ip_output.c revision 238092
1/*-
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 4. Neither the name of the University nor the names of its contributors
14 *    may be used to endorse or promote products derived from this software
15 *    without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
30 */
31
32#include <sys/cdefs.h>
33__FBSDID("$FreeBSD: head/sys/netinet/ip_output.c 238092 2012-07-04 07:37:53Z glebius $");
34
35#include "opt_ipfw.h"
36#include "opt_ipsec.h"
37#include "opt_route.h"
38#include "opt_mbuf_stress_test.h"
39#include "opt_mpath.h"
40#include "opt_sctp.h"
41
42#include <sys/param.h>
43#include <sys/systm.h>
44#include <sys/kernel.h>
45#include <sys/malloc.h>
46#include <sys/mbuf.h>
47#include <sys/priv.h>
48#include <sys/proc.h>
49#include <sys/protosw.h>
50#include <sys/socket.h>
51#include <sys/socketvar.h>
52#include <sys/sysctl.h>
53#include <sys/ucred.h>
54
55#include <net/if.h>
56#include <net/if_llatbl.h>
57#include <net/netisr.h>
58#include <net/pfil.h>
59#include <net/route.h>
60#include <net/flowtable.h>
61#ifdef RADIX_MPATH
62#include <net/radix_mpath.h>
63#endif
64#include <net/vnet.h>
65
66#include <netinet/in.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#include <netinet/in_pcb.h>
70#include <netinet/in_var.h>
71#include <netinet/ip_var.h>
72#include <netinet/ip_options.h>
73#ifdef SCTP
74#include <netinet/sctp.h>
75#include <netinet/sctp_crc32.h>
76#endif
77
78#ifdef IPSEC
79#include <netinet/ip_ipsec.h>
80#include <netipsec/ipsec.h>
81#endif /* IPSEC*/
82
83#include <machine/in_cksum.h>
84
85#include <security/mac/mac_framework.h>
86
87VNET_DEFINE(u_short, ip_id);
88
89#ifdef MBUF_STRESS_TEST
90static int mbuf_frag_size = 0;
91SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
92	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
93#endif
94
95static void	ip_mloopback
96	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
97
98
99extern int in_mcast_loop;
100extern	struct protosw inetsw[];
101
102/*
103 * IP output.  The packet in mbuf chain m contains a skeletal IP
104 * header (with len, off, ttl, proto, tos, src, dst).
105 * ip_len and ip_off are in host format.
106 * The mbuf chain containing the packet will be freed.
107 * The mbuf opt, if present, will not be freed.
108 * If route ro is present and has ro_rt initialized, route lookup would be
109 * skipped and ro->ro_rt would be used. If ro is present but ro->ro_rt is NULL,
110 * then result of route lookup is stored in ro->ro_rt.
111 *
112 * In the IP forwarding case, the packet will arrive with options already
113 * inserted, so must have a NULL opt pointer.
114 */
115int
116ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
117    struct ip_moptions *imo, struct inpcb *inp)
118{
119	struct ip *ip;
120	struct ifnet *ifp = NULL;	/* keep compiler happy */
121	struct mbuf *m0;
122	int hlen = sizeof (struct ip);
123	int mtu;
124	int n;	/* scratchpad */
125	int error = 0;
126	struct sockaddr_in *dst;
127	struct in_ifaddr *ia = NULL;
128	int isbroadcast, sw_csum;
129	struct route iproute;
130	struct rtentry *rte;	/* cache for ro->ro_rt */
131	struct in_addr odst;
132#ifdef IPFIREWALL_FORWARD
133	struct m_tag *fwd_tag = NULL;
134#endif
135#ifdef IPSEC
136	int no_route_but_check_spd = 0;
137#endif
138	M_ASSERTPKTHDR(m);
139
140	if (inp != NULL) {
141		INP_LOCK_ASSERT(inp);
142		M_SETFIB(m, inp->inp_inc.inc_fibnum);
143		if (inp->inp_flags & (INP_HW_FLOWID|INP_SW_FLOWID)) {
144			m->m_pkthdr.flowid = inp->inp_flowid;
145			m->m_flags |= M_FLOWID;
146		}
147	}
148
149	if (ro == NULL) {
150		ro = &iproute;
151		bzero(ro, sizeof (*ro));
152	}
153
154#ifdef FLOWTABLE
155	if (ro->ro_rt == NULL) {
156		struct flentry *fle;
157
158		/*
159		 * The flow table returns route entries valid for up to 30
160		 * seconds; we rely on the remainder of ip_output() taking no
161		 * longer than that long for the stability of ro_rt. The
162		 * flow ID assignment must have happened before this point.
163		 */
164		fle = flowtable_lookup_mbuf(V_ip_ft, m, AF_INET);
165		if (fle != NULL)
166			flow_to_route(fle, ro);
167	}
168#endif
169
170	if (opt) {
171		int len = 0;
172		m = ip_insertoptions(m, opt, &len);
173		if (len != 0)
174			hlen = len; /* ip->ip_hl is updated above */
175	}
176	ip = mtod(m, struct ip *);
177
178	/*
179	 * Fill in IP header.  If we are not allowing fragmentation,
180	 * then the ip_id field is meaningless, but we don't set it
181	 * to zero.  Doing so causes various problems when devices along
182	 * the path (routers, load balancers, firewalls, etc.) illegally
183	 * disable DF on our packet.  Note that a 16-bit counter
184	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
185	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
186	 * for Counting NATted Hosts", Proc. IMW'02, available at
187	 * <http://www.cs.columbia.edu/~smb/papers/fnat.pdf>.
