ieee80211_output.c revision 301722
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 301722 2016-06-09 08:19:42Z avos $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kernel.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/endian.h>
40
41#include <sys/socket.h>
42
43#include <net/bpf.h>
44#include <net/ethernet.h>
45#include <net/if.h>
46#include <net/if_var.h>
47#include <net/if_llc.h>
48#include <net/if_media.h>
49#include <net/if_vlan_var.h>
50
51#include <net80211/ieee80211_var.h>
52#include <net80211/ieee80211_regdomain.h>
53#ifdef IEEE80211_SUPPORT_SUPERG
54#include <net80211/ieee80211_superg.h>
55#endif
56#ifdef IEEE80211_SUPPORT_TDMA
57#include <net80211/ieee80211_tdma.h>
58#endif
59#include <net80211/ieee80211_wds.h>
60#include <net80211/ieee80211_mesh.h>
61
62#if defined(INET) || defined(INET6)
63#include <netinet/in.h>
64#endif
65
66#ifdef INET
67#include <netinet/if_ether.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#endif
71#ifdef INET6
72#include <netinet/ip6.h>
73#endif
74
75#include <security/mac/mac_framework.h>
76
77#define	ETHER_HEADER_COPY(dst, src) \
78	memcpy(dst, src, sizeof(struct ether_header))
79
80static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
81	u_int hdrsize, u_int ciphdrsize, u_int mtu);
82static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
83
84#ifdef IEEE80211_DEBUG
85/*
86 * Decide if an outbound management frame should be
87 * printed when debugging is enabled.  This filters some
88 * of the less interesting frames that come frequently
89 * (e.g. beacons).
90 */
91static __inline int
92doprint(struct ieee80211vap *vap, int subtype)
93{
94	switch (subtype) {
95	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
96		return (vap->iv_opmode == IEEE80211_M_IBSS);
97	}
98	return 1;
99}
100#endif
101
102/*
103 * Transmit a frame to the given destination on the given VAP.
104 *
105 * It's up to the caller to figure out the details of who this
106 * is going to and resolving the node.
107 *
108 * This routine takes care of queuing it for power save,
109 * A-MPDU state stuff, fast-frames state stuff, encapsulation
110 * if required, then passing it up to the driver layer.
111 *
112 * This routine (for now) consumes the mbuf and frees the node
113 * reference; it ideally will return a TX status which reflects
114 * whether the mbuf was consumed or not, so the caller can
115 * free the mbuf (if appropriate) and the node reference (again,
116 * if appropriate.)
117 */
118int
119ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
120    struct ieee80211_node *ni)
121{
122	struct ieee80211com *ic = vap->iv_ic;
123	struct ifnet *ifp = vap->iv_ifp;
124#ifdef IEEE80211_SUPPORT_SUPERG
125	int mcast;
126#endif
127
128	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
129	    (m->m_flags & M_PWR_SAV) == 0) {
130		/*
131		 * Station in power save mode; pass the frame
132		 * to the 802.11 layer and continue.  We'll get
133		 * the frame back when the time is right.
134		 * XXX lose WDS vap linkage?
135		 */
136		if (ieee80211_pwrsave(ni, m) != 0)
137			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
138		ieee80211_free_node(ni);
139
140		/*
141		 * We queued it fine, so tell the upper layer
142		 * that we consumed it.
143		 */
144		return (0);
145	}
146	/* calculate priority so drivers can find the tx queue */
147	if (ieee80211_classify(ni, m)) {
148		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
149		    ni->ni_macaddr, NULL,
150		    "%s", "classification failure");
151		vap->iv_stats.is_tx_classify++;
152		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
153		m_freem(m);
154		ieee80211_free_node(ni);
155
156		/* XXX better status? */
157		return (0);
158	}
159	/*
160	 * Stash the node pointer.  Note that we do this after
161	 * any call to ieee80211_dwds_mcast because that code
162	 * uses any existing value for rcvif to identify the
163	 * interface it (might have been) received on.
164	 */
165	m->m_pkthdr.rcvif = (void *)ni;
166#ifdef IEEE80211_SUPPORT_SUPERG
167	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
168#endif
169
170	BPF_MTAP(ifp, m);		/* 802.3 tx */
171
172	/*
173	 * Check if A-MPDU tx aggregation is setup or if we
174	 * should try to enable it.  The sta must be associated
175	 * with HT and A-MPDU enabled for use.  When the policy
176	 * routine decides we should enable A-MPDU we issue an
177	 * ADDBA request and wait for a reply.  The frame being
178	 * encapsulated will go out w/o using A-MPDU, or possibly
179	 * it might be collected by the driver and held/retransmit.
180	 * The default ic_ampdu_enable routine handles staggering
181	 * ADDBA requests in case the receiver NAK's us or we are
182	 * otherwise unable to establish a BA stream.
183	 */
184	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
185	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
186		if ((m->m_flags & M_EAPOL) == 0) {
187			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
188			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
189
190			ieee80211_txampdu_count_packet(tap);
191			if (IEEE80211_AMPDU_RUNNING(tap)) {
192				/*
193				 * Operational, mark frame for aggregation.
194				 *
195				 * XXX do tx aggregation here
196				 */
197				m->m_flags |= M_AMPDU_MPDU;
198			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
199			    ic->ic_ampdu_enable(ni, tap)) {
200				/*
201				 * Not negotiated yet, request service.
202				 */
203				ieee80211_ampdu_request(ni, tap);
204				/* XXX hold frame for reply? */
205			}
206		}
207	}
208
209#ifdef IEEE80211_SUPPORT_SUPERG
210	/*
211	 * Check for AMSDU/FF; queue for aggregation
212	 *
213	 * Note: we don't bother trying to do fast frames or
214	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
215	 * likely could do it for FF (because it's a magic
216	 * atheros tunnel LLC type) but I don't think we're going
217	 * to really need to.  For A-MSDU we'd have to set the
218	 * A-MSDU QoS bit in the wifi header, so we just plain
219	 * can't do it.
220	 *
221	 * Strictly speaking, we could actually /do/ A-MSDU / FF
222	 * with A-MPDU together which for certain circumstances
223	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
224	 * I'll ignore that for now so existing behaviour is maintained.
225	 * Later on it would be good to make "amsdu + ampdu" configurable.
226	 */
227	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
228		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
229			m = ieee80211_amsdu_check(ni, m);
230			if (m == NULL) {
231				/* NB: any ni ref held on stageq */
232				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
233				    "%s: amsdu_check queued frame\n",
234				    __func__);
235				return (0);
236			}
237		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
238		    IEEE80211_NODE_FF)) {
239			m = ieee80211_ff_check(ni, m);
240			if (m == NULL) {
241				/* NB: any ni ref held on stageq */
242				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
243				    "%s: ff_check queued frame\n",
244				    __func__);
245				return (0);
246			}
247		}
248	}
249#endif /* IEEE80211_SUPPORT_SUPERG */
250
251	/*
252	 * Grab the TX lock - serialise the TX process from this
253	 * point (where TX state is being checked/modified)
254	 * through to driver queue.
255	 */
256	IEEE80211_TX_LOCK(ic);
257
258	/*
259	 * XXX make the encap and transmit code a separate function
260	 * so things like the FF (and later A-MSDU) path can just call
261	 * it for flushed frames.
262	 */
263	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
264		/*
265		 * Encapsulate the packet in prep for transmission.
266		 */
267		m = ieee80211_encap(vap, ni, m);
268		if (m == NULL) {
269			/* NB: stat+msg handled in ieee80211_encap */
270			IEEE80211_TX_UNLOCK(ic);
271			ieee80211_free_node(ni);
272			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
273			return (ENOBUFS);
274		}
275	}
276	(void) ieee80211_parent_xmitpkt(ic, m);
277
278	/*
279	 * Unlock at this point - no need to hold it across
280	 * ieee80211_free_node() (ie, the comlock)
281	 */
282	IEEE80211_TX_UNLOCK(ic);
283	ic->ic_lastdata = ticks;
284
285	return (0);
286}
287
288
289
290/*
291 * Send the given mbuf through the given vap.
292 *
293 * This consumes the mbuf regardless of whether the transmit
294 * was successful or not.
295 *
296 * This does none of the initial checks that ieee80211_start()
297 * does (eg CAC timeout, interface wakeup) - the caller must
298 * do this first.
299 */
300static int
301ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
302{
303#define	IS_DWDS(vap) \
304	(vap->iv_opmode == IEEE80211_M_WDS && \
305	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
306	struct ieee80211com *ic = vap->iv_ic;
307	struct ifnet *ifp = vap->iv_ifp;
308	struct ieee80211_node *ni;
309	struct ether_header *eh;
310
311	/*
312	 * Cancel any background scan.
313	 */
314	if (ic->ic_flags & IEEE80211_F_SCAN)
315		ieee80211_cancel_anyscan(vap);
316	/*
317	 * Find the node for the destination so we can do
318	 * things like power save and fast frames aggregation.
319	 *
320	 * NB: past this point various code assumes the first
321	 *     mbuf has the 802.3 header present (and contiguous).
322	 */
323	ni = NULL;
324	if (m->m_len < sizeof(struct ether_header) &&
325	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
326		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
327		    "discard frame, %s\n", "m_pullup failed");
328		vap->iv_stats.is_tx_nobuf++;	/* XXX */
329		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
330		return (ENOBUFS);
331	}
332	eh = mtod(m, struct ether_header *);
333	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
334		if (IS_DWDS(vap)) {
335			/*
336			 * Only unicast frames from the above go out
337			 * DWDS vaps; multicast frames are handled by
338			 * dispatching the frame as it comes through
339			 * the AP vap (see below).
340			 */
341			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
342			    eh->ether_dhost, "mcast", "%s", "on DWDS");
343			vap->iv_stats.is_dwds_mcast++;
344			m_freem(m);
345			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
346			/* XXX better status? */
347			return (ENOBUFS);
348		}
349		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
350			/*
351			 * Spam DWDS vap's w/ multicast traffic.
352			 */
353			/* XXX only if dwds in use? */
354			ieee80211_dwds_mcast(vap, m);
355		}
356	}
357#ifdef IEEE80211_SUPPORT_MESH
358	if (vap->iv_opmode != IEEE80211_M_MBSS) {
359#endif
360		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
361		if (ni == NULL) {
362			/* NB: ieee80211_find_txnode does stat+msg */
363			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
364			m_freem(m);
365			/* XXX better status? */
366			return (ENOBUFS);
367		}
368		if (ni->ni_associd == 0 &&
369		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
370			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
371			    eh->ether_dhost, NULL,
372			    "sta not associated (type 0x%04x)",
373			    htons(eh->ether_type));
374			vap->iv_stats.is_tx_notassoc++;
375			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
376			m_freem(m);
377			ieee80211_free_node(ni);
378			/* XXX better status? */
379			return (ENOBUFS);
380		}
381#ifdef IEEE80211_SUPPORT_MESH
382	} else {
383		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
384			/*
385			 * Proxy station only if configured.
386			 */
387			if (!ieee80211_mesh_isproxyena(vap)) {
388				IEEE80211_DISCARD_MAC(vap,
389				    IEEE80211_MSG_OUTPUT |
390				    IEEE80211_MSG_MESH,
391				    eh->ether_dhost, NULL,
392				    "%s", "proxy not enabled");
393				vap->iv_stats.is_mesh_notproxy++;
394				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
395				m_freem(m);
396				/* XXX better status? */
397				return (ENOBUFS);
398			}
399			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
400			    "forward frame from DS SA(%6D), DA(%6D)\n",
401			    eh->ether_shost, ":",
402			    eh->ether_dhost, ":");
403			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
404		}
405		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
406		if (ni == NULL) {
407			/*
408			 * NB: ieee80211_mesh_discover holds/disposes
409			 * frame (e.g. queueing on path discovery).
410			 */
411			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
412			/* XXX better status? */
413			return (ENOBUFS);
414		}
415	}
416#endif
417
418	/*
419	 * We've resolved the sender, so attempt to transmit it.
420	 */
421
422	if (vap->iv_state == IEEE80211_S_SLEEP) {
423		/*
424		 * In power save; queue frame and then  wakeup device
425		 * for transmit.
426		 */
427		ic->ic_lastdata = ticks;
428		if (ieee80211_pwrsave(ni, m) != 0)
429			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
430		ieee80211_free_node(ni);
431		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
432		return (0);
433	}
434
435	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
436		return (ENOBUFS);
437	return (0);
438#undef	IS_DWDS
439}
440
441/*
442 * Start method for vap's.  All packets from the stack come
443 * through here.  We handle common processing of the packets
444 * before dispatching them to the underlying device.
445 *
446 * if_transmit() requires that the mbuf be consumed by this call
447 * regardless of the return condition.
448 */
449int
450ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
451{
452	struct ieee80211vap *vap = ifp->if_softc;
453	struct ieee80211com *ic = vap->iv_ic;
454
455	/*
456	 * No data frames go out unless we're running.
457	 * Note in particular this covers CAC and CSA
458	 * states (though maybe we should check muting
459	 * for CSA).
460	 */
461	if (vap->iv_state != IEEE80211_S_RUN &&
462	    vap->iv_state != IEEE80211_S_SLEEP) {
463		IEEE80211_LOCK(ic);
464		/* re-check under the com lock to avoid races */
465		if (vap->iv_state != IEEE80211_S_RUN &&
466		    vap->iv_state != IEEE80211_S_SLEEP) {
467			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
468			    "%s: ignore queue, in %s state\n",
469			    __func__, ieee80211_state_name[vap->iv_state]);
470			vap->iv_stats.is_tx_badstate++;
471			IEEE80211_UNLOCK(ic);
472			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
473			m_freem(m);
474			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
475			return (ENETDOWN);
476		}
477		IEEE80211_UNLOCK(ic);
478	}
479
480	/*
481	 * Sanitize mbuf flags for net80211 use.  We cannot
482	 * clear M_PWR_SAV or M_MORE_DATA because these may
483	 * be set for frames that are re-submitted from the
484	 * power save queue.
485	 *
486	 * NB: This must be done before ieee80211_classify as
487	 *     it marks EAPOL in frames with M_EAPOL.
488	 */
489	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
490
491	/*
492	 * Bump to the packet transmission path.
