ip_output.c revision 120386
1/*
2 * Copyright (c) 1982, 1986, 1988, 1990, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 *    must display the following acknowledgement:
15 *	This product includes software developed by the University of
16 *	California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 *    may be used to endorse or promote products derived from this software
19 *    without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
34 * $FreeBSD: head/sys/netinet/ip_output.c 120386 2003-09-23 17:54:04Z sam $
35 */
36
37#include "opt_ipfw.h"
38#include "opt_ipdn.h"
39#include "opt_ipdivert.h"
40#include "opt_ipfilter.h"
41#include "opt_ipsec.h"
42#include "opt_mac.h"
43#include "opt_pfil_hooks.h"
44#include "opt_random_ip_id.h"
45#include "opt_mbuf_stress_test.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/kernel.h>
50#include <sys/mac.h>
51#include <sys/malloc.h>
52#include <sys/mbuf.h>
53#include <sys/protosw.h>
54#include <sys/socket.h>
55#include <sys/socketvar.h>
56#include <sys/sysctl.h>
57
58#include <net/if.h>
59#include <net/route.h>
60
61#include <netinet/in.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#include <netinet/in_pcb.h>
65#include <netinet/in_var.h>
66#include <netinet/ip_var.h>
67
68#ifdef PFIL_HOOKS
69#include <net/pfil.h>
70#endif
71
72#include <machine/in_cksum.h>
73
74static MALLOC_DEFINE(M_IPMOPTS, "ip_moptions", "internet multicast options");
75
76#ifdef IPSEC
77#include <netinet6/ipsec.h>
78#include <netkey/key.h>
79#ifdef IPSEC_DEBUG
80#include <netkey/key_debug.h>
81#else
82#define	KEYDEBUG(lev,arg)
83#endif
84#endif /*IPSEC*/
85
86#ifdef FAST_IPSEC
87#include <netipsec/ipsec.h>
88#include <netipsec/xform.h>
89#include <netipsec/key.h>
90#endif /*FAST_IPSEC*/
91
92#include <netinet/ip_fw.h>
93#include <netinet/ip_dummynet.h>
94
95#define print_ip(x, a, y)	 printf("%s %d.%d.%d.%d%s",\
96				x, (ntohl(a.s_addr)>>24)&0xFF,\
97				  (ntohl(a.s_addr)>>16)&0xFF,\
98				  (ntohl(a.s_addr)>>8)&0xFF,\
99				  (ntohl(a.s_addr))&0xFF, y);
100
101u_short ip_id;
102
103#ifdef MBUF_STRESS_TEST
104int mbuf_frag_size = 0;
105SYSCTL_INT(_net_inet_ip, OID_AUTO, mbuf_frag_size, CTLFLAG_RW,
106	&mbuf_frag_size, 0, "Fragment outgoing mbufs to this size");
107#endif
108
109static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
110static struct ifnet *ip_multicast_if(struct in_addr *, int *);
111static void	ip_mloopback
112	(struct ifnet *, struct mbuf *, struct sockaddr_in *, int);
113static int	ip_getmoptions
114	(struct sockopt *, struct ip_moptions *);
115static int	ip_pcbopts(int, struct mbuf **, struct mbuf *);
116static int	ip_setmoptions
117	(struct sockopt *, struct ip_moptions **);
118
119int	ip_optcopy(struct ip *, struct ip *);
120
121
122extern	struct protosw inetsw[];
123
124/*
125 * IP output.  The packet in mbuf chain m contains a skeletal IP
126 * header (with len, off, ttl, proto, tos, src, dst).
127 * The mbuf chain containing the packet will be freed.
128 * The mbuf opt, if present, will not be freed.
129 */
130int
131ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro,
132	int flags, struct ip_moptions *imo, struct inpcb *inp)
133{
134	struct ip *ip;
135	struct ifnet *ifp = NULL;	/* keep compiler happy */
136	struct mbuf *m;
137	int hlen = sizeof (struct ip);
138	int len, off, error = 0;
139	struct sockaddr_in *dst = NULL;	/* keep compiler happy */
140	struct in_ifaddr *ia = NULL;
141	int isbroadcast, sw_csum;
142	struct in_addr pkt_dst;
143#ifdef IPSEC
144	struct route iproute;
145	struct secpolicy *sp = NULL;
146#endif
147#ifdef FAST_IPSEC
148	struct route iproute;
149	struct m_tag *mtag;
150	struct secpolicy *sp = NULL;
151	struct tdb_ident *tdbi;
152	int s;
153#endif /* FAST_IPSEC */
154	struct ip_fw_args args;
155	int src_was_INADDR_ANY = 0;	/* as the name says... */
156
157	args.eh = NULL;
158	args.rule = NULL;
159	args.next_hop = NULL;
160	args.divert_rule = 0;			/* divert cookie */
161
162	/* Grab info from MT_TAG mbufs prepended to the chain. */
163	for (; m0 && m0->m_type == MT_TAG; m0 = m0->m_next) {
164		switch(m0->_m_tag_id) {
165		default:
166			printf("ip_output: unrecognised MT_TAG tag %d\n",
167			    m0->_m_tag_id);
168			break;
169
170		case PACKET_TAG_DUMMYNET:
171			/*
172			 * the packet was already tagged, so part of the
173			 * processing was already done, and we need to go down.
174			 * Get parameters from the header.
175			 */
176			args.rule = ((struct dn_pkt *)m0)->rule;
177			opt = NULL ;
178			ro = & ( ((struct dn_pkt *)m0)->ro ) ;
179			imo = NULL ;
180			dst = ((struct dn_pkt *)m0)->dn_dst ;
181			ifp = ((struct dn_pkt *)m0)->ifp ;
182			flags = ((struct dn_pkt *)m0)->flags ;
183			break;
184
185		case PACKET_TAG_DIVERT:
186			args.divert_rule = (intptr_t)m0->m_data & 0xffff;
187			break;
188
189		case PACKET_TAG_IPFORWARD:
190			args.next_hop = (struct sockaddr_in *)m0->m_data;
191			break;
192		}
193	}
194	m = m0;
195
196	M_ASSERTPKTHDR(m);
197#ifndef FAST_IPSEC
198	KASSERT(ro != NULL, ("ip_output: no route, proto %d",
199	    mtod(m, struct ip *)->ip_p));
200#endif
201
202	if (args.rule != NULL) {	/* dummynet already saw us */
203		ip = mtod(m, struct ip *);
204		hlen = ip->ip_hl << 2 ;
205		if (ro->ro_rt)
206			ia = ifatoia(ro->ro_rt->rt_ifa);
207		goto sendit;
208	}
209
210	if (opt) {
211		len = 0;
212		m = ip_insertoptions(m, opt, &len);
213		if (len != 0)
214			hlen = len;
215	}
216	ip = mtod(m, struct ip *);
217	pkt_dst = args.next_hop ? args.next_hop->sin_addr : ip->ip_dst;
218
219	/*
220	 * Fill in IP header.  If we are not allowing fragmentation,
221	 * then the ip_id field is meaningless, so send it as zero
222	 * to reduce information leakage.  Otherwise, if we are not
223	 * randomizing ip_id, then don't bother to convert it to network
224	 * byte order -- it's just a nonce.  Note that a 16-bit counter
225	 * will wrap around in less than 10 seconds at 100 Mbit/s on a
226	 * medium with MTU 1500.  See Steven M. Bellovin, "A Technique
227	 * for Counting NATted Hosts", Proc. IMW'02, available at
228	 * <http://www.research.att.com/~smb/papers/fnat.pdf>.
229	 */
230	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
231		ip->ip_v = IPVERSION;
232		ip->ip_hl = hlen >> 2;
233		if ((ip->ip_off & IP_DF) == 0) {
234			ip->ip_off = 0;
235#ifdef RANDOM_IP_ID
236			ip->ip_id = ip_randomid();
237#else
238			ip->ip_id = ip_id++;
239#endif
240		} else {
241			ip->ip_off = IP_DF;
242			ip->ip_id = 0;
243		}
244		ipstat.ips_localout++;
245	} else {
246		hlen = ip->ip_hl << 2;
247	}
248
249#ifdef FAST_IPSEC
250	if (ro == NULL) {
251		ro = &iproute;
252		bzero(ro, sizeof (*ro));
253	}
254#endif /* FAST_IPSEC */
255	dst = (struct sockaddr_in *)&ro->ro_dst;
256	/*
257	 * If there is a cached route,
258	 * check that it is to the same destination
259	 * and is still up.  If not, free it and try again.
260	 * The address family should also be checked in case of sharing the
261	 * cache with IPv6.
262	 */
263	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
264			  dst->sin_family != AF_INET ||
265			  dst->sin_addr.s_addr != pkt_dst.s_addr)) {
266		RTFREE(ro->ro_rt);
267		ro->ro_rt = (struct rtentry *)0;
268	}
269	if (ro->ro_rt == 0) {
270		bzero(dst, sizeof(*dst));
271		dst->sin_family = AF_INET;
272		dst->sin_len = sizeof(*dst);
273		dst->sin_addr = pkt_dst;
274	}
275	/*
276	 * If routing to interface only,
277	 * short circuit routing lookup.
278	 */
279	if (flags & IP_ROUTETOIF) {
280		if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == 0 &&
281		    (ia = ifatoia(ifa_ifwithnet(sintosa(dst)))) == 0) {
282			ipstat.ips_noroute++;
283			error = ENETUNREACH;
284			goto bad;
285		}
286		ifp = ia->ia_ifp;
287		ip->ip_ttl = 1;
288		isbroadcast = in_broadcast(dst->sin_addr, ifp);
289	} else if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) &&
290	    imo != NULL && imo->imo_multicast_ifp != NULL) {
291		/*
292		 * Bypass the normal routing lookup for multicast
293		 * packets if the interface is specified.