188	 */
189	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
190		ip->ip_v = IPVERSION;
191		ip->ip_hl = hlen >> 2;
192		ip->ip_id = ip_newid();
193		IPSTAT_INC(ips_localout);
194	} else {
195		/* Header already set, fetch hlen from there */
196		hlen = ip->ip_hl << 2;
197	}
198
199	dst = (struct sockaddr_in *)&ro->ro_dst;
200again:
201	/*
202	 * If there is a cached route,
203	 * check that it is to the same destination
204	 * and is still up.  If not, free it and try again.
205	 * The address family should also be checked in case of sharing the
206	 * cache with IPv6.
207	 */
208	rte = ro->ro_rt;
209	if (rte && ((rte->rt_flags & RTF_UP) == 0 ||
210		    rte->rt_ifp == NULL ||
211		    !RT_LINK_IS_UP(rte->rt_ifp) ||
212			  dst->sin_family != AF_INET ||
213			  dst->sin_addr.s_addr != ip->ip_dst.s_addr)) {
214		RO_RTFREE(ro);
215		ro->ro_lle = NULL;
216		rte = NULL;
217	}
218#ifdef IPFIREWALL_FORWARD
219	if (rte == NULL && fwd_tag == NULL) {
220#else
221	if (rte == NULL) {
222#endif
223		bzero(dst, sizeof(*dst));
224		dst->sin_family = AF_INET;
225		dst->sin_len = sizeof(*dst);
226		dst->sin_addr = ip->ip_dst;
227	}
228	/*
229	 * If routing to interface only, short circuit routing lookup.
230	 * The use of an all-ones broadcast address implies this; an
231	 * interface is specified by the broadcast address of an interface,
232	 * or the destination address of a ptp interface.
233	 */
234	if (flags & IP_SENDONES) {
235		if ((ia = ifatoia(ifa_ifwithbroadaddr(sintosa(dst)))) == NULL &&
236		    (ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
237			IPSTAT_INC(ips_noroute);
238			error = ENETUNREACH;
239			goto bad;
240		}
241		ip->ip_dst.s_addr = INADDR_BROADCAST;
242		dst->sin_addr = ip->ip_dst;
243		ifp = ia->ia_ifp;
244		ip->ip_ttl = 1;
245		isbroadcast = 1;
246	} else if (flags & IP_ROUTETOIF) {
247		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL &&
248		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst), 0))) == NULL) {
249			IPSTAT_INC(ips_noroute);
250			error = ENETUNREACH;
251			goto bad;
252		}
253		ifp = ia->ia_ifp;
254		ip->ip_ttl = 1;
255		isbroadcast = in_broadcast(dst->sin_addr, ifp);
256	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
257	    imo != NULL && imo->imo_multicast_ifp != NULL) {
258		/*
259		 * Bypass the normal routing lookup for multicast
260		 * packets if the interface is specified.
261		 */
262		ifp = imo->imo_multicast_ifp;
263		IFP_TO_IA(ifp, ia);
264		isbroadcast = 0;	/* fool gcc */
265	} else {
266		/*
267		 * We want to do any cloning requested by the link layer,
268		 * as this is probably required in all cases for correct
269		 * operation (as it is for ARP).
270		 */
271		if (rte == NULL) {
272#ifdef RADIX_MPATH
273			rtalloc_mpath_fib(ro,
274			    ntohl(ip->ip_src.s_addr ^ ip->ip_dst.s_addr),
275			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
276#else
277			in_rtalloc_ign(ro, 0,
278			    inp ? inp->inp_inc.inc_fibnum : M_GETFIB(m));
279#endif
280			rte = ro->ro_rt;
281		}
282		if (rte == NULL ||
283		    rte->rt_ifp == NULL ||
284		    !RT_LINK_IS_UP(rte->rt_ifp)) {
285#ifdef IPSEC
286			/*
287			 * There is no route for this packet, but it is
288			 * possible that a matching SPD entry exists.
289			 */
290			no_route_but_check_spd = 1;
291			mtu = 0; /* Silence GCC warning. */
292			goto sendit;
293#endif
294			IPSTAT_INC(ips_noroute);
295			error = EHOSTUNREACH;
296			goto bad;
297		}
298		ia = ifatoia(rte->rt_ifa);
299		ifa_ref(&ia->ia_ifa);
300		ifp = rte->rt_ifp;
301		rte->rt_rmx.rmx_pksent++;
302		if (rte->rt_flags & RTF_GATEWAY)
303			dst = (struct sockaddr_in *)rte->rt_gateway;
304		if (rte->rt_flags & RTF_HOST)
305			isbroadcast = (rte->rt_flags & RTF_BROADCAST);
306		else
307			isbroadcast = in_broadcast(dst->sin_addr, ifp);
308	}
309	/*
310	 * Calculate MTU.  If we have a route that is up, use that,
311	 * otherwise use the interface's MTU.
312	 */
313	if (rte != NULL && (rte->rt_flags & (RTF_UP|RTF_HOST))) {
314		/*
315		 * This case can happen if the user changed the MTU
316		 * of an interface after enabling IP on it.  Because
317		 * most netifs don't keep track of routes pointing to
318		 * them, there is no way for one to update all its
319		 * routes when the MTU is changed.
