ieee80211_output.c revision 299737
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 299737 2016-05-14 08:54:34Z bz $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kernel.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/endian.h>
40
41#include <sys/socket.h>
42
43#include <net/bpf.h>
44#include <net/ethernet.h>
45#include <net/if.h>
46#include <net/if_var.h>
47#include <net/if_llc.h>
48#include <net/if_media.h>
49#include <net/if_vlan_var.h>
50
51#include <net80211/ieee80211_var.h>
52#include <net80211/ieee80211_regdomain.h>
53#ifdef IEEE80211_SUPPORT_SUPERG
54#include <net80211/ieee80211_superg.h>
55#endif
56#ifdef IEEE80211_SUPPORT_TDMA
57#include <net80211/ieee80211_tdma.h>
58#endif
59#include <net80211/ieee80211_wds.h>
60#include <net80211/ieee80211_mesh.h>
61
62#if defined(INET) || defined(INET6)
63#include <netinet/in.h>
64#endif
65
66#ifdef INET
67#include <netinet/if_ether.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#endif
71#ifdef INET6
72#include <netinet/ip6.h>
73#endif
74
75#include <security/mac/mac_framework.h>
76
77#define	ETHER_HEADER_COPY(dst, src) \
78	memcpy(dst, src, sizeof(struct ether_header))
79
80static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
81	u_int hdrsize, u_int ciphdrsize, u_int mtu);
82static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
83
84#ifdef IEEE80211_DEBUG
85/*
86 * Decide if an outbound management frame should be
87 * printed when debugging is enabled.  This filters some
88 * of the less interesting frames that come frequently
89 * (e.g. beacons).
90 */
91static __inline int
92doprint(struct ieee80211vap *vap, int subtype)
93{
94	switch (subtype) {
95	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
96		return (vap->iv_opmode == IEEE80211_M_IBSS);
97	}
98	return 1;
99}
100#endif
101
102/*
103 * Transmit a frame to the given destination on the given VAP.
104 *
105 * It's up to the caller to figure out the details of who this
106 * is going to and resolving the node.
107 *
108 * This routine takes care of queuing it for power save,
109 * A-MPDU state stuff, fast-frames state stuff, encapsulation
110 * if required, then passing it up to the driver layer.
111 *
112 * This routine (for now) consumes the mbuf and frees the node
113 * reference; it ideally will return a TX status which reflects
114 * whether the mbuf was consumed or not, so the caller can
115 * free the mbuf (if appropriate) and the node reference (again,
116 * if appropriate.)
117 */
118int
119ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
120    struct ieee80211_node *ni)
121{
122	struct ieee80211com *ic = vap->iv_ic;
123	struct ifnet *ifp = vap->iv_ifp;
124#ifdef IEEE80211_SUPPORT_SUPERG
125	int mcast;
126#endif
127
128	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
129	    (m->m_flags & M_PWR_SAV) == 0) {
130		/*
131		 * Station in power save mode; pass the frame
132		 * to the 802.11 layer and continue.  We'll get
133		 * the frame back when the time is right.
134		 * XXX lose WDS vap linkage?
135		 */
136		if (ieee80211_pwrsave(ni, m) != 0)
137			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
138		ieee80211_free_node(ni);
139
140		/*
141		 * We queued it fine, so tell the upper layer
142		 * that we consumed it.
143		 */
144		return (0);
145	}
146	/* calculate priority so drivers can find the tx queue */
147	if (ieee80211_classify(ni, m)) {
148		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
149		    ni->ni_macaddr, NULL,
150		    "%s", "classification failure");
151		vap->iv_stats.is_tx_classify++;
152		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
153		m_freem(m);
154		ieee80211_free_node(ni);
155
156		/* XXX better status? */
157		return (0);
158	}
159	/*
160	 * Stash the node pointer.  Note that we do this after
161	 * any call to ieee80211_dwds_mcast because that code
162	 * uses any existing value for rcvif to identify the
163	 * interface it (might have been) received on.
164	 */
165	m->m_pkthdr.rcvif = (void *)ni;
166#ifdef IEEE80211_SUPPORT_SUPERG
167	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
168#endif
169
170	BPF_MTAP(ifp, m);		/* 802.3 tx */
171
172	/*
173	 * Check if A-MPDU tx aggregation is setup or if we
174	 * should try to enable it.  The sta must be associated
175	 * with HT and A-MPDU enabled for use.  When the policy
176	 * routine decides we should enable A-MPDU we issue an
177	 * ADDBA request and wait for a reply.  The frame being
178	 * encapsulated will go out w/o using A-MPDU, or possibly
179	 * it might be collected by the driver and held/retransmit.
180	 * The default ic_ampdu_enable routine handles staggering
181	 * ADDBA requests in case the receiver NAK's us or we are
182	 * otherwise unable to establish a BA stream.
183	 */
184	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
185	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
186		if ((m->m_flags & M_EAPOL) == 0) {
187			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
188			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
189
190			ieee80211_txampdu_count_packet(tap);
191			if (IEEE80211_AMPDU_RUNNING(tap)) {
192				/*
193				 * Operational, mark frame for aggregation.
194				 *
195				 * XXX do tx aggregation here
196				 */
197				m->m_flags |= M_AMPDU_MPDU;
198			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
199			    ic->ic_ampdu_enable(ni, tap)) {
200				/*
201				 * Not negotiated yet, request service.
202				 */
203				ieee80211_ampdu_request(ni, tap);
204				/* XXX hold frame for reply? */
205			}
206		}
207	}
208
209#ifdef IEEE80211_SUPPORT_SUPERG
210	/*
211	 * Check for AMSDU/FF; queue for aggregation
212	 *
213	 * Note: we don't bother trying to do fast frames or
214	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
215	 * likely could do it for FF (because it's a magic
216	 * atheros tunnel LLC type) but I don't think we're going
217	 * to really need to.  For A-MSDU we'd have to set the
218	 * A-MSDU QoS bit in the wifi header, so we just plain
219	 * can't do it.
220	 *
221	 * Strictly speaking, we could actually /do/ A-MSDU / FF
222	 * with A-MPDU together which for certain circumstances
223	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
224	 * I'll ignore that for now so existing behaviour is maintained.
225	 * Later on it would be good to make "amsdu + ampdu" configurable.
226	 */
227	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
228		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
229			m = ieee80211_amsdu_check(ni, m);
230			if (m == NULL) {
231				/* NB: any ni ref held on stageq */
232				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
233				    "%s: amsdu_check queued frame\n",
234				    __func__);
235				return (0);
236			}
237		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
238		    IEEE80211_NODE_FF)) {
239			m = ieee80211_ff_check(ni, m);
240			if (m == NULL) {
241				/* NB: any ni ref held on stageq */
242				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
243				    "%s: ff_check queued frame\n",
244				    __func__);
245				return (0);
246			}
247		}
248	}
249#endif /* IEEE80211_SUPPORT_SUPERG */
250
251	/*
252	 * Grab the TX lock - serialise the TX process from this
253	 * point (where TX state is being checked/modified)
254	 * through to driver queue.
255	 */
256	IEEE80211_TX_LOCK(ic);
257
258	/*
259	 * XXX make the encap and transmit code a separate function
260	 * so things like the FF (and later A-MSDU) path can just call
261	 * it for flushed frames.
262	 */
263	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
264		/*
265		 * Encapsulate the packet in prep for transmission.
266		 */
267		m = ieee80211_encap(vap, ni, m);
268		if (m == NULL) {
269			/* NB: stat+msg handled in ieee80211_encap */
270			IEEE80211_TX_UNLOCK(ic);
271			ieee80211_free_node(ni);
272			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
273			return (ENOBUFS);
274		}
275	}
276	(void) ieee80211_parent_xmitpkt(ic, m);
277
278	/*
279	 * Unlock at this point - no need to hold it across
280	 * ieee80211_free_node() (ie, the comlock)
281	 */
282	IEEE80211_TX_UNLOCK(ic);
283	ic->ic_lastdata = ticks;
284
285	return (0);
286}
287
288
289
290/*
291 * Send the given mbuf through the given vap.
292 *
293 * This consumes the mbuf regardless of whether the transmit
294 * was successful or not.
295 *
296 * This does none of the initial checks that ieee80211_start()
297 * does (eg CAC timeout, interface wakeup) - the caller must
298 * do this first.
299 */
300static int
301ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
302{
303#define	IS_DWDS(vap) \
304	(vap->iv_opmode == IEEE80211_M_WDS && \
305	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
306	struct ieee80211com *ic = vap->iv_ic;
307	struct ifnet *ifp = vap->iv_ifp;
308	struct ieee80211_node *ni;
309	struct ether_header *eh;
310
311	/*
312	 * Cancel any background scan.
313	 */
314	if (ic->ic_flags & IEEE80211_F_SCAN)
315		ieee80211_cancel_anyscan(vap);
316	/*
317	 * Find the node for the destination so we can do
318	 * things like power save and fast frames aggregation.
319	 *
320	 * NB: past this point various code assumes the first
321	 *     mbuf has the 802.3 header present (and contiguous).
322	 */
323	ni = NULL;
324	if (m->m_len < sizeof(struct ether_header) &&
325	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
326		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
327		    "discard frame, %s\n", "m_pullup failed");
328		vap->iv_stats.is_tx_nobuf++;	/* XXX */
329		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
330		return (ENOBUFS);
331	}
332	eh = mtod(m, struct ether_header *);
333	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
334		if (IS_DWDS(vap)) {
335			/*
336			 * Only unicast frames from the above go out
337			 * DWDS vaps; multicast frames are handled by
338			 * dispatching the frame as it comes through
339			 * the AP vap (see below).
340			 */
341			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
342			    eh->ether_dhost, "mcast", "%s", "on DWDS");
343			vap->iv_stats.is_dwds_mcast++;
344			m_freem(m);
345			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
346			/* XXX better status? */
347			return (ENOBUFS);
348		}
349		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
350			/*
351			 * Spam DWDS vap's w/ multicast traffic.
352			 */
353			/* XXX only if dwds in use? */
354			ieee80211_dwds_mcast(vap, m);
355		}
356	}
357#ifdef IEEE80211_SUPPORT_MESH
358	if (vap->iv_opmode != IEEE80211_M_MBSS) {
359#endif
360		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
361		if (ni == NULL) {
362			/* NB: ieee80211_find_txnode does stat+msg */
363			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
364			m_freem(m);
365			/* XXX better status? */
366			return (ENOBUFS);
367		}
368		if (ni->ni_associd == 0 &&
369		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
370			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
371			    eh->ether_dhost, NULL,
372			    "sta not associated (type 0x%04x)",
373			    htons(eh->ether_type));
374			vap->iv_stats.is_tx_notassoc++;
375			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
376			m_freem(m);
377			ieee80211_free_node(ni);
378			/* XXX better status? */
379			return (ENOBUFS);
380		}
381#ifdef IEEE80211_SUPPORT_MESH
382	} else {
383		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
384			/*
385			 * Proxy station only if configured.
386			 */
387			if (!ieee80211_mesh_isproxyena(vap)) {
388				IEEE80211_DISCARD_MAC(vap,
389				    IEEE80211_MSG_OUTPUT |
390				    IEEE80211_MSG_MESH,
391				    eh->ether_dhost, NULL,
392				    "%s", "proxy not enabled");
393				vap->iv_stats.is_mesh_notproxy++;
394				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
395				m_freem(m);
396				/* XXX better status? */
397				return (ENOBUFS);
398			}
399			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
400			    "forward frame from DS SA(%6D), DA(%6D)\n",
401			    eh->ether_shost, ":",
402			    eh->ether_dhost, ":");
403			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
404		}
405		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
406		if (ni == NULL) {
407			/*
408			 * NB: ieee80211_mesh_discover holds/disposes
409			 * frame (e.g. queueing on path discovery).
410			 */
411			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
412			/* XXX better status? */
413			return (ENOBUFS);
414		}
415	}
416#endif
417
418	/*
419	 * We've resolved the sender, so attempt to transmit it.
420	 */
421
422	if (vap->iv_state == IEEE80211_S_SLEEP) {
423		/*
424		 * In power save; queue frame and then  wakeup device
425		 * for transmit.
426		 */
427		ic->ic_lastdata = ticks;
428		if (ieee80211_pwrsave(ni, m) != 0)
429			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
430		ieee80211_free_node(ni);
431		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
432		return (0);
433	}
434
435	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
436		return (ENOBUFS);
437	return (0);
438#undef	IS_DWDS
439}
440
441/*
442 * Start method for vap's.  All packets from the stack come
443 * through here.  We handle common processing of the packets
444 * before dispatching them to the underlying device.
445 *
446 * if_transmit() requires that the mbuf be consumed by this call
447 * regardless of the return condition.
448 */
449int
450ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
451{
452	struct ieee80211vap *vap = ifp->if_softc;
453	struct ieee80211com *ic = vap->iv_ic;
454
455	/*
456	 * No data frames go out unless we're running.
457	 * Note in particular this covers CAC and CSA
458	 * states (though maybe we should check muting
459	 * for CSA).
460	 */
461	if (vap->iv_state != IEEE80211_S_RUN &&
462	    vap->iv_state != IEEE80211_S_SLEEP) {
463		IEEE80211_LOCK(ic);
464		/* re-check under the com lock to avoid races */
465		if (vap->iv_state != IEEE80211_S_RUN &&
466		    vap->iv_state != IEEE80211_S_SLEEP) {
467			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
468			    "%s: ignore queue, in %s state\n",
469			    __func__, ieee80211_state_name[vap->iv_state]);
470			vap->iv_stats.is_tx_badstate++;
471			IEEE80211_UNLOCK(ic);
472			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
473			m_freem(m);
474			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
475			return (ENETDOWN);
476		}
477		IEEE80211_UNLOCK(ic);
478	}
479
480	/*
481	 * Sanitize mbuf flags for net80211 use.  We cannot
482	 * clear M_PWR_SAV or M_MORE_DATA because these may
483	 * be set for frames that are re-submitted from the
484	 * power save queue.
485	 *
486	 * NB: This must be done before ieee80211_classify as
487	 *     it marks EAPOL in frames with M_EAPOL.
488	 */
489	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
490
491	/*
492	 * Bump to the packet transmission path.
493	 * The mbuf will be consumed here.
