ieee80211_output.c revision 298364
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 298364 2016-04-20 20:30:18Z avos $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kernel.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/endian.h>
40
41#include <sys/socket.h>
42
43#include <net/bpf.h>
44#include <net/ethernet.h>
45#include <net/if.h>
46#include <net/if_var.h>
47#include <net/if_llc.h>
48#include <net/if_media.h>
49#include <net/if_vlan_var.h>
50
51#include <net80211/ieee80211_var.h>
52#include <net80211/ieee80211_regdomain.h>
53#ifdef IEEE80211_SUPPORT_SUPERG
54#include <net80211/ieee80211_superg.h>
55#endif
56#ifdef IEEE80211_SUPPORT_TDMA
57#include <net80211/ieee80211_tdma.h>
58#endif
59#include <net80211/ieee80211_wds.h>
60#include <net80211/ieee80211_mesh.h>
61
62#if defined(INET) || defined(INET6)
63#include <netinet/in.h>
64#endif
65
66#ifdef INET
67#include <netinet/if_ether.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#endif
71#ifdef INET6
72#include <netinet/ip6.h>
73#endif
74
75#include <security/mac/mac_framework.h>
76
77#define	ETHER_HEADER_COPY(dst, src) \
78	memcpy(dst, src, sizeof(struct ether_header))
79
80static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
81	u_int hdrsize, u_int ciphdrsize, u_int mtu);
82static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
83
84#ifdef IEEE80211_DEBUG
85/*
86 * Decide if an outbound management frame should be
87 * printed when debugging is enabled.  This filters some
88 * of the less interesting frames that come frequently
89 * (e.g. beacons).
90 */
91static __inline int
92doprint(struct ieee80211vap *vap, int subtype)
93{
94	switch (subtype) {
95	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
96		return (vap->iv_opmode == IEEE80211_M_IBSS);
97	}
98	return 1;
99}
100#endif
101
102/*
103 * Transmit a frame to the given destination on the given VAP.
104 *
105 * It's up to the caller to figure out the details of who this
106 * is going to and resolving the node.
107 *
108 * This routine takes care of queuing it for power save,
109 * A-MPDU state stuff, fast-frames state stuff, encapsulation
110 * if required, then passing it up to the driver layer.
111 *
112 * This routine (for now) consumes the mbuf and frees the node
113 * reference; it ideally will return a TX status which reflects
114 * whether the mbuf was consumed or not, so the caller can
115 * free the mbuf (if appropriate) and the node reference (again,
116 * if appropriate.)
117 */
118int
119ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
120    struct ieee80211_node *ni)
121{
122	struct ieee80211com *ic = vap->iv_ic;
123	struct ifnet *ifp = vap->iv_ifp;
124	int len, mcast;
125
126	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
127	    (m->m_flags & M_PWR_SAV) == 0) {
128		/*
129		 * Station in power save mode; pass the frame
130		 * to the 802.11 layer and continue.  We'll get
131		 * the frame back when the time is right.
132		 * XXX lose WDS vap linkage?
133		 */
134		if (ieee80211_pwrsave(ni, m) != 0)
135			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
136		ieee80211_free_node(ni);
137
138		/*
139		 * We queued it fine, so tell the upper layer
140		 * that we consumed it.
141		 */
142		return (0);
143	}
144	/* calculate priority so drivers can find the tx queue */
145	if (ieee80211_classify(ni, m)) {
146		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
147		    ni->ni_macaddr, NULL,
148		    "%s", "classification failure");
149		vap->iv_stats.is_tx_classify++;
150		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
151		m_freem(m);
152		ieee80211_free_node(ni);
153
154		/* XXX better status? */
155		return (0);
156	}
157	/*
158	 * Stash the node pointer.  Note that we do this after
159	 * any call to ieee80211_dwds_mcast because that code
160	 * uses any existing value for rcvif to identify the
161	 * interface it (might have been) received on.
162	 */
163	m->m_pkthdr.rcvif = (void *)ni;
164	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
165	len = m->m_pkthdr.len;
166
167	BPF_MTAP(ifp, m);		/* 802.3 tx */
168
169	/*
170	 * Check if A-MPDU tx aggregation is setup or if we
171	 * should try to enable it.  The sta must be associated
172	 * with HT and A-MPDU enabled for use.  When the policy
173	 * routine decides we should enable A-MPDU we issue an
174	 * ADDBA request and wait for a reply.  The frame being
175	 * encapsulated will go out w/o using A-MPDU, or possibly
176	 * it might be collected by the driver and held/retransmit.
177	 * The default ic_ampdu_enable routine handles staggering
178	 * ADDBA requests in case the receiver NAK's us or we are
179	 * otherwise unable to establish a BA stream.
180	 */
181	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
182	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
183		if ((m->m_flags & M_EAPOL) == 0) {
184			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
185			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
186
187			ieee80211_txampdu_count_packet(tap);
188			if (IEEE80211_AMPDU_RUNNING(tap)) {
189				/*
190				 * Operational, mark frame for aggregation.
191				 *
192				 * XXX do tx aggregation here
193				 */
194				m->m_flags |= M_AMPDU_MPDU;
195			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
196			    ic->ic_ampdu_enable(ni, tap)) {
197				/*
198				 * Not negotiated yet, request service.
199				 */
200				ieee80211_ampdu_request(ni, tap);
201				/* XXX hold frame for reply? */
202			}
203		}
204	}
205
206#ifdef IEEE80211_SUPPORT_SUPERG
207	/*
208	 * Check for AMSDU/FF; queue for aggregation
209	 *
210	 * Note: we don't bother trying to do fast frames or
211	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
212	 * likely could do it for FF (because it's a magic
213	 * atheros tunnel LLC type) but I don't think we're going
214	 * to really need to.  For A-MSDU we'd have to set the
215	 * A-MSDU QoS bit in the wifi header, so we just plain
216	 * can't do it.
217	 *
218	 * Strictly speaking, we could actually /do/ A-MSDU / FF
219	 * with A-MPDU together which for certain circumstances
220	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
221	 * I'll ignore that for now so existing behaviour is maintained.
222	 * Later on it would be good to make "amsdu + ampdu" configurable.
223	 */
224	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
225		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
226			m = ieee80211_amsdu_check(ni, m);
227			if (m == NULL) {
228				/* NB: any ni ref held on stageq */
229				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
230				    "%s: amsdu_check queued frame\n",
231				    __func__);
232				return (0);
233			}
234		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
235		    IEEE80211_NODE_FF)) {
236			m = ieee80211_ff_check(ni, m);
237			if (m == NULL) {
238				/* NB: any ni ref held on stageq */
239				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
240				    "%s: ff_check queued frame\n",
241				    __func__);
242				return (0);
243			}
244		}
245	}
246#endif /* IEEE80211_SUPPORT_SUPERG */
247
248	/*
249	 * Grab the TX lock - serialise the TX process from this
250	 * point (where TX state is being checked/modified)
251	 * through to driver queue.
252	 */
253	IEEE80211_TX_LOCK(ic);
254
255	/*
256	 * XXX make the encap and transmit code a separate function
257	 * so things like the FF (and later A-MSDU) path can just call
258	 * it for flushed frames.
259	 */
260	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
261		/*
262		 * Encapsulate the packet in prep for transmission.
263		 */
264		m = ieee80211_encap(vap, ni, m);
265		if (m == NULL) {
266			/* NB: stat+msg handled in ieee80211_encap */
267			IEEE80211_TX_UNLOCK(ic);
268			ieee80211_free_node(ni);
269			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
270			return (ENOBUFS);
271		}
272	}
273	(void) ieee80211_parent_xmitpkt(ic, m);
274
275	/*
276	 * Unlock at this point - no need to hold it across
277	 * ieee80211_free_node() (ie, the comlock)
278	 */
279	IEEE80211_TX_UNLOCK(ic);
280	ic->ic_lastdata = ticks;
281
282	return (0);
283}
284
285
286
287/*
288 * Send the given mbuf through the given vap.
289 *
290 * This consumes the mbuf regardless of whether the transmit
291 * was successful or not.
292 *
293 * This does none of the initial checks that ieee80211_start()
294 * does (eg CAC timeout, interface wakeup) - the caller must
295 * do this first.
296 */
297static int
298ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
299{
300#define	IS_DWDS(vap) \
301	(vap->iv_opmode == IEEE80211_M_WDS && \
302	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
303	struct ieee80211com *ic = vap->iv_ic;
304	struct ifnet *ifp = vap->iv_ifp;
305	struct ieee80211_node *ni;
306	struct ether_header *eh;
307
308	/*
309	 * Cancel any background scan.
310	 */
311	if (ic->ic_flags & IEEE80211_F_SCAN)
312		ieee80211_cancel_anyscan(vap);
313	/*
314	 * Find the node for the destination so we can do
315	 * things like power save and fast frames aggregation.
316	 *
317	 * NB: past this point various code assumes the first
318	 *     mbuf has the 802.3 header present (and contiguous).
319	 */
320	ni = NULL;
321	if (m->m_len < sizeof(struct ether_header) &&
322	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
323		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
324		    "discard frame, %s\n", "m_pullup failed");
325		vap->iv_stats.is_tx_nobuf++;	/* XXX */
326		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
327		return (ENOBUFS);
328	}
329	eh = mtod(m, struct ether_header *);
330	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
331		if (IS_DWDS(vap)) {
332			/*
333			 * Only unicast frames from the above go out
334			 * DWDS vaps; multicast frames are handled by
335			 * dispatching the frame as it comes through
336			 * the AP vap (see below).
337			 */
338			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
339			    eh->ether_dhost, "mcast", "%s", "on DWDS");
340			vap->iv_stats.is_dwds_mcast++;
341			m_freem(m);
342			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
343			/* XXX better status? */
344			return (ENOBUFS);
345		}
346		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
347			/*
348			 * Spam DWDS vap's w/ multicast traffic.
349			 */
350			/* XXX only if dwds in use? */
351			ieee80211_dwds_mcast(vap, m);
352		}
353	}
354#ifdef IEEE80211_SUPPORT_MESH
355	if (vap->iv_opmode != IEEE80211_M_MBSS) {
356#endif
357		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
358		if (ni == NULL) {
359			/* NB: ieee80211_find_txnode does stat+msg */
360			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
361			m_freem(m);
362			/* XXX better status? */
363			return (ENOBUFS);
364		}
365		if (ni->ni_associd == 0 &&
366		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
367			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
368			    eh->ether_dhost, NULL,
369			    "sta not associated (type 0x%04x)",
370			    htons(eh->ether_type));
371			vap->iv_stats.is_tx_notassoc++;
372			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
373			m_freem(m);
374			ieee80211_free_node(ni);
375			/* XXX better status? */
376			return (ENOBUFS);
377		}
378#ifdef IEEE80211_SUPPORT_MESH
379	} else {
380		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
381			/*
382			 * Proxy station only if configured.
383			 */
384			if (!ieee80211_mesh_isproxyena(vap)) {
385				IEEE80211_DISCARD_MAC(vap,
386				    IEEE80211_MSG_OUTPUT |
387				    IEEE80211_MSG_MESH,
388				    eh->ether_dhost, NULL,
389				    "%s", "proxy not enabled");
390				vap->iv_stats.is_mesh_notproxy++;
391				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
392				m_freem(m);
393				/* XXX better status? */
394				return (ENOBUFS);
395			}
396			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
397			    "forward frame from DS SA(%6D), DA(%6D)\n",
398			    eh->ether_shost, ":",
399			    eh->ether_dhost, ":");
400			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
401		}
402		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
403		if (ni == NULL) {
404			/*
405			 * NB: ieee80211_mesh_discover holds/disposes
406			 * frame (e.g. queueing on path discovery).