294		 */
295		ifp = imo->imo_multicast_ifp;
296		IFP_TO_IA(ifp, ia);
297		isbroadcast = 0;	/* fool gcc */
298	} else {
299		/*
300		 * If this is the case, we probably don't want to allocate
301		 * a protocol-cloned route since we didn't get one from the
302		 * ULP.  This lets TCP do its thing, while not burdening
303		 * forwarding or ICMP with the overhead of cloning a route.
304		 * Of course, we still want to do any cloning requested by
305		 * the link layer, as this is probably required in all cases
306		 * for correct operation (as it is for ARP).
307		 */
308		if (ro->ro_rt == 0)
309			rtalloc_ign(ro, RTF_PRCLONING);
310		if (ro->ro_rt == 0) {
311			ipstat.ips_noroute++;
312			error = EHOSTUNREACH;
313			goto bad;
314		}
315		ia = ifatoia(ro->ro_rt->rt_ifa);
316		ifp = ro->ro_rt->rt_ifp;
317		ro->ro_rt->rt_use++;
318		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
319			dst = (struct sockaddr_in *)ro->ro_rt->rt_gateway;
320		if (ro->ro_rt->rt_flags & RTF_HOST)
321			isbroadcast = (ro->ro_rt->rt_flags & RTF_BROADCAST);
322		else
323			isbroadcast = in_broadcast(dst->sin_addr, ifp);
324	}
325	if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
326		struct in_multi *inm;
327
328		m->m_flags |= M_MCAST;
329		/*
330		 * IP destination address is multicast.  Make sure "dst"
331		 * still points to the address in "ro".  (It may have been
332		 * changed to point to a gateway address, above.)
333		 */
334		dst = (struct sockaddr_in *)&ro->ro_dst;
335		/*
336		 * See if the caller provided any multicast options
337		 */
338		if (imo != NULL) {
339			ip->ip_ttl = imo->imo_multicast_ttl;
340			if (imo->imo_multicast_vif != -1)
341				ip->ip_src.s_addr =
342				    ip_mcast_src ?
343				    ip_mcast_src(imo->imo_multicast_vif) :
344				    INADDR_ANY;
345		} else
346			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
347		/*
348		 * Confirm that the outgoing interface supports multicast.
349		 */
350		if ((imo == NULL) || (imo->imo_multicast_vif == -1)) {
351			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
352				ipstat.ips_noroute++;
353				error = ENETUNREACH;
354				goto bad;
355			}
356		}
357		/*
358		 * If source address not specified yet, use address
359		 * of outgoing interface.
360		 */
361		if (ip->ip_src.s_addr == INADDR_ANY) {
362			/* Interface may have no addresses. */
363			if (ia != NULL)
364				ip->ip_src = IA_SIN(ia)->sin_addr;
365		}
366
367		if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
368			/*
369			 * XXX
370			 * delayed checksums are not currently
371			 * compatible with IP multicast routing
372			 */
373			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
374				in_delayed_cksum(m);
375				m->m_pkthdr.csum_flags &=
376					~CSUM_DELAY_DATA;
377			}
378		}
379		IN_LOOKUP_MULTI(pkt_dst, ifp, inm);
380		if (inm != NULL &&
381		   (imo == NULL || imo->imo_multicast_loop)) {
382			/*
383			 * If we belong to the destination multicast group
384			 * on the outgoing interface, and the caller did not
385			 * forbid loopback, loop back a copy.
386			 */
387			ip_mloopback(ifp, m, dst, hlen);
388		}
389		else {
390			/*
391			 * If we are acting as a multicast router, perform
392			 * multicast forwarding as if the packet had just
393			 * arrived on the interface to which we are about
394			 * to send.  The multicast forwarding function
395			 * recursively calls this function, using the
396			 * IP_FORWARDING flag to prevent infinite recursion.
397			 *
398			 * Multicasts that are looped back by ip_mloopback(),
399			 * above, will be forwarded by the ip_input() routine,
400			 * if necessary.
401			 */
402			if (ip_mrouter && (flags & IP_FORWARDING) == 0) {
403				/*
404				 * If rsvp daemon is not running, do not
405				 * set ip_moptions. This ensures that the packet
406				 * is multicast and not just sent down one link
407				 * as prescribed by rsvpd.
408				 */
409				if (!rsvp_on)
410					imo = NULL;
411				if (ip_mforward &&
412				    ip_mforward(ip, ifp, m, imo) != 0) {
413					m_freem(m);
414					goto done;
415				}
416			}
417		}
418
419		/*
420		 * Multicasts with a time-to-live of zero may be looped-
421		 * back, above, but must not be transmitted on a network.
422		 * Also, multicasts addressed to the loopback interface
423		 * are not sent -- the above call to ip_mloopback() will
424		 * loop back a copy if this host actually belongs to the
425		 * destination group on the loopback interface.
426		 */
427		if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
428			m_freem(m);
429			goto done;
430		}
431
432		goto sendit;
433	}
434#ifndef notdef
435	/*
436	 * If the source address is not specified yet, use the address
437	 * of the outoing interface. In case, keep note we did that, so
438	 * if the the firewall changes the next-hop causing the output
439	 * interface to change, we can fix that.
440	 */
441	if (ip->ip_src.s_addr == INADDR_ANY) {
442		/* Interface may have no addresses. */
443		if (ia != NULL) {
444			ip->ip_src = IA_SIN(ia)->sin_addr;
445			src_was_INADDR_ANY = 1;
446		}
447	}
448#endif /* notdef */
449	/*
450	 * Verify that we have any chance at all of being able to queue
451	 *      the packet or packet fragments
452	 */
453	if ((ifp->if_snd.ifq_len + ip->ip_len / ifp->if_mtu + 1) >=
454		ifp->if_snd.ifq_maxlen) {
455			error = ENOBUFS;
456			ipstat.ips_odropped++;
457			goto bad;
458	}
459
460	/*
461	 * Look for broadcast address and
462	 * verify user is allowed to send
463	 * such a packet.
464	 */
465	if (isbroadcast) {
466		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
467			error = EADDRNOTAVAIL;
468			goto bad;
469		}
470		if ((flags & IP_ALLOWBROADCAST) == 0) {
471			error = EACCES;
472			goto bad;
473		}
474		/* don't allow broadcast messages to be fragmented */
475		if (ip->ip_len > ifp->if_mtu) {
476			error = EMSGSIZE;
477			goto bad;
478		}
479		if (flags & IP_SENDONES)
480			ip->ip_dst.s_addr = INADDR_BROADCAST;
481		m->m_flags |= M_BCAST;
482	} else {
483		m->m_flags &= ~M_BCAST;
484	}
485
486sendit:
487#ifdef IPSEC
488	/* get SP for this packet */
489	if (inp == NULL)
490		sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, flags, &error);
491	else
492		sp = ipsec4_getpolicybypcb(m, IPSEC_DIR_OUTBOUND, inp, &error);
493
494	if (sp == NULL) {
495		ipsecstat.out_inval++;
496		goto bad;
497	}
498
499	error = 0;
500
501	/* check policy */
502	switch (sp->policy) {
503	case IPSEC_POLICY_DISCARD:
504		/*
505		 * This packet is just discarded.
506		 */
507		ipsecstat.out_polvio++;
508		goto bad;
509
510	case IPSEC_POLICY_BYPASS:
511	case IPSEC_POLICY_NONE:
512		/* no need to do IPsec. */
513		goto skip_ipsec;
514
515	case IPSEC_POLICY_IPSEC:
516		if (sp->req == NULL) {
517			/* acquire a policy */
518			error = key_spdacquire(sp);
519			goto bad;
520		}
521		break;
522
523	case IPSEC_POLICY_ENTRUST:
524	default:
525		printf("ip_output: Invalid policy found. %d\n", sp->policy);
526	}
527    {
528	struct ipsec_output_state state;
529	bzero(&state, sizeof(state));
530	state.m = m;
531	if (flags & IP_ROUTETOIF) {
532		state.ro = &iproute;
533		bzero(&iproute, sizeof(iproute));
534	} else
535		state.ro = ro;
536	state.dst = (struct sockaddr *)dst;
537
538	ip->ip_sum = 0;
539
540	/*
541	 * XXX
542	 * delayed checksums are not currently compatible with IPsec
543	 */
544	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
545		in_delayed_cksum(m);
546		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
547	}
548
549	ip->ip_len = htons(ip->ip_len);
550	ip->ip_off = htons(ip->ip_off);
551
552	error = ipsec4_output(&state, sp, flags);
553
554	m = state.m;
555	if (flags & IP_ROUTETOIF) {
556		/*
557		 * if we have tunnel mode SA, we may need to ignore
558		 * IP_ROUTETOIF.
559		 */
560		if (state.ro != &iproute || state.ro->ro_rt != NULL) {
561			flags &= ~IP_ROUTETOIF;
562			ro = state.ro;
563		}
564	} else
565		ro = state.ro;
566	dst = (struct sockaddr_in *)state.dst;
567	if (error) {
568		/* mbuf is already reclaimed in ipsec4_output. */
569		m0 = NULL;
570		switch (error) {
571		case EHOSTUNREACH:
572		case ENETUNREACH:
573		case EMSGSIZE:
574		case ENOBUFS:
575		case ENOMEM:
576			break;
577		default:
578			printf("ip4_output (ipsec): error code %d\n", error);
579			/*fall through*/
580		case ENOENT:
581			/* don't show these error codes to the user */
582			error = 0;
583			break;
584		}
585		goto bad;
586	}
587    }
588
589	/* be sure to update variables that are affected by ipsec4_output() */
590	ip = mtod(m, struct ip *);
591	hlen = ip->ip_hl << 2;
592	if (ro->ro_rt == NULL) {
593		if ((flags & IP_ROUTETOIF) == 0) {
594			printf("ip_output: "
595				"can't update route after IPsec processing\n");
596			error = EHOSTUNREACH;	/*XXX*/
597			goto bad;
598		}
599	} else {
600		ia = ifatoia(ro->ro_rt->rt_ifa);
601		ifp = ro->ro_rt->rt_ifp;
602	}
603
604	/* make it flipped, again. */
605	ip->ip_len = ntohs(ip->ip_len);
606	ip->ip_off = ntohs(ip->ip_off);
607skip_ipsec:
608#endif /*IPSEC*/
609#ifdef FAST_IPSEC
610	/*
611	 * Check the security policy (SP) for the packet and, if
612	 * required, do IPsec-related processing.  There are two
613	 * cases here; the first time a packet is sent through
614	 * it will be untagged and handled by ipsec4_checkpolicy.