320		 */
321		if (rte->rt_rmx.rmx_mtu > ifp->if_mtu)
322			rte->rt_rmx.rmx_mtu = ifp->if_mtu;
323		mtu = rte->rt_rmx.rmx_mtu;
324	} else {
325		mtu = ifp->if_mtu;
326	}
327	/* Catch a possible divide by zero later. */
328	KASSERT(mtu > 0, ("%s: mtu %d <= 0, rte=%p (rt_flags=0x%08x) ifp=%p",
329	    __func__, mtu, rte, (rte != NULL) ? rte->rt_flags : 0, ifp));
330	if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
331		m->m_flags |= M_MCAST;
332		/*
333		 * IP destination address is multicast.  Make sure "dst"
334		 * still points to the address in "ro".  (It may have been
335		 * changed to point to a gateway address, above.)
336		 */
337		dst = (struct sockaddr_in *)&ro->ro_dst;
338		/*
339		 * See if the caller provided any multicast options
340		 */
341		if (imo != NULL) {
342			ip->ip_ttl = imo->imo_multicast_ttl;
343			if (imo->imo_multicast_vif != -1)
344				ip->ip_src.s_addr =
345				    ip_mcast_src ?
346				    ip_mcast_src(imo->imo_multicast_vif) :
347				    INADDR_ANY;
348		} else
349			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
350		/*
351		 * Confirm that the outgoing interface supports multicast.
352		 */
353		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
354			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
355				IPSTAT_INC(ips_noroute);
356				error = ENETUNREACH;
357				goto bad;
358			}
359		}
360		/*
361		 * If source address not specified yet, use address
362		 * of outgoing interface.
363		 */
364		if (ip->ip_src.s_addr == INADDR_ANY) {
365			/* Interface may have no addresses. */
366			if (ia != NULL)
367				ip->ip_src = IA_SIN(ia)->sin_addr;
368		}
369
370		if ((imo == NULL && in_mcast_loop) ||
371		    (imo && imo->imo_multicast_loop)) {
372			/*
373			 * Loop back multicast datagram if not expressly
374			 * forbidden to do so, even if we are not a member
375			 * of the group; ip_input() will filter it later,
376			 * thus deferring a hash lookup and mutex acquisition
377			 * at the expense of a cheap copy using m_copym().
378			 */
379			ip_mloopback(ifp, m, dst, hlen);
380		} else {
381			/*
382			 * If we are acting as a multicast router, perform
383			 * multicast forwarding as if the packet had just
384			 * arrived on the interface to which we are about
385			 * to send.  The multicast forwarding function
386			 * recursively calls this function, using the
387			 * IP_FORWARDING flag to prevent infinite recursion.
388			 *
389			 * Multicasts that are looped back by ip_mloopback(),
390			 * above, will be forwarded by the ip_input() routine,
391			 * if necessary.
392			 */
393			if (V_ip_mrouter && (flags & IP_FORWARDING) == 0) {
394				/*
395				 * If rsvp daemon is not running, do not
396				 * set ip_moptions. This ensures that the packet
397				 * is multicast and not just sent down one link
398				 * as prescribed by rsvpd.
399				 */
400				if (!V_rsvp_on)
401					imo = NULL;
402				if (ip_mforward &&
403				    ip_mforward(ip, ifp, m, imo) != 0) {
404					m_freem(m);
405					goto done;
406				}
407			}
408		}
409
410		/*
411		 * Multicasts with a time-to-live of zero may be looped-
412		 * back, above, but must not be transmitted on a network.
413		 * Also, multicasts addressed to the loopback interface
414		 * are not sent -- the above call to ip_mloopback() will
415		 * loop back a copy. ip_input() will drop the copy if
416		 * this host does not belong to the destination group on
417		 * the loopback interface.
418		 */
419		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
420			m_freem(m);
421			goto done;
422		}
423
424		goto sendit;
425	}
426
427	/*
428	 * If the source address is not specified yet, use the address
429	 * of the outoing interface.
430	 */
431	if (ip->ip_src.s_addr == INADDR_ANY) {
432		/* Interface may have no addresses. */
433		if (ia != NULL) {
434			ip->ip_src = IA_SIN(ia)->sin_addr;
435		}
436	}
437
438	/*
439	 * Verify that we have any chance at all of being able to queue the
440	 * packet or packet fragments, unless ALTQ is enabled on the given
441	 * interface in which case packetdrop should be done by queueing.
442	 */
443	n = ip->ip_len / mtu + 1; /* how many fragments ? */
444	if (
445#ifdef ALTQ
446	    (!ALTQ_IS_ENABLED(&ifp->if_snd)) &&
447#endif /* ALTQ */
448	    (ifp->if_snd.ifq_len + n) >= ifp->if_snd.ifq_maxlen ) {
449		error = ENOBUFS;
450		IPSTAT_INC(ips_odropped);
451		ifp->if_snd.ifq_drops += n;
452		goto bad;
453	}
454
455	/*
456	 * Look for broadcast address and
457	 * verify user is allowed to send
458	 * such a packet.
459	 */
460	if (isbroadcast) {
461		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
462			error = EADDRNOTAVAIL;
463			goto bad;
464		}
465		if ((flags & IP_ALLOWBROADCAST) == 0) {
466			error = EACCES;
467			goto bad;
468		}
469		/* don't allow broadcast messages to be fragmented */
470		if (ip->ip_len > mtu) {
471			error = EMSGSIZE;
472			goto bad;
473		}
474		m->m_flags |= M_BCAST;
475	} else {
476		m->m_flags &= ~M_BCAST;
477	}
478
479sendit:
480#ifdef IPSEC
481	switch(ip_ipsec_output(&m, inp, &flags, &error)) {
482	case 1:
483		goto bad;
484	case -1:
485		goto done;
486	case 0:
487	default:
488		break;	/* Continue with packet processing. */
489	}
490	/*
491	 * Check if there was a route for this packet; return error if not.