493	 * The mbuf will be consumed here.
494	 */
495	return (ieee80211_start_pkt(vap, m));
496}
497
498void
499ieee80211_vap_qflush(struct ifnet *ifp)
500{
501
502	/* Empty for now */
503}
504
505/*
506 * 802.11 raw output routine.
507 *
508 * XXX TODO: this (and other send routines) should correctly
509 * XXX keep the pwr mgmt bit set if it decides to call into the
510 * XXX driver to send a frame whilst the state is SLEEP.
511 *
512 * Otherwise the peer may decide that we're awake and flood us
513 * with traffic we are still too asleep to receive!
514 */
515int
516ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
517    struct mbuf *m, const struct ieee80211_bpf_params *params)
518{
519	struct ieee80211com *ic = vap->iv_ic;
520	int error;
521
522	/*
523	 * Set node - the caller has taken a reference, so ensure
524	 * that the mbuf has the same node value that
525	 * it would if it were going via the normal path.
526	 */
527	m->m_pkthdr.rcvif = (void *)ni;
528
529	/*
530	 * Attempt to add bpf transmit parameters.
531	 *
532	 * For now it's ok to fail; the raw_xmit api still takes
533	 * them as an option.
534	 *
535	 * Later on when ic_raw_xmit() has params removed,
536	 * they'll have to be added - so fail the transmit if
537	 * they can't be.
538	 */
539	if (params)
540		(void) ieee80211_add_xmit_params(m, params);
541
542	error = ic->ic_raw_xmit(ni, m, params);
543	if (error) {
544		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
545		ieee80211_free_node(ni);
546	}
547	return (error);
548}
549
550/*
551 * 802.11 output routine. This is (currently) used only to
552 * connect bpf write calls to the 802.11 layer for injecting
553 * raw 802.11 frames.
554 */
555int
556ieee80211_output(struct ifnet *ifp, struct mbuf *m,
557	const struct sockaddr *dst, struct route *ro)
558{
559#define senderr(e) do { error = (e); goto bad;} while (0)
560	struct ieee80211_node *ni = NULL;
561	struct ieee80211vap *vap;
562	struct ieee80211_frame *wh;
563	struct ieee80211com *ic = NULL;
564	int error;
565	int ret;
566
567	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
568		/*
569		 * Short-circuit requests if the vap is marked OACTIVE
570		 * as this can happen because a packet came down through
571		 * ieee80211_start before the vap entered RUN state in
572		 * which case it's ok to just drop the frame.  This
573		 * should not be necessary but callers of if_output don't
574		 * check OACTIVE.
575		 */
576		senderr(ENETDOWN);
577	}
578	vap = ifp->if_softc;
579	ic = vap->iv_ic;
580	/*
581	 * Hand to the 802.3 code if not tagged as
582	 * a raw 802.11 frame.
583	 */
584	if (dst->sa_family != AF_IEEE80211)
585		return vap->iv_output(ifp, m, dst, ro);
586#ifdef MAC
587	error = mac_ifnet_check_transmit(ifp, m);
588	if (error)
589		senderr(error);
590#endif
591	if (ifp->if_flags & IFF_MONITOR)
592		senderr(ENETDOWN);
593	if (!IFNET_IS_UP_RUNNING(ifp))
594		senderr(ENETDOWN);
595	if (vap->iv_state == IEEE80211_S_CAC) {
596		IEEE80211_DPRINTF(vap,
597		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
598		    "block %s frame in CAC state\n", "raw data");
599		vap->iv_stats.is_tx_badstate++;
600		senderr(EIO);		/* XXX */
601	} else if (vap->iv_state == IEEE80211_S_SCAN)
602		senderr(EIO);
603	/* XXX bypass bridge, pfil, carp, etc. */
604
605	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
606		senderr(EIO);	/* XXX */
607	wh = mtod(m, struct ieee80211_frame *);
608	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
609	    IEEE80211_FC0_VERSION_0)
610		senderr(EIO);	/* XXX */
611
612	/* locate destination node */
613	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
614	case IEEE80211_FC1_DIR_NODS:
615	case IEEE80211_FC1_DIR_FROMDS:
616		ni = ieee80211_find_txnode(vap, wh->i_addr1);
617		break;
618	case IEEE80211_FC1_DIR_TODS:
619	case IEEE80211_FC1_DIR_DSTODS:
620		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
621			senderr(EIO);	/* XXX */
622		ni = ieee80211_find_txnode(vap, wh->i_addr3);
623		break;
624	default:
625		senderr(EIO);	/* XXX */
626	}
627	if (ni == NULL) {
628		/*
629		 * Permit packets w/ bpf params through regardless
630		 * (see below about sa_len).
631		 */
632		if (dst->sa_len == 0)
633			senderr(EHOSTUNREACH);
634		ni = ieee80211_ref_node(vap->iv_bss);
635	}
636
637	/*
638	 * Sanitize mbuf for net80211 flags leaked from above.
639	 *
640	 * NB: This must be done before ieee80211_classify as
641	 *     it marks EAPOL in frames with M_EAPOL.
642	 */
643	m->m_flags &= ~M_80211_TX;
644
645	/* calculate priority so drivers can find the tx queue */
646	/* XXX assumes an 802.3 frame */
647	if (ieee80211_classify(ni, m))
648		senderr(EIO);		/* XXX */
649
650	IEEE80211_NODE_STAT(ni, tx_data);
651	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
652		IEEE80211_NODE_STAT(ni, tx_mcast);
653		m->m_flags |= M_MCAST;
654	} else
655		IEEE80211_NODE_STAT(ni, tx_ucast);
656	/* NB: ieee80211_encap does not include 802.11 header */
657	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
658
659	IEEE80211_TX_LOCK(ic);
660
661	/*
662	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
663	 * present by setting the sa_len field of the sockaddr (yes,
664	 * this is a hack).
665	 * NB: we assume sa_data is suitably aligned to cast.
666	 */
667	ret = ieee80211_raw_output(vap, ni, m,
668	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
669		dst->sa_data : NULL));
670	IEEE80211_TX_UNLOCK(ic);
671	return (ret);
672bad:
673	if (m != NULL)
674		m_freem(m);
675	if (ni != NULL)
676		ieee80211_free_node(ni);
677	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
678	return error;
679#undef senderr
680}
681
682/*
683 * Set the direction field and address fields of an outgoing
684 * frame.  Note this should be called early on in constructing
685 * a frame as it sets i_fc[1]; other bits can then be or'd in.
686 */
687void
688ieee80211_send_setup(
689	struct ieee80211_node *ni,
690	struct mbuf *m,
691	int type, int tid,
692	const uint8_t sa[IEEE80211_ADDR_LEN],
693	const uint8_t da[IEEE80211_ADDR_LEN],
694	const uint8_t bssid[IEEE80211_ADDR_LEN])
695{
696#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
697	struct ieee80211vap *vap = ni->ni_vap;
698	struct ieee80211_tx_ampdu *tap;
699	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
700	ieee80211_seq seqno;
701
702	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
703
704	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
705	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
706		switch (vap->iv_opmode) {
707		case IEEE80211_M_STA:
708			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
709			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
710			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
711			IEEE80211_ADDR_COPY(wh->i_addr3, da);
712			break;
713		case IEEE80211_M_IBSS:
714		case IEEE80211_M_AHDEMO:
715			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
716			IEEE80211_ADDR_COPY(wh->i_addr1, da);
717			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
718			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
719			break;
720		case IEEE80211_M_HOSTAP:
721			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
722			IEEE80211_ADDR_COPY(wh->i_addr1, da);
723			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
724			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
725			break;
726		case IEEE80211_M_WDS:
727			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
728			IEEE80211_ADDR_COPY(wh->i_addr1, da);
729			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
730			IEEE80211_ADDR_COPY(wh->i_addr3, da);
731			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
732			break;
733		case IEEE80211_M_MBSS:
734#ifdef IEEE80211_SUPPORT_MESH
735			if (IEEE80211_IS_MULTICAST(da)) {
736				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
737				/* XXX next hop */
738				IEEE80211_ADDR_COPY(wh->i_addr1, da);
739				IEEE80211_ADDR_COPY(wh->i_addr2,
740				    vap->iv_myaddr);
741			} else {
742				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
743				IEEE80211_ADDR_COPY(wh->i_addr1, da);
744				IEEE80211_ADDR_COPY(wh->i_addr2,
745				    vap->iv_myaddr);
746				IEEE80211_ADDR_COPY(wh->i_addr3, da);
747				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
748			}
749#endif
750			break;
751		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
752			break;
753		}
754	} else {
755		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
756		IEEE80211_ADDR_COPY(wh->i_addr1, da);
757		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
758#ifdef IEEE80211_SUPPORT_MESH
759		if (vap->iv_opmode == IEEE80211_M_MBSS)
760			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
761		else
762#endif
763			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
764	}
765	*(uint16_t *)&wh->i_dur[0] = 0;
766
767	tap = &ni->ni_tx_ampdu[tid];
768	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
769		m->m_flags |= M_AMPDU_MPDU;
770	else {
771		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
772				      type & IEEE80211_FC0_SUBTYPE_MASK))
773			seqno = ni->ni_txseqs[tid]++;
774		else
775			seqno = 0;
776
777		*(uint16_t *)&wh->i_seq[0] =
778		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
779		M_SEQNO_SET(m, seqno);
780	}
781
782	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
783		m->m_flags |= M_MCAST;
784#undef WH4
785}
786
787/*
788 * Send a management frame to the specified node.  The node pointer
789 * must have a reference as the pointer will be passed to the driver
790 * and potentially held for a long time.  If the frame is successfully
791 * dispatched to the driver, then it is responsible for freeing the
792 * reference (and potentially free'ing up any associated storage);
793 * otherwise deal with reclaiming any reference (on error).
794 */
795int
796ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
797	struct ieee80211_bpf_params *params)
798{
799	struct ieee80211vap *vap = ni->ni_vap;
800	struct ieee80211com *ic = ni->ni_ic;
801	struct ieee80211_frame *wh;
802	int ret;
803
804	KASSERT(ni != NULL, ("null node"));
805
806	if (vap->iv_state == IEEE80211_S_CAC) {
807		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
808		    ni, "block %s frame in CAC state",
809			ieee80211_mgt_subtype_name(type));
810		vap->iv_stats.is_tx_badstate++;
811		ieee80211_free_node(ni);
812		m_freem(m);
813		return EIO;		/* XXX */
814	}
815
816	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
817	if (m == NULL) {
818		ieee80211_free_node(ni);
819		return ENOMEM;
820	}
821
822	IEEE80211_TX_LOCK(ic);
823
824	wh = mtod(m, struct ieee80211_frame *);
825	ieee80211_send_setup(ni, m,
826	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
827	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
828	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
829		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
830		    "encrypting frame (%s)", __func__);
831		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
832	}
833	m->m_flags |= M_ENCAP;		/* mark encapsulated */
834
835	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
836	M_WME_SETAC(m, params->ibp_pri);
837
838#ifdef IEEE80211_DEBUG
839	/* avoid printing too many frames */
840	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
841	    ieee80211_msg_dumppkts(vap)) {
842		printf("[%s] send %s on channel %u\n",
843		    ether_sprintf(wh->i_addr1),
844		    ieee80211_mgt_subtype_name(type),
845		    ieee80211_chan2ieee(ic, ic->ic_curchan));
846	}
847#endif
848	IEEE80211_NODE_STAT(ni, tx_mgmt);
849
850	ret = ieee80211_raw_output(vap, ni, m, params);
851	IEEE80211_TX_UNLOCK(ic);
852	return (ret);
853}
854
855static void
856ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
857    int status)
858{
859	struct ieee80211vap *vap = ni->ni_vap;
860
861	wakeup(vap);
862}
863
864/*
865 * Send a null data frame to the specified node.  If the station
866 * is setup for QoS then a QoS Null Data frame is constructed.
867 * If this is a WDS station then a 4-address frame is constructed.
868 *
869 * NB: the caller is assumed to have setup a node reference
870 *     for use; this is necessary to deal with a race condition
871 *     when probing for inactive stations.  Like ieee80211_mgmt_output
872 *     we must cleanup any node reference on error;  however we
873 *     can safely just unref it as we know it will never be the
874 *     last reference to the node.
875 */
876int
877ieee80211_send_nulldata(struct ieee80211_node *ni)
878{
879	struct ieee80211vap *vap = ni->ni_vap;
880	struct ieee80211com *ic = ni->ni_ic;
881	struct mbuf *m;
882	struct ieee80211_frame *wh;
883	int hdrlen;
884	uint8_t *frm;
885	int ret;
886
887	if (vap->iv_state == IEEE80211_S_CAC) {
888		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
889		    ni, "block %s frame in CAC state", "null data");
890		ieee80211_unref_node(&ni);
891		vap->iv_stats.is_tx_badstate++;
892		return EIO;		/* XXX */
893	}
894
895	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
896		hdrlen = sizeof(struct ieee80211_qosframe);
897	else
898		hdrlen = sizeof(struct ieee80211_frame);
899	/* NB: only WDS vap's get 4-address frames */
900	if (vap->iv_opmode == IEEE80211_M_WDS)
901		hdrlen += IEEE80211_ADDR_LEN;
902	if (ic->ic_flags & IEEE80211_F_DATAPAD)
903		hdrlen = roundup(hdrlen, sizeof(uint32_t));
904
905	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
906	if (m == NULL) {
907		/* XXX debug msg */
908		ieee80211_unref_node(&ni);
909		vap->iv_stats.is_tx_nobuf++;
910		return ENOMEM;
911	}
912	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
913	    ("leading space %zd", M_LEADINGSPACE(m)));
914	M_PREPEND(m, hdrlen, M_NOWAIT);
915	if (m == NULL) {
916		/* NB: cannot happen */
917		ieee80211_free_node(ni);
918		return ENOMEM;
919	}
920
921	IEEE80211_TX_LOCK(ic);
922
923	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
924	if (ni->ni_flags & IEEE80211_NODE_QOS) {
925		const int tid = WME_AC_TO_TID(WME_AC_BE);
926		uint8_t *qos;
927
928		ieee80211_send_setup(ni, m,
929		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
930		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
931
932		if (vap->iv_opmode == IEEE80211_M_WDS)
933			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
934		else
935			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
936		qos[0] = tid & IEEE80211_QOS_TID;
937		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
938			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
939		qos[1] = 0;
940	} else {
941		ieee80211_send_setup(ni, m,
942		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
943		    IEEE80211_NONQOS_TID,
944		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
945	}
946	if (vap->iv_opmode != IEEE80211_M_WDS) {
947		/* NB: power management bit is never sent by an AP */
948		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
949		    vap->iv_opmode != IEEE80211_M_HOSTAP)
950			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
951	}
952	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
953	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
954		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
955		    NULL);
956	}
957	m->m_len = m->m_pkthdr.len = hdrlen;
958	m->m_flags |= M_ENCAP;		/* mark encapsulated */
959
960	M_WME_SETAC(m, WME_AC_BE);
961
962	IEEE80211_NODE_STAT(ni, tx_data);
963
964	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
965	    "send %snull data frame on channel %u, pwr mgt %s",
966	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
967	    ieee80211_chan2ieee(ic, ic->ic_curchan),
968	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
969
970	ret = ieee80211_raw_output(vap, ni, m, NULL);
971	IEEE80211_TX_UNLOCK(ic);
972	return (ret);
973}
974
975/*
976 * Assign priority to a frame based on any vlan tag assigned
977 * to the station and/or any Diffserv setting in an IP header.
