->so_options & SO_REUSEADDR) != 0)
904					inp->inp_flags2 |= INP_REUSEADDR;
905				else
906					inp->inp_flags2 &= ~INP_REUSEADDR;
907				INP_WUNLOCK(inp);
908				error = 0;
909				break;
910			case SO_REUSEPORT:
911				INP_WLOCK(inp);
912				if ((so->so_options & SO_REUSEPORT) != 0)
913					inp->inp_flags2 |= INP_REUSEPORT;
914				else
915					inp->inp_flags2 &= ~INP_REUSEPORT;
916				INP_WUNLOCK(inp);
917				error = 0;
918				break;
919			case SO_SETFIB:
920				INP_WLOCK(inp);
921				inp->inp_inc.inc_fibnum = so->so_fibnum;
922				INP_WUNLOCK(inp);
923				error = 0;
924				break;
925			default:
926				break;
927			}
928		}
929		return (error);
930	}
931
932	switch (sopt->sopt_dir) {
933	case SOPT_SET:
934		switch (sopt->sopt_name) {
935		case IP_OPTIONS:
936#ifdef notyet
937		case IP_RETOPTS:
938#endif
939		{
940			struct mbuf *m;
941			if (sopt->sopt_valsize > MLEN) {
942				error = EMSGSIZE;
943				break;
944			}
945			m = m_get(sopt->sopt_td ? M_WAITOK : M_NOWAIT, MT_DATA);
946			if (m == NULL) {
947				error = ENOBUFS;
948				break;
949			}
950			m->m_len = sopt->sopt_valsize;
951			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
952					    m->m_len);
953			if (error) {
954				m_free(m);
955				break;
956			}
957			INP_WLOCK(inp);
958			error = ip_pcbopts(inp, sopt->sopt_name, m);
959			INP_WUNLOCK(inp);
960			return (error);
961		}
962
963		case IP_BINDANY:
964			if (sopt->sopt_td != NULL) {
965				error = priv_check(sopt->sopt_td,
966				    PRIV_NETINET_BINDANY);
967				if (error)
968					break;
969			}
970			/* FALLTHROUGH */
971		case IP_TOS:
972		case IP_TTL:
973		case IP_MINTTL:
974		case IP_RECVOPTS:
975		case IP_RECVRETOPTS:
976		case IP_RECVDSTADDR:
977		case IP_RECVTTL:
978		case IP_RECVIF:
979		case IP_FAITH:
980		case IP_ONESBCAST:
981		case IP_DONTFRAG:
982		case IP_RECVTOS:
983			error = sooptcopyin(sopt, &optval, sizeof optval,
984					    sizeof optval);
985			if (error)
986				break;
987
988			switch (sopt->sopt_name) {
989			case IP_TOS:
990				inp->inp_ip_tos = optval;
991				break;
992
993			case IP_TTL:
994				inp->inp_ip_ttl = optval;
995				break;
996
997			case IP_MINTTL:
998				if (optval >= 0 && optval <= MAXTTL)
999					inp->inp_ip_minttl = optval;
1000				else
1001					error = EINVAL;
1002				break;
1003
1004#define	OPTSET(bit) do {						\
1005	INP_WLOCK(inp);							\
1006	if (optval)							\
1007		inp->inp_flags |= bit;					\
1008	else								\
1009		inp->inp_flags &= ~bit;					\
1010	INP_WUNLOCK(inp);						\
1011} while (0)
1012
1013			case IP_RECVOPTS:
1014				OPTSET(INP_RECVOPTS);
1015				break;
1016
1017			case IP_RECVRETOPTS:
1018				OPTSET(INP_RECVRETOPTS);
1019				break;
1020
1021			case IP_RECVDSTADDR:
1022				OPTSET(INP_RECVDSTADDR);
1023				break;
1024
1025			case IP_RECVTTL:
1026				OPTSET(INP_RECVTTL);
1027				break;
1028
1029			case IP_RECVIF:
1030				OPTSET(INP_RECVIF);
1031				break;
1032
1033			case IP_FAITH:
1034				OPTSET(INP_FAITH);
1035				break;
1036
1037			case IP_ONESBCAST:
1038				OPTSET(INP_ONESBCAST);
1039				break;
1040			case IP_DONTFRAG:
1041				OPTSET(INP_DONTFRAG);
1042				break;
1043			case IP_BINDANY:
1044				OPTSET(INP_BINDANY);
1045				break;
1046			case IP_RECVTOS:
1047				OPTSET(INP_RECVTOS);
1048				break;
1049			}
1050			break;
1051#undef OPTSET
1052
1053		/*
1054		 * Multicast socket options are processed by the in_mcast
1055		 * module.