492	 */
493	if (no_route_but_check_spd) {
494		IPSTAT_INC(ips_noroute);
495		error = EHOSTUNREACH;
496		goto bad;
497	}
498	/* Update variables that are affected by ipsec4_output(). */
499	ip = mtod(m, struct ip *);
500	hlen = ip->ip_hl << 2;
501#endif /* IPSEC */
502
503	/* Jump over all PFIL processing if hooks are not active. */
504	if (!PFIL_HOOKED(&V_inet_pfil_hook))
505		goto passout;
506
507	/* Run through list of hooks for output packets. */
508	odst.s_addr = ip->ip_dst.s_addr;
509	error = pfil_run_hooks(&V_inet_pfil_hook, &m, ifp, PFIL_OUT, inp);
510	if (error != 0 || m == NULL)
511		goto done;
512
513	ip = mtod(m, struct ip *);
514
515	/* See if destination IP address was changed by packet filter. */
516	if (odst.s_addr != ip->ip_dst.s_addr) {
517		m->m_flags |= M_SKIP_FIREWALL;
518		/* If destination is now ourself drop to ip_input(). */
519		if (in_localip(ip->ip_dst)) {
520			m->m_flags |= M_FASTFWD_OURS;
521			if (m->m_pkthdr.rcvif == NULL)
522				m->m_pkthdr.rcvif = V_loif;
523			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
524				m->m_pkthdr.csum_flags |=
525				    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
526				m->m_pkthdr.csum_data = 0xffff;
527			}
528			m->m_pkthdr.csum_flags |=
529			    CSUM_IP_CHECKED | CSUM_IP_VALID;
530#ifdef SCTP
531			if (m->m_pkthdr.csum_flags & CSUM_SCTP)
532				m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
533#endif
534			error = netisr_queue(NETISR_IP, m);
535			goto done;
536		} else
537			goto again;	/* Redo the routing table lookup. */
538	}
539
540#ifdef IPFIREWALL_FORWARD
541	/* See if local, if yes, send it to netisr with IP_FASTFWD_OURS. */
542	if (m->m_flags & M_FASTFWD_OURS) {
543		if (m->m_pkthdr.rcvif == NULL)
544			m->m_pkthdr.rcvif = V_loif;
545		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
546			m->m_pkthdr.csum_flags |=
547			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
548			m->m_pkthdr.csum_data = 0xffff;
549		}
550#ifdef SCTP
551		if (m->m_pkthdr.csum_flags & CSUM_SCTP)
552			m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID;
553#endif
554		m->m_pkthdr.csum_flags |=
555			    CSUM_IP_CHECKED | CSUM_IP_VALID;
556
557		error = netisr_queue(NETISR_IP, m);
558		goto done;
559	}
560	/* Or forward to some other address? */
561	fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL);
562	if (fwd_tag) {
563		dst = (struct sockaddr_in *)&ro->ro_dst;
564		bcopy((fwd_tag+1), dst, sizeof(struct sockaddr_in));
565		m->m_flags |= M_SKIP_FIREWALL;
566		m_tag_delete(m, fwd_tag);
567		goto again;
568	}
569#endif /* IPFIREWALL_FORWARD */
570
571passout:
572	/* 127/8 must not appear on wire - RFC1122. */
573	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
574	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
575		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
576			IPSTAT_INC(ips_badaddr);
577			error = EADDRNOTAVAIL;
578			goto bad;
579		}
580	}
581
582	m->m_pkthdr.csum_flags |= CSUM_IP;
583	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
584	if (sw_csum & CSUM_DELAY_DATA) {
585		in_delayed_cksum(m);
586		sw_csum &= ~CSUM_DELAY_DATA;
587	}
588#ifdef SCTP
589	if (sw_csum & CSUM_SCTP) {
590		sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2));
591		sw_csum &= ~CSUM_SCTP;
592	}
593#endif
594	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
595
596	/*
597	 * If small enough for interface, or the interface will take
598	 * care of the fragmentation for us, we can just send directly.
599	 */
600	if (ip->ip_len <= mtu ||
601	    (m->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0 ||
602	    ((ip->ip_off & IP_DF) == 0 && (ifp->if_hwassist & CSUM_FRAGMENT))) {
603		ip->ip_len = htons(ip->ip_len);
604		ip->ip_off = htons(ip->ip_off);
605		ip->ip_sum = 0;
606		if (sw_csum & CSUM_DELAY_IP)
607			ip->ip_sum = in_cksum(m, hlen);
608
609		/*
610		 * Record statistics for this interface address.
611		 * With CSUM_TSO the byte/packet count will be slightly
612		 * incorrect because we count the IP+TCP headers only
613		 * once instead of for every generated packet.
614		 */
615		if (!(flags & IP_FORWARDING) && ia) {
616			if (m->m_pkthdr.csum_flags & CSUM_TSO)
617				ia->ia_ifa.if_opackets +=
618				    m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
619			else
620				ia->ia_ifa.if_opackets++;
621			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
622		}
623#ifdef MBUF_STRESS_TEST
624		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
625			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
626#endif
627		/*
628		 * Reset layer specific mbuf flags
629		 * to avoid confusing lower layers.