615	 * If the packet is resubmitted to ip_output (e.g. after
616	 * AH, ESP, etc. processing), there will be a tag to bypass
617	 * the lookup and related policy checking.
618	 */
619	mtag = m_tag_find(m, PACKET_TAG_IPSEC_PENDING_TDB, NULL);
620	s = splnet();
621	if (mtag != NULL) {
622		tdbi = (struct tdb_ident *)(mtag + 1);
623		sp = ipsec_getpolicy(tdbi, IPSEC_DIR_OUTBOUND);
624		if (sp == NULL)
625			error = -EINVAL;	/* force silent drop */
626		m_tag_delete(m, mtag);
627	} else {
628		sp = ipsec4_checkpolicy(m, IPSEC_DIR_OUTBOUND, flags,
629					&error, inp);
630	}
631	/*
632	 * There are four return cases:
633	 *    sp != NULL	 	    apply IPsec policy
634	 *    sp == NULL, error == 0	    no IPsec handling needed
635	 *    sp == NULL, error == -EINVAL  discard packet w/o error
636	 *    sp == NULL, error != 0	    discard packet, report error
637	 */
638	if (sp != NULL) {
639		/* Loop detection, check if ipsec processing already done */
640		KASSERT(sp->req != NULL, ("ip_output: no ipsec request"));
641		for (mtag = m_tag_first(m); mtag != NULL;
642		     mtag = m_tag_next(m, mtag)) {
643			if (mtag->m_tag_cookie != MTAG_ABI_COMPAT)
644				continue;
645			if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE &&
646			    mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED)
647				continue;
648			/*
649			 * Check if policy has an SA associated with it.
650			 * This can happen when an SP has yet to acquire
651			 * an SA; e.g. on first reference.  If it occurs,
652			 * then we let ipsec4_process_packet do its thing.
653			 */
654			if (sp->req->sav == NULL)
655				break;
656			tdbi = (struct tdb_ident *)(mtag + 1);
657			if (tdbi->spi == sp->req->sav->spi &&
658			    tdbi->proto == sp->req->sav->sah->saidx.proto &&
659			    bcmp(&tdbi->dst, &sp->req->sav->sah->saidx.dst,
660				 sizeof (union sockaddr_union)) == 0) {
661				/*
662				 * No IPsec processing is needed, free
663				 * reference to SP.
664				 *
665				 * NB: null pointer to avoid free at
666				 *     done: below.
667				 */
668				KEY_FREESP(&sp), sp = NULL;
669				splx(s);
670				goto spd_done;
671			}
672		}
673
674		/*
675		 * Do delayed checksums now because we send before
676		 * this is done in the normal processing path.
677		 */
678		if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
679			in_delayed_cksum(m);
680			m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
681		}
682
683		ip->ip_len = htons(ip->ip_len);
684		ip->ip_off = htons(ip->ip_off);
685
686		/* NB: callee frees mbuf */
687		error = ipsec4_process_packet(m, sp->req, flags, 0);
688		/*
689		 * Preserve KAME behaviour: ENOENT can be returned
690		 * when an SA acquire is in progress.  Don't propagate
691		 * this to user-level; it confuses applications.
692		 *
693		 * XXX this will go away when the SADB is redone.
694		 */
695		if (error == ENOENT)
696			error = 0;
697		splx(s);
698		goto done;
699	} else {
700		splx(s);
701
702		if (error != 0) {
703			/*
704			 * Hack: -EINVAL is used to signal that a packet
705			 * should be silently discarded.  This is typically
706			 * because we asked key management for an SA and
707			 * it was delayed (e.g. kicked up to IKE).
708			 */
709			if (error == -EINVAL)
710				error = 0;
711			goto bad;
712		} else {
713			/* No IPsec processing for this packet. */
714		}
715#ifdef notyet
716		/*
717		 * If deferred crypto processing is needed, check that
718		 * the interface supports it.
719		 */
720		mtag = m_tag_find(m, PACKET_TAG_IPSEC_OUT_CRYPTO_NEEDED, NULL);
721		if (mtag != NULL && (ifp->if_capenable & IFCAP_IPSEC) == 0) {
722			/* notify IPsec to do its own crypto */
723			ipsp_skipcrypto_unmark((struct tdb_ident *)(mtag + 1));
724			error = EHOSTUNREACH;
725			goto bad;
726		}
727#endif
728	}
729spd_done:
730#endif /* FAST_IPSEC */
731
732	/*
733	 * IpHack's section.
734	 * - Xlate: translate packet's addr/port (NAT).
735	 * - Firewall: deny/allow/etc.
736	 * - Wrap: fake packet's addr/port <unimpl.>
737	 * - Encapsulate: put it in another IP and send out. <unimp.>
738	 */
739#ifdef PFIL_HOOKS
740	/*
741	 * Run through list of hooks for output packets.
742	 */
743	error = pfil_run_hooks(&inet_pfil_hook, &m, ifp, PFIL_OUT);
744	if (error != 0 || m == NULL)
745		goto done;
746	ip = mtod(m, struct ip *);
747#endif /* PFIL_HOOKS */
748
749	/*
750	 * Check with the firewall...
751	 * but not if we are already being fwd'd from a firewall.
752	 */
753	if (fw_enable && IPFW_LOADED && !args.next_hop) {
754		struct sockaddr_in *old = dst;
755
756		args.m = m;
757		args.next_hop = dst;
758		args.oif = ifp;
759		off = ip_fw_chk_ptr(&args);
760		m = args.m;
761		dst = args.next_hop;
762
763                /*
764		 * On return we must do the following:
765		 * m == NULL	-> drop the pkt (old interface, deprecated)
766		 * (off & IP_FW_PORT_DENY_FLAG)	-> drop the pkt (new interface)
767		 * 1<=off<= 0xffff		-> DIVERT
768		 * (off & IP_FW_PORT_DYNT_FLAG)	-> send to a DUMMYNET pipe
769		 * (off & IP_FW_PORT_TEE_FLAG)	-> TEE the packet
770		 * dst != old			-> IPFIREWALL_FORWARD
771		 * off==0, dst==old		-> accept
772		 * If some of the above modules are not compiled in, then
773		 * we should't have to check the corresponding condition
774		 * (because the ipfw control socket should not accept
775		 * unsupported rules), but better play safe and drop
776		 * packets in case of doubt.
777		 */
778		if ( (off & IP_FW_PORT_DENY_FLAG) || m == NULL) {
779			if (m)
780				m_freem(m);
781			error = EACCES;
782			goto done;
783		}
784		ip = mtod(m, struct ip *);
785		if (off == 0 && dst == old)		/* common case */
786			goto pass;
787                if (DUMMYNET_LOADED && (off & IP_FW_PORT_DYNT_FLAG) != 0) {
788			/*
789			 * pass the pkt to dummynet. Need to include
790			 * pipe number, m, ifp, ro, dst because these are
791			 * not recomputed in the next pass.
792			 * All other parameters have been already used and
793			 * so they are not needed anymore.
794			 * XXX note: if the ifp or ro entry are deleted
795			 * while a pkt is in dummynet, we are in trouble!
796			 */
797			args.ro = ro;
798			args.dst = dst;
799			args.flags = flags;
800
801			error = ip_dn_io_ptr(m, off & 0xffff, DN_TO_IP_OUT,
802				&args);
803			goto done;
804		}
805#ifdef IPDIVERT
806		if (off != 0 && (off & IP_FW_PORT_DYNT_FLAG) == 0) {
807			struct mbuf *clone = NULL;
808
809			/* Clone packet if we're doing a 'tee' */
810			if ((off & IP_FW_PORT_TEE_FLAG) != 0)
811				clone = m_dup(m, M_DONTWAIT);
812
813			/*
814			 * XXX
815			 * delayed checksums are not currently compatible
816			 * with divert sockets.
817			 */
818			if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
819				in_delayed_cksum(m);
820				m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
821			}
822
823			/* Restore packet header fields to original values */
824			ip->ip_len = htons(ip->ip_len);
825			ip->ip_off = htons(ip->ip_off);
826
827			/* Deliver packet to divert input routine */
828			divert_packet(m, 0, off & 0xffff, args.divert_rule);
829
830			/* If 'tee', continue with original packet */
831			if (clone != NULL) {
832				m = clone;
833				ip = mtod(m, struct ip *);
834				goto pass;
835			}
836			goto done;
837		}
838#endif
839
840		/* IPFIREWALL_FORWARD */
841		/*
842		 * Check dst to make sure it is directly reachable on the
843		 * interface we previously thought it was.
844		 * If it isn't (which may be likely in some situations) we have
845		 * to re-route it (ie, find a route for the next-hop and the
846		 * associated interface) and set them here. This is nested
847		 * forwarding which in most cases is undesirable, except where
848		 * such control is nigh impossible. So we do it here.
849		 * And I'm babbling.