1056		 */
1057		case IP_MULTICAST_IF:
1058		case IP_MULTICAST_VIF:
1059		case IP_MULTICAST_TTL:
1060		case IP_MULTICAST_LOOP:
1061		case IP_ADD_MEMBERSHIP:
1062		case IP_DROP_MEMBERSHIP:
1063		case IP_ADD_SOURCE_MEMBERSHIP:
1064		case IP_DROP_SOURCE_MEMBERSHIP:
1065		case IP_BLOCK_SOURCE:
1066		case IP_UNBLOCK_SOURCE:
1067		case IP_MSFILTER:
1068		case MCAST_JOIN_GROUP:
1069		case MCAST_LEAVE_GROUP:
1070		case MCAST_JOIN_SOURCE_GROUP:
1071		case MCAST_LEAVE_SOURCE_GROUP:
1072		case MCAST_BLOCK_SOURCE:
1073		case MCAST_UNBLOCK_SOURCE:
1074			error = inp_setmoptions(inp, sopt);
1075			break;
1076
1077		case IP_PORTRANGE:
1078			error = sooptcopyin(sopt, &optval, sizeof optval,
1079					    sizeof optval);
1080			if (error)
1081				break;
1082
1083			INP_WLOCK(inp);
1084			switch (optval) {
1085			case IP_PORTRANGE_DEFAULT:
1086				inp->inp_flags &= ~(INP_LOWPORT);
1087				inp->inp_flags &= ~(INP_HIGHPORT);
1088				break;
1089
1090			case IP_PORTRANGE_HIGH:
1091				inp->inp_flags &= ~(INP_LOWPORT);
1092				inp->inp_flags |= INP_HIGHPORT;
1093				break;
1094
1095			case IP_PORTRANGE_LOW:
1096				inp->inp_flags &= ~(INP_HIGHPORT);
1097				inp->inp_flags |= INP_LOWPORT;
1098				break;
1099
1100			default:
1101				error = EINVAL;
1102				break;
1103			}
1104			INP_WUNLOCK(inp);
1105			break;
1106
1107#ifdef IPSEC
1108		case IP_IPSEC_POLICY:
1109		{
1110			caddr_t req;
1111			struct mbuf *m;
1112
1113			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1114				break;
1115			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1116				break;
1117			req = mtod(m, caddr_t);
1118			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1119			    m->m_len, (sopt->sopt_td != NULL) ?
1120			    sopt->sopt_td->td_ucred : NULL);
1121			m_freem(m);
1122			break;
1123		}
1124#endif /* IPSEC */
1125
1126		default:
1127			error = ENOPROTOOPT;
1128			break;
1129		}
1130		break;
1131
1132	case SOPT_GET:
1133		switch (sopt->sopt_name) {
1134		case IP_OPTIONS:
1135		case IP_RETOPTS:
1136			if (inp->inp_options)
1137				error = sooptcopyout(sopt,
1138						     mtod(inp->inp_options,
1139							  char *),
1140						     inp->inp_options->m_len);
1141			else
1142				sopt->sopt_valsize = 0;
1143			break;
1144
1145		case IP_TOS:
1146		case IP_TTL:
1147		case IP_MINTTL:
1148		case IP_RECVOPTS:
1149		case IP_RECVRETOPTS:
1150		case IP_RECVDSTADDR:
1151		case IP_RECVTTL:
1152		case IP_RECVIF:
1153		case IP_PORTRANGE:
1154		case IP_FAITH:
1155		case IP_ONESBCAST:
1156		case IP_DONTFRAG:
1157		case IP_BINDANY:
1158		case IP_RECVTOS:
1159			switch (sopt->sopt_name) {
1160
1161			case IP_TOS:
1162				optval = inp->inp_ip_tos;
1163				break;
1164
1165			case IP_TTL:
1166				optval = inp->inp_ip_ttl;
1167				break;
1168
1169			case IP_MINTTL:
1170				optval = inp->inp_ip_minttl;
1171				break;
1172
1173#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1174
1175			case IP_RECVOPTS:
1176				optval = OPTBIT(INP_RECVOPTS);
1177				break;
1178
1179			case IP_RECVRETOPTS:
1180				optval = OPTBIT(INP_RECVRETOPTS);
1181				break;
1182
1183			case IP_RECVDSTADDR:
1184				optval = OPTBIT(INP_RECVDSTADDR);
1185				break;
1186
1187			case IP_RECVTTL:
1188				optval = OPTBIT(INP_RECVTTL);
1189				break;
1190
1191			case IP_RECVIF:
1192				optval = OPTBIT(INP_RECVIF);