630		 */
631		m->m_flags &= ~(M_PROTOFLAGS);
632		error = (*ifp->if_output)(ifp, m,
633		    		(struct sockaddr *)dst, ro);
634		goto done;
635	}
636
637	/* Balk when DF bit is set or the interface didn't support TSO. */
638	if ((ip->ip_off & IP_DF) || (m->m_pkthdr.csum_flags & CSUM_TSO)) {
639		error = EMSGSIZE;
640		IPSTAT_INC(ips_cantfrag);
641		goto bad;
642	}
643
644	/*
645	 * Too large for interface; fragment if possible. If successful,
646	 * on return, m will point to a list of packets to be sent.
647	 */
648	error = ip_fragment(ip, &m, mtu, ifp->if_hwassist, sw_csum);
649	if (error)
650		goto bad;
651	for (; m; m = m0) {
652		m0 = m->m_nextpkt;
653		m->m_nextpkt = 0;
654		if (error == 0) {
655			/* Record statistics for this interface address. */
656			if (ia != NULL) {
657				ia->ia_ifa.if_opackets++;
658				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
659			}
660			/*
661			 * Reset layer specific mbuf flags
662			 * to avoid confusing upper layers.
663			 */
664			m->m_flags &= ~(M_PROTOFLAGS);
665
666			error = (*ifp->if_output)(ifp, m,
667			    (struct sockaddr *)dst, ro);
668		} else
669			m_freem(m);
670	}
671
672	if (error == 0)
673		IPSTAT_INC(ips_fragmented);
674
675done:
676	if (ro == &iproute)
677		RO_RTFREE(ro);
678	if (ia != NULL)
679		ifa_free(&ia->ia_ifa);
680	return (error);
681bad:
682	m_freem(m);
683	goto done;
684}
685
686/*
687 * Create a chain of fragments which fit the given mtu. m_frag points to the
688 * mbuf to be fragmented; on return it points to the chain with the fragments.
689 * Return 0 if no error. If error, m_frag may contain a partially built
690 * chain of fragments that should be freed by the caller.
691 *
692 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
693 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
694 */
695int
696ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
697    u_long if_hwassist_flags, int sw_csum)
698{
699	int error = 0;
700	int hlen = ip->ip_hl << 2;
701	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
702	int off;
703	struct mbuf *m0 = *m_frag;	/* the original packet		*/
704	int firstlen;
705	struct mbuf **mnext;
706	int nfrags;
707
708	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
709		IPSTAT_INC(ips_cantfrag);
710		return EMSGSIZE;
711	}
712
713	/*
714	 * Must be able to put at least 8 bytes per fragment.
715	 */
716	if (len < 8)
717		return EMSGSIZE;
718
719	/*
720	 * If the interface will not calculate checksums on
721	 * fragmented packets, then do it here.
722	 */
723	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
724	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
725		in_delayed_cksum(m0);
726		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
727	}
728#ifdef SCTP
729	if (m0->m_pkthdr.csum_flags & CSUM_SCTP &&
730	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
731		sctp_delayed_cksum(m0, hlen);
732		m0->m_pkthdr.csum_flags &= ~CSUM_SCTP;
733	}
734#endif
735	if (len > PAGE_SIZE) {
736		/*
737		 * Fragment large datagrams such that each segment
738		 * contains a multiple of PAGE_SIZE amount of data,
739		 * plus headers. This enables a receiver to perform
740		 * page-flipping zero-copy optimizations.
741		 *
742		 * XXX When does this help given that sender and receiver
743		 * could have different page sizes, and also mtu could
744		 * be less than the receiver's page size ?
745		 */
746		int newlen;
747		struct mbuf *m;
748
749		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
750			off += m->m_len;
751
752		/*
753		 * firstlen (off - hlen) must be aligned on an
754		 * 8-byte boundary
755		 */
756		if (off < hlen)
757			goto smart_frag_failure;
758		off = ((off - hlen) & ~7) + hlen;
759		newlen = (~PAGE_MASK) & mtu;
760		if ((newlen + sizeof (struct ip)) > mtu) {
761			/* we failed, go back the default */
762smart_frag_failure:
763			newlen = len;
764			off = hlen + len;
765		}
766		len = newlen;
767
768	} else {
769		off = hlen + len;
770	}
771
772	firstlen = off - hlen;
773	mnext = &m0->m_nextpkt;		/* pointer to next packet */
774
775	/*
776	 * Loop through length of segment after first fragment,
777	 * make new header and copy data of each part and link onto chain.
778	 * Here, m0 is the original packet, m is the fragment being created.
779	 * The fragments are linked off the m_nextpkt of the original
780	 * packet, which after processing serves as the first fragment.
781	 */
782	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
783		struct ip *mhip;	/* ip header on the fragment */
784		struct mbuf *m;
785		int mhlen = sizeof (struct ip);
786
787		MGETHDR(m, M_DONTWAIT, MT_DATA);
788		if (m == NULL) {
789			error = ENOBUFS;
790			IPSTAT_INC(ips_odropped);
791			goto done;
792		}
793		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
794		/*
795		 * In the first mbuf, leave room for the link header, then
796		 * copy the original IP header including options. The payload
797		 * goes into an additional mbuf chain returned by m_copym().