407			 */
408			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
409			/* XXX better status? */
410			return (ENOBUFS);
411		}
412	}
413#endif
414
415	/*
416	 * We've resolved the sender, so attempt to transmit it.
417	 */
418
419	if (vap->iv_state == IEEE80211_S_SLEEP) {
420		/*
421		 * In power save; queue frame and then  wakeup device
422		 * for transmit.
423		 */
424		ic->ic_lastdata = ticks;
425		if (ieee80211_pwrsave(ni, m) != 0)
426			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
427		ieee80211_free_node(ni);
428		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
429		return (0);
430	}
431
432	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
433		return (ENOBUFS);
434	return (0);
435#undef	IS_DWDS
436}
437
438/*
439 * Start method for vap's.  All packets from the stack come
440 * through here.  We handle common processing of the packets
441 * before dispatching them to the underlying device.
442 *
443 * if_transmit() requires that the mbuf be consumed by this call
444 * regardless of the return condition.
445 */
446int
447ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
448{
449	struct ieee80211vap *vap = ifp->if_softc;
450	struct ieee80211com *ic = vap->iv_ic;
451
452	/*
453	 * No data frames go out unless we're running.
454	 * Note in particular this covers CAC and CSA
455	 * states (though maybe we should check muting
456	 * for CSA).
457	 */
458	if (vap->iv_state != IEEE80211_S_RUN &&
459	    vap->iv_state != IEEE80211_S_SLEEP) {
460		IEEE80211_LOCK(ic);
461		/* re-check under the com lock to avoid races */
462		if (vap->iv_state != IEEE80211_S_RUN &&
463		    vap->iv_state != IEEE80211_S_SLEEP) {
464			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
465			    "%s: ignore queue, in %s state\n",
466			    __func__, ieee80211_state_name[vap->iv_state]);
467			vap->iv_stats.is_tx_badstate++;
468			IEEE80211_UNLOCK(ic);
469			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
470			m_freem(m);
471			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
472			return (ENETDOWN);
473		}
474		IEEE80211_UNLOCK(ic);
475	}
476
477	/*
478	 * Sanitize mbuf flags for net80211 use.  We cannot
479	 * clear M_PWR_SAV or M_MORE_DATA because these may
480	 * be set for frames that are re-submitted from the
481	 * power save queue.
482	 *
483	 * NB: This must be done before ieee80211_classify as
484	 *     it marks EAPOL in frames with M_EAPOL.
485	 */
486	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
487
488	/*
489	 * Bump to the packet transmission path.
490	 * The mbuf will be consumed here.
491	 */
492	return (ieee80211_start_pkt(vap, m));
493}
494
495void
496ieee80211_vap_qflush(struct ifnet *ifp)
497{
498
499	/* Empty for now */
500}
501
502/*
503 * 802.11 raw output routine.
504 *
505 * XXX TODO: this (and other send routines) should correctly
506 * XXX keep the pwr mgmt bit set if it decides to call into the
507 * XXX driver to send a frame whilst the state is SLEEP.
508 *
509 * Otherwise the peer may decide that we're awake and flood us
510 * with traffic we are still too asleep to receive!
511 */
512int
513ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
514    struct mbuf *m, const struct ieee80211_bpf_params *params)
515{
516	struct ieee80211com *ic = vap->iv_ic;
517	int error;
518
519	/*
520	 * Set node - the caller has taken a reference, so ensure
521	 * that the mbuf has the same node value that
522	 * it would if it were going via the normal path.
523	 */
524	m->m_pkthdr.rcvif = (void *)ni;
525
526	/*
527	 * Attempt to add bpf transmit parameters.
528	 *
529	 * For now it's ok to fail; the raw_xmit api still takes
530	 * them as an option.
531	 *
532	 * Later on when ic_raw_xmit() has params removed,
533	 * they'll have to be added - so fail the transmit if
534	 * they can't be.
535	 */
536	if (params)
537		(void) ieee80211_add_xmit_params(m, params);
538
539	error = ic->ic_raw_xmit(ni, m, params);
540	if (error) {
541		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
542		ieee80211_free_node(ni);
543	}
544	return (error);
545}
546
547/*
548 * 802.11 output routine. This is (currently) used only to
549 * connect bpf write calls to the 802.11 layer for injecting
550 * raw 802.11 frames.
551 */
552int
553ieee80211_output(struct ifnet *ifp, struct mbuf *m,
554	const struct sockaddr *dst, struct route *ro)
555{
556#define senderr(e) do { error = (e); goto bad;} while (0)
557	struct ieee80211_node *ni = NULL;
558	struct ieee80211vap *vap;
559	struct ieee80211_frame *wh;
560	struct ieee80211com *ic = NULL;
561	int error;
562	int ret;
563
564	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
565		/*
566		 * Short-circuit requests if the vap is marked OACTIVE
567		 * as this can happen because a packet came down through
568		 * ieee80211_start before the vap entered RUN state in
569		 * which case it's ok to just drop the frame.  This
570		 * should not be necessary but callers of if_output don't
571		 * check OACTIVE.
572		 */
573		senderr(ENETDOWN);
574	}
575	vap = ifp->if_softc;
576	ic = vap->iv_ic;
577	/*
578	 * Hand to the 802.3 code if not tagged as
579	 * a raw 802.11 frame.
580	 */
581	if (dst->sa_family != AF_IEEE80211)
582		return vap->iv_output(ifp, m, dst, ro);
583#ifdef MAC
584	error = mac_ifnet_check_transmit(ifp, m);
585	if (error)
586		senderr(error);
587#endif
588	if (ifp->if_flags & IFF_MONITOR)
589		senderr(ENETDOWN);
590	if (!IFNET_IS_UP_RUNNING(ifp))
591		senderr(ENETDOWN);
592	if (vap->iv_state == IEEE80211_S_CAC) {
593		IEEE80211_DPRINTF(vap,
594		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
595		    "block %s frame in CAC state\n", "raw data");
596		vap->iv_stats.is_tx_badstate++;
597		senderr(EIO);		/* XXX */
598	} else if (vap->iv_state == IEEE80211_S_SCAN)
599		senderr(EIO);
600	/* XXX bypass bridge, pfil, carp, etc. */
601
602	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
603		senderr(EIO);	/* XXX */
604	wh = mtod(m, struct ieee80211_frame *);
605	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
606	    IEEE80211_FC0_VERSION_0)
607		senderr(EIO);	/* XXX */
608
609	/* locate destination node */
610	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
611	case IEEE80211_FC1_DIR_NODS:
612	case IEEE80211_FC1_DIR_FROMDS:
613		ni = ieee80211_find_txnode(vap, wh->i_addr1);
614		break;
615	case IEEE80211_FC1_DIR_TODS:
616	case IEEE80211_FC1_DIR_DSTODS:
617		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
618			senderr(EIO);	/* XXX */
619		ni = ieee80211_find_txnode(vap, wh->i_addr3);
620		break;
621	default:
622		senderr(EIO);	/* XXX */
623	}
624	if (ni == NULL) {
625		/*
626		 * Permit packets w/ bpf params through regardless
627		 * (see below about sa_len).
628		 */
629		if (dst->sa_len == 0)
630			senderr(EHOSTUNREACH);
631		ni = ieee80211_ref_node(vap->iv_bss);
632	}
633
634	/*
635	 * Sanitize mbuf for net80211 flags leaked from above.
636	 *
637	 * NB: This must be done before ieee80211_classify as
638	 *     it marks EAPOL in frames with M_EAPOL.
639	 */
640	m->m_flags &= ~M_80211_TX;
641
642	/* calculate priority so drivers can find the tx queue */
643	/* XXX assumes an 802.3 frame */
644	if (ieee80211_classify(ni, m))
645		senderr(EIO);		/* XXX */
646
647	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
648	IEEE80211_NODE_STAT(ni, tx_data);
649	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
650		IEEE80211_NODE_STAT(ni, tx_mcast);
651		m->m_flags |= M_MCAST;
652	} else
653		IEEE80211_NODE_STAT(ni, tx_ucast);
654	/* NB: ieee80211_encap does not include 802.11 header */
655	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
656
657	IEEE80211_TX_LOCK(ic);
658
659	/*
660	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
661	 * present by setting the sa_len field of the sockaddr (yes,
662	 * this is a hack).
663	 * NB: we assume sa_data is suitably aligned to cast.
664	 */
665	ret = ieee80211_raw_output(vap, ni, m,
666	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
667		dst->sa_data : NULL));
668	IEEE80211_TX_UNLOCK(ic);
669	return (ret);
670bad:
671	if (m != NULL)
672		m_freem(m);
673	if (ni != NULL)
674		ieee80211_free_node(ni);
675	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
676	return error;
677#undef senderr
678}
679
680/*
681 * Set the direction field and address fields of an outgoing
682 * frame.  Note this should be called early on in constructing
683 * a frame as it sets i_fc[1]; other bits can then be or'd in.
684 */
685void
686ieee80211_send_setup(
687	struct ieee80211_node *ni,
688	struct mbuf *m,
689	int type, int tid,
690	const uint8_t sa[IEEE80211_ADDR_LEN],
691	const uint8_t da[IEEE80211_ADDR_LEN],
692	const uint8_t bssid[IEEE80211_ADDR_LEN])
693{
694#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
695	struct ieee80211vap *vap = ni->ni_vap;
696	struct ieee80211_tx_ampdu *tap;
697	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
698	ieee80211_seq seqno;
699
700	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
701
702	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
703	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
704		switch (vap->iv_opmode) {
705		case IEEE80211_M_STA:
706			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
707			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
708			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
709			IEEE80211_ADDR_COPY(wh->i_addr3, da);
710			break;
711		case IEEE80211_M_IBSS:
712		case IEEE80211_M_AHDEMO:
713			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
714			IEEE80211_ADDR_COPY(wh->i_addr1, da);
715			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
716			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
717			break;
718		case IEEE80211_M_HOSTAP:
719			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
720			IEEE80211_ADDR_COPY(wh->i_addr1, da);
721			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
722			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
723			break;
724		case IEEE80211_M_WDS:
725			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
726			IEEE80211_ADDR_COPY(wh->i_addr1, da);
727			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
728			IEEE80211_ADDR_COPY(wh->i_addr3, da);
729			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
730			break;
731		case IEEE80211_M_MBSS:
732#ifdef IEEE80211_SUPPORT_MESH
733			if (IEEE80211_IS_MULTICAST(da)) {
734				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
735				/* XXX next hop */
736				IEEE80211_ADDR_COPY(wh->i_addr1, da);
737				IEEE80211_ADDR_COPY(wh->i_addr2,
738				    vap->iv_myaddr);
739			} else {
740				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
741				IEEE80211_ADDR_COPY(wh->i_addr1, da);
742				IEEE80211_ADDR_COPY(wh->i_addr2,
743				    vap->iv_myaddr);
744				IEEE80211_ADDR_COPY(wh->i_addr3, da);
745				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
746			}
747#endif
748			break;
749		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
750			break;
751		}
752	} else {
753		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
754		IEEE80211_ADDR_COPY(wh->i_addr1, da);
755		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
756#ifdef IEEE80211_SUPPORT_MESH
757		if (vap->iv_opmode == IEEE80211_M_MBSS)
758			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
759		else
760#endif
761			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
762	}
763	*(uint16_t *)&wh->i_dur[0] = 0;
764
765	tap = &ni->ni_tx_ampdu[tid];
766	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
767		m->m_flags |= M_AMPDU_MPDU;
768	else {
769		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
770				      type & IEEE80211_FC0_SUBTYPE_MASK))
771			seqno = ni->ni_txseqs[tid]++;
772		else
773			seqno = 0;
774
775		*(uint16_t *)&wh->i_seq[0] =
776		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
777		M_SEQNO_SET(m, seqno);
778	}
779
780	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
781		m->m_flags |= M_MCAST;
782#undef WH4
783}
784
785/*
786 * Send a management frame to the specified node.  The node pointer
787 * must have a reference as the pointer will be passed to the driver
788 * and potentially held for a long time.  If the frame is successfully
789 * dispatched to the driver, then it is responsible for freeing the
790 * reference (and potentially free'ing up any associated storage);
791 * otherwise deal with reclaiming any reference (on error).