494	 */
495	return (ieee80211_start_pkt(vap, m));
496}
497
498void
499ieee80211_vap_qflush(struct ifnet *ifp)
500{
501
502	/* Empty for now */
503}
504
505/*
506 * 802.11 raw output routine.
507 *
508 * XXX TODO: this (and other send routines) should correctly
509 * XXX keep the pwr mgmt bit set if it decides to call into the
510 * XXX driver to send a frame whilst the state is SLEEP.
511 *
512 * Otherwise the peer may decide that we're awake and flood us
513 * with traffic we are still too asleep to receive!
514 */
515int
516ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
517    struct mbuf *m, const struct ieee80211_bpf_params *params)
518{
519	struct ieee80211com *ic = vap->iv_ic;
520	int error;
521
522	/*
523	 * Set node - the caller has taken a reference, so ensure
524	 * that the mbuf has the same node value that
525	 * it would if it were going via the normal path.
526	 */
527	m->m_pkthdr.rcvif = (void *)ni;
528
529	/*
530	 * Attempt to add bpf transmit parameters.
531	 *
532	 * For now it's ok to fail; the raw_xmit api still takes
533	 * them as an option.
534	 *
535	 * Later on when ic_raw_xmit() has params removed,
536	 * they'll have to be added - so fail the transmit if
537	 * they can't be.
538	 */
539	if (params)
540		(void) ieee80211_add_xmit_params(m, params);
541
542	error = ic->ic_raw_xmit(ni, m, params);
543	if (error) {
544		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
545		ieee80211_free_node(ni);
546	}
547	return (error);
548}
549
550/*
551 * 802.11 output routine. This is (currently) used only to
552 * connect bpf write calls to the 802.11 layer for injecting
553 * raw 802.11 frames.
554 */
555int
556ieee80211_output(struct ifnet *ifp, struct mbuf *m,
557	const struct sockaddr *dst, struct route *ro)
558{
559#define senderr(e) do { error = (e); goto bad;} while (0)
560	struct ieee80211_node *ni = NULL;
561	struct ieee80211vap *vap;
562	struct ieee80211_frame *wh;
563	struct ieee80211com *ic = NULL;
564	int error;
565	int ret;
566
567	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
568		/*
569		 * Short-circuit requests if the vap is marked OACTIVE
570		 * as this can happen because a packet came down through
571		 * ieee80211_start before the vap entered RUN state in
572		 * which case it's ok to just drop the frame.  This
573		 * should not be necessary but callers of if_output don't
574		 * check OACTIVE.
575		 */
576		senderr(ENETDOWN);
577	}
578	vap = ifp->if_softc;
579	ic = vap->iv_ic;
580	/*
581	 * Hand to the 802.3 code if not tagged as
582	 * a raw 802.11 frame.
583	 */
584	if (dst->sa_family != AF_IEEE80211)
585		return vap->iv_output(ifp, m, dst, ro);
586#ifdef MAC
587	error = mac_ifnet_check_transmit(ifp, m);
588	if (error)
589		senderr(error);
590#endif
591	if (ifp->if_flags & IFF_MONITOR)
592		senderr(ENETDOWN);
593	if (!IFNET_IS_UP_RUNNING(ifp))
594		senderr(ENETDOWN);
595	if (vap->iv_state == IEEE80211_S_CAC) {
596		IEEE80211_DPRINTF(vap,
597		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
598		    "block %s frame in CAC state\n", "raw data");
599		vap->iv_stats.is_tx_badstate++;
600		senderr(EIO);		/* XXX */
601	} else if (vap->iv_state == IEEE80211_S_SCAN)
602		senderr(EIO);
603	/* XXX bypass bridge, pfil, carp, etc. */
604
605	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
606		senderr(EIO);	/* XXX */
607	wh = mtod(m, struct ieee80211_frame *);
608	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
609	    IEEE80211_FC0_VERSION_0)
610		senderr(EIO);	/* XXX */
611
612	/* locate destination node */
613	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
614	case IEEE80211_FC1_DIR_NODS:
615	case IEEE80211_FC1_DIR_FROMDS:
616		ni = ieee80211_find_txnode(vap, wh->i_addr1);
617		break;
618	case IEEE80211_FC1_DIR_TODS:
619	case IEEE80211_FC1_DIR_DSTODS:
620		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
621			senderr(EIO);	/* XXX */
622		ni = ieee80211_find_txnode(vap, wh->i_addr3);
623		break;
624	default:
625		senderr(EIO);	/* XXX */
626	}
627	if (ni == NULL) {
628		/*
629		 * Permit packets w/ bpf params through regardless
630		 * (see below about sa_len).
631		 */
632		if (dst->sa_len == 0)
633			senderr(EHOSTUNREACH);
634		ni = ieee80211_ref_node(vap->iv_bss);
635	}
636
637	/*
638	 * Sanitize mbuf for net80211 flags leaked from above.
639	 *
640	 * NB: This must be done before ieee80211_classify as
641	 *     it marks EAPOL in frames with M_EAPOL.
642	 */
643	m->m_flags &= ~M_80211_TX;
644
645	/* calculate priority so drivers can find the tx queue */
646	/* XXX assumes an 802.3 frame */
647	if (ieee80211_classify(ni, m))
648		senderr(EIO);		/* XXX */
649
650	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
651	IEEE80211_NODE_STAT(ni, tx_data);
652	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
653		IEEE80211_NODE_STAT(ni, tx_mcast);
654		m->m_flags |= M_MCAST;
655	} else
656		IEEE80211_NODE_STAT(ni, tx_ucast);
657	/* NB: ieee80211_encap does not include 802.11 header */
658	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
659
660	IEEE80211_TX_LOCK(ic);
661
662	/*
663	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
664	 * present by setting the sa_len field of the sockaddr (yes,
665	 * this is a hack).
666	 * NB: we assume sa_data is suitably aligned to cast.
667	 */
668	ret = ieee80211_raw_output(vap, ni, m,
669	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
670		dst->sa_data : NULL));
671	IEEE80211_TX_UNLOCK(ic);
672	return (ret);
673bad:
674	if (m != NULL)
675		m_freem(m);
676	if (ni != NULL)
677		ieee80211_free_node(ni);
678	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
679	return error;
680#undef senderr
681}
682
683/*
684 * Set the direction field and address fields of an outgoing
685 * frame.  Note this should be called early on in constructing
686 * a frame as it sets i_fc[1]; other bits can then be or'd in.
687 */
688void
689ieee80211_send_setup(
690	struct ieee80211_node *ni,
691	struct mbuf *m,
692	int type, int tid,
693	const uint8_t sa[IEEE80211_ADDR_LEN],
694	const uint8_t da[IEEE80211_ADDR_LEN],
695	const uint8_t bssid[IEEE80211_ADDR_LEN])
696{
697#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
698	struct ieee80211vap *vap = ni->ni_vap;
699	struct ieee80211_tx_ampdu *tap;
700	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
701	ieee80211_seq seqno;
702
703	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
704
705	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
706	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
707		switch (vap->iv_opmode) {
708		case IEEE80211_M_STA:
709			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
710			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
711			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
712			IEEE80211_ADDR_COPY(wh->i_addr3, da);
713			break;
714		case IEEE80211_M_IBSS:
715		case IEEE80211_M_AHDEMO:
716			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
717			IEEE80211_ADDR_COPY(wh->i_addr1, da);
718			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
719			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
720			break;
721		case IEEE80211_M_HOSTAP:
722			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
723			IEEE80211_ADDR_COPY(wh->i_addr1, da);
724			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
725			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
726			break;
727		case IEEE80211_M_WDS:
728			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
729			IEEE80211_ADDR_COPY(wh->i_addr1, da);
730			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
731			IEEE80211_ADDR_COPY(wh->i_addr3, da);
732			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
733			break;
734		case IEEE80211_M_MBSS:
735#ifdef IEEE80211_SUPPORT_MESH
736			if (IEEE80211_IS_MULTICAST(da)) {
737				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
738				/* XXX next hop */
739				IEEE80211_ADDR_COPY(wh->i_addr1, da);
740				IEEE80211_ADDR_COPY(wh->i_addr2,
741				    vap->iv_myaddr);
742			} else {
743				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
744				IEEE80211_ADDR_COPY(wh->i_addr1, da);
745				IEEE80211_ADDR_COPY(wh->i_addr2,
746				    vap->iv_myaddr);
747				IEEE80211_ADDR_COPY(wh->i_addr3, da);
748				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
749			}
750#endif
751			break;
752		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
753			break;
754		}
755	} else {
756		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
757		IEEE80211_ADDR_COPY(wh->i_addr1, da);
758		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
759#ifdef IEEE80211_SUPPORT_MESH
760		if (vap->iv_opmode == IEEE80211_M_MBSS)
761			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
762		else
763#endif
764			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
765	}
766	*(uint16_t *)&wh->i_dur[0] = 0;
767
768	tap = &ni->ni_tx_ampdu[tid];
769	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
770		m->m_flags |= M_AMPDU_MPDU;
771	else {
772		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
773				      type & IEEE80211_FC0_SUBTYPE_MASK))
774			seqno = ni->ni_txseqs[tid]++;
775		else
776			seqno = 0;
777
778		*(uint16_t *)&wh->i_seq[0] =
779		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
780		M_SEQNO_SET(m, seqno);
781	}
782
783	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
784		m->m_flags |= M_MCAST;
785#undef WH4
786}
787
788/*
789 * Send a management frame to the specified node.  The node pointer
790 * must have a reference as the pointer will be passed to the driver
791 * and potentially held for a long time.  If the frame is successfully
792 * dispatched to the driver, then it is responsible for freeing the
793 * reference (and potentially free'ing up any associated storage);
794 * otherwise deal with reclaiming any reference (on error).
795 */
796int
797ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
798	struct ieee80211_bpf_params *params)
799{
800	struct ieee80211vap *vap = ni->ni_vap;
801	struct ieee80211com *ic = ni->ni_ic;
802	struct ieee80211_frame *wh;
803	int ret;
804
805	KASSERT(ni != NULL, ("null node"));
806
807	if (vap->iv_state == IEEE80211_S_CAC) {
808		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
809		    ni, "block %s frame in CAC state",
810			ieee80211_mgt_subtype_name(type));
811		vap->iv_stats.is_tx_badstate++;
812		ieee80211_free_node(ni);
813		m_freem(m);
814		return EIO;		/* XXX */
815	}
816
817	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
818	if (m == NULL) {
819		ieee80211_free_node(ni);
820		return ENOMEM;
821	}
822
823	IEEE80211_TX_LOCK(ic);
824
825	wh = mtod(m, struct ieee80211_frame *);
826	ieee80211_send_setup(ni, m,
827	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
828	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
829	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
830		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
831		    "encrypting frame (%s)", __func__);
832		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
833	}
834	m->m_flags |= M_ENCAP;		/* mark encapsulated */
835
836	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
837	M_WME_SETAC(m, params->ibp_pri);
838
839#ifdef IEEE80211_DEBUG
840	/* avoid printing too many frames */
841	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
842	    ieee80211_msg_dumppkts(vap)) {
843		printf("[%s] send %s on channel %u\n",
844		    ether_sprintf(wh->i_addr1),
845		    ieee80211_mgt_subtype_name(type),
846		    ieee80211_chan2ieee(ic, ic->ic_curchan));
847	}
848#endif
849	IEEE80211_NODE_STAT(ni, tx_mgmt);
850
851	ret = ieee80211_raw_output(vap, ni, m, params);
852	IEEE80211_TX_UNLOCK(ic);
853	return (ret);
854}
855
856static void
857ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
858    int status)
859{
860	struct ieee80211vap *vap = ni->ni_vap;
861
862	wakeup(vap);
863}
864
865/*
866 * Send a null data frame to the specified node.  If the station
867 * is setup for QoS then a QoS Null Data frame is constructed.
868 * If this is a WDS station then a 4-address frame is constructed.
869 *
870 * NB: the caller is assumed to have setup a node reference
871 *     for use; this is necessary to deal with a race condition
872 *     when probing for inactive stations.  Like ieee80211_mgmt_output
873 *     we must cleanup any node reference on error;  however we
874 *     can safely just unref it as we know it will never be the
875 *     last reference to the node.
876 */
877int
878ieee80211_send_nulldata(struct ieee80211_node *ni)
879{
880	struct ieee80211vap *vap = ni->ni_vap;
881	struct ieee80211com *ic = ni->ni_ic;
882	struct mbuf *m;
883	struct ieee80211_frame *wh;
884	int hdrlen;
885	uint8_t *frm;
886	int ret;
887
888	if (vap->iv_state == IEEE80211_S_CAC) {
889		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
890		    ni, "block %s frame in CAC state", "null data");
891		ieee80211_unref_node(&ni);
892		vap->iv_stats.is_tx_badstate++;
893		return EIO;		/* XXX */
894	}
895
896	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
897		hdrlen = sizeof(struct ieee80211_qosframe);
898	else
899		hdrlen = sizeof(struct ieee80211_frame);
900	/* NB: only WDS vap's get 4-address frames */
901	if (vap->iv_opmode == IEEE80211_M_WDS)
902		hdrlen += IEEE80211_ADDR_LEN;
903	if (ic->ic_flags & IEEE80211_F_DATAPAD)
904		hdrlen = roundup(hdrlen, sizeof(uint32_t));
905
906	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
907	if (m == NULL) {
908		/* XXX debug msg */
909		ieee80211_unref_node(&ni);
910		vap->iv_stats.is_tx_nobuf++;
911		return ENOMEM;
912	}
913	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
914	    ("leading space %zd", M_LEADINGSPACE(m)));
915	M_PREPEND(m, hdrlen, M_NOWAIT);
916	if (m == NULL) {
917		/* NB: cannot happen */
918		ieee80211_free_node(ni);
919		return ENOMEM;
920	}
921
922	IEEE80211_TX_LOCK(ic);
923
924	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
925	if (ni->ni_flags & IEEE80211_NODE_QOS) {
926		const int tid = WME_AC_TO_TID(WME_AC_BE);
927		uint8_t *qos;
928
929		ieee80211_send_setup(ni, m,
930		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
931		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
932
933		if (vap->iv_opmode == IEEE80211_M_WDS)
934			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
935		else
936			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
937		qos[0] = tid & IEEE80211_QOS_TID;
938		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
939			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
940		qos[1] = 0;
941	} else {
942		ieee80211_send_setup(ni, m,
943		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
944		    IEEE80211_NONQOS_TID,
945		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
946	}
947	if (vap->iv_opmode != IEEE80211_M_WDS) {
948		/* NB: power management bit is never sent by an AP */
949		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
950		    vap->iv_opmode != IEEE80211_M_HOSTAP)
951			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
952	}
953	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
954	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
955		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
956		    NULL);
957	}
958	m->m_len = m->m_pkthdr.len = hdrlen;
959	m->m_flags |= M_ENCAP;		/* mark encapsulated */
960
961	M_WME_SETAC(m, WME_AC_BE);
962
963	IEEE80211_NODE_STAT(ni, tx_data);
964
965	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
966	    "send %snull data frame on channel %u, pwr mgt %s",
967	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
968	    ieee80211_chan2ieee(ic, ic->ic_curchan),
969	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
970
971	ret = ieee80211_raw_output(vap, ni, m, NULL);
972	IEEE80211_TX_UNLOCK(ic);
973	return (ret);
974}
975
976/*
977 * Assign priority to a frame based on any vlan tag assigned
978 * to the station and/or any Diffserv setting in an IP header.