798		 */
799		m->m_data += max_linkhdr;
800		mhip = mtod(m, struct ip *);
801		*mhip = *ip;
802		if (hlen > sizeof (struct ip)) {
803			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
804			mhip->ip_v = IPVERSION;
805			mhip->ip_hl = mhlen >> 2;
806		}
807		m->m_len = mhlen;
808		/* XXX do we need to add ip->ip_off below ? */
809		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
810		if (off + len >= ip->ip_len) {	/* last fragment */
811			len = ip->ip_len - off;
812			m->m_flags |= M_LASTFRAG;
813		} else
814			mhip->ip_off |= IP_MF;
815		mhip->ip_len = htons((u_short)(len + mhlen));
816		m->m_next = m_copym(m0, off, len, M_DONTWAIT);
817		if (m->m_next == NULL) {	/* copy failed */
818			m_free(m);
819			error = ENOBUFS;	/* ??? */
820			IPSTAT_INC(ips_odropped);
821			goto done;
822		}
823		m->m_pkthdr.len = mhlen + len;
824		m->m_pkthdr.rcvif = NULL;
825#ifdef MAC
826		mac_netinet_fragment(m0, m);
827#endif
828		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
829		mhip->ip_off = htons(mhip->ip_off);
830		mhip->ip_sum = 0;
831		if (sw_csum & CSUM_DELAY_IP)
832			mhip->ip_sum = in_cksum(m, mhlen);
833		*mnext = m;
834		mnext = &m->m_nextpkt;
835	}
836	IPSTAT_ADD(ips_ofragments, nfrags);
837
838	/* set first marker for fragment chain */
839	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
840	m0->m_pkthdr.csum_data = nfrags;
841
842	/*
843	 * Update first fragment by trimming what's been copied out
844	 * and updating header.
845	 */
846	m_adj(m0, hlen + firstlen - ip->ip_len);
847	m0->m_pkthdr.len = hlen + firstlen;
848	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
849	ip->ip_off |= IP_MF;
850	ip->ip_off = htons(ip->ip_off);
851	ip->ip_sum = 0;
852	if (sw_csum & CSUM_DELAY_IP)
853		ip->ip_sum = in_cksum(m0, hlen);
854
855done:
856	*m_frag = m0;
857	return error;
858}
859
860void
861in_delayed_cksum(struct mbuf *m)
862{
863	struct ip *ip;
864	u_short csum, offset;
865
866	ip = mtod(m, struct ip *);
867	offset = ip->ip_hl << 2 ;
868	csum = in_cksum_skip(m, ip->ip_len, offset);
869	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
870		csum = 0xffff;
871	offset += m->m_pkthdr.csum_data;	/* checksum offset */
872
873	if (offset + sizeof(u_short) > m->m_len) {
874		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
875		    m->m_len, offset, ip->ip_p);
876		/*
877		 * XXX
878		 * this shouldn't happen, but if it does, the
879		 * correct behavior may be to insert the checksum
880		 * in the appropriate next mbuf in the chain.
881		 */
882		return;
883	}
884	*(u_short *)(m->m_data + offset) = csum;
885}
886
887/*
888 * IP socket option processing.
889 */
890int
891ip_ctloutput(struct socket *so, struct sockopt *sopt)
892{
893	struct	inpcb *inp = sotoinpcb(so);
894	int	error, optval;
895
896	error = optval = 0;
897	if (sopt->sopt_level != IPPROTO_IP) {
898		error = EINVAL;
899
900		if (sopt->sopt_level == SOL_SOCKET &&
901		    sopt->sopt_dir == SOPT_SET) {
902			switch (sopt->sopt_name) {
903			case SO_REUSEADDR:
904				INP_WLOCK(inp);
905				if (IN_MULTICAST(ntohl(inp->inp_laddr.s_addr))) {
906					if ((so->so_options &
907					    (SO_REUSEADDR | SO_REUSEPORT)) != 0)
908						inp->inp_flags2 |= INP_REUSEPORT;
909					else
910						inp->inp_flags2 &= ~INP_REUSEPORT;
911				}
912				INP_WUNLOCK(inp);
913				error = 0;
914				break;
915			case SO_REUSEPORT:
916				INP_WLOCK(inp);
917				if ((so->so_options & SO_REUSEPORT) != 0)
918					inp->inp_flags2 |= INP_REUSEPORT;
919				else
920					inp->inp_flags2 &= ~INP_REUSEPORT;
921				INP_WUNLOCK(inp);
922				error = 0;
923				break;
924			case SO_SETFIB:
925				INP_WLOCK(inp);
926				inp->inp_inc.inc_fibnum = so->so_fibnum;
927				INP_WUNLOCK(inp);
928				error = 0;
929				break;
930			default:
931				break;
932			}
933		}
934		return (error);
935	}
936
937	switch (sopt->sopt_dir) {
938	case SOPT_SET:
939		switch (sopt->sopt_name) {
940		case IP_OPTIONS:
941#ifdef notyet
942		case IP_RETOPTS:
943#endif
944		{
945			struct mbuf *m;
946			if (sopt->sopt_valsize > MLEN) {
947				error = EMSGSIZE;
948				break;
949			}
950			MGET(m, sopt->sopt_td ? M_WAIT : M_DONTWAIT, MT_DATA);