1193				break;
1194
1195			case IP_PORTRANGE:
1196				if (inp->inp_flags & INP_HIGHPORT)
1197					optval = IP_PORTRANGE_HIGH;
1198				else if (inp->inp_flags & INP_LOWPORT)
1199					optval = IP_PORTRANGE_LOW;
1200				else
1201					optval = 0;
1202				break;
1203
1204			case IP_FAITH:
1205				optval = OPTBIT(INP_FAITH);
1206				break;
1207
1208			case IP_ONESBCAST:
1209				optval = OPTBIT(INP_ONESBCAST);
1210				break;
1211			case IP_DONTFRAG:
1212				optval = OPTBIT(INP_DONTFRAG);
1213				break;
1214			case IP_BINDANY:
1215				optval = OPTBIT(INP_BINDANY);
1216				break;
1217			case IP_RECVTOS:
1218				optval = OPTBIT(INP_RECVTOS);
1219				break;
1220			}
1221			error = sooptcopyout(sopt, &optval, sizeof optval);
1222			break;
1223
1224		/*
1225		 * Multicast socket options are processed by the in_mcast
1226		 * module.
1227		 */
1228		case IP_MULTICAST_IF:
1229		case IP_MULTICAST_VIF:
1230		case IP_MULTICAST_TTL:
1231		case IP_MULTICAST_LOOP:
1232		case IP_MSFILTER:
1233			error = inp_getmoptions(inp, sopt);
1234			break;
1235
1236#ifdef IPSEC
1237		case IP_IPSEC_POLICY:
1238		{
1239			struct mbuf *m = NULL;
1240			caddr_t req = NULL;
1241			size_t len = 0;
1242
1243			if (m != 0) {
1244				req = mtod(m, caddr_t);
1245				len = m->m_len;
1246			}
1247			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1248			if (error == 0)
1249				error = soopt_mcopyout(sopt, m); /* XXX */
1250			if (error == 0)
1251				m_freem(m);
1252			break;
1253		}
1254#endif /* IPSEC */
1255
1256		default:
1257			error = ENOPROTOOPT;
1258			break;
1259		}
1260		break;
1261	}
1262	return (error);
1263}
1264
1265/*
1266 * Routine called from ip_output() to loop back a copy of an IP multicast
1267 * packet to the input queue of a specified interface.  Note that this
1268 * calls the output routine of the loopback "driver", but with an interface
1269 * pointer that might NOT be a loopback interface -- evil, but easier than
1270 * replicating that code here.
1271 */
1272static void
1273ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1274    int hlen)
1275{
1276	register struct ip *ip;
1277	struct mbuf *copym;
1278
1279	/*
1280	 * Make a deep copy of the packet because we're going to
1281	 * modify the pack in order to generate checksums.
1282	 */
1283	copym = m_dup(m, M_NOWAIT);
1284	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1285		copym = m_pullup(copym, hlen);
1286	if (copym != NULL) {
1287		/* If needed, compute the checksum and mark it as valid. */
1288		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1289			in_delayed_cksum(copym);
1290			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1291			copym->m_pkthdr.csum_flags |=
1292			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1293			copym->m_pkthdr.csum_data = 0xffff;
1294		}
1295		/*
1296		 * We don't bother to fragment if the IP length is greater
1297		 * than the interface's MTU.  Can this possibly matter?
1298		 */
1299		ip = mtod(copym, struct ip *);
1300		ip->ip_sum = 0;
1301		ip->ip_sum = in_cksum(copym, hlen);
1302#if 1 /* XXX */
1303		if (dst->sin_family != AF_INET) {
1304			printf("ip_mloopback: bad address family %d\n",
1305						dst->sin_family);
1306			dst->sin_family = AF_INET;
1307		}
1308#endif
1309		if_simloop(ifp, copym, dst->sin_family, 0);
1310	}
1311}
1312