979 * Finally, if an ACM policy is setup (in station mode) it's
980 * applied.
981 */
982int
983ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
984{
985	const struct ether_header *eh = mtod(m, struct ether_header *);
986	int v_wme_ac, d_wme_ac, ac;
987
988	/*
989	 * Always promote PAE/EAPOL frames to high priority.
990	 */
991	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
992		/* NB: mark so others don't need to check header */
993		m->m_flags |= M_EAPOL;
994		ac = WME_AC_VO;
995		goto done;
996	}
997	/*
998	 * Non-qos traffic goes to BE.
999	 */
1000	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1001		ac = WME_AC_BE;
1002		goto done;
1003	}
1004
1005	/*
1006	 * If node has a vlan tag then all traffic
1007	 * to it must have a matching tag.
1008	 */
1009	v_wme_ac = 0;
1010	if (ni->ni_vlan != 0) {
1011		 if ((m->m_flags & M_VLANTAG) == 0) {
1012			IEEE80211_NODE_STAT(ni, tx_novlantag);
1013			return 1;
1014		}
1015		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1016		    EVL_VLANOFTAG(ni->ni_vlan)) {
1017			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1018			return 1;
1019		}
1020		/* map vlan priority to AC */
1021		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1022	}
1023
1024	/* XXX m_copydata may be too slow for fast path */
1025#ifdef INET
1026	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1027		uint8_t tos;
1028		/*
1029		 * IP frame, map the DSCP bits from the TOS field.
1030		 */
1031		/* NB: ip header may not be in first mbuf */
1032		m_copydata(m, sizeof(struct ether_header) +
1033		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1034		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1035		d_wme_ac = TID_TO_WME_AC(tos);
1036	} else {
1037#endif /* INET */
1038#ifdef INET6
1039	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1040		uint32_t flow;
1041		uint8_t tos;
1042		/*
1043		 * IPv6 frame, map the DSCP bits from the traffic class field.
1044		 */
1045		m_copydata(m, sizeof(struct ether_header) +
1046		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1047		    (caddr_t) &flow);
1048		tos = (uint8_t)(ntohl(flow) >> 20);
1049		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1050		d_wme_ac = TID_TO_WME_AC(tos);
1051	} else {
1052#endif /* INET6 */
1053		d_wme_ac = WME_AC_BE;
1054#ifdef INET6
1055	}
1056#endif
1057#ifdef INET
1058	}
1059#endif
1060	/*
1061	 * Use highest priority AC.
1062	 */
1063	if (v_wme_ac > d_wme_ac)
1064		ac = v_wme_ac;
1065	else
1066		ac = d_wme_ac;
1067
1068	/*
1069	 * Apply ACM policy.
1070	 */
1071	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1072		static const int acmap[4] = {
1073			WME_AC_BK,	/* WME_AC_BE */
1074			WME_AC_BK,	/* WME_AC_BK */
1075			WME_AC_BE,	/* WME_AC_VI */
1076			WME_AC_VI,	/* WME_AC_VO */
1077		};
1078		struct ieee80211com *ic = ni->ni_ic;
1079
1080		while (ac != WME_AC_BK &&
1081		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1082			ac = acmap[ac];
1083	}
1084done:
1085	M_WME_SETAC(m, ac);
1086	return 0;
1087}
1088
1089/*
1090 * Insure there is sufficient contiguous space to encapsulate the
1091 * 802.11 data frame.  If room isn't already there, arrange for it.
1092 * Drivers and cipher modules assume we have done the necessary work
1093 * and fail rudely if they don't find the space they need.
1094 */
1095struct mbuf *
1096ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1097	struct ieee80211_key *key, struct mbuf *m)
1098{
1099#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1100	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1101
1102	if (key != NULL) {
1103		/* XXX belongs in crypto code? */
1104		needed_space += key->wk_cipher->ic_header;
1105		/* XXX frags */
1106		/*
1107		 * When crypto is being done in the host we must insure
1108		 * the data are writable for the cipher routines; clone
1109		 * a writable mbuf chain.
1110		 * XXX handle SWMIC specially
1111		 */
1112		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1113			m = m_unshare(m, M_NOWAIT);
1114			if (m == NULL) {
1115				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1116				    "%s: cannot get writable mbuf\n", __func__);
1117				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1118				return NULL;
1119			}
1120		}
1121	}
1122	/*
1123	 * We know we are called just before stripping an Ethernet
1124	 * header and prepending an LLC header.  This means we know
1125	 * there will be
1126	 *	sizeof(struct ether_header) - sizeof(struct llc)
1127	 * bytes recovered to which we need additional space for the
1128	 * 802.11 header and any crypto header.
1129	 */
1130	/* XXX check trailing space and copy instead? */
1131	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1132		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1133		if (n == NULL) {
1134			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1135			    "%s: cannot expand storage\n", __func__);
1136			vap->iv_stats.is_tx_nobuf++;
1137			m_freem(m);
1138			return NULL;
1139		}
1140		KASSERT(needed_space <= MHLEN,
1141		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1142		/*
1143		 * Setup new mbuf to have leading space to prepend the
1144		 * 802.11 header and any crypto header bits that are
1145		 * required (the latter are added when the driver calls
1146		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1147		 */
1148		/* NB: must be first 'cuz it clobbers m_data */
1149		m_move_pkthdr(n, m);
1150		n->m_len = 0;			/* NB: m_gethdr does not set */
1151		n->m_data += needed_space;
1152		/*
1153		 * Pull up Ethernet header to create the expected layout.
1154		 * We could use m_pullup but that's overkill (i.e. we don't
1155		 * need the actual data) and it cannot fail so do it inline
1156		 * for speed.
1157		 */
1158		/* NB: struct ether_header is known to be contiguous */
1159		n->m_len += sizeof(struct ether_header);
1160		m->m_len -= sizeof(struct ether_header);
1161		m->m_data += sizeof(struct ether_header);
1162		/*
1163		 * Replace the head of the chain.
1164		 */
1165		n->m_next = m;
1166		m = n;
1167	}
1168	return m;
1169#undef TO_BE_RECLAIMED
1170}
1171
1172/*
1173 * Return the transmit key to use in sending a unicast frame.
1174 * If a unicast key is set we use that.  When no unicast key is set
1175 * we fall back to the default transmit key.
1176 */
1177static __inline struct ieee80211_key *
1178ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1179	struct ieee80211_node *ni)
1180{
1181	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1182		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1183		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1184			return NULL;
1185		return &vap->iv_nw_keys[vap->iv_def_txkey];
1186	} else {
1187		return &ni->ni_ucastkey;
1188	}
1189}
1190
1191/*
1192 * Return the transmit key to use in sending a multicast frame.
1193 * Multicast traffic always uses the group key which is installed as
1194 * the default tx key.
1195 */
1196static __inline struct ieee80211_key *
1197ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1198	struct ieee80211_node *ni)
1199{
1200	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1201	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1202		return NULL;
1203	return &vap->iv_nw_keys[vap->iv_def_txkey];
1204}
1205
1206/*
1207 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1208 * If an error is encountered NULL is returned.  The caller is required
1209 * to provide a node reference and pullup the ethernet header in the
1210 * first mbuf.
1211 *
1212 * NB: Packet is assumed to be processed by ieee80211_classify which
1213 *     marked EAPOL frames w/ M_EAPOL.
1214 */
1215struct mbuf *
1216ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1217    struct mbuf *m)
1218{
1219#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1220#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1221	struct ieee80211com *ic = ni->ni_ic;
1222#ifdef IEEE80211_SUPPORT_MESH
1223	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1224	struct ieee80211_meshcntl_ae10 *mc;
1225	struct ieee80211_mesh_route *rt = NULL;
1226	int dir = -1;
1227#endif
1228	struct ether_header eh;
1229	struct ieee80211_frame *wh;
1230	struct ieee80211_key *key;
1231	struct llc *llc;
1232	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1233	ieee80211_seq seqno;
1234	int meshhdrsize, meshae;
1235	uint8_t *qos;
1236	int is_amsdu = 0;
1237
1238	IEEE80211_TX_LOCK_ASSERT(ic);
1239
1240	/*
1241	 * Copy existing Ethernet header to a safe place.  The
1242	 * rest of the code assumes it's ok to strip it when
1243	 * reorganizing state for the final encapsulation.
1244	 */
1245	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1246	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1247
1248	/*
1249	 * Insure space for additional headers.  First identify
1250	 * transmit key to use in calculating any buffer adjustments
1251	 * required.  This is also used below to do privacy
1252	 * encapsulation work.  Then calculate the 802.11 header
1253	 * size and any padding required by the driver.
1254	 *
1255	 * Note key may be NULL if we fall back to the default
1256	 * transmit key and that is not set.  In that case the
1257	 * buffer may not be expanded as needed by the cipher
1258	 * routines, but they will/should discard it.
1259	 */
1260	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1261		if (vap->iv_opmode == IEEE80211_M_STA ||
1262		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1263		    (vap->iv_opmode == IEEE80211_M_WDS &&
1264		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1265			key = ieee80211_crypto_getucastkey(vap, ni);
1266		else
1267			key = ieee80211_crypto_getmcastkey(vap, ni);
1268		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1269			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1270			    eh.ether_dhost,
1271			    "no default transmit key (%s) deftxkey %u",
1272			    __func__, vap->iv_def_txkey);
1273			vap->iv_stats.is_tx_nodefkey++;
1274			goto bad;
1275		}
1276	} else
1277		key = NULL;
1278	/*
1279	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1280	 * frames so suppress use.  This may be an issue if other
1281	 * ap's require all data frames to be QoS-encapsulated
1282	 * once negotiated in which case we'll need to make this
1283	 * configurable.
1284	 * NB: mesh data frames are QoS.
1285	 */
1286	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1287	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1288	    (m->m_flags & M_EAPOL) == 0;
1289	if (addqos)
1290		hdrsize = sizeof(struct ieee80211_qosframe);
1291	else
1292		hdrsize = sizeof(struct ieee80211_frame);
1293#ifdef IEEE80211_SUPPORT_MESH
1294	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1295		/*
1296		 * Mesh data frames are encapsulated according to the
1297		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1298		 * o Group Addressed data (aka multicast) originating
1299		 *   at the local sta are sent w/ 3-address format and
1300		 *   address extension mode 00
1301		 * o Individually Addressed data (aka unicast) originating
1302		 *   at the local sta are sent w/ 4-address format and
1303		 *   address extension mode 00
1304		 * o Group Addressed data forwarded from a non-mesh sta are
1305		 *   sent w/ 3-address format and address extension mode 01
1306		 * o Individually Address data from another sta are sent
1307		 *   w/ 4-address format and address extension mode 10
1308		 */
1309		is4addr = 0;		/* NB: don't use, disable */
1310		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1311			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1312			KASSERT(rt != NULL, ("route is NULL"));
1313			dir = IEEE80211_FC1_DIR_DSTODS;
1314			hdrsize += IEEE80211_ADDR_LEN;
1315			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1316				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1317				    vap->iv_myaddr)) {
1318					IEEE80211_NOTE_MAC(vap,
1319					    IEEE80211_MSG_MESH,
1320					    eh.ether_dhost,
1321					    "%s", "trying to send to ourself");
1322					goto bad;
1323				}
1324				meshae = IEEE80211_MESH_AE_10;
1325				meshhdrsize =
1326				    sizeof(struct ieee80211_meshcntl_ae10);
1327			} else {
1328				meshae = IEEE80211_MESH_AE_00;
1329				meshhdrsize =
1330				    sizeof(struct ieee80211_meshcntl);
1331			}
1332		} else {
1333			dir = IEEE80211_FC1_DIR_FROMDS;
1334			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1335				/* proxy group */
1336				meshae = IEEE80211_MESH_AE_01;
1337				meshhdrsize =
1338				    sizeof(struct ieee80211_meshcntl_ae01);
1339			} else {
1340				/* group */
1341				meshae = IEEE80211_MESH_AE_00;
1342				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1343			}
1344		}
1345	} else {
1346#endif
1347		/*
1348		 * 4-address frames need to be generated for:
1349		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1350		 * o packets sent through a vap marked for relaying
1351		 *   (e.g. a station operating with dynamic WDS)
1352		 */
1353		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1354		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1355		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1356		if (is4addr)
1357			hdrsize += IEEE80211_ADDR_LEN;
1358		meshhdrsize = meshae = 0;
1359#ifdef IEEE80211_SUPPORT_MESH
1360	}
1361#endif
1362	/*
1363	 * Honor driver DATAPAD requirement.
1364	 */
1365	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1366		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1367	else
1368		hdrspace = hdrsize;
1369
1370	if (__predict_true((m->m_flags & M_FF) == 0)) {
1371		/*
1372		 * Normal frame.