850		 */
851		if (off == 0 && old != dst) { /* FORWARD, dst has changed */
852#if 0
853			/*
854			 * XXX To improve readability, this block should be
855			 * changed into a function call as below:
856			 */
857			error = ip_ipforward(&m, &dst, &ifp);
858			if (error)
859				goto bad;
860			if (m == NULL) /* ip_input consumed the mbuf */
861				goto done;
862#else
863			struct in_ifaddr *ia;
864
865			/*
866			 * XXX sro_fwd below is static, and a pointer
867			 * to it gets passed to routines downstream.
868			 * This could have surprisingly bad results in
869			 * practice, because its content is overwritten
870			 * by subsequent packets.
871			 */
872			/* There must be a better way to do this next line... */
873			static struct route sro_fwd;
874			struct route *ro_fwd = &sro_fwd;
875
876#if 0
877			print_ip("IPFIREWALL_FORWARD: New dst ip: ",
878			    dst->sin_addr, "\n");
879#endif
880
881			/*
882			 * We need to figure out if we have been forwarded
883			 * to a local socket. If so, then we should somehow
884			 * "loop back" to ip_input, and get directed to the
885			 * PCB as if we had received this packet. This is
886			 * because it may be dificult to identify the packets
887			 * you want to forward until they are being output
888			 * and have selected an interface. (e.g. locally
889			 * initiated packets) If we used the loopback inteface,
890			 * we would not be able to control what happens
891			 * as the packet runs through ip_input() as
892			 * it is done through an ISR.
893			 */
894			LIST_FOREACH(ia,
895			    INADDR_HASH(dst->sin_addr.s_addr), ia_hash) {
896				/*
897				 * If the addr to forward to is one
898				 * of ours, we pretend to
899				 * be the destination for this packet.
900				 */
901				if (IA_SIN(ia)->sin_addr.s_addr ==
902						 dst->sin_addr.s_addr)
903					break;
904			}
905			if (ia) {	/* tell ip_input "dont filter" */
906				struct m_hdr tag;
907
908				tag.mh_type = MT_TAG;
909				tag.mh_flags = PACKET_TAG_IPFORWARD;
910				tag.mh_data = (caddr_t)args.next_hop;
911				tag.mh_next = m;
912
913				if (m->m_pkthdr.rcvif == NULL)
914					m->m_pkthdr.rcvif = ifunit("lo0");
915				if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
916					m->m_pkthdr.csum_flags |=
917					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
918					m0->m_pkthdr.csum_data = 0xffff;
919				}
920				m->m_pkthdr.csum_flags |=
921				    CSUM_IP_CHECKED | CSUM_IP_VALID;
922				ip->ip_len = htons(ip->ip_len);
923				ip->ip_off = htons(ip->ip_off);
924				ip_input((struct mbuf *)&tag);
925				goto done;
926			}
927			/* Some of the logic for this was
928			 * nicked from above.
929			 *
930			 * This rewrites the cached route in a local PCB.
931			 * Is this what we want to do?
932			 */
933			bcopy(dst, &ro_fwd->ro_dst, sizeof(*dst));
934
935			ro_fwd->ro_rt = 0;
936			rtalloc_ign(ro_fwd, RTF_PRCLONING);
937
938			if (ro_fwd->ro_rt == 0) {
939				ipstat.ips_noroute++;
940				error = EHOSTUNREACH;
941				goto bad;
942			}
943
944			ia = ifatoia(ro_fwd->ro_rt->rt_ifa);
945			ifp = ro_fwd->ro_rt->rt_ifp;
946			ro_fwd->ro_rt->rt_use++;
947			if (ro_fwd->ro_rt->rt_flags & RTF_GATEWAY)
948				dst = (struct sockaddr_in *)
949					ro_fwd->ro_rt->rt_gateway;
950			if (ro_fwd->ro_rt->rt_flags & RTF_HOST)
951				isbroadcast =
952				    (ro_fwd->ro_rt->rt_flags & RTF_BROADCAST);
953			else
954				isbroadcast = in_broadcast(dst->sin_addr, ifp);
955			if (ro->ro_rt)
956				RTFREE(ro->ro_rt);
957			ro->ro_rt = ro_fwd->ro_rt;
958			dst = (struct sockaddr_in *)&ro_fwd->ro_dst;
959
960#endif	/* ... block to be put into a function */
961			/*
962			 * If we added a default src ip earlier,
963			 * which would have been gotten from the-then
964			 * interface, do it again, from the new one.
965			 */
966			if (src_was_INADDR_ANY)
967				ip->ip_src = IA_SIN(ia)->sin_addr;
968			goto pass ;
969		}
970
971                /*
972                 * if we get here, none of the above matches, and
973                 * we have to drop the pkt
974                 */
975		m_freem(m);
976                error = EACCES; /* not sure this is the right error msg */
977                goto done;
978	}
979
980pass:
981	/* 127/8 must not appear on wire - RFC1122. */
982	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
983	    (ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET) {
984		if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
985			ipstat.ips_badaddr++;
986			error = EADDRNOTAVAIL;
987			goto bad;
988		}
989	}
990
991	m->m_pkthdr.csum_flags |= CSUM_IP;
992	sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_hwassist;
993	if (sw_csum & CSUM_DELAY_DATA) {
994		in_delayed_cksum(m);
995		sw_csum &= ~CSUM_DELAY_DATA;
996	}
997	m->m_pkthdr.csum_flags &= ifp->if_hwassist;
998
999	/*
1000	 * If small enough for interface, or the interface will take
1001	 * care of the fragmentation for us, can just send directly.
1002	 */
1003	if (ip->ip_len <= ifp->if_mtu || ifp->if_hwassist & CSUM_FRAGMENT) {
1004		ip->ip_len = htons(ip->ip_len);
1005		ip->ip_off = htons(ip->ip_off);
1006		ip->ip_sum = 0;
1007		if (sw_csum & CSUM_DELAY_IP)
1008			ip->ip_sum = in_cksum(m, hlen);
1009
1010		/* Record statistics for this interface address. */
1011		if (!(flags & IP_FORWARDING) && ia) {
1012			ia->ia_ifa.if_opackets++;
1013			ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1014		}
1015
1016#ifdef IPSEC
1017		/* clean ipsec history once it goes out of the node */
1018		ipsec_delaux(m);
1019#endif
1020
1021#ifdef MBUF_STRESS_TEST
1022		if (mbuf_frag_size && m->m_pkthdr.len > mbuf_frag_size)
1023			m = m_fragment(m, M_DONTWAIT, mbuf_frag_size);
1024#endif
1025		error = (*ifp->if_output)(ifp, m,
1026				(struct sockaddr *)dst, ro->ro_rt);
1027		goto done;
1028	}
1029
1030	if (ip->ip_off & IP_DF) {
1031		error = EMSGSIZE;
1032		/*
1033		 * This case can happen if the user changed the MTU
1034		 * of an interface after enabling IP on it.  Because
1035		 * most netifs don't keep track of routes pointing to
1036		 * them, there is no way for one to update all its
1037		 * routes when the MTU is changed.
1038		 */
1039		if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1040		    !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1041		    (ro->ro_rt->rt_rmx.rmx_mtu > ifp->if_mtu)) {
1042			ro->ro_rt->rt_rmx.rmx_mtu = ifp->if_mtu;
1043		}
1044		ipstat.ips_cantfrag++;
1045		goto bad;
1046	}
1047
1048	/*
1049	 * Too large for interface; fragment if possible. If successful,
1050	 * on return, m will point to a list of packets to be sent.
1051	 */
1052	error = ip_fragment(ip, &m, ifp->if_mtu, ifp->if_hwassist, sw_csum);
1053	if (error)
1054		goto bad;
1055	for (; m; m = m0) {
1056		m0 = m->m_nextpkt;
1057		m->m_nextpkt = 0;
1058#ifdef IPSEC
1059		/* clean ipsec history once it goes out of the node */
1060		ipsec_delaux(m);
1061#endif
1062		if (error == 0) {
1063			/* Record statistics for this interface address. */
1064			if (ia != NULL) {
1065				ia->ia_ifa.if_opackets++;
1066				ia->ia_ifa.if_obytes += m->m_pkthdr.len;
1067			}
1068
1069			error = (*ifp->if_output)(ifp, m,
1070			    (struct sockaddr *)dst, ro->ro_rt);
1071		} else
1072			m_freem(m);
1073	}
1074
1075	if (error == 0)
1076		ipstat.ips_fragmented++;
1077
1078done:
1079#ifdef IPSEC
1080	if (ro == &iproute && ro->ro_rt) {
1081		RTFREE(ro->ro_rt);
1082		ro->ro_rt = NULL;
1083	}
1084	if (sp != NULL) {
1085		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1086			printf("DP ip_output call free SP:%p\n", sp));
1087		key_freesp(sp);
1088	}
1089#endif
1090#ifdef FAST_IPSEC
1091	if (ro == &iproute && ro->ro_rt) {
1092		RTFREE(ro->ro_rt);
1093		ro->ro_rt = NULL;
1094	}
1095	if (sp != NULL)
1096		KEY_FREESP(&sp);
1097#endif
1098	return (error);
1099bad:
1100	m_freem(m);
1101	goto done;
1102}
1103
1104/*
1105 * Create a chain of fragments which fit the given mtu. m_frag points to the
1106 * mbuf to be fragmented; on return it points to the chain with the fragments.
1107 * Return 0 if no error. If error, m_frag may contain a partially built
1108 * chain of fragments that should be freed by the caller.
1109 *
1110 * if_hwassist_flags is the hw offload capabilities (see if_data.ifi_hwassist)
1111 * sw_csum contains the delayed checksums flags (e.g., CSUM_DELAY_IP).