951			if (m == NULL) {
952				error = ENOBUFS;
953				break;
954			}
955			m->m_len = sopt->sopt_valsize;
956			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
957					    m->m_len);
958			if (error) {
959				m_free(m);
960				break;
961			}
962			INP_WLOCK(inp);
963			error = ip_pcbopts(inp, sopt->sopt_name, m);
964			INP_WUNLOCK(inp);
965			return (error);
966		}
967
968		case IP_BINDANY:
969			if (sopt->sopt_td != NULL) {
970				error = priv_check(sopt->sopt_td,
971				    PRIV_NETINET_BINDANY);
972				if (error)
973					break;
974			}
975			/* FALLTHROUGH */
976		case IP_TOS:
977		case IP_TTL:
978		case IP_MINTTL:
979		case IP_RECVOPTS:
980		case IP_RECVRETOPTS:
981		case IP_RECVDSTADDR:
982		case IP_RECVTTL:
983		case IP_RECVIF:
984		case IP_FAITH:
985		case IP_ONESBCAST:
986		case IP_DONTFRAG:
987		case IP_RECVTOS:
988			error = sooptcopyin(sopt, &optval, sizeof optval,
989					    sizeof optval);
990			if (error)
991				break;
992
993			switch (sopt->sopt_name) {
994			case IP_TOS:
995				inp->inp_ip_tos = optval;
996				break;
997
998			case IP_TTL:
999				inp->inp_ip_ttl = optval;
1000				break;
1001
1002			case IP_MINTTL:
1003				if (optval >= 0 && optval <= MAXTTL)
1004					inp->inp_ip_minttl = optval;
1005				else
1006					error = EINVAL;
1007				break;
1008
1009#define	OPTSET(bit) do {						\
1010	INP_WLOCK(inp);							\
1011	if (optval)							\
1012		inp->inp_flags |= bit;					\
1013	else								\
1014		inp->inp_flags &= ~bit;					\
1015	INP_WUNLOCK(inp);						\
1016} while (0)
1017
1018			case IP_RECVOPTS:
1019				OPTSET(INP_RECVOPTS);
1020				break;
1021
1022			case IP_RECVRETOPTS:
1023				OPTSET(INP_RECVRETOPTS);
1024				break;
1025
1026			case IP_RECVDSTADDR:
1027				OPTSET(INP_RECVDSTADDR);
1028				break;
1029
1030			case IP_RECVTTL:
1031				OPTSET(INP_RECVTTL);
1032				break;
1033
1034			case IP_RECVIF:
1035				OPTSET(INP_RECVIF);
1036				break;
1037
1038			case IP_FAITH:
1039				OPTSET(INP_FAITH);
1040				break;
1041
1042			case IP_ONESBCAST:
1043				OPTSET(INP_ONESBCAST);
1044				break;
1045			case IP_DONTFRAG:
1046				OPTSET(INP_DONTFRAG);
1047				break;
1048			case IP_BINDANY:
1049				OPTSET(INP_BINDANY);
1050				break;
1051			case IP_RECVTOS:
1052				OPTSET(INP_RECVTOS);
1053				break;
1054			}
1055			break;
1056#undef OPTSET
1057
1058		/*
1059		 * Multicast socket options are processed by the in_mcast
1060		 * module.
1061		 */
1062		case IP_MULTICAST_IF:
1063		case IP_MULTICAST_VIF:
1064		case IP_MULTICAST_TTL:
1065		case IP_MULTICAST_LOOP:
1066		case IP_ADD_MEMBERSHIP:
1067		case IP_DROP_MEMBERSHIP:
1068		case IP_ADD_SOURCE_MEMBERSHIP:
1069		case IP_DROP_SOURCE_MEMBERSHIP:
1070		case IP_BLOCK_SOURCE:
1071		case IP_UNBLOCK_SOURCE:
1072		case IP_MSFILTER:
1073		case MCAST_JOIN_GROUP:
1074		case MCAST_LEAVE_GROUP:
1075		case MCAST_JOIN_SOURCE_GROUP:
1076		case MCAST_LEAVE_SOURCE_GROUP:
1077		case MCAST_BLOCK_SOURCE:
1078		case MCAST_UNBLOCK_SOURCE:
1079			error = inp_setmoptions(inp, sopt);
1080			break;
1081
1082		case IP_PORTRANGE:
1083			error = sooptcopyin(sopt, &optval, sizeof optval,
1084					    sizeof optval);
1085			if (error)
1086				break;
1087
1088			INP_WLOCK(inp);
1089			switch (optval) {
1090			case IP_PORTRANGE_DEFAULT:
1091				inp->inp_flags &= ~(INP_LOWPORT);
1092				inp->inp_flags &= ~(INP_HIGHPORT);
1093				break;
1094
1095			case IP_PORTRANGE_HIGH:
1096				inp->inp_flags &= ~(INP_LOWPORT);
1097				inp->inp_flags |= INP_HIGHPORT;
1098				break;
1099
1100			case IP_PORTRANGE_LOW:
1101				inp->inp_flags &= ~(INP_HIGHPORT);
1102				inp->inp_flags |= INP_LOWPORT;
1103				break;
1104
1105			default:
1106				error = EINVAL;
1107				break;
1108			}
1109			INP_WUNLOCK(inp);
1110			break;
1111
1112#ifdef IPSEC
1113		case IP_IPSEC_POLICY:
1114		{
1115			caddr_t req;
1116			struct mbuf *m;
1117
1118			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1119				break;
1120			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1121				break;
1122			req = mtod(m, caddr_t);
1123			error = ipsec_set_policy(inp, sopt->sopt_name, req,
1124			    m->m_len, (sopt->sopt_td != NULL) ?