1373		 */
1374		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1375		if (m == NULL) {
1376			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1377			goto bad;
1378		}
1379		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1380		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1381		llc = mtod(m, struct llc *);
1382		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1383		llc->llc_control = LLC_UI;
1384		llc->llc_snap.org_code[0] = 0;
1385		llc->llc_snap.org_code[1] = 0;
1386		llc->llc_snap.org_code[2] = 0;
1387		llc->llc_snap.ether_type = eh.ether_type;
1388	} else {
1389#ifdef IEEE80211_SUPPORT_SUPERG
1390		/*
1391		 * Aggregated frame.  Check if it's for AMSDU or FF.
1392		 *
1393		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1394		 * anywhere for some reason.  But, since 11n requires
1395		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1396		 */
1397		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1398		if (ieee80211_amsdu_tx_ok(ni)) {
1399			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1400			is_amsdu = 1;
1401		} else {
1402			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1403		}
1404		if (m == NULL)
1405#endif
1406			goto bad;
1407	}
1408	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1409
1410	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1411	if (m == NULL) {
1412		vap->iv_stats.is_tx_nobuf++;
1413		goto bad;
1414	}
1415	wh = mtod(m, struct ieee80211_frame *);
1416	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1417	*(uint16_t *)wh->i_dur = 0;
1418	qos = NULL;	/* NB: quiet compiler */
1419	if (is4addr) {
1420		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1421		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1422		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1423		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1424		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1425	} else switch (vap->iv_opmode) {
1426	case IEEE80211_M_STA:
1427		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1428		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1429		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1430		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1431		break;
1432	case IEEE80211_M_IBSS:
1433	case IEEE80211_M_AHDEMO:
1434		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1435		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1436		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1437		/*
1438		 * NB: always use the bssid from iv_bss as the
1439		 *     neighbor's may be stale after an ibss merge
1440		 */
1441		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1442		break;
1443	case IEEE80211_M_HOSTAP:
1444		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1445		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1446		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1447		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1448		break;
1449#ifdef IEEE80211_SUPPORT_MESH
1450	case IEEE80211_M_MBSS:
1451		/* NB: offset by hdrspace to deal with DATAPAD */
1452		mc = (struct ieee80211_meshcntl_ae10 *)
1453		     (mtod(m, uint8_t *) + hdrspace);
1454		wh->i_fc[1] = dir;
1455		switch (meshae) {
1456		case IEEE80211_MESH_AE_00:	/* no proxy */
1457			mc->mc_flags = 0;
1458			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1459				IEEE80211_ADDR_COPY(wh->i_addr1,
1460				    ni->ni_macaddr);
1461				IEEE80211_ADDR_COPY(wh->i_addr2,
1462				    vap->iv_myaddr);
1463				IEEE80211_ADDR_COPY(wh->i_addr3,
1464				    eh.ether_dhost);
1465				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1466				    eh.ether_shost);
1467				qos =((struct ieee80211_qosframe_addr4 *)
1468				    wh)->i_qos;
1469			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1470				 /* mcast */
1471				IEEE80211_ADDR_COPY(wh->i_addr1,
1472				    eh.ether_dhost);
1473				IEEE80211_ADDR_COPY(wh->i_addr2,
1474				    vap->iv_myaddr);
1475				IEEE80211_ADDR_COPY(wh->i_addr3,
1476				    eh.ether_shost);
1477				qos = ((struct ieee80211_qosframe *)
1478				    wh)->i_qos;
1479			}
1480			break;
1481		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1482			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1483			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1484			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1485			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1486			mc->mc_flags = 1;
1487			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1488			    eh.ether_shost);
1489			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1490			break;
1491		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1492			KASSERT(rt != NULL, ("route is NULL"));
1493			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1494			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1495			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1496			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1497			mc->mc_flags = IEEE80211_MESH_AE_10;
1498			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1499			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1500			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1501			break;
1502		default:
1503			KASSERT(0, ("meshae %d", meshae));
1504			break;
1505		}
1506		mc->mc_ttl = ms->ms_ttl;
1507		ms->ms_seq++;
1508		le32enc(mc->mc_seq, ms->ms_seq);
1509		break;
1510#endif
1511	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1512	default:
1513		goto bad;
1514	}
1515	if (m->m_flags & M_MORE_DATA)
1516		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1517	if (addqos) {
1518		int ac, tid;
1519
1520		if (is4addr) {
1521			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1522		/* NB: mesh case handled earlier */
1523		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1524			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1525		ac = M_WME_GETAC(m);
1526		/* map from access class/queue to 11e header priorty value */
1527		tid = WME_AC_TO_TID(ac);
1528		qos[0] = tid & IEEE80211_QOS_TID;
1529		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1530			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1531#ifdef IEEE80211_SUPPORT_MESH
1532		if (vap->iv_opmode == IEEE80211_M_MBSS)
1533			qos[1] = IEEE80211_QOS_MC;
1534		else
1535#endif
1536			qos[1] = 0;
1537		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1538
1539		/*
1540		 * If this is an A-MSDU then ensure we set the
1541		 * relevant field.
1542		 */
1543		if (is_amsdu)
1544			qos[0] |= IEEE80211_QOS_AMSDU;
1545
1546		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1547			/*
1548			 * NB: don't assign a sequence # to potential
1549			 * aggregates; we expect this happens at the
1550			 * point the frame comes off any aggregation q
1551			 * as otherwise we may introduce holes in the
1552			 * BA sequence space and/or make window accouting
1553			 * more difficult.
1554			 *
1555			 * XXX may want to control this with a driver
1556			 * capability; this may also change when we pull
1557			 * aggregation up into net80211
1558			 */
1559			seqno = ni->ni_txseqs[tid]++;
1560			*(uint16_t *)wh->i_seq =
1561			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1562			M_SEQNO_SET(m, seqno);
1563		}
1564	} else {
1565		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1566		*(uint16_t *)wh->i_seq =
1567		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1568		M_SEQNO_SET(m, seqno);
1569
1570		/*
1571		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1572		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1573		 */
1574		if (is_amsdu)
1575			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1576			    __func__);
1577	}
1578
1579
1580	/* check if xmit fragmentation is required */
1581	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1582	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1583	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1584	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1585	if (key != NULL) {
1586		/*
1587		 * IEEE 802.1X: send EAPOL frames always in the clear.
1588		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1589		 */
1590		if ((m->m_flags & M_EAPOL) == 0 ||
1591		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1592		     (vap->iv_opmode == IEEE80211_M_STA ?
1593		      !IEEE80211_KEY_UNDEFINED(key) :
1594		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1595			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1596			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1597				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1598				    eh.ether_dhost,
1599				    "%s", "enmic failed, discard frame");
1600				vap->iv_stats.is_crypto_enmicfail++;
1601				goto bad;
1602			}
1603		}
1604	}
1605	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1606	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1607		goto bad;
1608
1609	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1610
1611	IEEE80211_NODE_STAT(ni, tx_data);
1612	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1613		IEEE80211_NODE_STAT(ni, tx_mcast);
1614		m->m_flags |= M_MCAST;
1615	} else
1616		IEEE80211_NODE_STAT(ni, tx_ucast);
1617	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1618
1619	return m;
1620bad:
1621	if (m != NULL)
1622		m_freem(m);
1623	return NULL;
1624#undef WH4
1625#undef MC01
1626}
1627
1628void
1629ieee80211_free_mbuf(struct mbuf *m)
1630{
1631	struct mbuf *next;
1632
1633	if (m == NULL)
1634		return;
1635
1636	do {
1637		next = m->m_nextpkt;
1638		m->m_nextpkt = NULL;
1639		m_freem(m);
1640	} while ((m = next) != NULL);
1641}
1642
1643/*
1644 * Fragment the frame according to the specified mtu.
1645 * The size of the 802.11 header (w/o padding) is provided
1646 * so we don't need to recalculate it.  We create a new
1647 * mbuf for each fragment and chain it through m_nextpkt;
1648 * we might be able to optimize this by reusing the original
1649 * packet's mbufs but that is significantly more complicated.
1650 */
1651static int
1652ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1653	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1654{
1655	struct ieee80211com *ic = vap->iv_ic;
1656	struct ieee80211_frame *wh, *whf;
1657	struct mbuf *m, *prev;
1658	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1659	u_int hdrspace;
1660
1661	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1662	KASSERT(m0->m_pkthdr.len > mtu,
1663		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1664
1665	/*
1666	 * Honor driver DATAPAD requirement.
1667	 */
1668	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1669		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1670	else
1671		hdrspace = hdrsize;
1672
1673	wh = mtod(m0, struct ieee80211_frame *);
1674	/* NB: mark the first frag; it will be propagated below */
1675	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1676	totalhdrsize = hdrspace + ciphdrsize;
1677	fragno = 1;
1678	off = mtu - ciphdrsize;
1679	remainder = m0->m_pkthdr.len - off;
1680	prev = m0;
1681	do {
1682		fragsize = totalhdrsize + remainder;
1683		if (fragsize > mtu)
1684			fragsize = mtu;
1685		/* XXX fragsize can be >2048! */
1686		KASSERT(fragsize < MCLBYTES,
1687			("fragment size %u too big!", fragsize));
1688		if (fragsize > MHLEN)
1689			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1690		else
1691			m = m_gethdr(M_NOWAIT, MT_DATA);
1692		if (m == NULL)
1693			goto bad;
1694		/* leave room to prepend any cipher header */
1695		m_align(m, fragsize - ciphdrsize);
1696
1697		/*
1698		 * Form the header in the fragment.  Note that since
1699		 * we mark the first fragment with the MORE_FRAG bit
1700		 * it automatically is propagated to each fragment; we
1701		 * need only clear it on the last fragment (done below).
1702		 * NB: frag 1+ dont have Mesh Control field present.
1703		 */
1704		whf = mtod(m, struct ieee80211_frame *);
1705		memcpy(whf, wh, hdrsize);
1706#ifdef IEEE80211_SUPPORT_MESH
1707		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1708			if (IEEE80211_IS_DSTODS(wh))
1709				((struct ieee80211_qosframe_addr4 *)
1710				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1711			else
1712				((struct ieee80211_qosframe *)
1713				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1714		}
1715#endif
1716		*(uint16_t *)&whf->i_seq[0] |= htole16(
1717			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1718				IEEE80211_SEQ_FRAG_SHIFT);
1719		fragno++;
1720
1721		payload = fragsize - totalhdrsize;
1722		/* NB: destination is known to be contiguous */
1723
1724		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1725		m->m_len = hdrspace + payload;
1726		m->m_pkthdr.len = hdrspace + payload;
1727		m->m_flags |= M_FRAG;
1728
1729		/* chain up the fragment */
1730		prev->m_nextpkt = m;
1731		prev = m;
1732
1733		/* deduct fragment just formed */
1734		remainder -= payload;
1735		off += payload;
1736	} while (remainder != 0);
1737
1738	/* set the last fragment */
1739	m->m_flags |= M_LASTFRAG;
1740	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1741
1742	/* strip first mbuf now that everything has been copied */
1743	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1744	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1745
1746	vap->iv_stats.is_tx_fragframes++;
1747	vap->iv_stats.is_tx_frags += fragno-1;
1748
1749	return 1;
1750bad:
1751	/* reclaim fragments but leave original frame for caller to free */
1752	ieee80211_free_mbuf(m0->m_nextpkt);
1753	m0->m_nextpkt = NULL;
1754	return 0;
1755}
1756
1757/*
1758 * Add a supported rates element id to a frame.
1759 */
1760uint8_t *
1761ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1762{
1763	int nrates;
1764
1765	*frm++ = IEEE80211_ELEMID_RATES;
1766	nrates = rs->rs_nrates;
1767	if (nrates > IEEE80211_RATE_SIZE)
1768		nrates = IEEE80211_RATE_SIZE;
1769	*frm++ = nrates;
1770	memcpy(frm, rs->rs_rates, nrates);
1771	return frm + nrates;
1772}
1773
1774/*
1775 * Add an extended supported rates element id to a frame.
1776 */
1777uint8_t *
1778ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1779{
1780	/*
1781	 * Add an extended supported rates element if operating in 11g mode.
1782	 */
1783	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1784		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1785		*frm++ = IEEE80211_ELEMID_XRATES;
1786		*frm++ = nrates;
1787		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1788		frm += nrates;
1789	}
1790	return frm;
1791}
1792
1793/*
1794 * Add an ssid element to a frame.
1795 */
1796uint8_t *
1797ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1798{
1799	*frm++ = IEEE80211_ELEMID_SSID;
1800	*frm++ = len;
1801	memcpy(frm, ssid, len);
1802	return frm + len;
1803}
1804
1805/*
1806 * Add an erp element to a frame.
1807 */
1808static uint8_t *
1809ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1810{
1811	uint8_t erp;
1812
1813	*frm++ = IEEE80211_ELEMID_ERP;
1814	*frm++ = 1;
1815	erp = 0;
1816	if (ic->ic_nonerpsta != 0)
1817		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1818	if (ic->ic_flags & IEEE80211_F_USEPROT)
1819		erp |= IEEE80211_ERP_USE_PROTECTION;
1820	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1821		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1822	*frm++ = erp;
1823	return frm;
1824}
1825
1826/*
1827 * Add a CFParams element to a frame.
1828 */
1829static uint8_t *
1830ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1831{
1832#define	ADDSHORT(frm, v) do {	\
1833	le16enc(frm, v);	\
1834	frm += 2;		\
1835} while (0)
1836	*frm++ = IEEE80211_ELEMID_CFPARMS;
1837	*frm++ = 6;
1838	*frm++ = 0;		/* CFP count */
1839	*frm++ = 2;		/* CFP period */
1840	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1841	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1842	return frm;
1843#undef ADDSHORT
1844}
1845
1846static __inline uint8_t *
1847add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1848{
1849	memcpy(frm, ie->ie_data, ie->ie_len);
1850	return frm + ie->ie_len;
1851}
1852
1853static __inline uint8_t *
1854add_ie(uint8_t *frm, const uint8_t *ie)
1855{
1856	memcpy(frm, ie, 2 + ie[1]);
1857	return frm + 2 + ie[1];
1858}
1859
1860#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1861/*
1862 * Add a WME information element to a frame.
1863 */
1864uint8_t *
1865ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1866{
1867	static const struct ieee80211_wme_info info = {
1868		.wme_id		= IEEE80211_ELEMID_VENDOR,
1869		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1870		.wme_oui	= { WME_OUI_BYTES },
1871		.wme_type	= WME_OUI_TYPE,
1872		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1873		.wme_version	= WME_VERSION,
1874		.wme_info	= 0,
1875	};
1876	memcpy(frm, &info, sizeof(info));
1877	return frm + sizeof(info);
1878}
1879
1880/*
1881 * Add a WME parameters element to a frame.