978 * Finally, if an ACM policy is setup (in station mode) it's
979 * applied.
980 */
981int
982ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
983{
984	const struct ether_header *eh = mtod(m, struct ether_header *);
985	int v_wme_ac, d_wme_ac, ac;
986
987	/*
988	 * Always promote PAE/EAPOL frames to high priority.
989	 */
990	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
991		/* NB: mark so others don't need to check header */
992		m->m_flags |= M_EAPOL;
993		ac = WME_AC_VO;
994		goto done;
995	}
996	/*
997	 * Non-qos traffic goes to BE.
998	 */
999	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1000		ac = WME_AC_BE;
1001		goto done;
1002	}
1003
1004	/*
1005	 * If node has a vlan tag then all traffic
1006	 * to it must have a matching tag.
1007	 */
1008	v_wme_ac = 0;
1009	if (ni->ni_vlan != 0) {
1010		 if ((m->m_flags & M_VLANTAG) == 0) {
1011			IEEE80211_NODE_STAT(ni, tx_novlantag);
1012			return 1;
1013		}
1014		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1015		    EVL_VLANOFTAG(ni->ni_vlan)) {
1016			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1017			return 1;
1018		}
1019		/* map vlan priority to AC */
1020		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1021	}
1022
1023	/* XXX m_copydata may be too slow for fast path */
1024#ifdef INET
1025	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1026		uint8_t tos;
1027		/*
1028		 * IP frame, map the DSCP bits from the TOS field.
1029		 */
1030		/* NB: ip header may not be in first mbuf */
1031		m_copydata(m, sizeof(struct ether_header) +
1032		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1033		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1034		d_wme_ac = TID_TO_WME_AC(tos);
1035	} else {
1036#endif /* INET */
1037#ifdef INET6
1038	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1039		uint32_t flow;
1040		uint8_t tos;
1041		/*
1042		 * IPv6 frame, map the DSCP bits from the traffic class field.
1043		 */
1044		m_copydata(m, sizeof(struct ether_header) +
1045		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1046		    (caddr_t) &flow);
1047		tos = (uint8_t)(ntohl(flow) >> 20);
1048		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1049		d_wme_ac = TID_TO_WME_AC(tos);
1050	} else {
1051#endif /* INET6 */
1052		d_wme_ac = WME_AC_BE;
1053#ifdef INET6
1054	}
1055#endif
1056#ifdef INET
1057	}
1058#endif
1059	/*
1060	 * Use highest priority AC.
1061	 */
1062	if (v_wme_ac > d_wme_ac)
1063		ac = v_wme_ac;
1064	else
1065		ac = d_wme_ac;
1066
1067	/*
1068	 * Apply ACM policy.
1069	 */
1070	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1071		static const int acmap[4] = {
1072			WME_AC_BK,	/* WME_AC_BE */
1073			WME_AC_BK,	/* WME_AC_BK */
1074			WME_AC_BE,	/* WME_AC_VI */
1075			WME_AC_VI,	/* WME_AC_VO */
1076		};
1077		struct ieee80211com *ic = ni->ni_ic;
1078
1079		while (ac != WME_AC_BK &&
1080		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1081			ac = acmap[ac];
1082	}
1083done:
1084	M_WME_SETAC(m, ac);
1085	return 0;
1086}
1087
1088/*
1089 * Insure there is sufficient contiguous space to encapsulate the
1090 * 802.11 data frame.  If room isn't already there, arrange for it.
1091 * Drivers and cipher modules assume we have done the necessary work
1092 * and fail rudely if they don't find the space they need.
1093 */
1094struct mbuf *
1095ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1096	struct ieee80211_key *key, struct mbuf *m)
1097{
1098#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1099	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1100
1101	if (key != NULL) {
1102		/* XXX belongs in crypto code? */
1103		needed_space += key->wk_cipher->ic_header;
1104		/* XXX frags */
1105		/*
1106		 * When crypto is being done in the host we must insure
1107		 * the data are writable for the cipher routines; clone
1108		 * a writable mbuf chain.
1109		 * XXX handle SWMIC specially
1110		 */
1111		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1112			m = m_unshare(m, M_NOWAIT);
1113			if (m == NULL) {
1114				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1115				    "%s: cannot get writable mbuf\n", __func__);
1116				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1117				return NULL;
1118			}
1119		}
1120	}
1121	/*
1122	 * We know we are called just before stripping an Ethernet
1123	 * header and prepending an LLC header.  This means we know
1124	 * there will be
1125	 *	sizeof(struct ether_header) - sizeof(struct llc)
1126	 * bytes recovered to which we need additional space for the
1127	 * 802.11 header and any crypto header.
1128	 */
1129	/* XXX check trailing space and copy instead? */
1130	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1131		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1132		if (n == NULL) {
1133			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1134			    "%s: cannot expand storage\n", __func__);
1135			vap->iv_stats.is_tx_nobuf++;
1136			m_freem(m);
1137			return NULL;
1138		}
1139		KASSERT(needed_space <= MHLEN,
1140		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1141		/*
1142		 * Setup new mbuf to have leading space to prepend the
1143		 * 802.11 header and any crypto header bits that are
1144		 * required (the latter are added when the driver calls
1145		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1146		 */
1147		/* NB: must be first 'cuz it clobbers m_data */
1148		m_move_pkthdr(n, m);
1149		n->m_len = 0;			/* NB: m_gethdr does not set */
1150		n->m_data += needed_space;
1151		/*
1152		 * Pull up Ethernet header to create the expected layout.
1153		 * We could use m_pullup but that's overkill (i.e. we don't
1154		 * need the actual data) and it cannot fail so do it inline
1155		 * for speed.
1156		 */
1157		/* NB: struct ether_header is known to be contiguous */
1158		n->m_len += sizeof(struct ether_header);
1159		m->m_len -= sizeof(struct ether_header);
1160		m->m_data += sizeof(struct ether_header);
1161		/*
1162		 * Replace the head of the chain.
1163		 */
1164		n->m_next = m;
1165		m = n;
1166	}
1167	return m;
1168#undef TO_BE_RECLAIMED
1169}
1170
1171/*
1172 * Return the transmit key to use in sending a unicast frame.
1173 * If a unicast key is set we use that.  When no unicast key is set
1174 * we fall back to the default transmit key.
1175 */
1176static __inline struct ieee80211_key *
1177ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1178	struct ieee80211_node *ni)
1179{
1180	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1181		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1182		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1183			return NULL;
1184		return &vap->iv_nw_keys[vap->iv_def_txkey];
1185	} else {
1186		return &ni->ni_ucastkey;
1187	}
1188}
1189
1190/*
1191 * Return the transmit key to use in sending a multicast frame.
1192 * Multicast traffic always uses the group key which is installed as
1193 * the default tx key.
1194 */
1195static __inline struct ieee80211_key *
1196ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1197	struct ieee80211_node *ni)
1198{
1199	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1200	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1201		return NULL;
1202	return &vap->iv_nw_keys[vap->iv_def_txkey];
1203}
1204
1205/*
1206 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1207 * If an error is encountered NULL is returned.  The caller is required
1208 * to provide a node reference and pullup the ethernet header in the
1209 * first mbuf.
1210 *
1211 * NB: Packet is assumed to be processed by ieee80211_classify which
1212 *     marked EAPOL frames w/ M_EAPOL.
1213 */
1214struct mbuf *
1215ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1216    struct mbuf *m)
1217{
1218#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1219#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1220	struct ieee80211com *ic = ni->ni_ic;
1221#ifdef IEEE80211_SUPPORT_MESH
1222	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1223	struct ieee80211_meshcntl_ae10 *mc;
1224	struct ieee80211_mesh_route *rt = NULL;
1225	int dir = -1;
1226#endif
1227	struct ether_header eh;
1228	struct ieee80211_frame *wh;
1229	struct ieee80211_key *key;
1230	struct llc *llc;
1231	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1232	ieee80211_seq seqno;
1233	int meshhdrsize, meshae;
1234	uint8_t *qos;
1235	int is_amsdu = 0;
1236
1237	IEEE80211_TX_LOCK_ASSERT(ic);
1238
1239	/*
1240	 * Copy existing Ethernet header to a safe place.  The
1241	 * rest of the code assumes it's ok to strip it when
1242	 * reorganizing state for the final encapsulation.
1243	 */
1244	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1245	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1246
1247	/*
1248	 * Insure space for additional headers.  First identify
1249	 * transmit key to use in calculating any buffer adjustments
1250	 * required.  This is also used below to do privacy
1251	 * encapsulation work.  Then calculate the 802.11 header
1252	 * size and any padding required by the driver.
1253	 *
1254	 * Note key may be NULL if we fall back to the default
1255	 * transmit key and that is not set.  In that case the
1256	 * buffer may not be expanded as needed by the cipher
1257	 * routines, but they will/should discard it.
1258	 */
1259	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1260		if (vap->iv_opmode == IEEE80211_M_STA ||
1261		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1262		    (vap->iv_opmode == IEEE80211_M_WDS &&
1263		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1264			key = ieee80211_crypto_getucastkey(vap, ni);
1265		else
1266			key = ieee80211_crypto_getmcastkey(vap, ni);
1267		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1268			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1269			    eh.ether_dhost,
1270			    "no default transmit key (%s) deftxkey %u",
1271			    __func__, vap->iv_def_txkey);
1272			vap->iv_stats.is_tx_nodefkey++;
1273			goto bad;
1274		}
1275	} else
1276		key = NULL;
1277	/*
1278	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1279	 * frames so suppress use.  This may be an issue if other
1280	 * ap's require all data frames to be QoS-encapsulated
1281	 * once negotiated in which case we'll need to make this
1282	 * configurable.
1283	 * NB: mesh data frames are QoS.
1284	 */
1285	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1286	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1287	    (m->m_flags & M_EAPOL) == 0;
1288	if (addqos)
1289		hdrsize = sizeof(struct ieee80211_qosframe);
1290	else
1291		hdrsize = sizeof(struct ieee80211_frame);
1292#ifdef IEEE80211_SUPPORT_MESH
1293	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1294		/*
1295		 * Mesh data frames are encapsulated according to the
1296		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1297		 * o Group Addressed data (aka multicast) originating
1298		 *   at the local sta are sent w/ 3-address format and
1299		 *   address extension mode 00
1300		 * o Individually Addressed data (aka unicast) originating
1301		 *   at the local sta are sent w/ 4-address format and
1302		 *   address extension mode 00
1303		 * o Group Addressed data forwarded from a non-mesh sta are
1304		 *   sent w/ 3-address format and address extension mode 01
1305		 * o Individually Address data from another sta are sent
1306		 *   w/ 4-address format and address extension mode 10
1307		 */
1308		is4addr = 0;		/* NB: don't use, disable */
1309		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1310			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1311			KASSERT(rt != NULL, ("route is NULL"));
1312			dir = IEEE80211_FC1_DIR_DSTODS;
1313			hdrsize += IEEE80211_ADDR_LEN;
1314			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1315				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1316				    vap->iv_myaddr)) {
1317					IEEE80211_NOTE_MAC(vap,
1318					    IEEE80211_MSG_MESH,
1319					    eh.ether_dhost,
1320					    "%s", "trying to send to ourself");
1321					goto bad;
1322				}
1323				meshae = IEEE80211_MESH_AE_10;
1324				meshhdrsize =
1325				    sizeof(struct ieee80211_meshcntl_ae10);
1326			} else {
1327				meshae = IEEE80211_MESH_AE_00;
1328				meshhdrsize =
1329				    sizeof(struct ieee80211_meshcntl);
1330			}
1331		} else {
1332			dir = IEEE80211_FC1_DIR_FROMDS;
1333			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1334				/* proxy group */
1335				meshae = IEEE80211_MESH_AE_01;
1336				meshhdrsize =
1337				    sizeof(struct ieee80211_meshcntl_ae01);
1338			} else {
1339				/* group */
1340				meshae = IEEE80211_MESH_AE_00;
1341				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1342			}
1343		}
1344	} else {
1345#endif
1346		/*
1347		 * 4-address frames need to be generated for:
1348		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1349		 * o packets sent through a vap marked for relaying
1350		 *   (e.g. a station operating with dynamic WDS)
1351		 */
1352		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1353		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1354		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1355		if (is4addr)
1356			hdrsize += IEEE80211_ADDR_LEN;
1357		meshhdrsize = meshae = 0;
1358#ifdef IEEE80211_SUPPORT_MESH
1359	}
1360#endif
1361	/*
1362	 * Honor driver DATAPAD requirement.
1363	 */
1364	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1365		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1366	else
1367		hdrspace = hdrsize;
1368
1369	if (__predict_true((m->m_flags & M_FF) == 0)) {
1370		/*
1371		 * Normal frame.