792 */
793int
794ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
795	struct ieee80211_bpf_params *params)
796{
797	struct ieee80211vap *vap = ni->ni_vap;
798	struct ieee80211com *ic = ni->ni_ic;
799	struct ieee80211_frame *wh;
800	int ret;
801
802	KASSERT(ni != NULL, ("null node"));
803
804	if (vap->iv_state == IEEE80211_S_CAC) {
805		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
806		    ni, "block %s frame in CAC state",
807			ieee80211_mgt_subtype_name[
808			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
809				IEEE80211_FC0_SUBTYPE_SHIFT]);
810		vap->iv_stats.is_tx_badstate++;
811		ieee80211_free_node(ni);
812		m_freem(m);
813		return EIO;		/* XXX */
814	}
815
816	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
817	if (m == NULL) {
818		ieee80211_free_node(ni);
819		return ENOMEM;
820	}
821
822	IEEE80211_TX_LOCK(ic);
823
824	wh = mtod(m, struct ieee80211_frame *);
825	ieee80211_send_setup(ni, m,
826	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
827	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
828	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
829		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
830		    "encrypting frame (%s)", __func__);
831		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
832	}
833	m->m_flags |= M_ENCAP;		/* mark encapsulated */
834
835	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
836	M_WME_SETAC(m, params->ibp_pri);
837
838#ifdef IEEE80211_DEBUG
839	/* avoid printing too many frames */
840	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
841	    ieee80211_msg_dumppkts(vap)) {
842		printf("[%s] send %s on channel %u\n",
843		    ether_sprintf(wh->i_addr1),
844		    ieee80211_mgt_subtype_name[
845			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
846				IEEE80211_FC0_SUBTYPE_SHIFT],
847		    ieee80211_chan2ieee(ic, ic->ic_curchan));
848	}
849#endif
850	IEEE80211_NODE_STAT(ni, tx_mgmt);
851
852	ret = ieee80211_raw_output(vap, ni, m, params);
853	IEEE80211_TX_UNLOCK(ic);
854	return (ret);
855}
856
857static void
858ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
859    int status)
860{
861	struct ieee80211vap *vap = ni->ni_vap;
862
863	wakeup(vap);
864}
865
866/*
867 * Send a null data frame to the specified node.  If the station
868 * is setup for QoS then a QoS Null Data frame is constructed.
869 * If this is a WDS station then a 4-address frame is constructed.
870 *
871 * NB: the caller is assumed to have setup a node reference
872 *     for use; this is necessary to deal with a race condition
873 *     when probing for inactive stations.  Like ieee80211_mgmt_output
874 *     we must cleanup any node reference on error;  however we
875 *     can safely just unref it as we know it will never be the
876 *     last reference to the node.
877 */
878int
879ieee80211_send_nulldata(struct ieee80211_node *ni)
880{
881	struct ieee80211vap *vap = ni->ni_vap;
882	struct ieee80211com *ic = ni->ni_ic;
883	struct mbuf *m;
884	struct ieee80211_frame *wh;
885	int hdrlen;
886	uint8_t *frm;
887	int ret;
888
889	if (vap->iv_state == IEEE80211_S_CAC) {
890		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
891		    ni, "block %s frame in CAC state", "null data");
892		ieee80211_unref_node(&ni);
893		vap->iv_stats.is_tx_badstate++;
894		return EIO;		/* XXX */
895	}
896
897	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
898		hdrlen = sizeof(struct ieee80211_qosframe);
899	else
900		hdrlen = sizeof(struct ieee80211_frame);
901	/* NB: only WDS vap's get 4-address frames */
902	if (vap->iv_opmode == IEEE80211_M_WDS)
903		hdrlen += IEEE80211_ADDR_LEN;
904	if (ic->ic_flags & IEEE80211_F_DATAPAD)
905		hdrlen = roundup(hdrlen, sizeof(uint32_t));
906
907	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
908	if (m == NULL) {
909		/* XXX debug msg */
910		ieee80211_unref_node(&ni);
911		vap->iv_stats.is_tx_nobuf++;
912		return ENOMEM;
913	}
914	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
915	    ("leading space %zd", M_LEADINGSPACE(m)));
916	M_PREPEND(m, hdrlen, M_NOWAIT);
917	if (m == NULL) {
918		/* NB: cannot happen */
919		ieee80211_free_node(ni);
920		return ENOMEM;
921	}
922
923	IEEE80211_TX_LOCK(ic);
924
925	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
926	if (ni->ni_flags & IEEE80211_NODE_QOS) {
927		const int tid = WME_AC_TO_TID(WME_AC_BE);
928		uint8_t *qos;
929
930		ieee80211_send_setup(ni, m,
931		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
932		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
933
934		if (vap->iv_opmode == IEEE80211_M_WDS)
935			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
936		else
937			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
938		qos[0] = tid & IEEE80211_QOS_TID;
939		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
940			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
941		qos[1] = 0;
942	} else {
943		ieee80211_send_setup(ni, m,
944		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
945		    IEEE80211_NONQOS_TID,
946		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
947	}
948	if (vap->iv_opmode != IEEE80211_M_WDS) {
949		/* NB: power management bit is never sent by an AP */
950		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
951		    vap->iv_opmode != IEEE80211_M_HOSTAP)
952			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
953	}
954	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
955	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
956		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
957		    NULL);
958	}
959	m->m_len = m->m_pkthdr.len = hdrlen;
960	m->m_flags |= M_ENCAP;		/* mark encapsulated */
961
962	M_WME_SETAC(m, WME_AC_BE);
963
964	IEEE80211_NODE_STAT(ni, tx_data);
965
966	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
967	    "send %snull data frame on channel %u, pwr mgt %s",
968	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
969	    ieee80211_chan2ieee(ic, ic->ic_curchan),
970	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
971
972	ret = ieee80211_raw_output(vap, ni, m, NULL);
973	IEEE80211_TX_UNLOCK(ic);
974	return (ret);
975}
976
977/*
978 * Assign priority to a frame based on any vlan tag assigned
979 * to the station and/or any Diffserv setting in an IP header.
980 * Finally, if an ACM policy is setup (in station mode) it's
981 * applied.
982 */
983int
984ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
985{
986	const struct ether_header *eh = mtod(m, struct ether_header *);
987	int v_wme_ac, d_wme_ac, ac;
988
989	/*
990	 * Always promote PAE/EAPOL frames to high priority.
991	 */
992	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
993		/* NB: mark so others don't need to check header */
994		m->m_flags |= M_EAPOL;
995		ac = WME_AC_VO;
996		goto done;
997	}
998	/*
999	 * Non-qos traffic goes to BE.
1000	 */
1001	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1002		ac = WME_AC_BE;
1003		goto done;
1004	}
1005
1006	/*
1007	 * If node has a vlan tag then all traffic
1008	 * to it must have a matching tag.
1009	 */
1010	v_wme_ac = 0;
1011	if (ni->ni_vlan != 0) {
1012		 if ((m->m_flags & M_VLANTAG) == 0) {
1013			IEEE80211_NODE_STAT(ni, tx_novlantag);
1014			return 1;
1015		}
1016		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1017		    EVL_VLANOFTAG(ni->ni_vlan)) {
1018			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1019			return 1;
1020		}
1021		/* map vlan priority to AC */
1022		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1023	}
1024
1025	/* XXX m_copydata may be too slow for fast path */
1026#ifdef INET
1027	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1028		uint8_t tos;
1029		/*
1030		 * IP frame, map the DSCP bits from the TOS field.
1031		 */
1032		/* NB: ip header may not be in first mbuf */
1033		m_copydata(m, sizeof(struct ether_header) +
1034		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1035		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1036		d_wme_ac = TID_TO_WME_AC(tos);
1037	} else {
1038#endif /* INET */
1039#ifdef INET6
1040	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1041		uint32_t flow;
1042		uint8_t tos;
1043		/*
1044		 * IPv6 frame, map the DSCP bits from the traffic class field.
1045		 */
1046		m_copydata(m, sizeof(struct ether_header) +
1047		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1048		    (caddr_t) &flow);
1049		tos = (uint8_t)(ntohl(flow) >> 20);
1050		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1051		d_wme_ac = TID_TO_WME_AC(tos);
1052	} else {
1053#endif /* INET6 */
1054		d_wme_ac = WME_AC_BE;
1055#ifdef INET6
1056	}
1057#endif
1058#ifdef INET
1059	}
1060#endif
1061	/*
1062	 * Use highest priority AC.
1063	 */
1064	if (v_wme_ac > d_wme_ac)
1065		ac = v_wme_ac;
1066	else
1067		ac = d_wme_ac;
1068
1069	/*
1070	 * Apply ACM policy.
1071	 */
1072	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1073		static const int acmap[4] = {
1074			WME_AC_BK,	/* WME_AC_BE */
1075			WME_AC_BK,	/* WME_AC_BK */
1076			WME_AC_BE,	/* WME_AC_VI */
1077			WME_AC_VI,	/* WME_AC_VO */
1078		};
1079		struct ieee80211com *ic = ni->ni_ic;
1080
1081		while (ac != WME_AC_BK &&
1082		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1083			ac = acmap[ac];
1084	}
1085done:
1086	M_WME_SETAC(m, ac);
1087	return 0;
1088}
1089
1090/*
1091 * Insure there is sufficient contiguous space to encapsulate the
1092 * 802.11 data frame.  If room isn't already there, arrange for it.
1093 * Drivers and cipher modules assume we have done the necessary work
1094 * and fail rudely if they don't find the space they need.
1095 */
1096struct mbuf *
1097ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1098	struct ieee80211_key *key, struct mbuf *m)
1099{
1100#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1101	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1102
1103	if (key != NULL) {
1104		/* XXX belongs in crypto code? */
1105		needed_space += key->wk_cipher->ic_header;
1106		/* XXX frags */
1107		/*
1108		 * When crypto is being done in the host we must insure
1109		 * the data are writable for the cipher routines; clone
1110		 * a writable mbuf chain.