1882 */
1883static uint8_t *
1884ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1885{
1886#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1887#define	ADDSHORT(frm, v) do {	\
1888	le16enc(frm, v);	\
1889	frm += 2;		\
1890} while (0)
1891	/* NB: this works 'cuz a param has an info at the front */
1892	static const struct ieee80211_wme_info param = {
1893		.wme_id		= IEEE80211_ELEMID_VENDOR,
1894		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1895		.wme_oui	= { WME_OUI_BYTES },
1896		.wme_type	= WME_OUI_TYPE,
1897		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1898		.wme_version	= WME_VERSION,
1899	};
1900	int i;
1901
1902	memcpy(frm, &param, sizeof(param));
1903	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1904	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1905	*frm++ = 0;					/* reserved field */
1906	for (i = 0; i < WME_NUM_AC; i++) {
1907		const struct wmeParams *ac =
1908		       &wme->wme_bssChanParams.cap_wmeParams[i];
1909		*frm++ = SM(i, WME_PARAM_ACI)
1910		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1911		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1912		       ;
1913		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1914		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1915		       ;
1916		ADDSHORT(frm, ac->wmep_txopLimit);
1917	}
1918	return frm;
1919#undef SM
1920#undef ADDSHORT
1921}
1922#undef WME_OUI_BYTES
1923
1924/*
1925 * Add an 11h Power Constraint element to a frame.
1926 */
1927static uint8_t *
1928ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1929{
1930	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1931	/* XXX per-vap tx power limit? */
1932	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1933
1934	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1935	frm[1] = 1;
1936	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1937	return frm + 3;
1938}
1939
1940/*
1941 * Add an 11h Power Capability element to a frame.
1942 */
1943static uint8_t *
1944ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1945{
1946	frm[0] = IEEE80211_ELEMID_PWRCAP;
1947	frm[1] = 2;
1948	frm[2] = c->ic_minpower;
1949	frm[3] = c->ic_maxpower;
1950	return frm + 4;
1951}
1952
1953/*
1954 * Add an 11h Supported Channels element to a frame.
1955 */
1956static uint8_t *
1957ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1958{
1959	static const int ielen = 26;
1960
1961	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1962	frm[1] = ielen;
1963	/* XXX not correct */
1964	memcpy(frm+2, ic->ic_chan_avail, ielen);
1965	return frm + 2 + ielen;
1966}
1967
1968/*
1969 * Add an 11h Quiet time element to a frame.
1970 */
1971static uint8_t *
1972ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1973{
1974	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1975
1976	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1977	quiet->len = 6;
1978	if (vap->iv_quiet_count_value == 1)
1979		vap->iv_quiet_count_value = vap->iv_quiet_count;
1980	else if (vap->iv_quiet_count_value > 1)
1981		vap->iv_quiet_count_value--;
1982
1983	if (vap->iv_quiet_count_value == 0) {
1984		/* value 0 is reserved as per 802.11h standerd */
1985		vap->iv_quiet_count_value = 1;
1986	}
1987
1988	quiet->tbttcount = vap->iv_quiet_count_value;
1989	quiet->period = vap->iv_quiet_period;
1990	quiet->duration = htole16(vap->iv_quiet_duration);
1991	quiet->offset = htole16(vap->iv_quiet_offset);
1992	return frm + sizeof(*quiet);
1993}
1994
1995/*
1996 * Add an 11h Channel Switch Announcement element to a frame.
1997 * Note that we use the per-vap CSA count to adjust the global
1998 * counter so we can use this routine to form probe response
1999 * frames and get the current count.
2000 */
2001static uint8_t *
2002ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2003{
2004	struct ieee80211com *ic = vap->iv_ic;
2005	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2006
2007	csa->csa_ie = IEEE80211_ELEMID_CSA;
2008	csa->csa_len = 3;
2009	csa->csa_mode = 1;		/* XXX force quiet on channel */
2010	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2011	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2012	return frm + sizeof(*csa);
2013}
2014
2015/*
2016 * Add an 11h country information element to a frame.
2017 */
2018static uint8_t *
2019ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2020{
2021
2022	if (ic->ic_countryie == NULL ||
2023	    ic->ic_countryie_chan != ic->ic_bsschan) {
2024		/*
2025		 * Handle lazy construction of ie.  This is done on
2026		 * first use and after a channel change that requires
2027		 * re-calculation.
2028		 */
2029		if (ic->ic_countryie != NULL)
2030			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2031		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2032		if (ic->ic_countryie == NULL)
2033			return frm;
2034		ic->ic_countryie_chan = ic->ic_bsschan;
2035	}
2036	return add_appie(frm, ic->ic_countryie);
2037}
2038
2039uint8_t *
2040ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2041{
2042	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2043		return (add_ie(frm, vap->iv_wpa_ie));
2044	else {
2045		/* XXX else complain? */
2046		return (frm);
2047	}
2048}
2049
2050uint8_t *
2051ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2052{
2053	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2054		return (add_ie(frm, vap->iv_rsn_ie));
2055	else {
2056		/* XXX else complain? */
2057		return (frm);
2058	}
2059}
2060
2061uint8_t *
2062ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2063{
2064	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2065		*frm++ = IEEE80211_ELEMID_QOS;
2066		*frm++ = 1;
2067		*frm++ = 0;
2068	}
2069
2070	return (frm);
2071}
2072
2073/*
2074 * Send a probe request frame with the specified ssid
2075 * and any optional information element data.
2076 */
2077int
2078ieee80211_send_probereq(struct ieee80211_node *ni,
2079	const uint8_t sa[IEEE80211_ADDR_LEN],
2080	const uint8_t da[IEEE80211_ADDR_LEN],
2081	const uint8_t bssid[IEEE80211_ADDR_LEN],
2082	const uint8_t *ssid, size_t ssidlen)
2083{
2084	struct ieee80211vap *vap = ni->ni_vap;
2085	struct ieee80211com *ic = ni->ni_ic;
2086	const struct ieee80211_txparam *tp;
2087	struct ieee80211_bpf_params params;
2088	const struct ieee80211_rateset *rs;
2089	struct mbuf *m;
2090	uint8_t *frm;
2091	int ret;
2092
2093	if (vap->iv_state == IEEE80211_S_CAC) {
2094		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2095		    "block %s frame in CAC state", "probe request");
2096		vap->iv_stats.is_tx_badstate++;
2097		return EIO;		/* XXX */
2098	}
2099
2100	/*
2101	 * Hold a reference on the node so it doesn't go away until after
2102	 * the xmit is complete all the way in the driver.  On error we
2103	 * will remove our reference.
2104	 */
2105	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2106		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2107		__func__, __LINE__,
2108		ni, ether_sprintf(ni->ni_macaddr),
2109		ieee80211_node_refcnt(ni)+1);
2110	ieee80211_ref_node(ni);
2111
2112	/*
2113	 * prreq frame format
2114	 *	[tlv] ssid
2115	 *	[tlv] supported rates
2116	 *	[tlv] RSN (optional)
2117	 *	[tlv] extended supported rates
2118	 *	[tlv] WPA (optional)
2119	 *	[tlv] user-specified ie's
2120	 */
2121	m = ieee80211_getmgtframe(&frm,
2122		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2123	       	 2 + IEEE80211_NWID_LEN
2124	       + 2 + IEEE80211_RATE_SIZE
2125	       + sizeof(struct ieee80211_ie_wpa)
2126	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2127	       + sizeof(struct ieee80211_ie_wpa)
2128	       + (vap->iv_appie_probereq != NULL ?
2129		   vap->iv_appie_probereq->ie_len : 0)
2130	);
2131	if (m == NULL) {
2132		vap->iv_stats.is_tx_nobuf++;
2133		ieee80211_free_node(ni);
2134		return ENOMEM;
2135	}
2136
2137	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2138	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2139	frm = ieee80211_add_rates(frm, rs);
2140	frm = ieee80211_add_rsn(frm, vap);
2141	frm = ieee80211_add_xrates(frm, rs);
2142	frm = ieee80211_add_wpa(frm, vap);
2143	if (vap->iv_appie_probereq != NULL)
2144		frm = add_appie(frm, vap->iv_appie_probereq);
2145	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2146
2147	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2148	    ("leading space %zd", M_LEADINGSPACE(m)));
2149	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2150	if (m == NULL) {
2151		/* NB: cannot happen */
2152		ieee80211_free_node(ni);
2153		return ENOMEM;
2154	}
2155
2156	IEEE80211_TX_LOCK(ic);
2157	ieee80211_send_setup(ni, m,
2158	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2159	     IEEE80211_NONQOS_TID, sa, da, bssid);
2160	/* XXX power management? */
2161	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2162
2163	M_WME_SETAC(m, WME_AC_BE);
2164
2165	IEEE80211_NODE_STAT(ni, tx_probereq);
2166	IEEE80211_NODE_STAT(ni, tx_mgmt);
2167
2168	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2169	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2170	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2171	    ssidlen, ssid);
2172
2173	memset(&params, 0, sizeof(params));
2174	params.ibp_pri = M_WME_GETAC(m);
2175	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2176	params.ibp_rate0 = tp->mgmtrate;
2177	if (IEEE80211_IS_MULTICAST(da)) {
2178		params.ibp_flags |= IEEE80211_BPF_NOACK;
2179		params.ibp_try0 = 1;
2180	} else
2181		params.ibp_try0 = tp->maxretry;
2182	params.ibp_power = ni->ni_txpower;
2183	ret = ieee80211_raw_output(vap, ni, m, &params);
2184	IEEE80211_TX_UNLOCK(ic);
2185	return (ret);
2186}
2187
2188/*
2189 * Calculate capability information for mgt frames.
2190 */
2191uint16_t
2192ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2193{
2194	struct ieee80211com *ic = vap->iv_ic;
2195	uint16_t capinfo;
2196
2197	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2198
2199	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2200		capinfo = IEEE80211_CAPINFO_ESS;
2201	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2202		capinfo = IEEE80211_CAPINFO_IBSS;
2203	else
2204		capinfo = 0;
2205	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2206		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2207	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2208	    IEEE80211_IS_CHAN_2GHZ(chan))
2209		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2210	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2211		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2212	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2213		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2214	return capinfo;
2215}
2216
2217/*
2218 * Send a management frame.  The node is for the destination (or ic_bss
2219 * when in station mode).  Nodes other than ic_bss have their reference
2220 * count bumped to reflect our use for an indeterminant time.
2221 */
2222int
2223ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2224{
2225#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2226#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2227	struct ieee80211vap *vap = ni->ni_vap;
2228	struct ieee80211com *ic = ni->ni_ic;
2229	struct ieee80211_node *bss = vap->iv_bss;
2230	struct ieee80211_bpf_params params;
2231	struct mbuf *m;
2232	uint8_t *frm;
2233	uint16_t capinfo;
2234	int has_challenge, is_shared_key, ret, status;
2235
2236	KASSERT(ni != NULL, ("null node"));
2237
2238	/*
2239	 * Hold a reference on the node so it doesn't go away until after
2240	 * the xmit is complete all the way in the driver.  On error we
2241	 * will remove our reference.
2242	 */
2243	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2244		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2245		__func__, __LINE__,
2246		ni, ether_sprintf(ni->ni_macaddr),
2247		ieee80211_node_refcnt(ni)+1);
2248	ieee80211_ref_node(ni);
2249
2250	memset(&params, 0, sizeof(params));
2251	switch (type) {
2252
2253	case IEEE80211_FC0_SUBTYPE_AUTH:
2254		status = arg >> 16;
2255		arg &= 0xffff;
2256		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2257		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2258		    ni->ni_challenge != NULL);
2259
2260		/*
2261		 * Deduce whether we're doing open authentication or
2262		 * shared key authentication.  We do the latter if
2263		 * we're in the middle of a shared key authentication
2264		 * handshake or if we're initiating an authentication
2265		 * request and configured to use shared key.
2266		 */
2267		is_shared_key = has_challenge ||
2268		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2269		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2270		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2271
2272		m = ieee80211_getmgtframe(&frm,
2273			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2274			  3 * sizeof(uint16_t)
2275			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2276				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2277		);
2278		if (m == NULL)
2279			senderr(ENOMEM, is_tx_nobuf);
2280
2281		((uint16_t *)frm)[0] =
2282		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2283		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2284		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2285		((uint16_t *)frm)[2] = htole16(status);/* status */
2286
2287		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2288			((uint16_t *)frm)[3] =
2289			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2290			    IEEE80211_ELEMID_CHALLENGE);
2291			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2292			    IEEE80211_CHALLENGE_LEN);
2293			m->m_pkthdr.len = m->m_len =
2294				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2295			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2296				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2297				    "request encrypt frame (%s)", __func__);
2298				/* mark frame for encryption */
2299				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2300			}
2301		} else
2302			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2303
2304		/* XXX not right for shared key */
2305		if (status == IEEE80211_STATUS_SUCCESS)
2306			IEEE80211_NODE_STAT(ni, tx_auth);
2307		else
2308			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2309
2310		if (vap->iv_opmode == IEEE80211_M_STA)
2311			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2312				(void *) vap->iv_state);
2313		break;
2314
2315	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2316		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2317		    "send station deauthenticate (reason: %d (%s))", arg,
2318		    ieee80211_reason_to_string(arg));
2319		m = ieee80211_getmgtframe(&frm,
2320			ic->ic_headroom + sizeof(struct ieee80211_frame),
2321			sizeof(uint16_t));
2322		if (m == NULL)
2323			senderr(ENOMEM, is_tx_nobuf);
2324		*(uint16_t *)frm = htole16(arg);	/* reason */
2325		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2326
2327		IEEE80211_NODE_STAT(ni, tx_deauth);
2328		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2329
2330		ieee80211_node_unauthorize(ni);		/* port closed */
2331		break;
2332
2333	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2334	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2335		/*
2336		 * asreq frame format
2337		 *	[2] capability information
2338		 *	[2] listen interval
2339		 *	[6*] current AP address (reassoc only)
2340		 *	[tlv] ssid
2341		 *	[tlv] supported rates
2342		 *	[tlv] extended supported rates
2343		 *	[4] power capability (optional)
2344		 *	[28] supported channels (optional)
2345		 *	[tlv] HT capabilities
2346		 *	[tlv] WME (optional)
2347		 *	[tlv] Vendor OUI HT capabilities (optional)
2348		 *	[tlv] Atheros capabilities (if negotiated)
2349		 *	[tlv] AppIE's (optional)
2350		 */
2351		m = ieee80211_getmgtframe(&frm,
2352			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2353			 sizeof(uint16_t)
2354		       + sizeof(uint16_t)
2355		       + IEEE80211_ADDR_LEN
2356		       + 2 + IEEE80211_NWID_LEN
2357		       + 2 + IEEE80211_RATE_SIZE
2358		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2359		       + 4
2360		       + 2 + 26
2361		       + sizeof(struct ieee80211_wme_info)
2362		       + sizeof(struct ieee80211_ie_htcap)
2363		       + 4 + sizeof(struct ieee80211_ie_htcap)
2364#ifdef IEEE80211_SUPPORT_SUPERG
2365		       + sizeof(struct ieee80211_ath_ie)
2366#endif
2367		       + (vap->iv_appie_wpa != NULL ?