1372		 */
1373		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1374		if (m == NULL) {
1375			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1376			goto bad;
1377		}
1378		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1379		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1380		llc = mtod(m, struct llc *);
1381		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1382		llc->llc_control = LLC_UI;
1383		llc->llc_snap.org_code[0] = 0;
1384		llc->llc_snap.org_code[1] = 0;
1385		llc->llc_snap.org_code[2] = 0;
1386		llc->llc_snap.ether_type = eh.ether_type;
1387	} else {
1388#ifdef IEEE80211_SUPPORT_SUPERG
1389		/*
1390		 * Aggregated frame.  Check if it's for AMSDU or FF.
1391		 *
1392		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1393		 * anywhere for some reason.  But, since 11n requires
1394		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1395		 */
1396		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1397		if (ieee80211_amsdu_tx_ok(ni)) {
1398			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1399			is_amsdu = 1;
1400		} else {
1401			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1402		}
1403		if (m == NULL)
1404#endif
1405			goto bad;
1406	}
1407	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1408
1409	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1410	if (m == NULL) {
1411		vap->iv_stats.is_tx_nobuf++;
1412		goto bad;
1413	}
1414	wh = mtod(m, struct ieee80211_frame *);
1415	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1416	*(uint16_t *)wh->i_dur = 0;
1417	qos = NULL;	/* NB: quiet compiler */
1418	if (is4addr) {
1419		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1420		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1421		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1422		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1423		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1424	} else switch (vap->iv_opmode) {
1425	case IEEE80211_M_STA:
1426		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1427		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1428		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1429		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1430		break;
1431	case IEEE80211_M_IBSS:
1432	case IEEE80211_M_AHDEMO:
1433		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1434		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1435		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1436		/*
1437		 * NB: always use the bssid from iv_bss as the
1438		 *     neighbor's may be stale after an ibss merge
1439		 */
1440		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1441		break;
1442	case IEEE80211_M_HOSTAP:
1443		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1444		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1445		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1446		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1447		break;
1448#ifdef IEEE80211_SUPPORT_MESH
1449	case IEEE80211_M_MBSS:
1450		/* NB: offset by hdrspace to deal with DATAPAD */
1451		mc = (struct ieee80211_meshcntl_ae10 *)
1452		     (mtod(m, uint8_t *) + hdrspace);
1453		wh->i_fc[1] = dir;
1454		switch (meshae) {
1455		case IEEE80211_MESH_AE_00:	/* no proxy */
1456			mc->mc_flags = 0;
1457			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1458				IEEE80211_ADDR_COPY(wh->i_addr1,
1459				    ni->ni_macaddr);
1460				IEEE80211_ADDR_COPY(wh->i_addr2,
1461				    vap->iv_myaddr);
1462				IEEE80211_ADDR_COPY(wh->i_addr3,
1463				    eh.ether_dhost);
1464				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1465				    eh.ether_shost);
1466				qos =((struct ieee80211_qosframe_addr4 *)
1467				    wh)->i_qos;
1468			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1469				 /* mcast */
1470				IEEE80211_ADDR_COPY(wh->i_addr1,
1471				    eh.ether_dhost);
1472				IEEE80211_ADDR_COPY(wh->i_addr2,
1473				    vap->iv_myaddr);
1474				IEEE80211_ADDR_COPY(wh->i_addr3,
1475				    eh.ether_shost);
1476				qos = ((struct ieee80211_qosframe *)
1477				    wh)->i_qos;
1478			}
1479			break;
1480		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1481			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1482			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1483			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1484			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1485			mc->mc_flags = 1;
1486			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1487			    eh.ether_shost);
1488			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1489			break;
1490		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1491			KASSERT(rt != NULL, ("route is NULL"));
1492			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1493			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1494			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1495			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1496			mc->mc_flags = IEEE80211_MESH_AE_10;
1497			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1498			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1499			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1500			break;
1501		default:
1502			KASSERT(0, ("meshae %d", meshae));
1503			break;
1504		}
1505		mc->mc_ttl = ms->ms_ttl;
1506		ms->ms_seq++;
1507		le32enc(mc->mc_seq, ms->ms_seq);
1508		break;
1509#endif
1510	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1511	default:
1512		goto bad;
1513	}
1514	if (m->m_flags & M_MORE_DATA)
1515		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1516	if (addqos) {
1517		int ac, tid;
1518
1519		if (is4addr) {
1520			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1521		/* NB: mesh case handled earlier */
1522		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1523			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1524		ac = M_WME_GETAC(m);
1525		/* map from access class/queue to 11e header priorty value */
1526		tid = WME_AC_TO_TID(ac);
1527		qos[0] = tid & IEEE80211_QOS_TID;
1528		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1529			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1530#ifdef IEEE80211_SUPPORT_MESH
1531		if (vap->iv_opmode == IEEE80211_M_MBSS)
1532			qos[1] = IEEE80211_QOS_MC;
1533		else
1534#endif
1535			qos[1] = 0;
1536		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1537
1538		/*
1539		 * If this is an A-MSDU then ensure we set the
1540		 * relevant field.
1541		 */
1542		if (is_amsdu)
1543			qos[0] |= IEEE80211_QOS_AMSDU;
1544
1545		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1546			/*
1547			 * NB: don't assign a sequence # to potential
1548			 * aggregates; we expect this happens at the
1549			 * point the frame comes off any aggregation q
1550			 * as otherwise we may introduce holes in the
1551			 * BA sequence space and/or make window accouting
1552			 * more difficult.
1553			 *
1554			 * XXX may want to control this with a driver
1555			 * capability; this may also change when we pull
1556			 * aggregation up into net80211
1557			 */
1558			seqno = ni->ni_txseqs[tid]++;
1559			*(uint16_t *)wh->i_seq =
1560			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1561			M_SEQNO_SET(m, seqno);
1562		}
1563	} else {
1564		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1565		*(uint16_t *)wh->i_seq =
1566		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1567		M_SEQNO_SET(m, seqno);
1568
1569		/*
1570		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1571		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1572		 */
1573		if (is_amsdu)
1574			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1575			    __func__);
1576	}
1577
1578
1579	/* check if xmit fragmentation is required */
1580	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1581	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1582	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1583	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1584	if (key != NULL) {
1585		/*
1586		 * IEEE 802.1X: send EAPOL frames always in the clear.
1587		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1588		 */
1589		if ((m->m_flags & M_EAPOL) == 0 ||
1590		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1591		     (vap->iv_opmode == IEEE80211_M_STA ?
1592		      !IEEE80211_KEY_UNDEFINED(key) :
1593		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1594			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1595			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1596				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1597				    eh.ether_dhost,
1598				    "%s", "enmic failed, discard frame");
1599				vap->iv_stats.is_crypto_enmicfail++;
1600				goto bad;
1601			}
1602		}
1603	}
1604	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1605	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1606		goto bad;
1607
1608	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1609
1610	IEEE80211_NODE_STAT(ni, tx_data);
1611	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1612		IEEE80211_NODE_STAT(ni, tx_mcast);
1613		m->m_flags |= M_MCAST;
1614	} else
1615		IEEE80211_NODE_STAT(ni, tx_ucast);
1616	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1617
1618	return m;
1619bad:
1620	if (m != NULL)
1621		m_freem(m);
1622	return NULL;
1623#undef WH4
1624#undef MC01
1625}
1626
1627void
1628ieee80211_free_mbuf(struct mbuf *m)
1629{
1630	struct mbuf *next;
1631
1632	if (m == NULL)
1633		return;
1634
1635	do {
1636		next = m->m_nextpkt;
1637		m->m_nextpkt = NULL;
1638		m_freem(m);
1639	} while ((m = next) != NULL);
1640}
1641
1642/*
1643 * Fragment the frame according to the specified mtu.
1644 * The size of the 802.11 header (w/o padding) is provided
1645 * so we don't need to recalculate it.  We create a new
1646 * mbuf for each fragment and chain it through m_nextpkt;
1647 * we might be able to optimize this by reusing the original
1648 * packet's mbufs but that is significantly more complicated.
1649 */
1650static int
1651ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1652	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1653{
1654	struct ieee80211com *ic = vap->iv_ic;
1655	struct ieee80211_frame *wh, *whf;
1656	struct mbuf *m, *prev;
1657	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1658	u_int hdrspace;
1659
1660	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1661	KASSERT(m0->m_pkthdr.len > mtu,
1662		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1663
1664	/*
1665	 * Honor driver DATAPAD requirement.
1666	 */
1667	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1668		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1669	else
1670		hdrspace = hdrsize;
1671
1672	wh = mtod(m0, struct ieee80211_frame *);
1673	/* NB: mark the first frag; it will be propagated below */
1674	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1675	totalhdrsize = hdrspace + ciphdrsize;
1676	fragno = 1;
1677	off = mtu - ciphdrsize;
1678	remainder = m0->m_pkthdr.len - off;
1679	prev = m0;
1680	do {
1681		fragsize = MIN(totalhdrsize + remainder, mtu);
1682		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1683		if (m == NULL)
1684			goto bad;
1685		/* leave room to prepend any cipher header */
1686		m_align(m, fragsize - ciphdrsize);
1687
1688		/*
1689		 * Form the header in the fragment.  Note that since
1690		 * we mark the first fragment with the MORE_FRAG bit
1691		 * it automatically is propagated to each fragment; we
1692		 * need only clear it on the last fragment (done below).
1693		 * NB: frag 1+ dont have Mesh Control field present.
1694		 */
1695		whf = mtod(m, struct ieee80211_frame *);
1696		memcpy(whf, wh, hdrsize);
1697#ifdef IEEE80211_SUPPORT_MESH
1698		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1699			if (IEEE80211_IS_DSTODS(wh))
1700				((struct ieee80211_qosframe_addr4 *)
1701				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1702			else
1703				((struct ieee80211_qosframe *)
1704				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1705		}
1706#endif
1707		*(uint16_t *)&whf->i_seq[0] |= htole16(
1708			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1709				IEEE80211_SEQ_FRAG_SHIFT);
1710		fragno++;
1711
1712		payload = fragsize - totalhdrsize;
1713		/* NB: destination is known to be contiguous */
1714
1715		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1716		m->m_len = hdrspace + payload;
1717		m->m_pkthdr.len = hdrspace + payload;
1718		m->m_flags |= M_FRAG;
1719
1720		/* chain up the fragment */
1721		prev->m_nextpkt = m;
1722		prev = m;
1723
1724		/* deduct fragment just formed */
1725		remainder -= payload;
1726		off += payload;
1727	} while (remainder != 0);
1728
1729	/* set the last fragment */
1730	m->m_flags |= M_LASTFRAG;
1731	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1732
1733	/* strip first mbuf now that everything has been copied */
1734	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1735	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1736
1737	vap->iv_stats.is_tx_fragframes++;
1738	vap->iv_stats.is_tx_frags += fragno-1;
1739
1740	return 1;
1741bad:
1742	/* reclaim fragments but leave original frame for caller to free */
1743	ieee80211_free_mbuf(m0->m_nextpkt);
1744	m0->m_nextpkt = NULL;
1745	return 0;
1746}
1747
1748/*
1749 * Add a supported rates element id to a frame.
1750 */
1751uint8_t *
1752ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1753{
1754	int nrates;
1755
1756	*frm++ = IEEE80211_ELEMID_RATES;
1757	nrates = rs->rs_nrates;
1758	if (nrates > IEEE80211_RATE_SIZE)
1759		nrates = IEEE80211_RATE_SIZE;
1760	*frm++ = nrates;
1761	memcpy(frm, rs->rs_rates, nrates);
1762	return frm + nrates;
1763}
1764
1765/*
1766 * Add an extended supported rates element id to a frame.
1767 */
1768uint8_t *
1769ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1770{
1771	/*
1772	 * Add an extended supported rates element if operating in 11g mode.
1773	 */
1774	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1775		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1776		*frm++ = IEEE80211_ELEMID_XRATES;
1777		*frm++ = nrates;
1778		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1779		frm += nrates;
1780	}
1781	return frm;
1782}
1783
1784/*
1785 * Add an ssid element to a frame.
1786 */
1787uint8_t *
1788ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1789{
1790	*frm++ = IEEE80211_ELEMID_SSID;
1791	*frm++ = len;
1792	memcpy(frm, ssid, len);
1793	return frm + len;
1794}
1795
1796/*
1797 * Add an erp element to a frame.
1798 */
1799static uint8_t *
1800ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1801{
1802	uint8_t erp;
1803
1804	*frm++ = IEEE80211_ELEMID_ERP;
1805	*frm++ = 1;
1806	erp = 0;
1807	if (ic->ic_nonerpsta != 0)
1808		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1809	if (ic->ic_flags & IEEE80211_F_USEPROT)
1810		erp |= IEEE80211_ERP_USE_PROTECTION;
1811	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1812		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1813	*frm++ = erp;
1814	return frm;
1815}
1816
1817/*
1818 * Add a CFParams element to a frame.
1819 */
1820static uint8_t *
1821ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1822{
1823#define	ADDSHORT(frm, v) do {	\
1824	le16enc(frm, v);	\
1825	frm += 2;		\
1826} while (0)
1827	*frm++ = IEEE80211_ELEMID_CFPARMS;
1828	*frm++ = 6;
1829	*frm++ = 0;		/* CFP count */
1830	*frm++ = 2;		/* CFP period */
1831	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1832	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1833	return frm;
1834#undef ADDSHORT
1835}
1836
1837static __inline uint8_t *
1838add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1839{
1840	memcpy(frm, ie->ie_data, ie->ie_len);
1841	return frm + ie->ie_len;
1842}
1843
1844static __inline uint8_t *
1845add_ie(uint8_t *frm, const uint8_t *ie)
1846{
1847	memcpy(frm, ie, 2 + ie[1]);
1848	return frm + 2 + ie[1];
1849}
1850
1851#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1852/*
1853 * Add a WME information element to a frame.
1854 */
1855uint8_t *
1856ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1857{
1858	static const struct ieee80211_wme_info info = {
1859		.wme_id		= IEEE80211_ELEMID_VENDOR,
1860		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1861		.wme_oui	= { WME_OUI_BYTES },
1862		.wme_type	= WME_OUI_TYPE,
1863		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1864		.wme_version	= WME_VERSION,
1865		.wme_info	= 0,
1866	};
1867	memcpy(frm, &info, sizeof(info));
1868	return frm + sizeof(info);
1869}
1870
1871/*
1872 * Add a WME parameters element to a frame.