1111		 * XXX handle SWMIC specially
1112		 */
1113		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1114			m = m_unshare(m, M_NOWAIT);
1115			if (m == NULL) {
1116				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1117				    "%s: cannot get writable mbuf\n", __func__);
1118				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1119				return NULL;
1120			}
1121		}
1122	}
1123	/*
1124	 * We know we are called just before stripping an Ethernet
1125	 * header and prepending an LLC header.  This means we know
1126	 * there will be
1127	 *	sizeof(struct ether_header) - sizeof(struct llc)
1128	 * bytes recovered to which we need additional space for the
1129	 * 802.11 header and any crypto header.
1130	 */
1131	/* XXX check trailing space and copy instead? */
1132	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1133		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1134		if (n == NULL) {
1135			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1136			    "%s: cannot expand storage\n", __func__);
1137			vap->iv_stats.is_tx_nobuf++;
1138			m_freem(m);
1139			return NULL;
1140		}
1141		KASSERT(needed_space <= MHLEN,
1142		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1143		/*
1144		 * Setup new mbuf to have leading space to prepend the
1145		 * 802.11 header and any crypto header bits that are
1146		 * required (the latter are added when the driver calls
1147		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1148		 */
1149		/* NB: must be first 'cuz it clobbers m_data */
1150		m_move_pkthdr(n, m);
1151		n->m_len = 0;			/* NB: m_gethdr does not set */
1152		n->m_data += needed_space;
1153		/*
1154		 * Pull up Ethernet header to create the expected layout.
1155		 * We could use m_pullup but that's overkill (i.e. we don't
1156		 * need the actual data) and it cannot fail so do it inline
1157		 * for speed.
1158		 */
1159		/* NB: struct ether_header is known to be contiguous */
1160		n->m_len += sizeof(struct ether_header);
1161		m->m_len -= sizeof(struct ether_header);
1162		m->m_data += sizeof(struct ether_header);
1163		/*
1164		 * Replace the head of the chain.
1165		 */
1166		n->m_next = m;
1167		m = n;
1168	}
1169	return m;
1170#undef TO_BE_RECLAIMED
1171}
1172
1173/*
1174 * Return the transmit key to use in sending a unicast frame.
1175 * If a unicast key is set we use that.  When no unicast key is set
1176 * we fall back to the default transmit key.
1177 */
1178static __inline struct ieee80211_key *
1179ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1180	struct ieee80211_node *ni)
1181{
1182	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1183		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1184		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1185			return NULL;
1186		return &vap->iv_nw_keys[vap->iv_def_txkey];
1187	} else {
1188		return &ni->ni_ucastkey;
1189	}
1190}
1191
1192/*
1193 * Return the transmit key to use in sending a multicast frame.
1194 * Multicast traffic always uses the group key which is installed as
1195 * the default tx key.
1196 */
1197static __inline struct ieee80211_key *
1198ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1199	struct ieee80211_node *ni)
1200{
1201	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1202	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1203		return NULL;
1204	return &vap->iv_nw_keys[vap->iv_def_txkey];
1205}
1206
1207/*
1208 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1209 * If an error is encountered NULL is returned.  The caller is required
1210 * to provide a node reference and pullup the ethernet header in the
1211 * first mbuf.
1212 *
1213 * NB: Packet is assumed to be processed by ieee80211_classify which
1214 *     marked EAPOL frames w/ M_EAPOL.
1215 */
1216struct mbuf *
1217ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1218    struct mbuf *m)
1219{
1220#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1221#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1222	struct ieee80211com *ic = ni->ni_ic;
1223#ifdef IEEE80211_SUPPORT_MESH
1224	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1225	struct ieee80211_meshcntl_ae10 *mc;
1226	struct ieee80211_mesh_route *rt = NULL;
1227	int dir = -1;
1228#endif
1229	struct ether_header eh;
1230	struct ieee80211_frame *wh;
1231	struct ieee80211_key *key;
1232	struct llc *llc;
1233	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1234	ieee80211_seq seqno;
1235	int meshhdrsize, meshae;
1236	uint8_t *qos;
1237	int is_amsdu = 0;
1238
1239	IEEE80211_TX_LOCK_ASSERT(ic);
1240
1241	/*
1242	 * Copy existing Ethernet header to a safe place.  The
1243	 * rest of the code assumes it's ok to strip it when
1244	 * reorganizing state for the final encapsulation.
1245	 */
1246	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1247	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1248
1249	/*
1250	 * Insure space for additional headers.  First identify
1251	 * transmit key to use in calculating any buffer adjustments
1252	 * required.  This is also used below to do privacy
1253	 * encapsulation work.  Then calculate the 802.11 header
1254	 * size and any padding required by the driver.
1255	 *
1256	 * Note key may be NULL if we fall back to the default
1257	 * transmit key and that is not set.  In that case the
1258	 * buffer may not be expanded as needed by the cipher
1259	 * routines, but they will/should discard it.
1260	 */
1261	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1262		if (vap->iv_opmode == IEEE80211_M_STA ||
1263		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1264		    (vap->iv_opmode == IEEE80211_M_WDS &&
1265		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1266			key = ieee80211_crypto_getucastkey(vap, ni);
1267		else
1268			key = ieee80211_crypto_getmcastkey(vap, ni);
1269		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1270			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1271			    eh.ether_dhost,
1272			    "no default transmit key (%s) deftxkey %u",
1273			    __func__, vap->iv_def_txkey);
1274			vap->iv_stats.is_tx_nodefkey++;
1275			goto bad;
1276		}
1277	} else
1278		key = NULL;
1279	/*
1280	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1281	 * frames so suppress use.  This may be an issue if other
1282	 * ap's require all data frames to be QoS-encapsulated
1283	 * once negotiated in which case we'll need to make this
1284	 * configurable.
1285	 * NB: mesh data frames are QoS.
1286	 */
1287	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1288	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1289	    (m->m_flags & M_EAPOL) == 0;
1290	if (addqos)
1291		hdrsize = sizeof(struct ieee80211_qosframe);
1292	else
1293		hdrsize = sizeof(struct ieee80211_frame);
1294#ifdef IEEE80211_SUPPORT_MESH
1295	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1296		/*
1297		 * Mesh data frames are encapsulated according to the
1298		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1299		 * o Group Addressed data (aka multicast) originating
1300		 *   at the local sta are sent w/ 3-address format and
1301		 *   address extension mode 00
1302		 * o Individually Addressed data (aka unicast) originating
1303		 *   at the local sta are sent w/ 4-address format and
1304		 *   address extension mode 00
1305		 * o Group Addressed data forwarded from a non-mesh sta are
1306		 *   sent w/ 3-address format and address extension mode 01
1307		 * o Individually Address data from another sta are sent
1308		 *   w/ 4-address format and address extension mode 10
1309		 */
1310		is4addr = 0;		/* NB: don't use, disable */
1311		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1312			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1313			KASSERT(rt != NULL, ("route is NULL"));
1314			dir = IEEE80211_FC1_DIR_DSTODS;
1315			hdrsize += IEEE80211_ADDR_LEN;
1316			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1317				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1318				    vap->iv_myaddr)) {
1319					IEEE80211_NOTE_MAC(vap,
1320					    IEEE80211_MSG_MESH,
1321					    eh.ether_dhost,
1322					    "%s", "trying to send to ourself");
1323					goto bad;
1324				}
1325				meshae = IEEE80211_MESH_AE_10;
1326				meshhdrsize =
1327				    sizeof(struct ieee80211_meshcntl_ae10);
1328			} else {
1329				meshae = IEEE80211_MESH_AE_00;
1330				meshhdrsize =
1331				    sizeof(struct ieee80211_meshcntl);
1332			}
1333		} else {
1334			dir = IEEE80211_FC1_DIR_FROMDS;
1335			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1336				/* proxy group */
1337				meshae = IEEE80211_MESH_AE_01;
1338				meshhdrsize =
1339				    sizeof(struct ieee80211_meshcntl_ae01);
1340			} else {
1341				/* group */
1342				meshae = IEEE80211_MESH_AE_00;
1343				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1344			}
1345		}
1346	} else {
1347#endif
1348		/*
1349		 * 4-address frames need to be generated for:
1350		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1351		 * o packets sent through a vap marked for relaying
1352		 *   (e.g. a station operating with dynamic WDS)
1353		 */
1354		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1355		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1356		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1357		if (is4addr)
1358			hdrsize += IEEE80211_ADDR_LEN;
1359		meshhdrsize = meshae = 0;
1360#ifdef IEEE80211_SUPPORT_MESH
1361	}
1362#endif
1363	/*
1364	 * Honor driver DATAPAD requirement.
1365	 */
1366	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1367		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1368	else
1369		hdrspace = hdrsize;
1370
1371	if (__predict_true((m->m_flags & M_FF) == 0)) {
1372		/*
1373		 * Normal frame.
1374		 */
1375		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1376		if (m == NULL) {
1377			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1378			goto bad;
1379		}
1380		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1381		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1382		llc = mtod(m, struct llc *);
1383		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1384		llc->llc_control = LLC_UI;
1385		llc->llc_snap.org_code[0] = 0;
1386		llc->llc_snap.org_code[1] = 0;
1387		llc->llc_snap.org_code[2] = 0;
1388		llc->llc_snap.ether_type = eh.ether_type;
1389	} else {
1390#ifdef IEEE80211_SUPPORT_SUPERG
1391		/*
1392		 * Aggregated frame.  Check if it's for AMSDU or FF.