1112 */
1113int
1114ip_fragment(struct ip *ip, struct mbuf **m_frag, int mtu,
1115	    u_long if_hwassist_flags, int sw_csum)
1116{
1117	int error = 0;
1118	int hlen = ip->ip_hl << 2;
1119	int len = (mtu - hlen) & ~7;	/* size of payload in each fragment */
1120	int off;
1121	struct mbuf *m0 = *m_frag;	/* the original packet		*/
1122	int firstlen;
1123	struct mbuf **mnext;
1124	int nfrags;
1125
1126	if (ip->ip_off & IP_DF) {	/* Fragmentation not allowed */
1127		ipstat.ips_cantfrag++;
1128		return EMSGSIZE;
1129	}
1130
1131	/*
1132	 * Must be able to put at least 8 bytes per fragment.
1133	 */
1134	if (len < 8)
1135		return EMSGSIZE;
1136
1137	/*
1138	 * If the interface will not calculate checksums on
1139	 * fragmented packets, then do it here.
1140	 */
1141	if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA &&
1142	    (if_hwassist_flags & CSUM_IP_FRAGS) == 0) {
1143		in_delayed_cksum(m0);
1144		m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
1145	}
1146
1147	if (len > PAGE_SIZE) {
1148		/*
1149		 * Fragment large datagrams such that each segment
1150		 * contains a multiple of PAGE_SIZE amount of data,
1151		 * plus headers. This enables a receiver to perform
1152		 * page-flipping zero-copy optimizations.
1153		 *
1154		 * XXX When does this help given that sender and receiver
1155		 * could have different page sizes, and also mtu could
1156		 * be less than the receiver's page size ?
1157		 */
1158		int newlen;
1159		struct mbuf *m;
1160
1161		for (m = m0, off = 0; m && (off+m->m_len) <= mtu; m = m->m_next)
1162			off += m->m_len;
1163
1164		/*
1165		 * firstlen (off - hlen) must be aligned on an
1166		 * 8-byte boundary
1167		 */
1168		if (off < hlen)
1169			goto smart_frag_failure;
1170		off = ((off - hlen) & ~7) + hlen;
1171		newlen = (~PAGE_MASK) & mtu;
1172		if ((newlen + sizeof (struct ip)) > mtu) {
1173			/* we failed, go back the default */
1174smart_frag_failure:
1175			newlen = len;
1176			off = hlen + len;
1177		}
1178		len = newlen;
1179
1180	} else {
1181		off = hlen + len;
1182	}
1183
1184	firstlen = off - hlen;
1185	mnext = &m0->m_nextpkt;		/* pointer to next packet */
1186
1187	/*
1188	 * Loop through length of segment after first fragment,
1189	 * make new header and copy data of each part and link onto chain.
1190	 * Here, m0 is the original packet, m is the fragment being created.
1191	 * The fragments are linked off the m_nextpkt of the original
1192	 * packet, which after processing serves as the first fragment.
1193	 */
1194	for (nfrags = 1; off < ip->ip_len; off += len, nfrags++) {
1195		struct ip *mhip;	/* ip header on the fragment */
1196		struct mbuf *m;
1197		int mhlen = sizeof (struct ip);
1198
1199		MGETHDR(m, M_DONTWAIT, MT_HEADER);
1200		if (m == 0) {
1201			error = ENOBUFS;
1202			ipstat.ips_odropped++;
1203			goto done;
1204		}
1205		m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1206		/*
1207		 * In the first mbuf, leave room for the link header, then
1208		 * copy the original IP header including options. The payload
1209		 * goes into an additional mbuf chain returned by m_copy().
1210		 */
1211		m->m_data += max_linkhdr;
1212		mhip = mtod(m, struct ip *);
1213		*mhip = *ip;
1214		if (hlen > sizeof (struct ip)) {
1215			mhlen = ip_optcopy(ip, mhip) + sizeof (struct ip);
1216			mhip->ip_v = IPVERSION;
1217			mhip->ip_hl = mhlen >> 2;
1218		}
1219		m->m_len = mhlen;
1220		/* XXX do we need to add ip->ip_off below ? */
1221		mhip->ip_off = ((off - hlen) >> 3) + ip->ip_off;
1222		if (off + len >= ip->ip_len) {	/* last fragment */
1223			len = ip->ip_len - off;
1224			m->m_flags |= M_LASTFRAG;
1225		} else
1226			mhip->ip_off |= IP_MF;
1227		mhip->ip_len = htons((u_short)(len + mhlen));
1228		m->m_next = m_copy(m0, off, len);
1229		if (m->m_next == 0) {		/* copy failed */
1230			m_free(m);
1231			error = ENOBUFS;	/* ??? */
1232			ipstat.ips_odropped++;
1233			goto done;
1234		}
1235		m->m_pkthdr.len = mhlen + len;
1236		m->m_pkthdr.rcvif = (struct ifnet *)0;
1237#ifdef MAC
1238		mac_create_fragment(m0, m);
1239#endif
1240		m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1241		mhip->ip_off = htons(mhip->ip_off);
1242		mhip->ip_sum = 0;
1243		if (sw_csum & CSUM_DELAY_IP)
1244			mhip->ip_sum = in_cksum(m, mhlen);
1245		*mnext = m;
1246		mnext = &m->m_nextpkt;
1247	}
1248	ipstat.ips_ofragments += nfrags;
1249
1250	/* set first marker for fragment chain */
1251	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1252	m0->m_pkthdr.csum_data = nfrags;
1253
1254	/*
1255	 * Update first fragment by trimming what's been copied out
1256	 * and updating header.
1257	 */
1258	m_adj(m0, hlen + firstlen - ip->ip_len);
1259	m0->m_pkthdr.len = hlen + firstlen;
1260	ip->ip_len = htons((u_short)m0->m_pkthdr.len);
1261	ip->ip_off |= IP_MF;
1262	ip->ip_off = htons(ip->ip_off);
1263	ip->ip_sum = 0;
1264	if (sw_csum & CSUM_DELAY_IP)
1265		ip->ip_sum = in_cksum(m0, hlen);
1266
1267done:
1268	*m_frag = m0;
1269	return error;
1270}
1271
1272void
1273in_delayed_cksum(struct mbuf *m)
1274{
1275	struct ip *ip;
1276	u_short csum, offset;
1277
1278	ip = mtod(m, struct ip *);
1279	offset = ip->ip_hl << 2 ;
1280	csum = in_cksum_skip(m, ip->ip_len, offset);
1281	if (m->m_pkthdr.csum_flags & CSUM_UDP && csum == 0)
1282		csum = 0xffff;
1283	offset += m->m_pkthdr.csum_data;	/* checksum offset */
1284
1285	if (offset + sizeof(u_short) > m->m_len) {
1286		printf("delayed m_pullup, m->len: %d  off: %d  p: %d\n",
1287		    m->m_len, offset, ip->ip_p);
1288		/*
1289		 * XXX
1290		 * this shouldn't happen, but if it does, the
1291		 * correct behavior may be to insert the checksum
1292		 * in the existing chain instead of rearranging it.
1293		 */
1294		m = m_pullup(m, offset + sizeof(u_short));
1295	}
1296	*(u_short *)(m->m_data + offset) = csum;
1297}
1298
1299/*
1300 * Insert IP options into preformed packet.
1301 * Adjust IP destination as required for IP source routing,
1302 * as indicated by a non-zero in_addr at the start of the options.
1303 *
1304 * XXX This routine assumes that the packet has no options in place.
1305 */
1306static struct mbuf *
1307ip_insertoptions(m, opt, phlen)
1308	register struct mbuf *m;
1309	struct mbuf *opt;
1310	int *phlen;
1311{
1312	register struct ipoption *p = mtod(opt, struct ipoption *);
1313	struct mbuf *n;
1314	register struct ip *ip = mtod(m, struct ip *);
1315	unsigned optlen;
1316
1317	optlen = opt->m_len - sizeof(p->ipopt_dst);
1318	if (optlen + ip->ip_len > IP_MAXPACKET) {
1319		*phlen = 0;
1320		return (m);		/* XXX should fail */
1321	}
1322	if (p->ipopt_dst.s_addr)
1323		ip->ip_dst = p->ipopt_dst;
1324	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
1325		MGETHDR(n, M_DONTWAIT, MT_HEADER);
1326		if (n == 0) {
1327			*phlen = 0;
1328			return (m);
1329		}
1330		n->m_pkthdr.rcvif = (struct ifnet *)0;
1331#ifdef MAC
1332		mac_create_mbuf_from_mbuf(m, n);
1333#endif
1334		n->m_pkthdr.len = m->m_pkthdr.len + optlen;
1335		m->m_len -= sizeof(struct ip);
1336		m->m_data += sizeof(struct ip);
1337		n->m_next = m;
1338		m = n;
1339		m->m_len = optlen + sizeof(struct ip);
1340		m->m_data += max_linkhdr;
1341		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1342	} else {
1343		m->m_data -= optlen;
1344		m->m_len += optlen;
1345		m->m_pkthdr.len += optlen;
1346		bcopy(ip, mtod(m, void *), sizeof(struct ip));
1347	}
1348	ip = mtod(m, struct ip *);
1349	bcopy(p->ipopt_list, ip + 1, optlen);
1350	*phlen = sizeof(struct ip) + optlen;
1351	ip->ip_v = IPVERSION;
1352	ip->ip_hl = *phlen >> 2;
1353	ip->ip_len += optlen;
1354	return (m);
1355}
1356
1357/*
1358 * Copy options from ip to jp,
1359 * omitting those not copied during fragmentation.