1873 */
1874static uint8_t *
1875ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1876{
1877#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1878#define	ADDSHORT(frm, v) do {	\
1879	le16enc(frm, v);	\
1880	frm += 2;		\
1881} while (0)
1882	/* NB: this works 'cuz a param has an info at the front */
1883	static const struct ieee80211_wme_info param = {
1884		.wme_id		= IEEE80211_ELEMID_VENDOR,
1885		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1886		.wme_oui	= { WME_OUI_BYTES },
1887		.wme_type	= WME_OUI_TYPE,
1888		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1889		.wme_version	= WME_VERSION,
1890	};
1891	int i;
1892
1893	memcpy(frm, &param, sizeof(param));
1894	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1895	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1896	*frm++ = 0;					/* reserved field */
1897	for (i = 0; i < WME_NUM_AC; i++) {
1898		const struct wmeParams *ac =
1899		       &wme->wme_bssChanParams.cap_wmeParams[i];
1900		*frm++ = SM(i, WME_PARAM_ACI)
1901		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1902		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1903		       ;
1904		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1905		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1906		       ;
1907		ADDSHORT(frm, ac->wmep_txopLimit);
1908	}
1909	return frm;
1910#undef SM
1911#undef ADDSHORT
1912}
1913#undef WME_OUI_BYTES
1914
1915/*
1916 * Add an 11h Power Constraint element to a frame.
1917 */
1918static uint8_t *
1919ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1920{
1921	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1922	/* XXX per-vap tx power limit? */
1923	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1924
1925	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1926	frm[1] = 1;
1927	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1928	return frm + 3;
1929}
1930
1931/*
1932 * Add an 11h Power Capability element to a frame.
1933 */
1934static uint8_t *
1935ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1936{
1937	frm[0] = IEEE80211_ELEMID_PWRCAP;
1938	frm[1] = 2;
1939	frm[2] = c->ic_minpower;
1940	frm[3] = c->ic_maxpower;
1941	return frm + 4;
1942}
1943
1944/*
1945 * Add an 11h Supported Channels element to a frame.
1946 */
1947static uint8_t *
1948ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1949{
1950	static const int ielen = 26;
1951
1952	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1953	frm[1] = ielen;
1954	/* XXX not correct */
1955	memcpy(frm+2, ic->ic_chan_avail, ielen);
1956	return frm + 2 + ielen;
1957}
1958
1959/*
1960 * Add an 11h Quiet time element to a frame.
1961 */
1962static uint8_t *
1963ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1964{
1965	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1966
1967	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1968	quiet->len = 6;
1969	if (vap->iv_quiet_count_value == 1)
1970		vap->iv_quiet_count_value = vap->iv_quiet_count;
1971	else if (vap->iv_quiet_count_value > 1)
1972		vap->iv_quiet_count_value--;
1973
1974	if (vap->iv_quiet_count_value == 0) {
1975		/* value 0 is reserved as per 802.11h standerd */
1976		vap->iv_quiet_count_value = 1;
1977	}
1978
1979	quiet->tbttcount = vap->iv_quiet_count_value;
1980	quiet->period = vap->iv_quiet_period;
1981	quiet->duration = htole16(vap->iv_quiet_duration);
1982	quiet->offset = htole16(vap->iv_quiet_offset);
1983	return frm + sizeof(*quiet);
1984}
1985
1986/*
1987 * Add an 11h Channel Switch Announcement element to a frame.
1988 * Note that we use the per-vap CSA count to adjust the global
1989 * counter so we can use this routine to form probe response
1990 * frames and get the current count.
1991 */
1992static uint8_t *
1993ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1994{
1995	struct ieee80211com *ic = vap->iv_ic;
1996	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1997
1998	csa->csa_ie = IEEE80211_ELEMID_CSA;
1999	csa->csa_len = 3;
2000	csa->csa_mode = 1;		/* XXX force quiet on channel */
2001	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2002	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2003	return frm + sizeof(*csa);
2004}
2005
2006/*
2007 * Add an 11h country information element to a frame.
2008 */
2009static uint8_t *
2010ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2011{
2012
2013	if (ic->ic_countryie == NULL ||
2014	    ic->ic_countryie_chan != ic->ic_bsschan) {
2015		/*
2016		 * Handle lazy construction of ie.  This is done on
2017		 * first use and after a channel change that requires
2018		 * re-calculation.
2019		 */
2020		if (ic->ic_countryie != NULL)
2021			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2022		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2023		if (ic->ic_countryie == NULL)
2024			return frm;
2025		ic->ic_countryie_chan = ic->ic_bsschan;
2026	}
2027	return add_appie(frm, ic->ic_countryie);
2028}
2029
2030uint8_t *
2031ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2032{
2033	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2034		return (add_ie(frm, vap->iv_wpa_ie));
2035	else {
2036		/* XXX else complain? */
2037		return (frm);
2038	}
2039}
2040
2041uint8_t *
2042ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2043{
2044	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2045		return (add_ie(frm, vap->iv_rsn_ie));
2046	else {
2047		/* XXX else complain? */
2048		return (frm);
2049	}
2050}
2051
2052uint8_t *
2053ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2054{
2055	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2056		*frm++ = IEEE80211_ELEMID_QOS;
2057		*frm++ = 1;
2058		*frm++ = 0;
2059	}
2060
2061	return (frm);
2062}
2063
2064/*
2065 * Send a probe request frame with the specified ssid
2066 * and any optional information element data.
2067 */
2068int
2069ieee80211_send_probereq(struct ieee80211_node *ni,
2070	const uint8_t sa[IEEE80211_ADDR_LEN],
2071	const uint8_t da[IEEE80211_ADDR_LEN],
2072	const uint8_t bssid[IEEE80211_ADDR_LEN],
2073	const uint8_t *ssid, size_t ssidlen)
2074{
2075	struct ieee80211vap *vap = ni->ni_vap;
2076	struct ieee80211com *ic = ni->ni_ic;
2077	const struct ieee80211_txparam *tp;
2078	struct ieee80211_bpf_params params;
2079	const struct ieee80211_rateset *rs;
2080	struct mbuf *m;
2081	uint8_t *frm;
2082	int ret;
2083
2084	if (vap->iv_state == IEEE80211_S_CAC) {
2085		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2086		    "block %s frame in CAC state", "probe request");
2087		vap->iv_stats.is_tx_badstate++;
2088		return EIO;		/* XXX */
2089	}
2090
2091	/*
2092	 * Hold a reference on the node so it doesn't go away until after
2093	 * the xmit is complete all the way in the driver.  On error we
2094	 * will remove our reference.
2095	 */
2096	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2097		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2098		__func__, __LINE__,
2099		ni, ether_sprintf(ni->ni_macaddr),
2100		ieee80211_node_refcnt(ni)+1);
2101	ieee80211_ref_node(ni);
2102
2103	/*
2104	 * prreq frame format
2105	 *	[tlv] ssid
2106	 *	[tlv] supported rates
2107	 *	[tlv] RSN (optional)
2108	 *	[tlv] extended supported rates
2109	 *	[tlv] WPA (optional)
2110	 *	[tlv] user-specified ie's
2111	 */
2112	m = ieee80211_getmgtframe(&frm,
2113		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2114	       	 2 + IEEE80211_NWID_LEN
2115	       + 2 + IEEE80211_RATE_SIZE
2116	       + sizeof(struct ieee80211_ie_wpa)
2117	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2118	       + sizeof(struct ieee80211_ie_wpa)
2119	       + (vap->iv_appie_probereq != NULL ?
2120		   vap->iv_appie_probereq->ie_len : 0)
2121	);
2122	if (m == NULL) {
2123		vap->iv_stats.is_tx_nobuf++;
2124		ieee80211_free_node(ni);
2125		return ENOMEM;
2126	}
2127
2128	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2129	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2130	frm = ieee80211_add_rates(frm, rs);
2131	frm = ieee80211_add_rsn(frm, vap);
2132	frm = ieee80211_add_xrates(frm, rs);
2133	frm = ieee80211_add_wpa(frm, vap);
2134	if (vap->iv_appie_probereq != NULL)
2135		frm = add_appie(frm, vap->iv_appie_probereq);
2136	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2137
2138	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2139	    ("leading space %zd", M_LEADINGSPACE(m)));
2140	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2141	if (m == NULL) {
2142		/* NB: cannot happen */
2143		ieee80211_free_node(ni);
2144		return ENOMEM;
2145	}
2146
2147	IEEE80211_TX_LOCK(ic);
2148	ieee80211_send_setup(ni, m,
2149	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2150	     IEEE80211_NONQOS_TID, sa, da, bssid);
2151	/* XXX power management? */
2152	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2153
2154	M_WME_SETAC(m, WME_AC_BE);
2155
2156	IEEE80211_NODE_STAT(ni, tx_probereq);
2157	IEEE80211_NODE_STAT(ni, tx_mgmt);
2158
2159	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2160	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2161	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2162	    ssidlen, ssid);
2163
2164	memset(&params, 0, sizeof(params));
2165	params.ibp_pri = M_WME_GETAC(m);
2166	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2167	params.ibp_rate0 = tp->mgmtrate;
2168	if (IEEE80211_IS_MULTICAST(da)) {
2169		params.ibp_flags |= IEEE80211_BPF_NOACK;
2170		params.ibp_try0 = 1;
2171	} else
2172		params.ibp_try0 = tp->maxretry;
2173	params.ibp_power = ni->ni_txpower;
2174	ret = ieee80211_raw_output(vap, ni, m, &params);
2175	IEEE80211_TX_UNLOCK(ic);
2176	return (ret);
2177}
2178
2179/*
2180 * Calculate capability information for mgt frames.
2181 */
2182uint16_t
2183ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2184{
2185	struct ieee80211com *ic = vap->iv_ic;
2186	uint16_t capinfo;
2187
2188	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2189
2190	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2191		capinfo = IEEE80211_CAPINFO_ESS;
2192	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2193		capinfo = IEEE80211_CAPINFO_IBSS;
2194	else
2195		capinfo = 0;
2196	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2197		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2198	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2199	    IEEE80211_IS_CHAN_2GHZ(chan))
2200		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2201	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2202		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2203	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2204		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2205	return capinfo;
2206}
2207
2208/*
2209 * Send a management frame.  The node is for the destination (or ic_bss
2210 * when in station mode).  Nodes other than ic_bss have their reference
2211 * count bumped to reflect our use for an indeterminant time.
2212 */
2213int
2214ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2215{
2216#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2217#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2218	struct ieee80211vap *vap = ni->ni_vap;
2219	struct ieee80211com *ic = ni->ni_ic;
2220	struct ieee80211_node *bss = vap->iv_bss;
2221	struct ieee80211_bpf_params params;
2222	struct mbuf *m;
2223	uint8_t *frm;
2224	uint16_t capinfo;
2225	int has_challenge, is_shared_key, ret, status;
2226
2227	KASSERT(ni != NULL, ("null node"));
2228
2229	/*
2230	 * Hold a reference on the node so it doesn't go away until after
2231	 * the xmit is complete all the way in the driver.  On error we
2232	 * will remove our reference.
2233	 */
2234	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2235		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2236		__func__, __LINE__,
2237		ni, ether_sprintf(ni->ni_macaddr),
2238		ieee80211_node_refcnt(ni)+1);
2239	ieee80211_ref_node(ni);
2240
2241	memset(&params, 0, sizeof(params));
2242	switch (type) {
2243
2244	case IEEE80211_FC0_SUBTYPE_AUTH:
2245		status = arg >> 16;
2246		arg &= 0xffff;
2247		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2248		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2249		    ni->ni_challenge != NULL);
2250
2251		/*
2252		 * Deduce whether we're doing open authentication or
2253		 * shared key authentication.  We do the latter if
2254		 * we're in the middle of a shared key authentication
2255		 * handshake or if we're initiating an authentication
2256		 * request and configured to use shared key.
2257		 */
2258		is_shared_key = has_challenge ||
2259		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2260		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2261		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2262
2263		m = ieee80211_getmgtframe(&frm,
2264			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2265			  3 * sizeof(uint16_t)
2266			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2267				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2268		);
2269		if (m == NULL)
2270			senderr(ENOMEM, is_tx_nobuf);
2271
2272		((uint16_t *)frm)[0] =
2273		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2274		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2275		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2276		((uint16_t *)frm)[2] = htole16(status);/* status */
2277
2278		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2279			((uint16_t *)frm)[3] =
2280			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2281			    IEEE80211_ELEMID_CHALLENGE);
2282			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2283			    IEEE80211_CHALLENGE_LEN);
2284			m->m_pkthdr.len = m->m_len =
2285				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2286			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2287				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2288				    "request encrypt frame (%s)", __func__);
2289				/* mark frame for encryption */
2290				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2291			}
2292		} else
2293			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2294
2295		/* XXX not right for shared key */
2296		if (status == IEEE80211_STATUS_SUCCESS)
2297			IEEE80211_NODE_STAT(ni, tx_auth);
2298		else
2299			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2300
2301		if (vap->iv_opmode == IEEE80211_M_STA)
2302			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2303				(void *) vap->iv_state);
2304		break;
2305
2306	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2307		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2308		    "send station deauthenticate (reason: %d (%s))", arg,
2309		    ieee80211_reason_to_string(arg));
2310		m = ieee80211_getmgtframe(&frm,
2311			ic->ic_headroom + sizeof(struct ieee80211_frame),
2312			sizeof(uint16_t));
2313		if (m == NULL)
2314			senderr(ENOMEM, is_tx_nobuf);
2315		*(uint16_t *)frm = htole16(arg);	/* reason */
2316		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2317
2318		IEEE80211_NODE_STAT(ni, tx_deauth);
2319		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2320
2321		ieee80211_node_unauthorize(ni);		/* port closed */
2322		break;
2323
2324	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2325	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2326		/*
2327		 * asreq frame format
2328		 *	[2] capability information
2329		 *	[2] listen interval
2330		 *	[6*] current AP address (reassoc only)
2331		 *	[tlv] ssid
2332		 *	[tlv] supported rates
2333		 *	[tlv] extended supported rates
2334		 *	[4] power capability (optional)
2335		 *	[28] supported channels (optional)
2336		 *	[tlv] HT capabilities
2337		 *	[tlv] WME (optional)
2338		 *	[tlv] Vendor OUI HT capabilities (optional)
2339		 *	[tlv] Atheros capabilities (if negotiated)
2340		 *	[tlv] AppIE's (optional)
2341		 */
2342		m = ieee80211_getmgtframe(&frm,
2343			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2344			 sizeof(uint16_t)
2345		       + sizeof(uint16_t)
2346		       + IEEE80211_ADDR_LEN
2347		       + 2 + IEEE80211_NWID_LEN
2348		       + 2 + IEEE80211_RATE_SIZE
2349		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2350		       + 4
2351		       + 2 + 26
2352		       + sizeof(struct ieee80211_wme_info)
2353		       + sizeof(struct ieee80211_ie_htcap)
2354		       + 4 + sizeof(struct ieee80211_ie_htcap)
2355#ifdef IEEE80211_SUPPORT_SUPERG
2356		       + sizeof(struct ieee80211_ath_ie)
2357#endif
2358		       + (vap->iv_appie_wpa != NULL ?