1393		 *
1394		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1395		 * anywhere for some reason.  But, since 11n requires
1396		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1397		 */
1398		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1399		if (ieee80211_amsdu_tx_ok(ni)) {
1400			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1401			is_amsdu = 1;
1402		} else {
1403			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1404		}
1405		if (m == NULL)
1406#endif
1407			goto bad;
1408	}
1409	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1410
1411	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1412	if (m == NULL) {
1413		vap->iv_stats.is_tx_nobuf++;
1414		goto bad;
1415	}
1416	wh = mtod(m, struct ieee80211_frame *);
1417	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1418	*(uint16_t *)wh->i_dur = 0;
1419	qos = NULL;	/* NB: quiet compiler */
1420	if (is4addr) {
1421		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1422		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1423		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1424		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1425		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1426	} else switch (vap->iv_opmode) {
1427	case IEEE80211_M_STA:
1428		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1429		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1430		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1431		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1432		break;
1433	case IEEE80211_M_IBSS:
1434	case IEEE80211_M_AHDEMO:
1435		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1436		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1437		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1438		/*
1439		 * NB: always use the bssid from iv_bss as the
1440		 *     neighbor's may be stale after an ibss merge
1441		 */
1442		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1443		break;
1444	case IEEE80211_M_HOSTAP:
1445		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1446		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1447		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1448		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1449		break;
1450#ifdef IEEE80211_SUPPORT_MESH
1451	case IEEE80211_M_MBSS:
1452		/* NB: offset by hdrspace to deal with DATAPAD */
1453		mc = (struct ieee80211_meshcntl_ae10 *)
1454		     (mtod(m, uint8_t *) + hdrspace);
1455		wh->i_fc[1] = dir;
1456		switch (meshae) {
1457		case IEEE80211_MESH_AE_00:	/* no proxy */
1458			mc->mc_flags = 0;
1459			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1460				IEEE80211_ADDR_COPY(wh->i_addr1,
1461				    ni->ni_macaddr);
1462				IEEE80211_ADDR_COPY(wh->i_addr2,
1463				    vap->iv_myaddr);
1464				IEEE80211_ADDR_COPY(wh->i_addr3,
1465				    eh.ether_dhost);
1466				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1467				    eh.ether_shost);
1468				qos =((struct ieee80211_qosframe_addr4 *)
1469				    wh)->i_qos;
1470			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1471				 /* mcast */
1472				IEEE80211_ADDR_COPY(wh->i_addr1,
1473				    eh.ether_dhost);
1474				IEEE80211_ADDR_COPY(wh->i_addr2,
1475				    vap->iv_myaddr);
1476				IEEE80211_ADDR_COPY(wh->i_addr3,
1477				    eh.ether_shost);
1478				qos = ((struct ieee80211_qosframe *)
1479				    wh)->i_qos;
1480			}
1481			break;
1482		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1483			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1484			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1485			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1486			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1487			mc->mc_flags = 1;
1488			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1489			    eh.ether_shost);
1490			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1491			break;
1492		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1493			KASSERT(rt != NULL, ("route is NULL"));
1494			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1495			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1496			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1497			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1498			mc->mc_flags = IEEE80211_MESH_AE_10;
1499			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1500			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1501			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1502			break;
1503		default:
1504			KASSERT(0, ("meshae %d", meshae));
1505			break;
1506		}
1507		mc->mc_ttl = ms->ms_ttl;
1508		ms->ms_seq++;
1509		le32enc(mc->mc_seq, ms->ms_seq);
1510		break;
1511#endif
1512	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1513	default:
1514		goto bad;
1515	}
1516	if (m->m_flags & M_MORE_DATA)
1517		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1518	if (addqos) {
1519		int ac, tid;
1520
1521		if (is4addr) {
1522			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1523		/* NB: mesh case handled earlier */
1524		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1525			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1526		ac = M_WME_GETAC(m);
1527		/* map from access class/queue to 11e header priorty value */
1528		tid = WME_AC_TO_TID(ac);
1529		qos[0] = tid & IEEE80211_QOS_TID;
1530		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1531			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1532#ifdef IEEE80211_SUPPORT_MESH
1533		if (vap->iv_opmode == IEEE80211_M_MBSS)
1534			qos[1] = IEEE80211_QOS_MC;
1535		else
1536#endif
1537			qos[1] = 0;
1538		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1539
1540		/*
1541		 * If this is an A-MSDU then ensure we set the
1542		 * relevant field.
1543		 */
1544		if (is_amsdu)
1545			qos[0] |= IEEE80211_QOS_AMSDU;
1546
1547		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1548			/*
1549			 * NB: don't assign a sequence # to potential
1550			 * aggregates; we expect this happens at the
1551			 * point the frame comes off any aggregation q
1552			 * as otherwise we may introduce holes in the
1553			 * BA sequence space and/or make window accouting
1554			 * more difficult.
1555			 *
1556			 * XXX may want to control this with a driver
1557			 * capability; this may also change when we pull
1558			 * aggregation up into net80211
1559			 */
1560			seqno = ni->ni_txseqs[tid]++;
1561			*(uint16_t *)wh->i_seq =
1562			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1563			M_SEQNO_SET(m, seqno);
1564		}
1565	} else {
1566		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1567		*(uint16_t *)wh->i_seq =
1568		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1569		M_SEQNO_SET(m, seqno);
1570
1571		/*
1572		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1573		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1574		 */
1575		if (is_amsdu)
1576			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1577			    __func__);
1578	}
1579
1580
1581	/* check if xmit fragmentation is required */
1582	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1583	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1584	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1585	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1586	if (key != NULL) {
1587		/*
1588		 * IEEE 802.1X: send EAPOL frames always in the clear.
1589		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1590		 */
1591		if ((m->m_flags & M_EAPOL) == 0 ||
1592		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1593		     (vap->iv_opmode == IEEE80211_M_STA ?
1594		      !IEEE80211_KEY_UNDEFINED(key) :
1595		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1596			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1597			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1598				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1599				    eh.ether_dhost,
1600				    "%s", "enmic failed, discard frame");
1601				vap->iv_stats.is_crypto_enmicfail++;
1602				goto bad;
1603			}
1604		}
1605	}
1606	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1607	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1608		goto bad;
1609
1610	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1611
1612	IEEE80211_NODE_STAT(ni, tx_data);
1613	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1614		IEEE80211_NODE_STAT(ni, tx_mcast);
1615		m->m_flags |= M_MCAST;
1616	} else
1617		IEEE80211_NODE_STAT(ni, tx_ucast);
1618	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1619
1620	return m;
1621bad:
1622	if (m != NULL)
1623		m_freem(m);
1624	return NULL;
1625#undef WH4
1626#undef MC01
1627}
1628
1629void
1630ieee80211_free_mbuf(struct mbuf *m)
1631{
1632	struct mbuf *next;
1633
1634	if (m == NULL)
1635		return;
1636
1637	do {
1638		next = m->m_nextpkt;
1639		m->m_nextpkt = NULL;
1640		m_freem(m);
1641	} while ((m = next) != NULL);
1642}
1643
1644/*
1645 * Fragment the frame according to the specified mtu.
1646 * The size of the 802.11 header (w/o padding) is provided
1647 * so we don't need to recalculate it.  We create a new
1648 * mbuf for each fragment and chain it through m_nextpkt;
1649 * we might be able to optimize this by reusing the original
1650 * packet's mbufs but that is significantly more complicated.
1651 */
1652static int
1653ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1654	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1655{
1656	struct ieee80211com *ic = vap->iv_ic;
1657	struct ieee80211_frame *wh, *whf;
1658	struct mbuf *m, *prev;
1659	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1660	u_int hdrspace;
1661
1662	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1663	KASSERT(m0->m_pkthdr.len > mtu,
1664		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1665
1666	/*
1667	 * Honor driver DATAPAD requirement.
1668	 */
1669	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1670		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1671	else
1672		hdrspace = hdrsize;
1673
1674	wh = mtod(m0, struct ieee80211_frame *);
1675	/* NB: mark the first frag; it will be propagated below */
1676	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1677	totalhdrsize = hdrspace + ciphdrsize;
1678	fragno = 1;
1679	off = mtu - ciphdrsize;
1680	remainder = m0->m_pkthdr.len - off;
1681	prev = m0;
1682	do {
1683		fragsize = totalhdrsize + remainder;
1684		if (fragsize > mtu)
1685			fragsize = mtu;
1686		/* XXX fragsize can be >2048! */
1687		KASSERT(fragsize < MCLBYTES,
1688			("fragment size %u too big!", fragsize));
1689		if (fragsize > MHLEN)
1690			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1691		else
1692			m = m_gethdr(M_NOWAIT, MT_DATA);
1693		if (m == NULL)
1694			goto bad;
1695		/* leave room to prepend any cipher header */
1696		m_align(m, fragsize - ciphdrsize);
1697
1698		/*
1699		 * Form the header in the fragment.  Note that since
1700		 * we mark the first fragment with the MORE_FRAG bit
1701		 * it automatically is propagated to each fragment; we
1702		 * need only clear it on the last fragment (done below).
1703		 * NB: frag 1+ dont have Mesh Control field present.
1704		 */
1705		whf = mtod(m, struct ieee80211_frame *);
1706		memcpy(whf, wh, hdrsize);
1707#ifdef IEEE80211_SUPPORT_MESH
1708		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1709			if (IEEE80211_IS_DSTODS(wh))
1710				((struct ieee80211_qosframe_addr4 *)
1711				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1712			else
1713				((struct ieee80211_qosframe *)
1714				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1715		}
1716#endif
1717		*(uint16_t *)&whf->i_seq[0] |= htole16(
1718			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1719				IEEE80211_SEQ_FRAG_SHIFT);
1720		fragno++;
1721
1722		payload = fragsize - totalhdrsize;
1723		/* NB: destination is known to be contiguous */
1724
1725		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1726		m->m_len = hdrspace + payload;
1727		m->m_pkthdr.len = hdrspace + payload;
1728		m->m_flags |= M_FRAG;
1729
1730		/* chain up the fragment */
1731		prev->m_nextpkt = m;
1732		prev = m;
1733
1734		/* deduct fragment just formed */
1735		remainder -= payload;
1736		off += payload;
1737	} while (remainder != 0);
1738
1739	/* set the last fragment */
1740	m->m_flags |= M_LASTFRAG;
1741	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1742
1743	/* strip first mbuf now that everything has been copied */
1744	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1745	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1746
1747	vap->iv_stats.is_tx_fragframes++;
1748	vap->iv_stats.is_tx_frags += fragno-1;
1749
1750	return 1;
1751bad:
1752	/* reclaim fragments but leave original frame for caller to free */
1753	ieee80211_free_mbuf(m0->m_nextpkt);
1754	m0->m_nextpkt = NULL;
1755	return 0;
1756}
1757
1758/*
1759 * Add a supported rates element id to a frame.
1760 */
1761uint8_t *
1762ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1763{
1764	int nrates;
1765
1766	*frm++ = IEEE80211_ELEMID_RATES;
1767	nrates = rs->rs_nrates;
1768	if (nrates > IEEE80211_RATE_SIZE)
1769		nrates = IEEE80211_RATE_SIZE;
1770	*frm++ = nrates;
1771	memcpy(frm, rs->rs_rates, nrates);
1772	return frm + nrates;
1773}
1774
1775/*
1776 * Add an extended supported rates element id to a frame.
1777 */
1778uint8_t *
1779ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1780{
1781	/*
1782	 * Add an extended supported rates element if operating in 11g mode.
1783	 */
1784	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1785		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1786		*frm++ = IEEE80211_ELEMID_XRATES;
1787		*frm++ = nrates;
1788		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1789		frm += nrates;
1790	}
1791	return frm;
1792}
1793
1794/*
1795 * Add an ssid element to a frame.
1796 */
1797uint8_t *
1798ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1799{
1800	*frm++ = IEEE80211_ELEMID_SSID;
1801	*frm++ = len;
1802	memcpy(frm, ssid, len);
1803	return frm + len;
1804}
1805
1806/*
1807 * Add an erp element to a frame.
1808 */
1809static uint8_t *
1810ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1811{
1812	uint8_t erp;
1813
1814	*frm++ = IEEE80211_ELEMID_ERP;
1815	*frm++ = 1;
1816	erp = 0;
1817	if (ic->ic_nonerpsta != 0)
1818		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1819	if (ic->ic_flags & IEEE80211_F_USEPROT)
1820		erp |= IEEE80211_ERP_USE_PROTECTION;
1821	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1822		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1823	*frm++ = erp;
1824	return frm;
1825}
1826
1827/*
1828 * Add a CFParams element to a frame.
1829 */
1830static uint8_t *
1831ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1832{
1833#define	ADDSHORT(frm, v) do {	\
1834	le16enc(frm, v);	\
1835	frm += 2;		\
1836} while (0)
1837	*frm++ = IEEE80211_ELEMID_CFPARMS;
1838	*frm++ = 6;
1839	*frm++ = 0;		/* CFP count */
1840	*frm++ = 2;		/* CFP period */
1841	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1842	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1843	return frm;
1844#undef ADDSHORT
1845}
1846
1847static __inline uint8_t *
1848add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1849{
1850	memcpy(frm, ie->ie_data, ie->ie_len);
1851	return frm + ie->ie_len;
1852}
1853
1854static __inline uint8_t *
1855add_ie(uint8_t *frm, const uint8_t *ie)
1856{
1857	memcpy(frm, ie, 2 + ie[1]);
1858	return frm + 2 + ie[1];
1859}
1860
1861#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1862/*
1863 * Add a WME information element to a frame.