1125			    sopt->sopt_td->td_ucred : NULL);
1126			m_freem(m);
1127			break;
1128		}
1129#endif /* IPSEC */
1130
1131		default:
1132			error = ENOPROTOOPT;
1133			break;
1134		}
1135		break;
1136
1137	case SOPT_GET:
1138		switch (sopt->sopt_name) {
1139		case IP_OPTIONS:
1140		case IP_RETOPTS:
1141			if (inp->inp_options)
1142				error = sooptcopyout(sopt,
1143						     mtod(inp->inp_options,
1144							  char *),
1145						     inp->inp_options->m_len);
1146			else
1147				sopt->sopt_valsize = 0;
1148			break;
1149
1150		case IP_TOS:
1151		case IP_TTL:
1152		case IP_MINTTL:
1153		case IP_RECVOPTS:
1154		case IP_RECVRETOPTS:
1155		case IP_RECVDSTADDR:
1156		case IP_RECVTTL:
1157		case IP_RECVIF:
1158		case IP_PORTRANGE:
1159		case IP_FAITH:
1160		case IP_ONESBCAST:
1161		case IP_DONTFRAG:
1162		case IP_BINDANY:
1163		case IP_RECVTOS:
1164			switch (sopt->sopt_name) {
1165
1166			case IP_TOS:
1167				optval = inp->inp_ip_tos;
1168				break;
1169
1170			case IP_TTL:
1171				optval = inp->inp_ip_ttl;
1172				break;
1173
1174			case IP_MINTTL:
1175				optval = inp->inp_ip_minttl;
1176				break;
1177
1178#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1179
1180			case IP_RECVOPTS:
1181				optval = OPTBIT(INP_RECVOPTS);
1182				break;
1183
1184			case IP_RECVRETOPTS:
1185				optval = OPTBIT(INP_RECVRETOPTS);
1186				break;
1187
1188			case IP_RECVDSTADDR:
1189				optval = OPTBIT(INP_RECVDSTADDR);
1190				break;
1191
1192			case IP_RECVTTL:
1193				optval = OPTBIT(INP_RECVTTL);
1194				break;
1195
1196			case IP_RECVIF:
1197				optval = OPTBIT(INP_RECVIF);
1198				break;
1199
1200			case IP_PORTRANGE:
1201				if (inp->inp_flags & INP_HIGHPORT)
1202					optval = IP_PORTRANGE_HIGH;
1203				else if (inp->inp_flags & INP_LOWPORT)
1204					optval = IP_PORTRANGE_LOW;
1205				else
1206					optval = 0;
1207				break;
1208
1209			case IP_FAITH:
1210				optval = OPTBIT(INP_FAITH);
1211				break;
1212
1213			case IP_ONESBCAST:
1214				optval = OPTBIT(INP_ONESBCAST);
1215				break;
1216			case IP_DONTFRAG:
1217				optval = OPTBIT(INP_DONTFRAG);
1218				break;
1219			case IP_BINDANY:
1220				optval = OPTBIT(INP_BINDANY);
1221				break;
1222			case IP_RECVTOS:
1223				optval = OPTBIT(INP_RECVTOS);
1224				break;
1225			}
1226			error = sooptcopyout(sopt, &optval, sizeof optval);
1227			break;
1228
1229		/*
1230		 * Multicast socket options are processed by the in_mcast
1231		 * module.
1232		 */
1233		case IP_MULTICAST_IF:
1234		case IP_MULTICAST_VIF:
1235		case IP_MULTICAST_TTL:
1236		case IP_MULTICAST_LOOP:
1237		case IP_MSFILTER:
1238			error = inp_getmoptions(inp, sopt);
1239			break;
1240
1241#ifdef IPSEC
1242		case IP_IPSEC_POLICY:
1243		{
1244			struct mbuf *m = NULL;
1245			caddr_t req = NULL;
1246			size_t len = 0;
1247
1248			if (m != 0) {
1249				req = mtod(m, caddr_t);
1250				len = m->m_len;
1251			}
1252			error = ipsec_get_policy(sotoinpcb(so), req, len, &m);
1253			if (error == 0)
1254				error = soopt_mcopyout(sopt, m); /* XXX */
1255			if (error == 0)
1256				m_freem(m);
1257			break;
1258		}
1259#endif /* IPSEC */
1260
1261		default:
1262			error = ENOPROTOOPT;
1263			break;
1264		}
1265		break;
1266	}
1267	return (error);
1268}
1269
1270/*
1271 * Routine called from ip_output() to loop back a copy of an IP multicast
1272 * packet to the input queue of a specified interface.  Note that this
1273 * calls the output routine of the loopback "driver", but with an interface
1274 * pointer that might NOT be a loopback interface -- evil, but easier than
1275 * replicating that code here.
1276 */
1277static void
1278ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst,
1279    int hlen)
1280{
1281	register struct ip *ip;
1282	struct mbuf *copym;
1283
1284	/*
1285	 * Make a deep copy of the packet because we're going to
1286	 * modify the pack in order to generate checksums.
1287	 */
1288	copym = m_dup(m, M_DONTWAIT);
1289	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
1290		copym = m_pullup(copym, hlen);
1291	if (copym != NULL) {
1292		/* If needed, compute the checksum and mark it as valid. */
1293		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1294			in_delayed_cksum(copym);
1295			copym->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1296			copym->m_pkthdr.csum_flags |=
1297			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
1298			copym->m_pkthdr.csum_data = 0xffff;
1299		}
1300		/*
1301		 * We don't bother to fragment if the IP length is greater
1302		 * than the interface's MTU.  Can this possibly matter?
1303		 */
1304		ip = mtod(copym, struct ip *);
1305		ip->ip_len = htons(ip->ip_len);
1306		ip->ip_off = htons(ip->ip_off);
1307		ip->ip_sum = 0;
1308		ip->ip_sum = in_cksum(copym, hlen);
1309#if 1 /* XXX */
1310		if (dst->sin_family != AF_INET) {
1311			printf("ip_mloopback: bad address family %d\n",
1312						dst->sin_family);
1313			dst->sin_family = AF_INET;
1314		}
1315#endif
1316		if_simloop(ifp, copym, dst->sin_family, 0);
1317	}
1318}
1319