2368				vap->iv_appie_wpa->ie_len : 0)
2369		       + (vap->iv_appie_assocreq != NULL ?
2370				vap->iv_appie_assocreq->ie_len : 0)
2371		);
2372		if (m == NULL)
2373			senderr(ENOMEM, is_tx_nobuf);
2374
2375		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2376		    ("wrong mode %u", vap->iv_opmode));
2377		capinfo = IEEE80211_CAPINFO_ESS;
2378		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2379			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2380		/*
2381		 * NB: Some 11a AP's reject the request when
2382		 *     short premable is set.
2383		 */
2384		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2385		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2386			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2387		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2388		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2389			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2390		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2391		    (vap->iv_flags & IEEE80211_F_DOTH))
2392			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2393		*(uint16_t *)frm = htole16(capinfo);
2394		frm += 2;
2395
2396		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2397		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2398						    bss->ni_intval));
2399		frm += 2;
2400
2401		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2402			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2403			frm += IEEE80211_ADDR_LEN;
2404		}
2405
2406		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2407		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2408		frm = ieee80211_add_rsn(frm, vap);
2409		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2410		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2411			frm = ieee80211_add_powercapability(frm,
2412			    ic->ic_curchan);
2413			frm = ieee80211_add_supportedchannels(frm, ic);
2414		}
2415
2416		/*
2417		 * Check the channel - we may be using an 11n NIC with an
2418		 * 11n capable station, but we're configured to be an 11b
2419		 * channel.
2420		 */
2421		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2422		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2423		    ni->ni_ies.htcap_ie != NULL &&
2424		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2425			frm = ieee80211_add_htcap(frm, ni);
2426		}
2427		frm = ieee80211_add_wpa(frm, vap);
2428		if ((ic->ic_flags & IEEE80211_F_WME) &&
2429		    ni->ni_ies.wme_ie != NULL)
2430			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2431
2432		/*
2433		 * Same deal - only send HT info if we're on an 11n
2434		 * capable channel.
2435		 */
2436		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2437		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2438		    ni->ni_ies.htcap_ie != NULL &&
2439		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2440			frm = ieee80211_add_htcap_vendor(frm, ni);
2441		}
2442#ifdef IEEE80211_SUPPORT_SUPERG
2443		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2444			frm = ieee80211_add_ath(frm,
2445				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2446				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2447				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2448				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2449		}
2450#endif /* IEEE80211_SUPPORT_SUPERG */
2451		if (vap->iv_appie_assocreq != NULL)
2452			frm = add_appie(frm, vap->iv_appie_assocreq);
2453		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2454
2455		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2456			(void *) vap->iv_state);
2457		break;
2458
2459	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2460	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2461		/*
2462		 * asresp frame format
2463		 *	[2] capability information
2464		 *	[2] status
2465		 *	[2] association ID
2466		 *	[tlv] supported rates
2467		 *	[tlv] extended supported rates
2468		 *	[tlv] HT capabilities (standard, if STA enabled)
2469		 *	[tlv] HT information (standard, if STA enabled)
2470		 *	[tlv] WME (if configured and STA enabled)
2471		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2472		 *	[tlv] HT information (vendor OUI, if STA enabled)
2473		 *	[tlv] Atheros capabilities (if STA enabled)
2474		 *	[tlv] AppIE's (optional)
2475		 */
2476		m = ieee80211_getmgtframe(&frm,
2477			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2478			 sizeof(uint16_t)
2479		       + sizeof(uint16_t)
2480		       + sizeof(uint16_t)
2481		       + 2 + IEEE80211_RATE_SIZE
2482		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2483		       + sizeof(struct ieee80211_ie_htcap) + 4
2484		       + sizeof(struct ieee80211_ie_htinfo) + 4
2485		       + sizeof(struct ieee80211_wme_param)
2486#ifdef IEEE80211_SUPPORT_SUPERG
2487		       + sizeof(struct ieee80211_ath_ie)
2488#endif
2489		       + (vap->iv_appie_assocresp != NULL ?
2490				vap->iv_appie_assocresp->ie_len : 0)
2491		);
2492		if (m == NULL)
2493			senderr(ENOMEM, is_tx_nobuf);
2494
2495		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2496		*(uint16_t *)frm = htole16(capinfo);
2497		frm += 2;
2498
2499		*(uint16_t *)frm = htole16(arg);	/* status */
2500		frm += 2;
2501
2502		if (arg == IEEE80211_STATUS_SUCCESS) {
2503			*(uint16_t *)frm = htole16(ni->ni_associd);
2504			IEEE80211_NODE_STAT(ni, tx_assoc);
2505		} else
2506			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2507		frm += 2;
2508
2509		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2510		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2511		/* NB: respond according to what we received */
2512		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2513			frm = ieee80211_add_htcap(frm, ni);
2514			frm = ieee80211_add_htinfo(frm, ni);
2515		}
2516		if ((vap->iv_flags & IEEE80211_F_WME) &&
2517		    ni->ni_ies.wme_ie != NULL)
2518			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2519		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2520			frm = ieee80211_add_htcap_vendor(frm, ni);
2521			frm = ieee80211_add_htinfo_vendor(frm, ni);
2522		}
2523#ifdef IEEE80211_SUPPORT_SUPERG
2524		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2525			frm = ieee80211_add_ath(frm,
2526				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2527				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2528				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2529				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2530#endif /* IEEE80211_SUPPORT_SUPERG */
2531		if (vap->iv_appie_assocresp != NULL)
2532			frm = add_appie(frm, vap->iv_appie_assocresp);
2533		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2534		break;
2535
2536	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2537		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2538		    "send station disassociate (reason: %d (%s))", arg,
2539		    ieee80211_reason_to_string(arg));
2540		m = ieee80211_getmgtframe(&frm,
2541			ic->ic_headroom + sizeof(struct ieee80211_frame),
2542			sizeof(uint16_t));
2543		if (m == NULL)
2544			senderr(ENOMEM, is_tx_nobuf);
2545		*(uint16_t *)frm = htole16(arg);	/* reason */
2546		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2547
2548		IEEE80211_NODE_STAT(ni, tx_disassoc);
2549		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2550		break;
2551
2552	default:
2553		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2554		    "invalid mgmt frame type %u", type);
2555		senderr(EINVAL, is_tx_unknownmgt);
2556		/* NOTREACHED */
2557	}
2558
2559	/* NB: force non-ProbeResp frames to the highest queue */
2560	params.ibp_pri = WME_AC_VO;
2561	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2562	/* NB: we know all frames are unicast */
2563	params.ibp_try0 = bss->ni_txparms->maxretry;
2564	params.ibp_power = bss->ni_txpower;
2565	return ieee80211_mgmt_output(ni, m, type, &params);
2566bad:
2567	ieee80211_free_node(ni);
2568	return ret;
2569#undef senderr
2570#undef HTFLAGS
2571}
2572
2573/*
2574 * Return an mbuf with a probe response frame in it.
2575 * Space is left to prepend and 802.11 header at the
2576 * front but it's left to the caller to fill in.
2577 */
2578struct mbuf *
2579ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2580{
2581	struct ieee80211vap *vap = bss->ni_vap;
2582	struct ieee80211com *ic = bss->ni_ic;
2583	const struct ieee80211_rateset *rs;
2584	struct mbuf *m;
2585	uint16_t capinfo;
2586	uint8_t *frm;
2587
2588	/*
2589	 * probe response frame format
2590	 *	[8] time stamp
2591	 *	[2] beacon interval
2592	 *	[2] cabability information
2593	 *	[tlv] ssid
2594	 *	[tlv] supported rates
2595	 *	[tlv] parameter set (FH/DS)
2596	 *	[tlv] parameter set (IBSS)
2597	 *	[tlv] country (optional)
2598	 *	[3] power control (optional)
2599	 *	[5] channel switch announcement (CSA) (optional)
2600	 *	[tlv] extended rate phy (ERP)
2601	 *	[tlv] extended supported rates
2602	 *	[tlv] RSN (optional)
2603	 *	[tlv] HT capabilities
2604	 *	[tlv] HT information
2605	 *	[tlv] WPA (optional)
2606	 *	[tlv] WME (optional)
2607	 *	[tlv] Vendor OUI HT capabilities (optional)
2608	 *	[tlv] Vendor OUI HT information (optional)
2609	 *	[tlv] Atheros capabilities
2610	 *	[tlv] AppIE's (optional)
2611	 *	[tlv] Mesh ID (MBSS)
2612	 *	[tlv] Mesh Conf (MBSS)
2613	 */
2614	m = ieee80211_getmgtframe(&frm,
2615		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2616		 8
2617	       + sizeof(uint16_t)
2618	       + sizeof(uint16_t)
2619	       + 2 + IEEE80211_NWID_LEN
2620	       + 2 + IEEE80211_RATE_SIZE
2621	       + 7	/* max(7,3) */
2622	       + IEEE80211_COUNTRY_MAX_SIZE
2623	       + 3
2624	       + sizeof(struct ieee80211_csa_ie)
2625	       + sizeof(struct ieee80211_quiet_ie)
2626	       + 3
2627	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2628	       + sizeof(struct ieee80211_ie_wpa)
2629	       + sizeof(struct ieee80211_ie_htcap)
2630	       + sizeof(struct ieee80211_ie_htinfo)
2631	       + sizeof(struct ieee80211_ie_wpa)
2632	       + sizeof(struct ieee80211_wme_param)
2633	       + 4 + sizeof(struct ieee80211_ie_htcap)
2634	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2635#ifdef IEEE80211_SUPPORT_SUPERG
2636	       + sizeof(struct ieee80211_ath_ie)
2637#endif
2638#ifdef IEEE80211_SUPPORT_MESH
2639	       + 2 + IEEE80211_MESHID_LEN
2640	       + sizeof(struct ieee80211_meshconf_ie)
2641#endif
2642	       + (vap->iv_appie_proberesp != NULL ?
2643			vap->iv_appie_proberesp->ie_len : 0)
2644	);
2645	if (m == NULL) {
2646		vap->iv_stats.is_tx_nobuf++;
2647		return NULL;
2648	}
2649
2650	memset(frm, 0, 8);	/* timestamp should be filled later */
2651	frm += 8;
2652	*(uint16_t *)frm = htole16(bss->ni_intval);
2653	frm += 2;
2654	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2655	*(uint16_t *)frm = htole16(capinfo);
2656	frm += 2;
2657
2658	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2659	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2660	frm = ieee80211_add_rates(frm, rs);
2661
2662	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2663		*frm++ = IEEE80211_ELEMID_FHPARMS;
2664		*frm++ = 5;
2665		*frm++ = bss->ni_fhdwell & 0x00ff;
2666		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2667		*frm++ = IEEE80211_FH_CHANSET(
2668		    ieee80211_chan2ieee(ic, bss->ni_chan));
2669		*frm++ = IEEE80211_FH_CHANPAT(
2670		    ieee80211_chan2ieee(ic, bss->ni_chan));
2671		*frm++ = bss->ni_fhindex;
2672	} else {
2673		*frm++ = IEEE80211_ELEMID_DSPARMS;
2674		*frm++ = 1;
2675		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2676	}
2677
2678	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2679		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2680		*frm++ = 2;
2681		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2682	}
2683	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2684	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2685		frm = ieee80211_add_countryie(frm, ic);
2686	if (vap->iv_flags & IEEE80211_F_DOTH) {
2687		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2688			frm = ieee80211_add_powerconstraint(frm, vap);
2689		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2690			frm = ieee80211_add_csa(frm, vap);
2691	}
2692	if (vap->iv_flags & IEEE80211_F_DOTH) {
2693		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2694		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2695			if (vap->iv_quiet)
2696				frm = ieee80211_add_quiet(frm, vap);
2697		}
2698	}
2699	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2700		frm = ieee80211_add_erp(frm, ic);
2701	frm = ieee80211_add_xrates(frm, rs);
2702	frm = ieee80211_add_rsn(frm, vap);
2703	/*
2704	 * NB: legacy 11b clients do not get certain ie's.
2705	 *     The caller identifies such clients by passing
2706	 *     a token in legacy to us.  Could expand this to be
2707	 *     any legacy client for stuff like HT ie's.
2708	 */
2709	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2710	    legacy != IEEE80211_SEND_LEGACY_11B) {
2711		frm = ieee80211_add_htcap(frm, bss);
2712		frm = ieee80211_add_htinfo(frm, bss);
2713	}
2714	frm = ieee80211_add_wpa(frm, vap);
2715	if (vap->iv_flags & IEEE80211_F_WME)
2716		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2717	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2718	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2719	    legacy != IEEE80211_SEND_LEGACY_11B) {
2720		frm = ieee80211_add_htcap_vendor(frm, bss);
2721		frm = ieee80211_add_htinfo_vendor(frm, bss);
2722	}
2723#ifdef IEEE80211_SUPPORT_SUPERG
2724	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2725	    legacy != IEEE80211_SEND_LEGACY_11B)
2726		frm = ieee80211_add_athcaps(frm, bss);
2727#endif
2728	if (vap->iv_appie_proberesp != NULL)
2729		frm = add_appie(frm, vap->iv_appie_proberesp);
2730#ifdef IEEE80211_SUPPORT_MESH
2731	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2732		frm = ieee80211_add_meshid(frm, vap);
2733		frm = ieee80211_add_meshconf(frm, vap);
2734	}
2735#endif
2736	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2737
2738	return m;
2739}
2740
2741/*
2742 * Send a probe response frame to the specified mac address.