1864 */
1865uint8_t *
1866ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1867{
1868	static const struct ieee80211_wme_info info = {
1869		.wme_id		= IEEE80211_ELEMID_VENDOR,
1870		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1871		.wme_oui	= { WME_OUI_BYTES },
1872		.wme_type	= WME_OUI_TYPE,
1873		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1874		.wme_version	= WME_VERSION,
1875		.wme_info	= 0,
1876	};
1877	memcpy(frm, &info, sizeof(info));
1878	return frm + sizeof(info);
1879}
1880
1881/*
1882 * Add a WME parameters element to a frame.
1883 */
1884static uint8_t *
1885ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1886{
1887#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1888#define	ADDSHORT(frm, v) do {	\
1889	le16enc(frm, v);	\
1890	frm += 2;		\
1891} while (0)
1892	/* NB: this works 'cuz a param has an info at the front */
1893	static const struct ieee80211_wme_info param = {
1894		.wme_id		= IEEE80211_ELEMID_VENDOR,
1895		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1896		.wme_oui	= { WME_OUI_BYTES },
1897		.wme_type	= WME_OUI_TYPE,
1898		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1899		.wme_version	= WME_VERSION,
1900	};
1901	int i;
1902
1903	memcpy(frm, &param, sizeof(param));
1904	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1905	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1906	*frm++ = 0;					/* reserved field */
1907	for (i = 0; i < WME_NUM_AC; i++) {
1908		const struct wmeParams *ac =
1909		       &wme->wme_bssChanParams.cap_wmeParams[i];
1910		*frm++ = SM(i, WME_PARAM_ACI)
1911		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1912		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1913		       ;
1914		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1915		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1916		       ;
1917		ADDSHORT(frm, ac->wmep_txopLimit);
1918	}
1919	return frm;
1920#undef SM
1921#undef ADDSHORT
1922}
1923#undef WME_OUI_BYTES
1924
1925/*
1926 * Add an 11h Power Constraint element to a frame.
1927 */
1928static uint8_t *
1929ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1930{
1931	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1932	/* XXX per-vap tx power limit? */
1933	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1934
1935	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1936	frm[1] = 1;
1937	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1938	return frm + 3;
1939}
1940
1941/*
1942 * Add an 11h Power Capability element to a frame.
1943 */
1944static uint8_t *
1945ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1946{
1947	frm[0] = IEEE80211_ELEMID_PWRCAP;
1948	frm[1] = 2;
1949	frm[2] = c->ic_minpower;
1950	frm[3] = c->ic_maxpower;
1951	return frm + 4;
1952}
1953
1954/*
1955 * Add an 11h Supported Channels element to a frame.
1956 */
1957static uint8_t *
1958ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1959{
1960	static const int ielen = 26;
1961
1962	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1963	frm[1] = ielen;
1964	/* XXX not correct */
1965	memcpy(frm+2, ic->ic_chan_avail, ielen);
1966	return frm + 2 + ielen;
1967}
1968
1969/*
1970 * Add an 11h Quiet time element to a frame.
1971 */
1972static uint8_t *
1973ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1974{
1975	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1976
1977	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1978	quiet->len = 6;
1979	if (vap->iv_quiet_count_value == 1)
1980		vap->iv_quiet_count_value = vap->iv_quiet_count;
1981	else if (vap->iv_quiet_count_value > 1)
1982		vap->iv_quiet_count_value--;
1983
1984	if (vap->iv_quiet_count_value == 0) {
1985		/* value 0 is reserved as per 802.11h standerd */
1986		vap->iv_quiet_count_value = 1;
1987	}
1988
1989	quiet->tbttcount = vap->iv_quiet_count_value;
1990	quiet->period = vap->iv_quiet_period;
1991	quiet->duration = htole16(vap->iv_quiet_duration);
1992	quiet->offset = htole16(vap->iv_quiet_offset);
1993	return frm + sizeof(*quiet);
1994}
1995
1996/*
1997 * Add an 11h Channel Switch Announcement element to a frame.
1998 * Note that we use the per-vap CSA count to adjust the global
1999 * counter so we can use this routine to form probe response
2000 * frames and get the current count.
2001 */
2002static uint8_t *
2003ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2004{
2005	struct ieee80211com *ic = vap->iv_ic;
2006	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2007
2008	csa->csa_ie = IEEE80211_ELEMID_CSA;
2009	csa->csa_len = 3;
2010	csa->csa_mode = 1;		/* XXX force quiet on channel */
2011	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2012	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2013	return frm + sizeof(*csa);
2014}
2015
2016/*
2017 * Add an 11h country information element to a frame.
2018 */
2019static uint8_t *
2020ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2021{
2022
2023	if (ic->ic_countryie == NULL ||
2024	    ic->ic_countryie_chan != ic->ic_bsschan) {
2025		/*
2026		 * Handle lazy construction of ie.  This is done on
2027		 * first use and after a channel change that requires
2028		 * re-calculation.
2029		 */
2030		if (ic->ic_countryie != NULL)
2031			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2032		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2033		if (ic->ic_countryie == NULL)
2034			return frm;
2035		ic->ic_countryie_chan = ic->ic_bsschan;
2036	}
2037	return add_appie(frm, ic->ic_countryie);
2038}
2039
2040uint8_t *
2041ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2042{
2043	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2044		return (add_ie(frm, vap->iv_wpa_ie));
2045	else {
2046		/* XXX else complain? */
2047		return (frm);
2048	}
2049}
2050
2051uint8_t *
2052ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2053{
2054	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2055		return (add_ie(frm, vap->iv_rsn_ie));
2056	else {
2057		/* XXX else complain? */
2058		return (frm);
2059	}
2060}
2061
2062uint8_t *
2063ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2064{
2065	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2066		*frm++ = IEEE80211_ELEMID_QOS;
2067		*frm++ = 1;
2068		*frm++ = 0;
2069	}
2070
2071	return (frm);
2072}
2073
2074/*
2075 * Send a probe request frame with the specified ssid
2076 * and any optional information element data.
2077 */
2078int
2079ieee80211_send_probereq(struct ieee80211_node *ni,
2080	const uint8_t sa[IEEE80211_ADDR_LEN],
2081	const uint8_t da[IEEE80211_ADDR_LEN],
2082	const uint8_t bssid[IEEE80211_ADDR_LEN],
2083	const uint8_t *ssid, size_t ssidlen)
2084{
2085	struct ieee80211vap *vap = ni->ni_vap;
2086	struct ieee80211com *ic = ni->ni_ic;
2087	const struct ieee80211_txparam *tp;
2088	struct ieee80211_bpf_params params;
2089	struct ieee80211_frame *wh;
2090	const struct ieee80211_rateset *rs;
2091	struct mbuf *m;
2092	uint8_t *frm;
2093	int ret;
2094
2095	if (vap->iv_state == IEEE80211_S_CAC) {
2096		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2097		    "block %s frame in CAC state", "probe request");
2098		vap->iv_stats.is_tx_badstate++;
2099		return EIO;		/* XXX */
2100	}
2101
2102	/*
2103	 * Hold a reference on the node so it doesn't go away until after
2104	 * the xmit is complete all the way in the driver.  On error we
2105	 * will remove our reference.
2106	 */
2107	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2108		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2109		__func__, __LINE__,
2110		ni, ether_sprintf(ni->ni_macaddr),
2111		ieee80211_node_refcnt(ni)+1);
2112	ieee80211_ref_node(ni);
2113
2114	/*
2115	 * prreq frame format
2116	 *	[tlv] ssid
2117	 *	[tlv] supported rates
2118	 *	[tlv] RSN (optional)
2119	 *	[tlv] extended supported rates
2120	 *	[tlv] WPA (optional)
2121	 *	[tlv] user-specified ie's
2122	 */
2123	m = ieee80211_getmgtframe(&frm,
2124		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2125	       	 2 + IEEE80211_NWID_LEN
2126	       + 2 + IEEE80211_RATE_SIZE
2127	       + sizeof(struct ieee80211_ie_wpa)
2128	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2129	       + sizeof(struct ieee80211_ie_wpa)
2130	       + (vap->iv_appie_probereq != NULL ?
2131		   vap->iv_appie_probereq->ie_len : 0)
2132	);
2133	if (m == NULL) {
2134		vap->iv_stats.is_tx_nobuf++;
2135		ieee80211_free_node(ni);
2136		return ENOMEM;
2137	}
2138
2139	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2140	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2141	frm = ieee80211_add_rates(frm, rs);
2142	frm = ieee80211_add_rsn(frm, vap);
2143	frm = ieee80211_add_xrates(frm, rs);
2144	frm = ieee80211_add_wpa(frm, vap);
2145	if (vap->iv_appie_probereq != NULL)
2146		frm = add_appie(frm, vap->iv_appie_probereq);
2147	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2148
2149	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2150	    ("leading space %zd", M_LEADINGSPACE(m)));
2151	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2152	if (m == NULL) {
2153		/* NB: cannot happen */
2154		ieee80211_free_node(ni);
2155		return ENOMEM;
2156	}
2157
2158	IEEE80211_TX_LOCK(ic);
2159	wh = mtod(m, struct ieee80211_frame *);
2160	ieee80211_send_setup(ni, m,
2161	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2162	     IEEE80211_NONQOS_TID, sa, da, bssid);
2163	/* XXX power management? */
2164	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2165
2166	M_WME_SETAC(m, WME_AC_BE);
2167
2168	IEEE80211_NODE_STAT(ni, tx_probereq);
2169	IEEE80211_NODE_STAT(ni, tx_mgmt);
2170
2171	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2172	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2173	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2174	    ssidlen, ssid);
2175
2176	memset(&params, 0, sizeof(params));
2177	params.ibp_pri = M_WME_GETAC(m);
2178	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2179	params.ibp_rate0 = tp->mgmtrate;
2180	if (IEEE80211_IS_MULTICAST(da)) {
2181		params.ibp_flags |= IEEE80211_BPF_NOACK;
2182		params.ibp_try0 = 1;
2183	} else
2184		params.ibp_try0 = tp->maxretry;
2185	params.ibp_power = ni->ni_txpower;
2186	ret = ieee80211_raw_output(vap, ni, m, &params);
2187	IEEE80211_TX_UNLOCK(ic);
2188	return (ret);
2189}
2190
2191/*
2192 * Calculate capability information for mgt frames.
2193 */
2194uint16_t
2195ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2196{
2197	struct ieee80211com *ic = vap->iv_ic;
2198	uint16_t capinfo;
2199
2200	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2201
2202	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2203		capinfo = IEEE80211_CAPINFO_ESS;
2204	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2205		capinfo = IEEE80211_CAPINFO_IBSS;
2206	else
2207		capinfo = 0;
2208	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2209		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2210	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2211	    IEEE80211_IS_CHAN_2GHZ(chan))
2212		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2213	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2214		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2215	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2216		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2217	return capinfo;
2218}
2219
2220/*
2221 * Send a management frame.  The node is for the destination (or ic_bss
2222 * when in station mode).  Nodes other than ic_bss have their reference
2223 * count bumped to reflect our use for an indeterminant time.