1360 */
1361int
1362ip_optcopy(ip, jp)
1363	struct ip *ip, *jp;
1364{
1365	register u_char *cp, *dp;
1366	int opt, optlen, cnt;
1367
1368	cp = (u_char *)(ip + 1);
1369	dp = (u_char *)(jp + 1);
1370	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
1371	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1372		opt = cp[0];
1373		if (opt == IPOPT_EOL)
1374			break;
1375		if (opt == IPOPT_NOP) {
1376			/* Preserve for IP mcast tunnel's LSRR alignment. */
1377			*dp++ = IPOPT_NOP;
1378			optlen = 1;
1379			continue;
1380		}
1381
1382		KASSERT(cnt >= IPOPT_OLEN + sizeof(*cp),
1383		    ("ip_optcopy: malformed ipv4 option"));
1384		optlen = cp[IPOPT_OLEN];
1385		KASSERT(optlen >= IPOPT_OLEN + sizeof(*cp) && optlen <= cnt,
1386		    ("ip_optcopy: malformed ipv4 option"));
1387
1388		/* bogus lengths should have been caught by ip_dooptions */
1389		if (optlen > cnt)
1390			optlen = cnt;
1391		if (IPOPT_COPIED(opt)) {
1392			bcopy(cp, dp, optlen);
1393			dp += optlen;
1394		}
1395	}
1396	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
1397		*dp++ = IPOPT_EOL;
1398	return (optlen);
1399}
1400
1401/*
1402 * IP socket option processing.
1403 */
1404int
1405ip_ctloutput(so, sopt)
1406	struct socket *so;
1407	struct sockopt *sopt;
1408{
1409	struct	inpcb *inp = sotoinpcb(so);
1410	int	error, optval;
1411
1412	error = optval = 0;
1413	if (sopt->sopt_level != IPPROTO_IP) {
1414		return (EINVAL);
1415	}
1416
1417	switch (sopt->sopt_dir) {
1418	case SOPT_SET:
1419		switch (sopt->sopt_name) {
1420		case IP_OPTIONS:
1421#ifdef notyet
1422		case IP_RETOPTS:
1423#endif
1424		{
1425			struct mbuf *m;
1426			if (sopt->sopt_valsize > MLEN) {
1427				error = EMSGSIZE;
1428				break;
1429			}
1430			MGET(m, sopt->sopt_td ? M_TRYWAIT : M_DONTWAIT, MT_HEADER);
1431			if (m == 0) {
1432				error = ENOBUFS;
1433				break;
1434			}
1435			m->m_len = sopt->sopt_valsize;
1436			error = sooptcopyin(sopt, mtod(m, char *), m->m_len,
1437					    m->m_len);
1438
1439			return (ip_pcbopts(sopt->sopt_name, &inp->inp_options,
1440					   m));
1441		}
1442
1443		case IP_TOS:
1444		case IP_TTL:
1445		case IP_RECVOPTS:
1446		case IP_RECVRETOPTS:
1447		case IP_RECVDSTADDR:
1448		case IP_RECVTTL:
1449		case IP_RECVIF:
1450		case IP_FAITH:
1451		case IP_ONESBCAST:
1452			error = sooptcopyin(sopt, &optval, sizeof optval,
1453					    sizeof optval);
1454			if (error)
1455				break;
1456
1457			switch (sopt->sopt_name) {
1458			case IP_TOS:
1459				inp->inp_ip_tos = optval;
1460				break;
1461
1462			case IP_TTL:
1463				inp->inp_ip_ttl = optval;
1464				break;
1465#define	OPTSET(bit) \
1466	if (optval) \
1467		inp->inp_flags |= bit; \
1468	else \
1469		inp->inp_flags &= ~bit;
1470
1471			case IP_RECVOPTS:
1472				OPTSET(INP_RECVOPTS);
1473				break;
1474
1475			case IP_RECVRETOPTS:
1476				OPTSET(INP_RECVRETOPTS);
1477				break;
1478
1479			case IP_RECVDSTADDR:
1480				OPTSET(INP_RECVDSTADDR);
1481				break;
1482
1483			case IP_RECVTTL:
1484				OPTSET(INP_RECVTTL);
1485				break;
1486
1487			case IP_RECVIF:
1488				OPTSET(INP_RECVIF);
1489				break;
1490
1491			case IP_FAITH:
1492				OPTSET(INP_FAITH);
1493				break;
1494
1495			case IP_ONESBCAST:
1496				OPTSET(INP_ONESBCAST);
1497				break;
1498			}
1499			break;
1500#undef OPTSET
1501
1502		case IP_MULTICAST_IF:
1503		case IP_MULTICAST_VIF:
1504		case IP_MULTICAST_TTL:
1505		case IP_MULTICAST_LOOP:
1506		case IP_ADD_MEMBERSHIP:
1507		case IP_DROP_MEMBERSHIP:
1508			error = ip_setmoptions(sopt, &inp->inp_moptions);
1509			break;
1510
1511		case IP_PORTRANGE:
1512			error = sooptcopyin(sopt, &optval, sizeof optval,
1513					    sizeof optval);
1514			if (error)
1515				break;
1516
1517			switch (optval) {
1518			case IP_PORTRANGE_DEFAULT:
1519				inp->inp_flags &= ~(INP_LOWPORT);
1520				inp->inp_flags &= ~(INP_HIGHPORT);
1521				break;
1522
1523			case IP_PORTRANGE_HIGH:
1524				inp->inp_flags &= ~(INP_LOWPORT);
1525				inp->inp_flags |= INP_HIGHPORT;
1526				break;
1527
1528			case IP_PORTRANGE_LOW:
1529				inp->inp_flags &= ~(INP_HIGHPORT);
1530				inp->inp_flags |= INP_LOWPORT;
1531				break;
1532
1533			default:
1534				error = EINVAL;
1535				break;
1536			}
1537			break;
1538
1539#if defined(IPSEC) || defined(FAST_IPSEC)
1540		case IP_IPSEC_POLICY:
1541		{
1542			caddr_t req;
1543			size_t len = 0;
1544			int priv;
1545			struct mbuf *m;
1546			int optname;
1547
1548			if ((error = soopt_getm(sopt, &m)) != 0) /* XXX */
1549				break;
1550			if ((error = soopt_mcopyin(sopt, m)) != 0) /* XXX */
1551				break;
1552			priv = (sopt->sopt_td != NULL &&
1553				suser(sopt->sopt_td) != 0) ? 0 : 1;
1554			req = mtod(m, caddr_t);
1555			len = m->m_len;
1556			optname = sopt->sopt_name;
1557			error = ipsec4_set_policy(inp, optname, req, len, priv);
1558			m_freem(m);
1559			break;
1560		}
1561#endif /*IPSEC*/
1562
1563		default:
1564			error = ENOPROTOOPT;
1565			break;
1566		}
1567		break;
1568
1569	case SOPT_GET:
1570		switch (sopt->sopt_name) {
1571		case IP_OPTIONS:
1572		case IP_RETOPTS:
1573			if (inp->inp_options)
1574				error = sooptcopyout(sopt,
1575						     mtod(inp->inp_options,
1576							  char *),
1577						     inp->inp_options->m_len);
1578			else
1579				sopt->sopt_valsize = 0;
1580			break;
1581
1582		case IP_TOS:
1583		case IP_TTL:
1584		case IP_RECVOPTS:
1585		case IP_RECVRETOPTS:
1586		case IP_RECVDSTADDR:
1587		case IP_RECVTTL:
1588		case IP_RECVIF:
1589		case IP_PORTRANGE:
1590		case IP_FAITH:
1591		case IP_ONESBCAST:
1592			switch (sopt->sopt_name) {
1593
1594			case IP_TOS:
1595				optval = inp->inp_ip_tos;
1596				break;
1597
1598			case IP_TTL:
1599				optval = inp->inp_ip_ttl;
1600				break;
1601
1602#define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1603
1604			case IP_RECVOPTS:
1605				optval = OPTBIT(INP_RECVOPTS);
1606				break;
1607
1608			case IP_RECVRETOPTS:
1609				optval = OPTBIT(INP_RECVRETOPTS);
1610				break;
1611
1612			case IP_RECVDSTADDR:
1613				optval = OPTBIT(INP_RECVDSTADDR);
1614				break;
1615
1616			case IP_RECVTTL:
1617				optval = OPTBIT(INP_RECVTTL);
1618				break;
1619
1620			case IP_RECVIF:
1621				optval = OPTBIT(INP_RECVIF);
1622				break;
1623
1624			case IP_PORTRANGE:
1625				if (inp->inp_flags & INP_HIGHPORT)
1626					optval = IP_PORTRANGE_HIGH;
1627				else if (inp->inp_flags & INP_LOWPORT)
1628					optval = IP_PORTRANGE_LOW;
1629				else
1630					optval = 0;
1631				break;
1632
1633			case IP_FAITH:
1634				optval = OPTBIT(INP_FAITH);
1635				break;
1636
1637			case IP_ONESBCAST:
1638				optval = OPTBIT(INP_ONESBCAST);
1639				break;
1640			}
1641			error = sooptcopyout(sopt, &optval, sizeof optval);
1642			break;
1643
1644		case IP_MULTICAST_IF:
1645		case IP_MULTICAST_VIF:
1646		case IP_MULTICAST_TTL:
1647		case IP_MULTICAST_LOOP:
1648		case IP_ADD_MEMBERSHIP:
1649		case IP_DROP_MEMBERSHIP:
1650			error = ip_getmoptions(sopt, inp->inp_moptions);
1651			break;
1652
1653#if defined(IPSEC) || defined(FAST_IPSEC)
1654		case IP_IPSEC_POLICY:
1655		{
1656			struct mbuf *m = NULL;
1657			caddr_t req = NULL;
1658			size_t len = 0;
1659
1660			if (m != 0) {
1661				req = mtod(m, caddr_t);
1662				len = m->m_len;
1663			}
1664			error = ipsec4_get_policy(sotoinpcb(so), req, len, &m);
1665			if (error == 0)
1666				error = soopt_mcopyout(sopt, m); /* XXX */
1667			if (error == 0)
1668				m_freem(m);
1669			break;
1670		}
1671#endif /*IPSEC*/
1672
1673		default:
1674			error = ENOPROTOOPT;
1675			break;
1676		}
1677		break;
1678	}
1679	return (error);
1680}
1681
1682/*
1683 * Set up IP options in pcb for insertion in output packets.