2743 * This does not go through the normal mgt frame api so we
2744 * can specify the destination address and re-use the bss node
2745 * for the sta reference.
2746 */
2747int
2748ieee80211_send_proberesp(struct ieee80211vap *vap,
2749	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2750{
2751	struct ieee80211_node *bss = vap->iv_bss;
2752	struct ieee80211com *ic = vap->iv_ic;
2753	struct mbuf *m;
2754	int ret;
2755
2756	if (vap->iv_state == IEEE80211_S_CAC) {
2757		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2758		    "block %s frame in CAC state", "probe response");
2759		vap->iv_stats.is_tx_badstate++;
2760		return EIO;		/* XXX */
2761	}
2762
2763	/*
2764	 * Hold a reference on the node so it doesn't go away until after
2765	 * the xmit is complete all the way in the driver.  On error we
2766	 * will remove our reference.
2767	 */
2768	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2769	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2770	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2771	    ieee80211_node_refcnt(bss)+1);
2772	ieee80211_ref_node(bss);
2773
2774	m = ieee80211_alloc_proberesp(bss, legacy);
2775	if (m == NULL) {
2776		ieee80211_free_node(bss);
2777		return ENOMEM;
2778	}
2779
2780	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2781	KASSERT(m != NULL, ("no room for header"));
2782
2783	IEEE80211_TX_LOCK(ic);
2784	ieee80211_send_setup(bss, m,
2785	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2786	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2787	/* XXX power management? */
2788	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2789
2790	M_WME_SETAC(m, WME_AC_BE);
2791
2792	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2793	    "send probe resp on channel %u to %s%s\n",
2794	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2795	    legacy ? " <legacy>" : "");
2796	IEEE80211_NODE_STAT(bss, tx_mgmt);
2797
2798	ret = ieee80211_raw_output(vap, bss, m, NULL);
2799	IEEE80211_TX_UNLOCK(ic);
2800	return (ret);
2801}
2802
2803/*
2804 * Allocate and build a RTS (Request To Send) control frame.
2805 */
2806struct mbuf *
2807ieee80211_alloc_rts(struct ieee80211com *ic,
2808	const uint8_t ra[IEEE80211_ADDR_LEN],
2809	const uint8_t ta[IEEE80211_ADDR_LEN],
2810	uint16_t dur)
2811{
2812	struct ieee80211_frame_rts *rts;
2813	struct mbuf *m;
2814
2815	/* XXX honor ic_headroom */
2816	m = m_gethdr(M_NOWAIT, MT_DATA);
2817	if (m != NULL) {
2818		rts = mtod(m, struct ieee80211_frame_rts *);
2819		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2820			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2821		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2822		*(u_int16_t *)rts->i_dur = htole16(dur);
2823		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2824		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2825
2826		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2827	}
2828	return m;
2829}
2830
2831/*
2832 * Allocate and build a CTS (Clear To Send) control frame.
2833 */
2834struct mbuf *
2835ieee80211_alloc_cts(struct ieee80211com *ic,
2836	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2837{
2838	struct ieee80211_frame_cts *cts;
2839	struct mbuf *m;
2840
2841	/* XXX honor ic_headroom */
2842	m = m_gethdr(M_NOWAIT, MT_DATA);
2843	if (m != NULL) {
2844		cts = mtod(m, struct ieee80211_frame_cts *);
2845		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2846			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2847		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2848		*(u_int16_t *)cts->i_dur = htole16(dur);
2849		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2850
2851		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2852	}
2853	return m;
2854}
2855
2856static void
2857ieee80211_tx_mgt_timeout(void *arg)
2858{
2859	struct ieee80211vap *vap = arg;
2860
2861	IEEE80211_LOCK(vap->iv_ic);
2862	if (vap->iv_state != IEEE80211_S_INIT &&
2863	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2864		/*
2865		 * NB: it's safe to specify a timeout as the reason here;
2866		 *     it'll only be used in the right state.
2867		 */
2868		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2869			IEEE80211_SCAN_FAIL_TIMEOUT);
2870	}
2871	IEEE80211_UNLOCK(vap->iv_ic);
2872}
2873
2874/*
2875 * This is the callback set on net80211-sourced transmitted
2876 * authentication request frames.
2877 *
2878 * This does a couple of things:
2879 *
2880 * + If the frame transmitted was a success, it schedules a future
2881 *   event which will transition the interface to scan.
2882 *   If a state transition _then_ occurs before that event occurs,
2883 *   said state transition will cancel this callout.
2884 *
2885 * + If the frame transmit was a failure, it immediately schedules
2886 *   the transition back to scan.
2887 */
2888static void
2889ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2890{
2891	struct ieee80211vap *vap = ni->ni_vap;
2892	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2893
2894	/*
2895	 * Frame transmit completed; arrange timer callback.  If
2896	 * transmit was successfully we wait for response.  Otherwise
2897	 * we arrange an immediate callback instead of doing the
2898	 * callback directly since we don't know what state the driver
2899	 * is in (e.g. what locks it is holding).  This work should
2900	 * not be too time-critical and not happen too often so the
2901	 * added overhead is acceptable.
2902	 *
2903	 * XXX what happens if !acked but response shows up before callback?
2904	 */
2905	if (vap->iv_state == ostate) {
2906		callout_reset(&vap->iv_mgtsend,
2907			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2908			ieee80211_tx_mgt_timeout, vap);
2909	}
2910}
2911
2912static void
2913ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2914	struct ieee80211_node *ni)
2915{
2916	struct ieee80211vap *vap = ni->ni_vap;
2917	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2918	struct ieee80211com *ic = ni->ni_ic;
2919	struct ieee80211_rateset *rs = &ni->ni_rates;
2920	uint16_t capinfo;
2921
2922	/*
2923	 * beacon frame format
2924	 *	[8] time stamp
2925	 *	[2] beacon interval
2926	 *	[2] cabability information
2927	 *	[tlv] ssid
2928	 *	[tlv] supported rates
2929	 *	[3] parameter set (DS)
2930	 *	[8] CF parameter set (optional)
2931	 *	[tlv] parameter set (IBSS/TIM)
2932	 *	[tlv] country (optional)
2933	 *	[3] power control (optional)
2934	 *	[5] channel switch announcement (CSA) (optional)
2935	 *	[tlv] extended rate phy (ERP)
2936	 *	[tlv] extended supported rates
2937	 *	[tlv] RSN parameters
2938	 *	[tlv] HT capabilities
2939	 *	[tlv] HT information
2940	 * XXX Vendor-specific OIDs (e.g. Atheros)
2941	 *	[tlv] WPA parameters
2942	 *	[tlv] WME parameters
2943	 *	[tlv] Vendor OUI HT capabilities (optional)
2944	 *	[tlv] Vendor OUI HT information (optional)
2945	 *	[tlv] Atheros capabilities (optional)
2946	 *	[tlv] TDMA parameters (optional)
2947	 *	[tlv] Mesh ID (MBSS)
2948	 *	[tlv] Mesh Conf (MBSS)
2949	 *	[tlv] application data (optional)
2950	 */
2951
2952	memset(bo, 0, sizeof(*bo));
2953
2954	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2955	frm += 8;
2956	*(uint16_t *)frm = htole16(ni->ni_intval);
2957	frm += 2;
2958	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2959	bo->bo_caps = (uint16_t *)frm;
2960	*(uint16_t *)frm = htole16(capinfo);
2961	frm += 2;
2962	*frm++ = IEEE80211_ELEMID_SSID;
2963	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2964		*frm++ = ni->ni_esslen;
2965		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2966		frm += ni->ni_esslen;
2967	} else
2968		*frm++ = 0;
2969	frm = ieee80211_add_rates(frm, rs);
2970	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2971		*frm++ = IEEE80211_ELEMID_DSPARMS;
2972		*frm++ = 1;
2973		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2974	}
2975	if (ic->ic_flags & IEEE80211_F_PCF) {
2976		bo->bo_cfp = frm;
2977		frm = ieee80211_add_cfparms(frm, ic);
2978	}
2979	bo->bo_tim = frm;
2980	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2981		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2982		*frm++ = 2;
2983		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2984		bo->bo_tim_len = 0;
2985	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2986	    vap->iv_opmode == IEEE80211_M_MBSS) {
2987		/* TIM IE is the same for Mesh and Hostap */
2988		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2989
2990		tie->tim_ie = IEEE80211_ELEMID_TIM;
2991		tie->tim_len = 4;	/* length */
2992		tie->tim_count = 0;	/* DTIM count */
2993		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2994		tie->tim_bitctl = 0;	/* bitmap control */
2995		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2996		frm += sizeof(struct ieee80211_tim_ie);
2997		bo->bo_tim_len = 1;
2998	}
2999	bo->bo_tim_trailer = frm;
3000	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3001	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3002		frm = ieee80211_add_countryie(frm, ic);
3003	if (vap->iv_flags & IEEE80211_F_DOTH) {
3004		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3005			frm = ieee80211_add_powerconstraint(frm, vap);
3006		bo->bo_csa = frm;
3007		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3008			frm = ieee80211_add_csa(frm, vap);
3009	} else
3010		bo->bo_csa = frm;
3011
3012	if (vap->iv_flags & IEEE80211_F_DOTH) {
3013		bo->bo_quiet = frm;
3014		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3015		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3016			if (vap->iv_quiet)
3017				frm = ieee80211_add_quiet(frm,vap);
3018		}
3019	} else
3020		bo->bo_quiet = frm;
3021
3022	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3023		bo->bo_erp = frm;
3024		frm = ieee80211_add_erp(frm, ic);
3025	}
3026	frm = ieee80211_add_xrates(frm, rs);
3027	frm = ieee80211_add_rsn(frm, vap);
3028	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3029		frm = ieee80211_add_htcap(frm, ni);
3030		bo->bo_htinfo = frm;
3031		frm = ieee80211_add_htinfo(frm, ni);
3032	}
3033	frm = ieee80211_add_wpa(frm, vap);
3034	if (vap->iv_flags & IEEE80211_F_WME) {
3035		bo->bo_wme = frm;
3036		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3037	}
3038	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3039	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3040		frm = ieee80211_add_htcap_vendor(frm, ni);
3041		frm = ieee80211_add_htinfo_vendor(frm, ni);
3042	}
3043#ifdef IEEE80211_SUPPORT_SUPERG
3044	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3045		bo->bo_ath = frm;
3046		frm = ieee80211_add_athcaps(frm, ni);
3047	}
3048#endif
3049#ifdef IEEE80211_SUPPORT_TDMA
3050	if (vap->iv_caps & IEEE80211_C_TDMA) {
3051		bo->bo_tdma = frm;
3052		frm = ieee80211_add_tdma(frm, vap);
3053	}
3054#endif
3055	if (vap->iv_appie_beacon != NULL) {
3056		bo->bo_appie = frm;
3057		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3058		frm = add_appie(frm, vap->iv_appie_beacon);
3059	}
3060#ifdef IEEE80211_SUPPORT_MESH
3061	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3062		frm = ieee80211_add_meshid(frm, vap);
3063		bo->bo_meshconf = frm;
3064		frm = ieee80211_add_meshconf(frm, vap);
3065	}
3066#endif
3067	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3068	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3069	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3070}
3071
3072/*
3073 * Allocate a beacon frame and fillin the appropriate bits.
3074 */
3075struct mbuf *
3076ieee80211_beacon_alloc(struct ieee80211_node *ni)
3077{
3078	struct ieee80211vap *vap = ni->ni_vap;
3079	struct ieee80211com *ic = ni->ni_ic;
3080	struct ifnet *ifp = vap->iv_ifp;
3081	struct ieee80211_frame *wh;
3082	struct mbuf *m;
3083	int pktlen;
3084	uint8_t *frm;
3085
3086	/*
3087	 * beacon frame format
3088	 *	[8] time stamp
3089	 *	[2] beacon interval
3090	 *	[2] cabability information
3091	 *	[tlv] ssid
3092	 *	[tlv] supported rates
3093	 *	[3] parameter set (DS)
3094	 *	[8] CF parameter set (optional)
3095	 *	[tlv] parameter set (IBSS/TIM)
3096	 *	[tlv] country (optional)
3097	 *	[3] power control (optional)
3098	 *	[5] channel switch announcement (CSA) (optional)
3099	 *	[tlv] extended rate phy (ERP)
3100	 *	[tlv] extended supported rates
3101	 *	[tlv] RSN parameters
3102	 *	[tlv] HT capabilities
3103	 *	[tlv] HT information
3104	 *	[tlv] Vendor OUI HT capabilities (optional)
3105	 *	[tlv] Vendor OUI HT information (optional)
3106	 * XXX Vendor-specific OIDs (e.g. Atheros)
3107	 *	[tlv] WPA parameters
3108	 *	[tlv] WME parameters
3109	 *	[tlv] TDMA parameters (optional)
3110	 *	[tlv] Mesh ID (MBSS)
3111	 *	[tlv] Mesh Conf (MBSS)
3112	 *	[tlv] application data (optional)
3113	 * NB: we allocate the max space required for the TIM bitmap.
3114	 * XXX how big is this?