2359				vap->iv_appie_wpa->ie_len : 0)
2360		       + (vap->iv_appie_assocreq != NULL ?
2361				vap->iv_appie_assocreq->ie_len : 0)
2362		);
2363		if (m == NULL)
2364			senderr(ENOMEM, is_tx_nobuf);
2365
2366		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2367		    ("wrong mode %u", vap->iv_opmode));
2368		capinfo = IEEE80211_CAPINFO_ESS;
2369		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2370			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2371		/*
2372		 * NB: Some 11a AP's reject the request when
2373		 *     short premable is set.
2374		 */
2375		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2376		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2377			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2378		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2379		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2380			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2381		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2382		    (vap->iv_flags & IEEE80211_F_DOTH))
2383			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2384		*(uint16_t *)frm = htole16(capinfo);
2385		frm += 2;
2386
2387		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2388		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2389						    bss->ni_intval));
2390		frm += 2;
2391
2392		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2393			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2394			frm += IEEE80211_ADDR_LEN;
2395		}
2396
2397		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2398		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2399		frm = ieee80211_add_rsn(frm, vap);
2400		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2401		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2402			frm = ieee80211_add_powercapability(frm,
2403			    ic->ic_curchan);
2404			frm = ieee80211_add_supportedchannels(frm, ic);
2405		}
2406
2407		/*
2408		 * Check the channel - we may be using an 11n NIC with an
2409		 * 11n capable station, but we're configured to be an 11b
2410		 * channel.
2411		 */
2412		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2413		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2414		    ni->ni_ies.htcap_ie != NULL &&
2415		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2416			frm = ieee80211_add_htcap(frm, ni);
2417		}
2418		frm = ieee80211_add_wpa(frm, vap);
2419		if ((ic->ic_flags & IEEE80211_F_WME) &&
2420		    ni->ni_ies.wme_ie != NULL)
2421			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2422
2423		/*
2424		 * Same deal - only send HT info if we're on an 11n
2425		 * capable channel.
2426		 */
2427		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2428		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2429		    ni->ni_ies.htcap_ie != NULL &&
2430		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2431			frm = ieee80211_add_htcap_vendor(frm, ni);
2432		}
2433#ifdef IEEE80211_SUPPORT_SUPERG
2434		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2435			frm = ieee80211_add_ath(frm,
2436				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2437				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2438				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2439				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2440		}
2441#endif /* IEEE80211_SUPPORT_SUPERG */
2442		if (vap->iv_appie_assocreq != NULL)
2443			frm = add_appie(frm, vap->iv_appie_assocreq);
2444		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2445
2446		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2447			(void *) vap->iv_state);
2448		break;
2449
2450	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2451	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2452		/*
2453		 * asresp frame format
2454		 *	[2] capability information
2455		 *	[2] status
2456		 *	[2] association ID
2457		 *	[tlv] supported rates
2458		 *	[tlv] extended supported rates
2459		 *	[tlv] HT capabilities (standard, if STA enabled)
2460		 *	[tlv] HT information (standard, if STA enabled)
2461		 *	[tlv] WME (if configured and STA enabled)
2462		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2463		 *	[tlv] HT information (vendor OUI, if STA enabled)
2464		 *	[tlv] Atheros capabilities (if STA enabled)
2465		 *	[tlv] AppIE's (optional)
2466		 */
2467		m = ieee80211_getmgtframe(&frm,
2468			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2469			 sizeof(uint16_t)
2470		       + sizeof(uint16_t)
2471		       + sizeof(uint16_t)
2472		       + 2 + IEEE80211_RATE_SIZE
2473		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2474		       + sizeof(struct ieee80211_ie_htcap) + 4
2475		       + sizeof(struct ieee80211_ie_htinfo) + 4
2476		       + sizeof(struct ieee80211_wme_param)
2477#ifdef IEEE80211_SUPPORT_SUPERG
2478		       + sizeof(struct ieee80211_ath_ie)
2479#endif
2480		       + (vap->iv_appie_assocresp != NULL ?
2481				vap->iv_appie_assocresp->ie_len : 0)
2482		);
2483		if (m == NULL)
2484			senderr(ENOMEM, is_tx_nobuf);
2485
2486		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2487		*(uint16_t *)frm = htole16(capinfo);
2488		frm += 2;
2489
2490		*(uint16_t *)frm = htole16(arg);	/* status */
2491		frm += 2;
2492
2493		if (arg == IEEE80211_STATUS_SUCCESS) {
2494			*(uint16_t *)frm = htole16(ni->ni_associd);
2495			IEEE80211_NODE_STAT(ni, tx_assoc);
2496		} else
2497			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2498		frm += 2;
2499
2500		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2501		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2502		/* NB: respond according to what we received */
2503		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2504			frm = ieee80211_add_htcap(frm, ni);
2505			frm = ieee80211_add_htinfo(frm, ni);
2506		}
2507		if ((vap->iv_flags & IEEE80211_F_WME) &&
2508		    ni->ni_ies.wme_ie != NULL)
2509			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2510		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2511			frm = ieee80211_add_htcap_vendor(frm, ni);
2512			frm = ieee80211_add_htinfo_vendor(frm, ni);
2513		}
2514#ifdef IEEE80211_SUPPORT_SUPERG
2515		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2516			frm = ieee80211_add_ath(frm,
2517				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2518				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2519				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2520				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2521#endif /* IEEE80211_SUPPORT_SUPERG */
2522		if (vap->iv_appie_assocresp != NULL)
2523			frm = add_appie(frm, vap->iv_appie_assocresp);
2524		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2525		break;
2526
2527	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2528		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2529		    "send station disassociate (reason: %d (%s))", arg,
2530		    ieee80211_reason_to_string(arg));
2531		m = ieee80211_getmgtframe(&frm,
2532			ic->ic_headroom + sizeof(struct ieee80211_frame),
2533			sizeof(uint16_t));
2534		if (m == NULL)
2535			senderr(ENOMEM, is_tx_nobuf);
2536		*(uint16_t *)frm = htole16(arg);	/* reason */
2537		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2538
2539		IEEE80211_NODE_STAT(ni, tx_disassoc);
2540		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2541		break;
2542
2543	default:
2544		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2545		    "invalid mgmt frame type %u", type);
2546		senderr(EINVAL, is_tx_unknownmgt);
2547		/* NOTREACHED */
2548	}
2549
2550	/* NB: force non-ProbeResp frames to the highest queue */
2551	params.ibp_pri = WME_AC_VO;
2552	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2553	/* NB: we know all frames are unicast */
2554	params.ibp_try0 = bss->ni_txparms->maxretry;
2555	params.ibp_power = bss->ni_txpower;
2556	return ieee80211_mgmt_output(ni, m, type, &params);
2557bad:
2558	ieee80211_free_node(ni);
2559	return ret;
2560#undef senderr
2561#undef HTFLAGS
2562}
2563
2564/*
2565 * Return an mbuf with a probe response frame in it.
2566 * Space is left to prepend and 802.11 header at the
2567 * front but it's left to the caller to fill in.
2568 */
2569struct mbuf *
2570ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2571{
2572	struct ieee80211vap *vap = bss->ni_vap;
2573	struct ieee80211com *ic = bss->ni_ic;
2574	const struct ieee80211_rateset *rs;
2575	struct mbuf *m;
2576	uint16_t capinfo;
2577	uint8_t *frm;
2578
2579	/*
2580	 * probe response frame format
2581	 *	[8] time stamp
2582	 *	[2] beacon interval
2583	 *	[2] cabability information
2584	 *	[tlv] ssid
2585	 *	[tlv] supported rates
2586	 *	[tlv] parameter set (FH/DS)
2587	 *	[tlv] parameter set (IBSS)
2588	 *	[tlv] country (optional)
2589	 *	[3] power control (optional)
2590	 *	[5] channel switch announcement (CSA) (optional)
2591	 *	[tlv] extended rate phy (ERP)
2592	 *	[tlv] extended supported rates
2593	 *	[tlv] RSN (optional)
2594	 *	[tlv] HT capabilities
2595	 *	[tlv] HT information
2596	 *	[tlv] WPA (optional)
2597	 *	[tlv] WME (optional)
2598	 *	[tlv] Vendor OUI HT capabilities (optional)
2599	 *	[tlv] Vendor OUI HT information (optional)
2600	 *	[tlv] Atheros capabilities
2601	 *	[tlv] AppIE's (optional)
2602	 *	[tlv] Mesh ID (MBSS)
2603	 *	[tlv] Mesh Conf (MBSS)
2604	 */
2605	m = ieee80211_getmgtframe(&frm,
2606		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2607		 8
2608	       + sizeof(uint16_t)
2609	       + sizeof(uint16_t)
2610	       + 2 + IEEE80211_NWID_LEN
2611	       + 2 + IEEE80211_RATE_SIZE
2612	       + 7	/* max(7,3) */
2613	       + IEEE80211_COUNTRY_MAX_SIZE
2614	       + 3
2615	       + sizeof(struct ieee80211_csa_ie)
2616	       + sizeof(struct ieee80211_quiet_ie)
2617	       + 3
2618	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2619	       + sizeof(struct ieee80211_ie_wpa)
2620	       + sizeof(struct ieee80211_ie_htcap)
2621	       + sizeof(struct ieee80211_ie_htinfo)
2622	       + sizeof(struct ieee80211_ie_wpa)
2623	       + sizeof(struct ieee80211_wme_param)
2624	       + 4 + sizeof(struct ieee80211_ie_htcap)
2625	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2626#ifdef IEEE80211_SUPPORT_SUPERG
2627	       + sizeof(struct ieee80211_ath_ie)
2628#endif
2629#ifdef IEEE80211_SUPPORT_MESH
2630	       + 2 + IEEE80211_MESHID_LEN
2631	       + sizeof(struct ieee80211_meshconf_ie)
2632#endif
2633	       + (vap->iv_appie_proberesp != NULL ?
2634			vap->iv_appie_proberesp->ie_len : 0)
2635	);
2636	if (m == NULL) {
2637		vap->iv_stats.is_tx_nobuf++;
2638		return NULL;
2639	}
2640
2641	memset(frm, 0, 8);	/* timestamp should be filled later */
2642	frm += 8;
2643	*(uint16_t *)frm = htole16(bss->ni_intval);
2644	frm += 2;
2645	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2646	*(uint16_t *)frm = htole16(capinfo);
2647	frm += 2;
2648
2649	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2650	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2651	frm = ieee80211_add_rates(frm, rs);
2652
2653	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2654		*frm++ = IEEE80211_ELEMID_FHPARMS;
2655		*frm++ = 5;
2656		*frm++ = bss->ni_fhdwell & 0x00ff;
2657		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2658		*frm++ = IEEE80211_FH_CHANSET(
2659		    ieee80211_chan2ieee(ic, bss->ni_chan));
2660		*frm++ = IEEE80211_FH_CHANPAT(
2661		    ieee80211_chan2ieee(ic, bss->ni_chan));
2662		*frm++ = bss->ni_fhindex;
2663	} else {
2664		*frm++ = IEEE80211_ELEMID_DSPARMS;
2665		*frm++ = 1;
2666		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2667	}
2668
2669	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2670		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2671		*frm++ = 2;
2672		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2673	}
2674	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2675	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2676		frm = ieee80211_add_countryie(frm, ic);
2677	if (vap->iv_flags & IEEE80211_F_DOTH) {
2678		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2679			frm = ieee80211_add_powerconstraint(frm, vap);
2680		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2681			frm = ieee80211_add_csa(frm, vap);
2682	}
2683	if (vap->iv_flags & IEEE80211_F_DOTH) {
2684		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2685		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2686			if (vap->iv_quiet)
2687				frm = ieee80211_add_quiet(frm, vap);
2688		}
2689	}
2690	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2691		frm = ieee80211_add_erp(frm, ic);
2692	frm = ieee80211_add_xrates(frm, rs);
2693	frm = ieee80211_add_rsn(frm, vap);
2694	/*
2695	 * NB: legacy 11b clients do not get certain ie's.
2696	 *     The caller identifies such clients by passing
2697	 *     a token in legacy to us.  Could expand this to be
2698	 *     any legacy client for stuff like HT ie's.
2699	 */
2700	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2701	    legacy != IEEE80211_SEND_LEGACY_11B) {
2702		frm = ieee80211_add_htcap(frm, bss);
2703		frm = ieee80211_add_htinfo(frm, bss);
2704	}
2705	frm = ieee80211_add_wpa(frm, vap);
2706	if (vap->iv_flags & IEEE80211_F_WME)
2707		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2708	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2709	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2710	    legacy != IEEE80211_SEND_LEGACY_11B) {
2711		frm = ieee80211_add_htcap_vendor(frm, bss);
2712		frm = ieee80211_add_htinfo_vendor(frm, bss);
2713	}
2714#ifdef IEEE80211_SUPPORT_SUPERG
2715	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2716	    legacy != IEEE80211_SEND_LEGACY_11B)
2717		frm = ieee80211_add_athcaps(frm, bss);
2718#endif
2719	if (vap->iv_appie_proberesp != NULL)
2720		frm = add_appie(frm, vap->iv_appie_proberesp);
2721#ifdef IEEE80211_SUPPORT_MESH
2722	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2723		frm = ieee80211_add_meshid(frm, vap);
2724		frm = ieee80211_add_meshconf(frm, vap);
2725	}
2726#endif
2727	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2728
2729	return m;
2730}
2731
2732/*
2733 * Send a probe response frame to the specified mac address.