1684 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1685 * with destination address if source routed.
1686 */
1687static int
1688ip_pcbopts(optname, pcbopt, m)
1689	int optname;
1690	struct mbuf **pcbopt;
1691	register struct mbuf *m;
1692{
1693	register int cnt, optlen;
1694	register u_char *cp;
1695	u_char opt;
1696
1697	/* turn off any old options */
1698	if (*pcbopt)
1699		(void)m_free(*pcbopt);
1700	*pcbopt = 0;
1701	if (m == (struct mbuf *)0 || m->m_len == 0) {
1702		/*
1703		 * Only turning off any previous options.
1704		 */
1705		if (m)
1706			(void)m_free(m);
1707		return (0);
1708	}
1709
1710	if (m->m_len % sizeof(int32_t))
1711		goto bad;
1712	/*
1713	 * IP first-hop destination address will be stored before
1714	 * actual options; move other options back
1715	 * and clear it when none present.
1716	 */
1717	if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN])
1718		goto bad;
1719	cnt = m->m_len;
1720	m->m_len += sizeof(struct in_addr);
1721	cp = mtod(m, u_char *) + sizeof(struct in_addr);
1722	bcopy(mtod(m, void *), cp, (unsigned)cnt);
1723	bzero(mtod(m, void *), sizeof(struct in_addr));
1724
1725	for (; cnt > 0; cnt -= optlen, cp += optlen) {
1726		opt = cp[IPOPT_OPTVAL];
1727		if (opt == IPOPT_EOL)
1728			break;
1729		if (opt == IPOPT_NOP)
1730			optlen = 1;
1731		else {
1732			if (cnt < IPOPT_OLEN + sizeof(*cp))
1733				goto bad;
1734			optlen = cp[IPOPT_OLEN];
1735			if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
1736				goto bad;
1737		}
1738		switch (opt) {
1739
1740		default:
1741			break;
1742
1743		case IPOPT_LSRR:
1744		case IPOPT_SSRR:
1745			/*
1746			 * user process specifies route as:
1747			 *	->A->B->C->D
1748			 * D must be our final destination (but we can't
1749			 * check that since we may not have connected yet).
1750			 * A is first hop destination, which doesn't appear in
1751			 * actual IP option, but is stored before the options.
1752			 */
1753			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1754				goto bad;
1755			m->m_len -= sizeof(struct in_addr);
1756			cnt -= sizeof(struct in_addr);
1757			optlen -= sizeof(struct in_addr);
1758			cp[IPOPT_OLEN] = optlen;
1759			/*
1760			 * Move first hop before start of options.
1761			 */
1762			bcopy((caddr_t)&cp[IPOPT_OFFSET+1], mtod(m, caddr_t),
1763			    sizeof(struct in_addr));
1764			/*
1765			 * Then copy rest of options back
1766			 * to close up the deleted entry.
1767			 */
1768			bcopy((&cp[IPOPT_OFFSET+1] + sizeof(struct in_addr)),
1769			    &cp[IPOPT_OFFSET+1],
1770			    (unsigned)cnt + sizeof(struct in_addr));
1771			break;
1772		}
1773	}
1774	if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1775		goto bad;
1776	*pcbopt = m;
1777	return (0);
1778
1779bad:
1780	(void)m_free(m);
1781	return (EINVAL);
1782}
1783
1784/*
1785 * XXX
1786 * The whole multicast option thing needs to be re-thought.
1787 * Several of these options are equally applicable to non-multicast
1788 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
1789 * standard option (IP_TTL).
1790 */
1791
1792/*
1793 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
1794 */
1795static struct ifnet *
1796ip_multicast_if(a, ifindexp)
1797	struct in_addr *a;
1798	int *ifindexp;
1799{
1800	int ifindex;
1801	struct ifnet *ifp;
1802
1803	if (ifindexp)
1804		*ifindexp = 0;
1805	if (ntohl(a->s_addr) >> 24 == 0) {
1806		ifindex = ntohl(a->s_addr) & 0xffffff;
1807		if (ifindex < 0 || if_index < ifindex)
1808			return NULL;
1809		ifp = ifnet_byindex(ifindex);
1810		if (ifindexp)
1811			*ifindexp = ifindex;
1812	} else {
1813		INADDR_TO_IFP(*a, ifp);
1814	}
1815	return ifp;
1816}
1817
1818/*
1819 * Set the IP multicast options in response to user setsockopt().
1820 */
1821static int
1822ip_setmoptions(sopt, imop)
1823	struct sockopt *sopt;
1824	struct ip_moptions **imop;
1825{
1826	int error = 0;
1827	int i;
1828	struct in_addr addr;
1829	struct ip_mreq mreq;
1830	struct ifnet *ifp;
1831	struct ip_moptions *imo = *imop;
1832	struct route ro;
1833	struct sockaddr_in *dst;
1834	int ifindex;
1835	int s;
1836
1837	if (imo == NULL) {
1838		/*
1839		 * No multicast option buffer attached to the pcb;
1840		 * allocate one and initialize to default values.
1841		 */
1842		imo = (struct ip_moptions*)malloc(sizeof(*imo), M_IPMOPTS,
1843		    M_WAITOK);
1844
1845		if (imo == NULL)
1846			return (ENOBUFS);
1847		*imop = imo;
1848		imo->imo_multicast_ifp = NULL;
1849		imo->imo_multicast_addr.s_addr = INADDR_ANY;
1850		imo->imo_multicast_vif = -1;
1851		imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1852		imo->imo_multicast_loop = IP_DEFAULT_MULTICAST_LOOP;
1853		imo->imo_num_memberships = 0;
1854	}
1855
1856	switch (sopt->sopt_name) {
1857	/* store an index number for the vif you wanna use in the send */
1858	case IP_MULTICAST_VIF:
1859		if (legal_vif_num == 0) {
1860			error = EOPNOTSUPP;
1861			break;
1862		}
1863		error = sooptcopyin(sopt, &i, sizeof i, sizeof i);
1864		if (error)
1865			break;
1866		if (!legal_vif_num(i) && (i != -1)) {
1867			error = EINVAL;
1868			break;
1869		}
1870		imo->imo_multicast_vif = i;
1871		break;
1872
1873	case IP_MULTICAST_IF:
1874		/*
1875		 * Select the interface for outgoing multicast packets.
1876		 */
1877		error = sooptcopyin(sopt, &addr, sizeof addr, sizeof addr);
1878		if (error)
1879			break;
1880		/*
1881		 * INADDR_ANY is used to remove a previous selection.
1882		 * When no interface is selected, a default one is
1883		 * chosen every time a multicast packet is sent.
1884		 */
1885		if (addr.s_addr == INADDR_ANY) {
1886			imo->imo_multicast_ifp = NULL;
1887			break;
1888		}
1889		/*
1890		 * The selected interface is identified by its local
1891		 * IP address.  Find the interface and confirm that
1892		 * it supports multicasting.
1893		 */
1894		s = splimp();
1895		ifp = ip_multicast_if(&addr, &ifindex);
1896		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1897			splx(s);
1898			error = EADDRNOTAVAIL;
1899			break;
1900		}
1901		imo->imo_multicast_ifp = ifp;
1902		if (ifindex)
1903			imo->imo_multicast_addr = addr;
1904		else
1905			imo->imo_multicast_addr.s_addr = INADDR_ANY;
1906		splx(s);
1907		break;
1908
1909	case IP_MULTICAST_TTL:
1910		/*
1911		 * Set the IP time-to-live for outgoing multicast packets.
1912		 * The original multicast API required a char argument,
1913		 * which is inconsistent with the rest of the socket API.
1914		 * We allow either a char or an int.
1915		 */
1916		if (sopt->sopt_valsize == 1) {
1917			u_char ttl;
1918			error = sooptcopyin(sopt, &ttl, 1, 1);
1919			if (error)
1920				break;
1921			imo->imo_multicast_ttl = ttl;
1922		} else {
1923			u_int ttl;
1924			error = sooptcopyin(sopt, &ttl, sizeof ttl,
1925					    sizeof ttl);
1926			if (error)
1927				break;
1928			if (ttl > 255)
1929				error = EINVAL;
1930			else
1931				imo->imo_multicast_ttl = ttl;
1932		}
1933		break;
1934
1935	case IP_MULTICAST_LOOP:
1936		/*
1937		 * Set the loopback flag for outgoing multicast packets.
1938		 * Must be zero or one.  The original multicast API required a
1939		 * char argument, which is inconsistent with the rest
1940		 * of the socket API.  We allow either a char or an int.
1941		 */
1942		if (sopt->sopt_valsize == 1) {
1943			u_char loop;
1944			error = sooptcopyin(sopt, &loop, 1, 1);
1945			if (error)
1946				break;
1947			imo->imo_multicast_loop = !!loop;
1948		} else {
1949			u_int loop;
1950			error = sooptcopyin(sopt, &loop, sizeof loop,
1951					    sizeof loop);
1952			if (error)
1953				break;
1954			imo->imo_multicast_loop = !!loop;
1955		}
1956		break;
1957
1958	case IP_ADD_MEMBERSHIP:
1959		/*
1960		 * Add a multicast group membership.
1961		 * Group must be a valid IP multicast address.
1962		 */
1963		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
1964		if (error)
1965			break;
1966
1967		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
1968			error = EINVAL;
1969			break;
1970		}
1971		s = splimp();
1972		/*
1973		 * If no interface address was provided, use the interface of
1974		 * the route to the given multicast address.