2224 */
2225int
2226ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2227{
2228#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2229#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2230	struct ieee80211vap *vap = ni->ni_vap;
2231	struct ieee80211com *ic = ni->ni_ic;
2232	struct ieee80211_node *bss = vap->iv_bss;
2233	struct ieee80211_bpf_params params;
2234	struct mbuf *m;
2235	uint8_t *frm;
2236	uint16_t capinfo;
2237	int has_challenge, is_shared_key, ret, status;
2238
2239	KASSERT(ni != NULL, ("null node"));
2240
2241	/*
2242	 * Hold a reference on the node so it doesn't go away until after
2243	 * the xmit is complete all the way in the driver.  On error we
2244	 * will remove our reference.
2245	 */
2246	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2247		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2248		__func__, __LINE__,
2249		ni, ether_sprintf(ni->ni_macaddr),
2250		ieee80211_node_refcnt(ni)+1);
2251	ieee80211_ref_node(ni);
2252
2253	memset(&params, 0, sizeof(params));
2254	switch (type) {
2255
2256	case IEEE80211_FC0_SUBTYPE_AUTH:
2257		status = arg >> 16;
2258		arg &= 0xffff;
2259		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2260		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2261		    ni->ni_challenge != NULL);
2262
2263		/*
2264		 * Deduce whether we're doing open authentication or
2265		 * shared key authentication.  We do the latter if
2266		 * we're in the middle of a shared key authentication
2267		 * handshake or if we're initiating an authentication
2268		 * request and configured to use shared key.
2269		 */
2270		is_shared_key = has_challenge ||
2271		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2272		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2273		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2274
2275		m = ieee80211_getmgtframe(&frm,
2276			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2277			  3 * sizeof(uint16_t)
2278			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2279				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2280		);
2281		if (m == NULL)
2282			senderr(ENOMEM, is_tx_nobuf);
2283
2284		((uint16_t *)frm)[0] =
2285		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2286		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2287		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2288		((uint16_t *)frm)[2] = htole16(status);/* status */
2289
2290		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2291			((uint16_t *)frm)[3] =
2292			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2293			    IEEE80211_ELEMID_CHALLENGE);
2294			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2295			    IEEE80211_CHALLENGE_LEN);
2296			m->m_pkthdr.len = m->m_len =
2297				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2298			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2299				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2300				    "request encrypt frame (%s)", __func__);
2301				/* mark frame for encryption */
2302				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2303			}
2304		} else
2305			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2306
2307		/* XXX not right for shared key */
2308		if (status == IEEE80211_STATUS_SUCCESS)
2309			IEEE80211_NODE_STAT(ni, tx_auth);
2310		else
2311			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2312
2313		if (vap->iv_opmode == IEEE80211_M_STA)
2314			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2315				(void *) vap->iv_state);
2316		break;
2317
2318	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2319		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2320		    "send station deauthenticate (reason: %d (%s))", arg,
2321		    ieee80211_reason_to_string(arg));
2322		m = ieee80211_getmgtframe(&frm,
2323			ic->ic_headroom + sizeof(struct ieee80211_frame),
2324			sizeof(uint16_t));
2325		if (m == NULL)
2326			senderr(ENOMEM, is_tx_nobuf);
2327		*(uint16_t *)frm = htole16(arg);	/* reason */
2328		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2329
2330		IEEE80211_NODE_STAT(ni, tx_deauth);
2331		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2332
2333		ieee80211_node_unauthorize(ni);		/* port closed */
2334		break;
2335
2336	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2337	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2338		/*
2339		 * asreq frame format
2340		 *	[2] capability information
2341		 *	[2] listen interval
2342		 *	[6*] current AP address (reassoc only)
2343		 *	[tlv] ssid
2344		 *	[tlv] supported rates
2345		 *	[tlv] extended supported rates
2346		 *	[4] power capability (optional)
2347		 *	[28] supported channels (optional)
2348		 *	[tlv] HT capabilities
2349		 *	[tlv] WME (optional)
2350		 *	[tlv] Vendor OUI HT capabilities (optional)
2351		 *	[tlv] Atheros capabilities (if negotiated)
2352		 *	[tlv] AppIE's (optional)
2353		 */
2354		m = ieee80211_getmgtframe(&frm,
2355			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2356			 sizeof(uint16_t)
2357		       + sizeof(uint16_t)
2358		       + IEEE80211_ADDR_LEN
2359		       + 2 + IEEE80211_NWID_LEN
2360		       + 2 + IEEE80211_RATE_SIZE
2361		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2362		       + 4
2363		       + 2 + 26
2364		       + sizeof(struct ieee80211_wme_info)
2365		       + sizeof(struct ieee80211_ie_htcap)
2366		       + 4 + sizeof(struct ieee80211_ie_htcap)
2367#ifdef IEEE80211_SUPPORT_SUPERG
2368		       + sizeof(struct ieee80211_ath_ie)
2369#endif
2370		       + (vap->iv_appie_wpa != NULL ?
2371				vap->iv_appie_wpa->ie_len : 0)
2372		       + (vap->iv_appie_assocreq != NULL ?
2373				vap->iv_appie_assocreq->ie_len : 0)
2374		);
2375		if (m == NULL)
2376			senderr(ENOMEM, is_tx_nobuf);
2377
2378		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2379		    ("wrong mode %u", vap->iv_opmode));
2380		capinfo = IEEE80211_CAPINFO_ESS;
2381		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2382			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2383		/*
2384		 * NB: Some 11a AP's reject the request when
2385		 *     short premable is set.
2386		 */
2387		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2388		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2389			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2390		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2391		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2392			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2393		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2394		    (vap->iv_flags & IEEE80211_F_DOTH))
2395			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2396		*(uint16_t *)frm = htole16(capinfo);
2397		frm += 2;
2398
2399		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2400		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2401						    bss->ni_intval));
2402		frm += 2;
2403
2404		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2405			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2406			frm += IEEE80211_ADDR_LEN;
2407		}
2408
2409		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2410		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2411		frm = ieee80211_add_rsn(frm, vap);
2412		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2413		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2414			frm = ieee80211_add_powercapability(frm,
2415			    ic->ic_curchan);
2416			frm = ieee80211_add_supportedchannels(frm, ic);
2417		}
2418
2419		/*
2420		 * Check the channel - we may be using an 11n NIC with an
2421		 * 11n capable station, but we're configured to be an 11b
2422		 * channel.
2423		 */
2424		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2425		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2426		    ni->ni_ies.htcap_ie != NULL &&
2427		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2428			frm = ieee80211_add_htcap(frm, ni);
2429		}
2430		frm = ieee80211_add_wpa(frm, vap);
2431		if ((ic->ic_flags & IEEE80211_F_WME) &&
2432		    ni->ni_ies.wme_ie != NULL)
2433			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2434
2435		/*
2436		 * Same deal - only send HT info if we're on an 11n
2437		 * capable channel.
2438		 */
2439		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2440		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2441		    ni->ni_ies.htcap_ie != NULL &&
2442		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2443			frm = ieee80211_add_htcap_vendor(frm, ni);
2444		}
2445#ifdef IEEE80211_SUPPORT_SUPERG
2446		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2447			frm = ieee80211_add_ath(frm,
2448				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2449				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2450				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2451				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2452		}
2453#endif /* IEEE80211_SUPPORT_SUPERG */
2454		if (vap->iv_appie_assocreq != NULL)
2455			frm = add_appie(frm, vap->iv_appie_assocreq);
2456		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2457
2458		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2459			(void *) vap->iv_state);
2460		break;
2461
2462	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2463	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2464		/*
2465		 * asresp frame format
2466		 *	[2] capability information
2467		 *	[2] status
2468		 *	[2] association ID
2469		 *	[tlv] supported rates
2470		 *	[tlv] extended supported rates
2471		 *	[tlv] HT capabilities (standard, if STA enabled)
2472		 *	[tlv] HT information (standard, if STA enabled)
2473		 *	[tlv] WME (if configured and STA enabled)
2474		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2475		 *	[tlv] HT information (vendor OUI, if STA enabled)
2476		 *	[tlv] Atheros capabilities (if STA enabled)
2477		 *	[tlv] AppIE's (optional)
2478		 */
2479		m = ieee80211_getmgtframe(&frm,
2480			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2481			 sizeof(uint16_t)
2482		       + sizeof(uint16_t)
2483		       + sizeof(uint16_t)
2484		       + 2 + IEEE80211_RATE_SIZE
2485		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2486		       + sizeof(struct ieee80211_ie_htcap) + 4
2487		       + sizeof(struct ieee80211_ie_htinfo) + 4
2488		       + sizeof(struct ieee80211_wme_param)
2489#ifdef IEEE80211_SUPPORT_SUPERG
2490		       + sizeof(struct ieee80211_ath_ie)
2491#endif
2492		       + (vap->iv_appie_assocresp != NULL ?
2493				vap->iv_appie_assocresp->ie_len : 0)
2494		);
2495		if (m == NULL)
2496			senderr(ENOMEM, is_tx_nobuf);
2497
2498		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2499		*(uint16_t *)frm = htole16(capinfo);
2500		frm += 2;
2501
2502		*(uint16_t *)frm = htole16(arg);	/* status */
2503		frm += 2;
2504
2505		if (arg == IEEE80211_STATUS_SUCCESS) {
2506			*(uint16_t *)frm = htole16(ni->ni_associd);
2507			IEEE80211_NODE_STAT(ni, tx_assoc);
2508		} else
2509			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2510		frm += 2;
2511
2512		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2513		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2514		/* NB: respond according to what we received */
2515		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2516			frm = ieee80211_add_htcap(frm, ni);
2517			frm = ieee80211_add_htinfo(frm, ni);
2518		}
2519		if ((vap->iv_flags & IEEE80211_F_WME) &&
2520		    ni->ni_ies.wme_ie != NULL)
2521			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2522		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2523			frm = ieee80211_add_htcap_vendor(frm, ni);
2524			frm = ieee80211_add_htinfo_vendor(frm, ni);
2525		}
2526#ifdef IEEE80211_SUPPORT_SUPERG
2527		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2528			frm = ieee80211_add_ath(frm,
2529				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2530				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2531				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2532				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2533#endif /* IEEE80211_SUPPORT_SUPERG */
2534		if (vap->iv_appie_assocresp != NULL)
2535			frm = add_appie(frm, vap->iv_appie_assocresp);
2536		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2537		break;
2538
2539	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2540		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2541		    "send station disassociate (reason: %d (%s))", arg,
2542		    ieee80211_reason_to_string(arg));
2543		m = ieee80211_getmgtframe(&frm,
2544			ic->ic_headroom + sizeof(struct ieee80211_frame),
2545			sizeof(uint16_t));
2546		if (m == NULL)
2547			senderr(ENOMEM, is_tx_nobuf);
2548		*(uint16_t *)frm = htole16(arg);	/* reason */
2549		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2550
2551		IEEE80211_NODE_STAT(ni, tx_disassoc);
2552		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2553		break;
2554
2555	default:
2556		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2557		    "invalid mgmt frame type %u", type);
2558		senderr(EINVAL, is_tx_unknownmgt);
2559		/* NOTREACHED */
2560	}
2561
2562	/* NB: force non-ProbeResp frames to the highest queue */
2563	params.ibp_pri = WME_AC_VO;
2564	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2565	/* NB: we know all frames are unicast */
2566	params.ibp_try0 = bss->ni_txparms->maxretry;
2567	params.ibp_power = bss->ni_txpower;
2568	return ieee80211_mgmt_output(ni, m, type, &params);
2569bad:
2570	ieee80211_free_node(ni);
2571	return ret;
2572#undef senderr
2573#undef HTFLAGS
2574}
2575
2576/*
2577 * Return an mbuf with a probe response frame in it.