2734 * This does not go through the normal mgt frame api so we
2735 * can specify the destination address and re-use the bss node
2736 * for the sta reference.
2737 */
2738int
2739ieee80211_send_proberesp(struct ieee80211vap *vap,
2740	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2741{
2742	struct ieee80211_node *bss = vap->iv_bss;
2743	struct ieee80211com *ic = vap->iv_ic;
2744	struct mbuf *m;
2745	int ret;
2746
2747	if (vap->iv_state == IEEE80211_S_CAC) {
2748		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2749		    "block %s frame in CAC state", "probe response");
2750		vap->iv_stats.is_tx_badstate++;
2751		return EIO;		/* XXX */
2752	}
2753
2754	/*
2755	 * Hold a reference on the node so it doesn't go away until after
2756	 * the xmit is complete all the way in the driver.  On error we
2757	 * will remove our reference.
2758	 */
2759	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2760	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2761	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2762	    ieee80211_node_refcnt(bss)+1);
2763	ieee80211_ref_node(bss);
2764
2765	m = ieee80211_alloc_proberesp(bss, legacy);
2766	if (m == NULL) {
2767		ieee80211_free_node(bss);
2768		return ENOMEM;
2769	}
2770
2771	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2772	KASSERT(m != NULL, ("no room for header"));
2773
2774	IEEE80211_TX_LOCK(ic);
2775	ieee80211_send_setup(bss, m,
2776	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2777	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2778	/* XXX power management? */
2779	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2780
2781	M_WME_SETAC(m, WME_AC_BE);
2782
2783	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2784	    "send probe resp on channel %u to %s%s\n",
2785	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2786	    legacy ? " <legacy>" : "");
2787	IEEE80211_NODE_STAT(bss, tx_mgmt);
2788
2789	ret = ieee80211_raw_output(vap, bss, m, NULL);
2790	IEEE80211_TX_UNLOCK(ic);
2791	return (ret);
2792}
2793
2794/*
2795 * Allocate and build a RTS (Request To Send) control frame.
2796 */
2797struct mbuf *
2798ieee80211_alloc_rts(struct ieee80211com *ic,
2799	const uint8_t ra[IEEE80211_ADDR_LEN],
2800	const uint8_t ta[IEEE80211_ADDR_LEN],
2801	uint16_t dur)
2802{
2803	struct ieee80211_frame_rts *rts;
2804	struct mbuf *m;
2805
2806	/* XXX honor ic_headroom */
2807	m = m_gethdr(M_NOWAIT, MT_DATA);
2808	if (m != NULL) {
2809		rts = mtod(m, struct ieee80211_frame_rts *);
2810		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2811			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2812		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2813		*(u_int16_t *)rts->i_dur = htole16(dur);
2814		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2815		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2816
2817		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2818	}
2819	return m;
2820}
2821
2822/*
2823 * Allocate and build a CTS (Clear To Send) control frame.
2824 */
2825struct mbuf *
2826ieee80211_alloc_cts(struct ieee80211com *ic,
2827	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2828{
2829	struct ieee80211_frame_cts *cts;
2830	struct mbuf *m;
2831
2832	/* XXX honor ic_headroom */
2833	m = m_gethdr(M_NOWAIT, MT_DATA);
2834	if (m != NULL) {
2835		cts = mtod(m, struct ieee80211_frame_cts *);
2836		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2837			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2838		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2839		*(u_int16_t *)cts->i_dur = htole16(dur);
2840		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2841
2842		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2843	}
2844	return m;
2845}
2846
2847static void
2848ieee80211_tx_mgt_timeout(void *arg)
2849{
2850	struct ieee80211vap *vap = arg;
2851
2852	IEEE80211_LOCK(vap->iv_ic);
2853	if (vap->iv_state != IEEE80211_S_INIT &&
2854	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2855		/*
2856		 * NB: it's safe to specify a timeout as the reason here;
2857		 *     it'll only be used in the right state.
2858		 */
2859		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2860			IEEE80211_SCAN_FAIL_TIMEOUT);
2861	}
2862	IEEE80211_UNLOCK(vap->iv_ic);
2863}
2864
2865/*
2866 * This is the callback set on net80211-sourced transmitted
2867 * authentication request frames.
2868 *
2869 * This does a couple of things:
2870 *
2871 * + If the frame transmitted was a success, it schedules a future
2872 *   event which will transition the interface to scan.
2873 *   If a state transition _then_ occurs before that event occurs,
2874 *   said state transition will cancel this callout.
2875 *
2876 * + If the frame transmit was a failure, it immediately schedules
2877 *   the transition back to scan.
2878 */
2879static void
2880ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2881{
2882	struct ieee80211vap *vap = ni->ni_vap;
2883	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2884
2885	/*
2886	 * Frame transmit completed; arrange timer callback.  If
2887	 * transmit was successfully we wait for response.  Otherwise
2888	 * we arrange an immediate callback instead of doing the
2889	 * callback directly since we don't know what state the driver
2890	 * is in (e.g. what locks it is holding).  This work should
2891	 * not be too time-critical and not happen too often so the
2892	 * added overhead is acceptable.
2893	 *
2894	 * XXX what happens if !acked but response shows up before callback?
2895	 */
2896	if (vap->iv_state == ostate) {
2897		callout_reset(&vap->iv_mgtsend,
2898			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2899			ieee80211_tx_mgt_timeout, vap);
2900	}
2901}
2902
2903static void
2904ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2905	struct ieee80211_node *ni)
2906{
2907	struct ieee80211vap *vap = ni->ni_vap;
2908	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2909	struct ieee80211com *ic = ni->ni_ic;
2910	struct ieee80211_rateset *rs = &ni->ni_rates;
2911	uint16_t capinfo;
2912
2913	/*
2914	 * beacon frame format
2915	 *	[8] time stamp
2916	 *	[2] beacon interval
2917	 *	[2] cabability information
2918	 *	[tlv] ssid
2919	 *	[tlv] supported rates
2920	 *	[3] parameter set (DS)
2921	 *	[8] CF parameter set (optional)
2922	 *	[tlv] parameter set (IBSS/TIM)
2923	 *	[tlv] country (optional)
2924	 *	[3] power control (optional)
2925	 *	[5] channel switch announcement (CSA) (optional)
2926	 *	[tlv] extended rate phy (ERP)
2927	 *	[tlv] extended supported rates
2928	 *	[tlv] RSN parameters
2929	 *	[tlv] HT capabilities
2930	 *	[tlv] HT information
2931	 * XXX Vendor-specific OIDs (e.g. Atheros)
2932	 *	[tlv] WPA parameters
2933	 *	[tlv] WME parameters
2934	 *	[tlv] Vendor OUI HT capabilities (optional)
2935	 *	[tlv] Vendor OUI HT information (optional)
2936	 *	[tlv] Atheros capabilities (optional)
2937	 *	[tlv] TDMA parameters (optional)
2938	 *	[tlv] Mesh ID (MBSS)
2939	 *	[tlv] Mesh Conf (MBSS)
2940	 *	[tlv] application data (optional)
2941	 */
2942
2943	memset(bo, 0, sizeof(*bo));
2944
2945	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2946	frm += 8;
2947	*(uint16_t *)frm = htole16(ni->ni_intval);
2948	frm += 2;
2949	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2950	bo->bo_caps = (uint16_t *)frm;
2951	*(uint16_t *)frm = htole16(capinfo);
2952	frm += 2;
2953	*frm++ = IEEE80211_ELEMID_SSID;
2954	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2955		*frm++ = ni->ni_esslen;
2956		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2957		frm += ni->ni_esslen;
2958	} else
2959		*frm++ = 0;
2960	frm = ieee80211_add_rates(frm, rs);
2961	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2962		*frm++ = IEEE80211_ELEMID_DSPARMS;
2963		*frm++ = 1;
2964		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2965	}
2966	if (ic->ic_flags & IEEE80211_F_PCF) {
2967		bo->bo_cfp = frm;
2968		frm = ieee80211_add_cfparms(frm, ic);
2969	}
2970	bo->bo_tim = frm;
2971	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2972		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2973		*frm++ = 2;
2974		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2975		bo->bo_tim_len = 0;
2976	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2977	    vap->iv_opmode == IEEE80211_M_MBSS) {
2978		/* TIM IE is the same for Mesh and Hostap */
2979		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2980
2981		tie->tim_ie = IEEE80211_ELEMID_TIM;
2982		tie->tim_len = 4;	/* length */
2983		tie->tim_count = 0;	/* DTIM count */
2984		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2985		tie->tim_bitctl = 0;	/* bitmap control */
2986		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2987		frm += sizeof(struct ieee80211_tim_ie);
2988		bo->bo_tim_len = 1;
2989	}
2990	bo->bo_tim_trailer = frm;
2991	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2992	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2993		frm = ieee80211_add_countryie(frm, ic);
2994	if (vap->iv_flags & IEEE80211_F_DOTH) {
2995		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2996			frm = ieee80211_add_powerconstraint(frm, vap);
2997		bo->bo_csa = frm;
2998		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2999			frm = ieee80211_add_csa(frm, vap);
3000	} else
3001		bo->bo_csa = frm;
3002
3003	if (vap->iv_flags & IEEE80211_F_DOTH) {
3004		bo->bo_quiet = frm;
3005		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3006		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3007			if (vap->iv_quiet)
3008				frm = ieee80211_add_quiet(frm,vap);
3009		}
3010	} else
3011		bo->bo_quiet = frm;
3012
3013	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3014		bo->bo_erp = frm;
3015		frm = ieee80211_add_erp(frm, ic);
3016	}
3017	frm = ieee80211_add_xrates(frm, rs);
3018	frm = ieee80211_add_rsn(frm, vap);
3019	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3020		frm = ieee80211_add_htcap(frm, ni);
3021		bo->bo_htinfo = frm;
3022		frm = ieee80211_add_htinfo(frm, ni);
3023	}
3024	frm = ieee80211_add_wpa(frm, vap);
3025	if (vap->iv_flags & IEEE80211_F_WME) {
3026		bo->bo_wme = frm;
3027		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3028	}
3029	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3030	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3031		frm = ieee80211_add_htcap_vendor(frm, ni);
3032		frm = ieee80211_add_htinfo_vendor(frm, ni);
3033	}
3034#ifdef IEEE80211_SUPPORT_SUPERG
3035	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3036		bo->bo_ath = frm;
3037		frm = ieee80211_add_athcaps(frm, ni);
3038	}
3039#endif
3040#ifdef IEEE80211_SUPPORT_TDMA
3041	if (vap->iv_caps & IEEE80211_C_TDMA) {
3042		bo->bo_tdma = frm;
3043		frm = ieee80211_add_tdma(frm, vap);
3044	}
3045#endif
3046	if (vap->iv_appie_beacon != NULL) {
3047		bo->bo_appie = frm;
3048		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3049		frm = add_appie(frm, vap->iv_appie_beacon);
3050	}
3051#ifdef IEEE80211_SUPPORT_MESH
3052	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3053		frm = ieee80211_add_meshid(frm, vap);
3054		bo->bo_meshconf = frm;
3055		frm = ieee80211_add_meshconf(frm, vap);
3056	}
3057#endif
3058	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3059	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3060	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3061}
3062
3063/*
3064 * Allocate a beacon frame and fillin the appropriate bits.
3065 */
3066struct mbuf *
3067ieee80211_beacon_alloc(struct ieee80211_node *ni)
3068{
3069	struct ieee80211vap *vap = ni->ni_vap;
3070	struct ieee80211com *ic = ni->ni_ic;
3071	struct ifnet *ifp = vap->iv_ifp;
3072	struct ieee80211_frame *wh;
3073	struct mbuf *m;
3074	int pktlen;
3075	uint8_t *frm;
3076
3077	/*
3078	 * beacon frame format
3079	 *	[8] time stamp
3080	 *	[2] beacon interval
3081	 *	[2] cabability information
3082	 *	[tlv] ssid
3083	 *	[tlv] supported rates
3084	 *	[3] parameter set (DS)
3085	 *	[8] CF parameter set (optional)
3086	 *	[tlv] parameter set (IBSS/TIM)
3087	 *	[tlv] country (optional)
3088	 *	[3] power control (optional)
3089	 *	[5] channel switch announcement (CSA) (optional)
3090	 *	[tlv] extended rate phy (ERP)
3091	 *	[tlv] extended supported rates
3092	 *	[tlv] RSN parameters
3093	 *	[tlv] HT capabilities
3094	 *	[tlv] HT information
3095	 *	[tlv] Vendor OUI HT capabilities (optional)
3096	 *	[tlv] Vendor OUI HT information (optional)
3097	 * XXX Vendor-specific OIDs (e.g. Atheros)
3098	 *	[tlv] WPA parameters
3099	 *	[tlv] WME parameters
3100	 *	[tlv] TDMA parameters (optional)
3101	 *	[tlv] Mesh ID (MBSS)
3102	 *	[tlv] Mesh Conf (MBSS)
3103	 *	[tlv] application data (optional)
3104	 * NB: we allocate the max space required for the TIM bitmap.
3105	 * XXX how big is this?