1975		 */
1976		if (mreq.imr_interface.s_addr == INADDR_ANY) {
1977			bzero((caddr_t)&ro, sizeof(ro));
1978			dst = (struct sockaddr_in *)&ro.ro_dst;
1979			dst->sin_len = sizeof(*dst);
1980			dst->sin_family = AF_INET;
1981			dst->sin_addr = mreq.imr_multiaddr;
1982			rtalloc(&ro);
1983			if (ro.ro_rt == NULL) {
1984				error = EADDRNOTAVAIL;
1985				splx(s);
1986				break;
1987			}
1988			ifp = ro.ro_rt->rt_ifp;
1989			rtfree(ro.ro_rt);
1990		}
1991		else {
1992			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
1993		}
1994
1995		/*
1996		 * See if we found an interface, and confirm that it
1997		 * supports multicast.
1998		 */
1999		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2000			error = EADDRNOTAVAIL;
2001			splx(s);
2002			break;
2003		}
2004		/*
2005		 * See if the membership already exists or if all the
2006		 * membership slots are full.
2007		 */
2008		for (i = 0; i < imo->imo_num_memberships; ++i) {
2009			if (imo->imo_membership[i]->inm_ifp == ifp &&
2010			    imo->imo_membership[i]->inm_addr.s_addr
2011						== mreq.imr_multiaddr.s_addr)
2012				break;
2013		}
2014		if (i < imo->imo_num_memberships) {
2015			error = EADDRINUSE;
2016			splx(s);
2017			break;
2018		}
2019		if (i == IP_MAX_MEMBERSHIPS) {
2020			error = ETOOMANYREFS;
2021			splx(s);
2022			break;
2023		}
2024		/*
2025		 * Everything looks good; add a new record to the multicast
2026		 * address list for the given interface.
2027		 */
2028		if ((imo->imo_membership[i] =
2029		    in_addmulti(&mreq.imr_multiaddr, ifp)) == NULL) {
2030			error = ENOBUFS;
2031			splx(s);
2032			break;
2033		}
2034		++imo->imo_num_memberships;
2035		splx(s);
2036		break;
2037
2038	case IP_DROP_MEMBERSHIP:
2039		/*
2040		 * Drop a multicast group membership.
2041		 * Group must be a valid IP multicast address.
2042		 */
2043		error = sooptcopyin(sopt, &mreq, sizeof mreq, sizeof mreq);
2044		if (error)
2045			break;
2046
2047		if (!IN_MULTICAST(ntohl(mreq.imr_multiaddr.s_addr))) {
2048			error = EINVAL;
2049			break;
2050		}
2051
2052		s = splimp();
2053		/*
2054		 * If an interface address was specified, get a pointer
2055		 * to its ifnet structure.
2056		 */
2057		if (mreq.imr_interface.s_addr == INADDR_ANY)
2058			ifp = NULL;
2059		else {
2060			ifp = ip_multicast_if(&mreq.imr_interface, NULL);
2061			if (ifp == NULL) {
2062				error = EADDRNOTAVAIL;
2063				splx(s);
2064				break;
2065			}
2066		}
2067		/*
2068		 * Find the membership in the membership array.
2069		 */
2070		for (i = 0; i < imo->imo_num_memberships; ++i) {
2071			if ((ifp == NULL ||
2072			     imo->imo_membership[i]->inm_ifp == ifp) &&
2073			     imo->imo_membership[i]->inm_addr.s_addr ==
2074			     mreq.imr_multiaddr.s_addr)
2075				break;
2076		}
2077		if (i == imo->imo_num_memberships) {
2078			error = EADDRNOTAVAIL;
2079			splx(s);
2080			break;
2081		}
2082		/*
2083		 * Give up the multicast address record to which the
2084		 * membership points.
2085		 */
2086		in_delmulti(imo->imo_membership[i]);
2087		/*
2088		 * Remove the gap in the membership array.
2089		 */
2090		for (++i; i < imo->imo_num_memberships; ++i)
2091			imo->imo_membership[i-1] = imo->imo_membership[i];
2092		--imo->imo_num_memberships;
2093		splx(s);
2094		break;
2095
2096	default:
2097		error = EOPNOTSUPP;
2098		break;
2099	}
2100
2101	/*
2102	 * If all options have default values, no need to keep the mbuf.
2103	 */
2104	if (imo->imo_multicast_ifp == NULL &&
2105	    imo->imo_multicast_vif == -1 &&
2106	    imo->imo_multicast_ttl == IP_DEFAULT_MULTICAST_TTL &&
2107	    imo->imo_multicast_loop == IP_DEFAULT_MULTICAST_LOOP &&
2108	    imo->imo_num_memberships == 0) {
2109		free(*imop, M_IPMOPTS);
2110		*imop = NULL;
2111	}
2112
2113	return (error);
2114}
2115
2116/*
2117 * Return the IP multicast options in response to user getsockopt().
2118 */
2119static int
2120ip_getmoptions(sopt, imo)
2121	struct sockopt *sopt;
2122	register struct ip_moptions *imo;
2123{
2124	struct in_addr addr;
2125	struct in_ifaddr *ia;
2126	int error, optval;
2127	u_char coptval;
2128
2129	error = 0;
2130	switch (sopt->sopt_name) {
2131	case IP_MULTICAST_VIF:
2132		if (imo != NULL)
2133			optval = imo->imo_multicast_vif;
2134		else
2135			optval = -1;
2136		error = sooptcopyout(sopt, &optval, sizeof optval);
2137		break;
2138
2139	case IP_MULTICAST_IF:
2140		if (imo == NULL || imo->imo_multicast_ifp == NULL)
2141			addr.s_addr = INADDR_ANY;
2142		else if (imo->imo_multicast_addr.s_addr) {
2143			/* return the value user has set */
2144			addr = imo->imo_multicast_addr;
2145		} else {
2146			IFP_TO_IA(imo->imo_multicast_ifp, ia);
2147			addr.s_addr = (ia == NULL) ? INADDR_ANY
2148				: IA_SIN(ia)->sin_addr.s_addr;
2149		}
2150		error = sooptcopyout(sopt, &addr, sizeof addr);
2151		break;
2152
2153	case IP_MULTICAST_TTL:
2154		if (imo == 0)
2155			optval = coptval = IP_DEFAULT_MULTICAST_TTL;
2156		else
2157			optval = coptval = imo->imo_multicast_ttl;
2158		if (sopt->sopt_valsize == 1)
2159			error = sooptcopyout(sopt, &coptval, 1);
2160		else
2161			error = sooptcopyout(sopt, &optval, sizeof optval);
2162		break;
2163
2164	case IP_MULTICAST_LOOP:
2165		if (imo == 0)
2166			optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
2167		else
2168			optval = coptval = imo->imo_multicast_loop;
2169		if (sopt->sopt_valsize == 1)
2170			error = sooptcopyout(sopt, &coptval, 1);
2171		else
2172			error = sooptcopyout(sopt, &optval, sizeof optval);
2173		break;
2174
2175	default:
2176		error = ENOPROTOOPT;
2177		break;
2178	}
2179	return (error);
2180}
2181
2182/*
2183 * Discard the IP multicast options.
2184 */
2185void
2186ip_freemoptions(imo)
2187	register struct ip_moptions *imo;
2188{
2189	register int i;
2190
2191	if (imo != NULL) {
2192		for (i = 0; i < imo->imo_num_memberships; ++i)
2193			in_delmulti(imo->imo_membership[i]);
2194		free(imo, M_IPMOPTS);
2195	}
2196}
2197
2198/*
2199 * Routine called from ip_output() to loop back a copy of an IP multicast
2200 * packet to the input queue of a specified interface.  Note that this
2201 * calls the output routine of the loopback "driver", but with an interface
2202 * pointer that might NOT be a loopback interface -- evil, but easier than
2203 * replicating that code here.
2204 */
2205static void
2206ip_mloopback(ifp, m, dst, hlen)
2207	struct ifnet *ifp;
2208	register struct mbuf *m;
2209	register struct sockaddr_in *dst;
2210	int hlen;
2211{
2212	register struct ip *ip;
2213	struct mbuf *copym;
2214
2215	copym = m_copy(m, 0, M_COPYALL);
2216	if (copym != NULL && (copym->m_flags & M_EXT || copym->m_len < hlen))
2217		copym = m_pullup(copym, hlen);
2218	if (copym != NULL) {
2219		/*
2220		 * We don't bother to fragment if the IP length is greater
2221		 * than the interface's MTU.  Can this possibly matter?
2222		 */
2223		ip = mtod(copym, struct ip *);
2224		ip->ip_len = htons(ip->ip_len);
2225		ip->ip_off = htons(ip->ip_off);
2226		ip->ip_sum = 0;
2227		ip->ip_sum = in_cksum(copym, hlen);
2228		/*
2229		 * NB:
2230		 * It's not clear whether there are any lingering
2231		 * reentrancy problems in other areas which might
2232		 * be exposed by using ip_input directly (in
2233		 * particular, everything which modifies the packet
2234		 * in-place).  Yet another option is using the
2235		 * protosw directly to deliver the looped back
2236		 * packet.  For the moment, we'll err on the side
2237		 * of safety by using if_simloop().
2238		 */
2239#if 1 /* XXX */
2240		if (dst->sin_family != AF_INET) {
2241			printf("ip_mloopback: bad address family %d\n",
2242						dst->sin_family);
2243			dst->sin_family = AF_INET;
2244		}
2245#endif
2246
2247#ifdef notdef
2248		copym->m_pkthdr.rcvif = ifp;
2249		ip_input(copym);
2250#else
2251		/* if the checksum hasn't been computed, mark it as valid */
2252		if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2253			copym->m_pkthdr.csum_flags |=
2254			    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2255			copym->m_pkthdr.csum_data = 0xffff;
2256		}
2257		if_simloop(ifp, copym, dst->sin_family, 0);
2258#endif
2259	}
2260}
2261