3115	 */
3116	pktlen =   8					/* time stamp */
3117		 + sizeof(uint16_t)			/* beacon interval */
3118		 + sizeof(uint16_t)			/* capabilities */
3119		 + 2 + ni->ni_esslen			/* ssid */
3120	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3121	         + 2 + 1				/* DS parameters */
3122		 + 2 + 6				/* CF parameters */
3123		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3124		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3125		 + 2 + 1				/* power control */
3126		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3127		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3128		 + 2 + 1				/* ERP */
3129	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3130		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3131			2*sizeof(struct ieee80211_ie_wpa) : 0)
3132		 /* XXX conditional? */
3133		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3134		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3135		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3136			sizeof(struct ieee80211_wme_param) : 0)
3137#ifdef IEEE80211_SUPPORT_SUPERG
3138		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3139#endif
3140#ifdef IEEE80211_SUPPORT_TDMA
3141		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3142			sizeof(struct ieee80211_tdma_param) : 0)
3143#endif
3144#ifdef IEEE80211_SUPPORT_MESH
3145		 + 2 + ni->ni_meshidlen
3146		 + sizeof(struct ieee80211_meshconf_ie)
3147#endif
3148		 + IEEE80211_MAX_APPIE
3149		 ;
3150	m = ieee80211_getmgtframe(&frm,
3151		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3152	if (m == NULL) {
3153		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3154			"%s: cannot get buf; size %u\n", __func__, pktlen);
3155		vap->iv_stats.is_tx_nobuf++;
3156		return NULL;
3157	}
3158	ieee80211_beacon_construct(m, frm, ni);
3159
3160	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3161	KASSERT(m != NULL, ("no space for 802.11 header?"));
3162	wh = mtod(m, struct ieee80211_frame *);
3163	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3164	    IEEE80211_FC0_SUBTYPE_BEACON;
3165	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3166	*(uint16_t *)wh->i_dur = 0;
3167	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3168	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3169	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3170	*(uint16_t *)wh->i_seq = 0;
3171
3172	return m;
3173}
3174
3175/*
3176 * Update the dynamic parts of a beacon frame based on the current state.
3177 */
3178int
3179ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3180{
3181	struct ieee80211vap *vap = ni->ni_vap;
3182	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3183	struct ieee80211com *ic = ni->ni_ic;
3184	int len_changed = 0;
3185	uint16_t capinfo;
3186	struct ieee80211_frame *wh;
3187	ieee80211_seq seqno;
3188
3189	IEEE80211_LOCK(ic);
3190	/*
3191	 * Handle 11h channel change when we've reached the count.
3192	 * We must recalculate the beacon frame contents to account
3193	 * for the new channel.  Note we do this only for the first
3194	 * vap that reaches this point; subsequent vaps just update
3195	 * their beacon state to reflect the recalculated channel.
3196	 */
3197	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3198	    vap->iv_csa_count == ic->ic_csa_count) {
3199		vap->iv_csa_count = 0;
3200		/*
3201		 * Effect channel change before reconstructing the beacon
3202		 * frame contents as many places reference ni_chan.
3203		 */
3204		if (ic->ic_csa_newchan != NULL)
3205			ieee80211_csa_completeswitch(ic);
3206		/*
3207		 * NB: ieee80211_beacon_construct clears all pending
3208		 * updates in bo_flags so we don't need to explicitly
3209		 * clear IEEE80211_BEACON_CSA.
3210		 */
3211		ieee80211_beacon_construct(m,
3212		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3213
3214		/* XXX do WME aggressive mode processing? */
3215		IEEE80211_UNLOCK(ic);
3216		return 1;		/* just assume length changed */
3217	}
3218
3219	wh = mtod(m, struct ieee80211_frame *);
3220	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3221	*(uint16_t *)&wh->i_seq[0] =
3222		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3223	M_SEQNO_SET(m, seqno);
3224
3225	/* XXX faster to recalculate entirely or just changes? */
3226	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3227	*bo->bo_caps = htole16(capinfo);
3228
3229	if (vap->iv_flags & IEEE80211_F_WME) {
3230		struct ieee80211_wme_state *wme = &ic->ic_wme;
3231
3232		/*
3233		 * Check for aggressive mode change.  When there is
3234		 * significant high priority traffic in the BSS
3235		 * throttle back BE traffic by using conservative
3236		 * parameters.  Otherwise BE uses aggressive params
3237		 * to optimize performance of legacy/non-QoS traffic.
3238		 */
3239		if (wme->wme_flags & WME_F_AGGRMODE) {
3240			if (wme->wme_hipri_traffic >
3241			    wme->wme_hipri_switch_thresh) {
3242				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3243				    "%s: traffic %u, disable aggressive mode\n",
3244				    __func__, wme->wme_hipri_traffic);
3245				wme->wme_flags &= ~WME_F_AGGRMODE;
3246				ieee80211_wme_updateparams_locked(vap);
3247				wme->wme_hipri_traffic =
3248					wme->wme_hipri_switch_hysteresis;
3249			} else
3250				wme->wme_hipri_traffic = 0;
3251		} else {
3252			if (wme->wme_hipri_traffic <=
3253			    wme->wme_hipri_switch_thresh) {
3254				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3255				    "%s: traffic %u, enable aggressive mode\n",
3256				    __func__, wme->wme_hipri_traffic);
3257				wme->wme_flags |= WME_F_AGGRMODE;
3258				ieee80211_wme_updateparams_locked(vap);
3259				wme->wme_hipri_traffic = 0;
3260			} else
3261				wme->wme_hipri_traffic =
3262					wme->wme_hipri_switch_hysteresis;
3263		}
3264		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3265			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3266			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3267		}
3268	}
3269
3270	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3271		ieee80211_ht_update_beacon(vap, bo);
3272		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3273	}
3274#ifdef IEEE80211_SUPPORT_TDMA
3275	if (vap->iv_caps & IEEE80211_C_TDMA) {
3276		/*
3277		 * NB: the beacon is potentially updated every TBTT.
3278		 */
3279		ieee80211_tdma_update_beacon(vap, bo);
3280	}
3281#endif
3282#ifdef IEEE80211_SUPPORT_MESH
3283	if (vap->iv_opmode == IEEE80211_M_MBSS)
3284		ieee80211_mesh_update_beacon(vap, bo);
3285#endif
3286
3287	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3288	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3289		struct ieee80211_tim_ie *tie =
3290			(struct ieee80211_tim_ie *) bo->bo_tim;
3291		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3292			u_int timlen, timoff, i;
3293			/*
3294			 * ATIM/DTIM needs updating.  If it fits in the
3295			 * current space allocated then just copy in the
3296			 * new bits.  Otherwise we need to move any trailing
3297			 * data to make room.  Note that we know there is
3298			 * contiguous space because ieee80211_beacon_allocate
3299			 * insures there is space in the mbuf to write a
3300			 * maximal-size virtual bitmap (based on iv_max_aid).
3301			 */
3302			/*
3303			 * Calculate the bitmap size and offset, copy any
3304			 * trailer out of the way, and then copy in the
3305			 * new bitmap and update the information element.
3306			 * Note that the tim bitmap must contain at least
3307			 * one byte and any offset must be even.
3308			 */
3309			if (vap->iv_ps_pending != 0) {
3310				timoff = 128;		/* impossibly large */
3311				for (i = 0; i < vap->iv_tim_len; i++)
3312					if (vap->iv_tim_bitmap[i]) {
3313						timoff = i &~ 1;
3314						break;
3315					}
3316				KASSERT(timoff != 128, ("tim bitmap empty!"));
3317				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3318					if (vap->iv_tim_bitmap[i])
3319						break;
3320				timlen = 1 + (i - timoff);
3321			} else {
3322				timoff = 0;
3323				timlen = 1;
3324			}
3325			if (timlen != bo->bo_tim_len) {
3326				/* copy up/down trailer */
3327				int adjust = tie->tim_bitmap+timlen
3328					   - bo->bo_tim_trailer;
3329				ovbcopy(bo->bo_tim_trailer,
3330				    bo->bo_tim_trailer+adjust,
3331				    bo->bo_tim_trailer_len);
3332				bo->bo_tim_trailer += adjust;
3333				bo->bo_erp += adjust;
3334				bo->bo_htinfo += adjust;
3335#ifdef IEEE80211_SUPPORT_SUPERG
3336				bo->bo_ath += adjust;
3337#endif
3338#ifdef IEEE80211_SUPPORT_TDMA
3339				bo->bo_tdma += adjust;
3340#endif
3341#ifdef IEEE80211_SUPPORT_MESH
3342				bo->bo_meshconf += adjust;
3343#endif
3344				bo->bo_appie += adjust;
3345				bo->bo_wme += adjust;
3346				bo->bo_csa += adjust;
3347				bo->bo_quiet += adjust;
3348				bo->bo_tim_len = timlen;
3349
3350				/* update information element */
3351				tie->tim_len = 3 + timlen;
3352				tie->tim_bitctl = timoff;
3353				len_changed = 1;
3354			}
3355			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3356				bo->bo_tim_len);
3357
3358			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3359
3360			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3361				"%s: TIM updated, pending %u, off %u, len %u\n",
3362				__func__, vap->iv_ps_pending, timoff, timlen);
3363		}
3364		/* count down DTIM period */
3365		if (tie->tim_count == 0)
3366			tie->tim_count = tie->tim_period - 1;
3367		else
3368			tie->tim_count--;
3369		/* update state for buffered multicast frames on DTIM */
3370		if (mcast && tie->tim_count == 0)
3371			tie->tim_bitctl |= 1;
3372		else
3373			tie->tim_bitctl &= ~1;
3374		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3375			struct ieee80211_csa_ie *csa =
3376			    (struct ieee80211_csa_ie *) bo->bo_csa;
3377
3378			/*
3379			 * Insert or update CSA ie.  If we're just starting
3380			 * to count down to the channel switch then we need
3381			 * to insert the CSA ie.  Otherwise we just need to
3382			 * drop the count.  The actual change happens above
3383			 * when the vap's count reaches the target count.
3384			 */
3385			if (vap->iv_csa_count == 0) {
3386				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3387				bo->bo_erp += sizeof(*csa);
3388				bo->bo_htinfo += sizeof(*csa);
3389				bo->bo_wme += sizeof(*csa);
3390#ifdef IEEE80211_SUPPORT_SUPERG
3391				bo->bo_ath += sizeof(*csa);
3392#endif
3393#ifdef IEEE80211_SUPPORT_TDMA
3394				bo->bo_tdma += sizeof(*csa);
3395#endif
3396#ifdef IEEE80211_SUPPORT_MESH
3397				bo->bo_meshconf += sizeof(*csa);
3398#endif
3399				bo->bo_appie += sizeof(*csa);
3400				bo->bo_csa_trailer_len += sizeof(*csa);
3401				bo->bo_quiet += sizeof(*csa);
3402				bo->bo_tim_trailer_len += sizeof(*csa);
3403				m->m_len += sizeof(*csa);
3404				m->m_pkthdr.len += sizeof(*csa);
3405
3406				ieee80211_add_csa(bo->bo_csa, vap);
3407			} else
3408				csa->csa_count--;
3409			vap->iv_csa_count++;
3410			/* NB: don't clear IEEE80211_BEACON_CSA */
3411		}
3412		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3413		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3414			if (vap->iv_quiet)
3415				ieee80211_add_quiet(bo->bo_quiet, vap);
3416		}
3417		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3418			/*
3419			 * ERP element needs updating.
3420			 */
3421			(void) ieee80211_add_erp(bo->bo_erp, ic);
3422			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3423		}
3424#ifdef IEEE80211_SUPPORT_SUPERG
3425		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3426			ieee80211_add_athcaps(bo->bo_ath, ni);
3427			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3428		}
3429#endif
3430	}
3431	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3432		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3433		int aielen;
3434		uint8_t *frm;
3435
3436		aielen = 0;
3437		if (aie != NULL)
3438			aielen += aie->ie_len;
3439		if (aielen != bo->bo_appie_len) {
3440			/* copy up/down trailer */
3441			int adjust = aielen - bo->bo_appie_len;
3442			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3443				bo->bo_tim_trailer_len);
3444			bo->bo_tim_trailer += adjust;
3445			bo->bo_appie += adjust;
3446			bo->bo_appie_len = aielen;
3447
3448			len_changed = 1;
3449		}
3450		frm = bo->bo_appie;
3451		if (aie != NULL)
3452			frm  = add_appie(frm, aie);
3453		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3454	}
3455	IEEE80211_UNLOCK(ic);
3456
3457	return len_changed;
3458}
3459
3460/*
3461 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3462 * tunnel encapsulation.  The frame is assumed to have an Ethernet
3463 * header at the front that must be stripped before prepending the
3464 * LLC followed by the Ethernet header passed in (with an Ethernet
3465 * type that specifies the payload size).
3466 */
3467struct mbuf *
3468ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3469	const struct ether_header *eh)
3470{
3471	struct llc *llc;
3472	uint16_t payload;
3473
3474	/* XXX optimize by combining m_adj+M_PREPEND */
3475	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3476	llc = mtod(m, struct llc *);
3477	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3478	llc->llc_control = LLC_UI;
3479	llc->llc_snap.org_code[0] = 0;
3480	llc->llc_snap.org_code[1] = 0;
3481	llc->llc_snap.org_code[2] = 0;
3482	llc->llc_snap.ether_type = eh->ether_type;
3483	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3484
3485	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3486	if (m == NULL) {		/* XXX cannot happen */
3487		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3488			"%s: no space for ether_header\n", __func__);
3489		vap->iv_stats.is_tx_nobuf++;
3490		return NULL;
3491	}
3492	ETHER_HEADER_COPY(mtod(m, void *), eh);
3493	mtod(m, struct ether_header *)->ether_type = htons(payload);
3494	return m;
3495}
3496
3497/*
3498 * Complete an mbuf transmission.
3499 *
3500 * For now, this simply processes a completed frame after the
3501 * driver has completed it's transmission and/or retransmission.
3502 * It assumes the frame is an 802.11 encapsulated frame.
3503 *
3504 * Later on it will grow to become the exit path for a given frame
3505 * from the driver and, depending upon how it's been encapsulated
3506 * and already transmitted, it may end up doing A-MPDU retransmission,
3507 * power save requeuing, etc.
3508 *
3509 * In order for the above to work, the driver entry point to this
3510 * must not hold any driver locks.  Thus, the driver needs to delay
3511 * any actual mbuf completion until it can release said locks.
3512 *
3513 * This frees the mbuf and if the mbuf has a node reference,
3514 * the node reference will be freed.
3515 */
3516void
3517ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3518{
3519
3520	if (ni != NULL) {
3521		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3522
3523		if (status == 0) {
3524			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3525			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3526			if (m->m_flags & M_MCAST)
3527				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3528		} else
3529			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3530		if (m->m_flags & M_TXCB)
3531			ieee80211_process_callback(ni, m, status);
3532		ieee80211_free_node(ni);
3533	}
3534	m_freem(m);
3535}
3536