3106	 */
3107	pktlen =   8					/* time stamp */
3108		 + sizeof(uint16_t)			/* beacon interval */
3109		 + sizeof(uint16_t)			/* capabilities */
3110		 + 2 + ni->ni_esslen			/* ssid */
3111	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3112	         + 2 + 1				/* DS parameters */
3113		 + 2 + 6				/* CF parameters */
3114		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3115		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3116		 + 2 + 1				/* power control */
3117		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3118		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3119		 + 2 + 1				/* ERP */
3120	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3121		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3122			2*sizeof(struct ieee80211_ie_wpa) : 0)
3123		 /* XXX conditional? */
3124		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3125		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3126		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3127			sizeof(struct ieee80211_wme_param) : 0)
3128#ifdef IEEE80211_SUPPORT_SUPERG
3129		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3130#endif
3131#ifdef IEEE80211_SUPPORT_TDMA
3132		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3133			sizeof(struct ieee80211_tdma_param) : 0)
3134#endif
3135#ifdef IEEE80211_SUPPORT_MESH
3136		 + 2 + ni->ni_meshidlen
3137		 + sizeof(struct ieee80211_meshconf_ie)
3138#endif
3139		 + IEEE80211_MAX_APPIE
3140		 ;
3141	m = ieee80211_getmgtframe(&frm,
3142		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3143	if (m == NULL) {
3144		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3145			"%s: cannot get buf; size %u\n", __func__, pktlen);
3146		vap->iv_stats.is_tx_nobuf++;
3147		return NULL;
3148	}
3149	ieee80211_beacon_construct(m, frm, ni);
3150
3151	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3152	KASSERT(m != NULL, ("no space for 802.11 header?"));
3153	wh = mtod(m, struct ieee80211_frame *);
3154	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3155	    IEEE80211_FC0_SUBTYPE_BEACON;
3156	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3157	*(uint16_t *)wh->i_dur = 0;
3158	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3159	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3160	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3161	*(uint16_t *)wh->i_seq = 0;
3162
3163	return m;
3164}
3165
3166/*
3167 * Update the dynamic parts of a beacon frame based on the current state.
3168 */
3169int
3170ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3171{
3172	struct ieee80211vap *vap = ni->ni_vap;
3173	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3174	struct ieee80211com *ic = ni->ni_ic;
3175	int len_changed = 0;
3176	uint16_t capinfo;
3177	struct ieee80211_frame *wh;
3178	ieee80211_seq seqno;
3179
3180	IEEE80211_LOCK(ic);
3181	/*
3182	 * Handle 11h channel change when we've reached the count.
3183	 * We must recalculate the beacon frame contents to account
3184	 * for the new channel.  Note we do this only for the first
3185	 * vap that reaches this point; subsequent vaps just update
3186	 * their beacon state to reflect the recalculated channel.
3187	 */
3188	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3189	    vap->iv_csa_count == ic->ic_csa_count) {
3190		vap->iv_csa_count = 0;
3191		/*
3192		 * Effect channel change before reconstructing the beacon
3193		 * frame contents as many places reference ni_chan.
3194		 */
3195		if (ic->ic_csa_newchan != NULL)
3196			ieee80211_csa_completeswitch(ic);
3197		/*
3198		 * NB: ieee80211_beacon_construct clears all pending
3199		 * updates in bo_flags so we don't need to explicitly
3200		 * clear IEEE80211_BEACON_CSA.
3201		 */
3202		ieee80211_beacon_construct(m,
3203		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3204
3205		/* XXX do WME aggressive mode processing? */
3206		IEEE80211_UNLOCK(ic);
3207		return 1;		/* just assume length changed */
3208	}
3209
3210	wh = mtod(m, struct ieee80211_frame *);
3211	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3212	*(uint16_t *)&wh->i_seq[0] =
3213		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3214	M_SEQNO_SET(m, seqno);
3215
3216	/* XXX faster to recalculate entirely or just changes? */
3217	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3218	*bo->bo_caps = htole16(capinfo);
3219
3220	if (vap->iv_flags & IEEE80211_F_WME) {
3221		struct ieee80211_wme_state *wme = &ic->ic_wme;
3222
3223		/*
3224		 * Check for aggressive mode change.  When there is
3225		 * significant high priority traffic in the BSS
3226		 * throttle back BE traffic by using conservative
3227		 * parameters.  Otherwise BE uses aggressive params
3228		 * to optimize performance of legacy/non-QoS traffic.
3229		 */
3230		if (wme->wme_flags & WME_F_AGGRMODE) {
3231			if (wme->wme_hipri_traffic >
3232			    wme->wme_hipri_switch_thresh) {
3233				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3234				    "%s: traffic %u, disable aggressive mode\n",
3235				    __func__, wme->wme_hipri_traffic);
3236				wme->wme_flags &= ~WME_F_AGGRMODE;
3237				ieee80211_wme_updateparams_locked(vap);
3238				wme->wme_hipri_traffic =
3239					wme->wme_hipri_switch_hysteresis;
3240			} else
3241				wme->wme_hipri_traffic = 0;
3242		} else {
3243			if (wme->wme_hipri_traffic <=
3244			    wme->wme_hipri_switch_thresh) {
3245				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3246				    "%s: traffic %u, enable aggressive mode\n",
3247				    __func__, wme->wme_hipri_traffic);
3248				wme->wme_flags |= WME_F_AGGRMODE;
3249				ieee80211_wme_updateparams_locked(vap);
3250				wme->wme_hipri_traffic = 0;
3251			} else
3252				wme->wme_hipri_traffic =
3253					wme->wme_hipri_switch_hysteresis;
3254		}
3255		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3256			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3257			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3258		}
3259	}
3260
3261	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3262		ieee80211_ht_update_beacon(vap, bo);
3263		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3264	}
3265#ifdef IEEE80211_SUPPORT_TDMA
3266	if (vap->iv_caps & IEEE80211_C_TDMA) {
3267		/*
3268		 * NB: the beacon is potentially updated every TBTT.
3269		 */
3270		ieee80211_tdma_update_beacon(vap, bo);
3271	}
3272#endif
3273#ifdef IEEE80211_SUPPORT_MESH
3274	if (vap->iv_opmode == IEEE80211_M_MBSS)
3275		ieee80211_mesh_update_beacon(vap, bo);
3276#endif
3277
3278	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3279	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3280		struct ieee80211_tim_ie *tie =
3281			(struct ieee80211_tim_ie *) bo->bo_tim;
3282		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3283			u_int timlen, timoff, i;
3284			/*
3285			 * ATIM/DTIM needs updating.  If it fits in the
3286			 * current space allocated then just copy in the
3287			 * new bits.  Otherwise we need to move any trailing
3288			 * data to make room.  Note that we know there is
3289			 * contiguous space because ieee80211_beacon_allocate
3290			 * insures there is space in the mbuf to write a
3291			 * maximal-size virtual bitmap (based on iv_max_aid).
3292			 */
3293			/*
3294			 * Calculate the bitmap size and offset, copy any
3295			 * trailer out of the way, and then copy in the
3296			 * new bitmap and update the information element.
3297			 * Note that the tim bitmap must contain at least
3298			 * one byte and any offset must be even.
3299			 */
3300			if (vap->iv_ps_pending != 0) {
3301				timoff = 128;		/* impossibly large */
3302				for (i = 0; i < vap->iv_tim_len; i++)
3303					if (vap->iv_tim_bitmap[i]) {
3304						timoff = i &~ 1;
3305						break;
3306					}
3307				KASSERT(timoff != 128, ("tim bitmap empty!"));
3308				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3309					if (vap->iv_tim_bitmap[i])
3310						break;
3311				timlen = 1 + (i - timoff);
3312			} else {
3313				timoff = 0;
3314				timlen = 1;
3315			}
3316			if (timlen != bo->bo_tim_len) {
3317				/* copy up/down trailer */
3318				int adjust = tie->tim_bitmap+timlen
3319					   - bo->bo_tim_trailer;
3320				ovbcopy(bo->bo_tim_trailer,
3321				    bo->bo_tim_trailer+adjust,
3322				    bo->bo_tim_trailer_len);
3323				bo->bo_tim_trailer += adjust;
3324				bo->bo_erp += adjust;
3325				bo->bo_htinfo += adjust;
3326#ifdef IEEE80211_SUPPORT_SUPERG
3327				bo->bo_ath += adjust;
3328#endif
3329#ifdef IEEE80211_SUPPORT_TDMA
3330				bo->bo_tdma += adjust;
3331#endif
3332#ifdef IEEE80211_SUPPORT_MESH
3333				bo->bo_meshconf += adjust;
3334#endif
3335				bo->bo_appie += adjust;
3336				bo->bo_wme += adjust;
3337				bo->bo_csa += adjust;
3338				bo->bo_quiet += adjust;
3339				bo->bo_tim_len = timlen;
3340
3341				/* update information element */
3342				tie->tim_len = 3 + timlen;
3343				tie->tim_bitctl = timoff;
3344				len_changed = 1;
3345			}
3346			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3347				bo->bo_tim_len);
3348
3349			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3350
3351			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3352				"%s: TIM updated, pending %u, off %u, len %u\n",
3353				__func__, vap->iv_ps_pending, timoff, timlen);
3354		}
3355		/* count down DTIM period */
3356		if (tie->tim_count == 0)
3357			tie->tim_count = tie->tim_period - 1;
3358		else
3359			tie->tim_count--;
3360		/* update state for buffered multicast frames on DTIM */
3361		if (mcast && tie->tim_count == 0)
3362			tie->tim_bitctl |= 1;
3363		else
3364			tie->tim_bitctl &= ~1;
3365		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3366			struct ieee80211_csa_ie *csa =
3367			    (struct ieee80211_csa_ie *) bo->bo_csa;
3368
3369			/*
3370			 * Insert or update CSA ie.  If we're just starting
3371			 * to count down to the channel switch then we need
3372			 * to insert the CSA ie.  Otherwise we just need to
3373			 * drop the count.  The actual change happens above
3374			 * when the vap's count reaches the target count.
3375			 */
3376			if (vap->iv_csa_count == 0) {
3377				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3378				bo->bo_erp += sizeof(*csa);
3379				bo->bo_htinfo += sizeof(*csa);
3380				bo->bo_wme += sizeof(*csa);
3381#ifdef IEEE80211_SUPPORT_SUPERG
3382				bo->bo_ath += sizeof(*csa);
3383#endif
3384#ifdef IEEE80211_SUPPORT_TDMA
3385				bo->bo_tdma += sizeof(*csa);
3386#endif
3387#ifdef IEEE80211_SUPPORT_MESH
3388				bo->bo_meshconf += sizeof(*csa);
3389#endif
3390				bo->bo_appie += sizeof(*csa);
3391				bo->bo_csa_trailer_len += sizeof(*csa);
3392				bo->bo_quiet += sizeof(*csa);
3393				bo->bo_tim_trailer_len += sizeof(*csa);
3394				m->m_len += sizeof(*csa);
3395				m->m_pkthdr.len += sizeof(*csa);
3396
3397				ieee80211_add_csa(bo->bo_csa, vap);
3398			} else
3399				csa->csa_count--;
3400			vap->iv_csa_count++;
3401			/* NB: don't clear IEEE80211_BEACON_CSA */
3402		}
3403		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3404		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3405			if (vap->iv_quiet)
3406				ieee80211_add_quiet(bo->bo_quiet, vap);
3407		}
3408		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3409			/*
3410			 * ERP element needs updating.
3411			 */
3412			(void) ieee80211_add_erp(bo->bo_erp, ic);
3413			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3414		}
3415#ifdef IEEE80211_SUPPORT_SUPERG
3416		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3417			ieee80211_add_athcaps(bo->bo_ath, ni);
3418			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3419		}
3420#endif
3421	}
3422	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3423		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3424		int aielen;
3425		uint8_t *frm;
3426
3427		aielen = 0;
3428		if (aie != NULL)
3429			aielen += aie->ie_len;
3430		if (aielen != bo->bo_appie_len) {
3431			/* copy up/down trailer */
3432			int adjust = aielen - bo->bo_appie_len;
3433			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3434				bo->bo_tim_trailer_len);
3435			bo->bo_tim_trailer += adjust;
3436			bo->bo_appie += adjust;
3437			bo->bo_appie_len = aielen;
3438
3439			len_changed = 1;
3440		}
3441		frm = bo->bo_appie;
3442		if (aie != NULL)
3443			frm  = add_appie(frm, aie);
3444		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3445	}
3446	IEEE80211_UNLOCK(ic);
3447
3448	return len_changed;
3449}
3450
3451/*
3452 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3453 * tunnel encapsulation.  The frame is assumed to have an Ethernet
3454 * header at the front that must be stripped before prepending the
3455 * LLC followed by the Ethernet header passed in (with an Ethernet
3456 * type that specifies the payload size).
3457 */
3458struct mbuf *
3459ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3460	const struct ether_header *eh)
3461{
3462	struct llc *llc;
3463	uint16_t payload;
3464
3465	/* XXX optimize by combining m_adj+M_PREPEND */
3466	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3467	llc = mtod(m, struct llc *);
3468	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3469	llc->llc_control = LLC_UI;
3470	llc->llc_snap.org_code[0] = 0;
3471	llc->llc_snap.org_code[1] = 0;
3472	llc->llc_snap.org_code[2] = 0;
3473	llc->llc_snap.ether_type = eh->ether_type;
3474	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3475
3476	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3477	if (m == NULL) {		/* XXX cannot happen */
3478		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3479			"%s: no space for ether_header\n", __func__);
3480		vap->iv_stats.is_tx_nobuf++;
3481		return NULL;
3482	}
3483	ETHER_HEADER_COPY(mtod(m, void *), eh);
3484	mtod(m, struct ether_header *)->ether_type = htons(payload);
3485	return m;
3486}
3487
3488/*
3489 * Complete an mbuf transmission.
3490 *
3491 * For now, this simply processes a completed frame after the
3492 * driver has completed it's transmission and/or retransmission.
3493 * It assumes the frame is an 802.11 encapsulated frame.
3494 *
3495 * Later on it will grow to become the exit path for a given frame
3496 * from the driver and, depending upon how it's been encapsulated
3497 * and already transmitted, it may end up doing A-MPDU retransmission,
3498 * power save requeuing, etc.
3499 *
3500 * In order for the above to work, the driver entry point to this
3501 * must not hold any driver locks.  Thus, the driver needs to delay
3502 * any actual mbuf completion until it can release said locks.
3503 *
3504 * This frees the mbuf and if the mbuf has a node reference,
3505 * the node reference will be freed.
3506 */
3507void
3508ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3509{
3510
3511	if (ni != NULL) {
3512		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3513
3514		if (status == 0) {
3515			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3516			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3517			if (m->m_flags & M_MCAST)
3518				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3519		} else
3520			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3521		if (m->m_flags & M_TXCB)
3522			ieee80211_process_callback(ni, m, status);
3523		ieee80211_free_node(ni);
3524	}
3525	m_freem(m);
3526}
3527