2578 * Space is left to prepend and 802.11 header at the
2579 * front but it's left to the caller to fill in.
2580 */
2581struct mbuf *
2582ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2583{
2584	struct ieee80211vap *vap = bss->ni_vap;
2585	struct ieee80211com *ic = bss->ni_ic;
2586	const struct ieee80211_rateset *rs;
2587	struct mbuf *m;
2588	uint16_t capinfo;
2589	uint8_t *frm;
2590
2591	/*
2592	 * probe response frame format
2593	 *	[8] time stamp
2594	 *	[2] beacon interval
2595	 *	[2] cabability information
2596	 *	[tlv] ssid
2597	 *	[tlv] supported rates
2598	 *	[tlv] parameter set (FH/DS)
2599	 *	[tlv] parameter set (IBSS)
2600	 *	[tlv] country (optional)
2601	 *	[3] power control (optional)
2602	 *	[5] channel switch announcement (CSA) (optional)
2603	 *	[tlv] extended rate phy (ERP)
2604	 *	[tlv] extended supported rates
2605	 *	[tlv] RSN (optional)
2606	 *	[tlv] HT capabilities
2607	 *	[tlv] HT information
2608	 *	[tlv] WPA (optional)
2609	 *	[tlv] WME (optional)
2610	 *	[tlv] Vendor OUI HT capabilities (optional)
2611	 *	[tlv] Vendor OUI HT information (optional)
2612	 *	[tlv] Atheros capabilities
2613	 *	[tlv] AppIE's (optional)
2614	 *	[tlv] Mesh ID (MBSS)
2615	 *	[tlv] Mesh Conf (MBSS)
2616	 */
2617	m = ieee80211_getmgtframe(&frm,
2618		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2619		 8
2620	       + sizeof(uint16_t)
2621	       + sizeof(uint16_t)
2622	       + 2 + IEEE80211_NWID_LEN
2623	       + 2 + IEEE80211_RATE_SIZE
2624	       + 7	/* max(7,3) */
2625	       + IEEE80211_COUNTRY_MAX_SIZE
2626	       + 3
2627	       + sizeof(struct ieee80211_csa_ie)
2628	       + sizeof(struct ieee80211_quiet_ie)
2629	       + 3
2630	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2631	       + sizeof(struct ieee80211_ie_wpa)
2632	       + sizeof(struct ieee80211_ie_htcap)
2633	       + sizeof(struct ieee80211_ie_htinfo)
2634	       + sizeof(struct ieee80211_ie_wpa)
2635	       + sizeof(struct ieee80211_wme_param)
2636	       + 4 + sizeof(struct ieee80211_ie_htcap)
2637	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2638#ifdef IEEE80211_SUPPORT_SUPERG
2639	       + sizeof(struct ieee80211_ath_ie)
2640#endif
2641#ifdef IEEE80211_SUPPORT_MESH
2642	       + 2 + IEEE80211_MESHID_LEN
2643	       + sizeof(struct ieee80211_meshconf_ie)
2644#endif
2645	       + (vap->iv_appie_proberesp != NULL ?
2646			vap->iv_appie_proberesp->ie_len : 0)
2647	);
2648	if (m == NULL) {
2649		vap->iv_stats.is_tx_nobuf++;
2650		return NULL;
2651	}
2652
2653	memset(frm, 0, 8);	/* timestamp should be filled later */
2654	frm += 8;
2655	*(uint16_t *)frm = htole16(bss->ni_intval);
2656	frm += 2;
2657	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2658	*(uint16_t *)frm = htole16(capinfo);
2659	frm += 2;
2660
2661	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2662	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2663	frm = ieee80211_add_rates(frm, rs);
2664
2665	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2666		*frm++ = IEEE80211_ELEMID_FHPARMS;
2667		*frm++ = 5;
2668		*frm++ = bss->ni_fhdwell & 0x00ff;
2669		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2670		*frm++ = IEEE80211_FH_CHANSET(
2671		    ieee80211_chan2ieee(ic, bss->ni_chan));
2672		*frm++ = IEEE80211_FH_CHANPAT(
2673		    ieee80211_chan2ieee(ic, bss->ni_chan));
2674		*frm++ = bss->ni_fhindex;
2675	} else {
2676		*frm++ = IEEE80211_ELEMID_DSPARMS;
2677		*frm++ = 1;
2678		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2679	}
2680
2681	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2682		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2683		*frm++ = 2;
2684		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2685	}
2686	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2687	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2688		frm = ieee80211_add_countryie(frm, ic);
2689	if (vap->iv_flags & IEEE80211_F_DOTH) {
2690		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2691			frm = ieee80211_add_powerconstraint(frm, vap);
2692		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2693			frm = ieee80211_add_csa(frm, vap);
2694	}
2695	if (vap->iv_flags & IEEE80211_F_DOTH) {
2696		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2697		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2698			if (vap->iv_quiet)
2699				frm = ieee80211_add_quiet(frm, vap);
2700		}
2701	}
2702	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2703		frm = ieee80211_add_erp(frm, ic);
2704	frm = ieee80211_add_xrates(frm, rs);
2705	frm = ieee80211_add_rsn(frm, vap);
2706	/*
2707	 * NB: legacy 11b clients do not get certain ie's.
2708	 *     The caller identifies such clients by passing
2709	 *     a token in legacy to us.  Could expand this to be
2710	 *     any legacy client for stuff like HT ie's.
2711	 */
2712	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2713	    legacy != IEEE80211_SEND_LEGACY_11B) {
2714		frm = ieee80211_add_htcap(frm, bss);
2715		frm = ieee80211_add_htinfo(frm, bss);
2716	}
2717	frm = ieee80211_add_wpa(frm, vap);
2718	if (vap->iv_flags & IEEE80211_F_WME)
2719		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2720	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2721	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2722	    legacy != IEEE80211_SEND_LEGACY_11B) {
2723		frm = ieee80211_add_htcap_vendor(frm, bss);
2724		frm = ieee80211_add_htinfo_vendor(frm, bss);
2725	}
2726#ifdef IEEE80211_SUPPORT_SUPERG
2727	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2728	    legacy != IEEE80211_SEND_LEGACY_11B)
2729		frm = ieee80211_add_athcaps(frm, bss);
2730#endif
2731	if (vap->iv_appie_proberesp != NULL)
2732		frm = add_appie(frm, vap->iv_appie_proberesp);
2733#ifdef IEEE80211_SUPPORT_MESH
2734	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2735		frm = ieee80211_add_meshid(frm, vap);
2736		frm = ieee80211_add_meshconf(frm, vap);
2737	}
2738#endif
2739	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2740
2741	return m;
2742}
2743
2744/*
2745 * Send a probe response frame to the specified mac address.
2746 * This does not go through the normal mgt frame api so we
2747 * can specify the destination address and re-use the bss node
2748 * for the sta reference.
2749 */
2750int
2751ieee80211_send_proberesp(struct ieee80211vap *vap,
2752	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2753{
2754	struct ieee80211_node *bss = vap->iv_bss;
2755	struct ieee80211com *ic = vap->iv_ic;
2756	struct ieee80211_frame *wh;
2757	struct mbuf *m;
2758	int ret;
2759
2760	if (vap->iv_state == IEEE80211_S_CAC) {
2761		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2762		    "block %s frame in CAC state", "probe response");
2763		vap->iv_stats.is_tx_badstate++;
2764		return EIO;		/* XXX */
2765	}
2766
2767	/*
2768	 * Hold a reference on the node so it doesn't go away until after
2769	 * the xmit is complete all the way in the driver.  On error we
2770	 * will remove our reference.
2771	 */
2772	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2773	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2774	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2775	    ieee80211_node_refcnt(bss)+1);
2776	ieee80211_ref_node(bss);
2777
2778	m = ieee80211_alloc_proberesp(bss, legacy);
2779	if (m == NULL) {
2780		ieee80211_free_node(bss);
2781		return ENOMEM;
2782	}
2783
2784	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2785	KASSERT(m != NULL, ("no room for header"));
2786
2787	IEEE80211_TX_LOCK(ic);
2788	wh = mtod(m, struct ieee80211_frame *);
2789	ieee80211_send_setup(bss, m,
2790	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2791	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2792	/* XXX power management? */
2793	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2794
2795	M_WME_SETAC(m, WME_AC_BE);
2796
2797	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2798	    "send probe resp on channel %u to %s%s\n",
2799	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2800	    legacy ? " <legacy>" : "");
2801	IEEE80211_NODE_STAT(bss, tx_mgmt);
2802
2803	ret = ieee80211_raw_output(vap, bss, m, NULL);
2804	IEEE80211_TX_UNLOCK(ic);
2805	return (ret);
2806}
2807
2808/*
2809 * Allocate and build a RTS (Request To Send) control frame.
2810 */
2811struct mbuf *
2812ieee80211_alloc_rts(struct ieee80211com *ic,
2813	const uint8_t ra[IEEE80211_ADDR_LEN],
2814	const uint8_t ta[IEEE80211_ADDR_LEN],
2815	uint16_t dur)
2816{
2817	struct ieee80211_frame_rts *rts;
2818	struct mbuf *m;
2819
2820	/* XXX honor ic_headroom */
2821	m = m_gethdr(M_NOWAIT, MT_DATA);
2822	if (m != NULL) {
2823		rts = mtod(m, struct ieee80211_frame_rts *);
2824		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2825			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2826		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2827		*(u_int16_t *)rts->i_dur = htole16(dur);
2828		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2829		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2830
2831		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2832	}
2833	return m;
2834}
2835
2836/*
2837 * Allocate and build a CTS (Clear To Send) control frame.
2838 */
2839struct mbuf *
2840ieee80211_alloc_cts(struct ieee80211com *ic,
2841	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2842{
2843	struct ieee80211_frame_cts *cts;
2844	struct mbuf *m;
2845
2846	/* XXX honor ic_headroom */
2847	m = m_gethdr(M_NOWAIT, MT_DATA);
2848	if (m != NULL) {
2849		cts = mtod(m, struct ieee80211_frame_cts *);
2850		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2851			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2852		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2853		*(u_int16_t *)cts->i_dur = htole16(dur);
2854		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2855
2856		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2857	}
2858	return m;
2859}
2860
2861static void
2862ieee80211_tx_mgt_timeout(void *arg)
2863{
2864	struct ieee80211vap *vap = arg;
2865
2866	IEEE80211_LOCK(vap->iv_ic);
2867	if (vap->iv_state != IEEE80211_S_INIT &&
2868	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2869		/*
2870		 * NB: it's safe to specify a timeout as the reason here;
2871		 *     it'll only be used in the right state.
2872		 */
2873		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2874			IEEE80211_SCAN_FAIL_TIMEOUT);
2875	}
2876	IEEE80211_UNLOCK(vap->iv_ic);
2877}
2878
2879/*
2880 * This is the callback set on net80211-sourced transmitted
2881 * authentication request frames.
2882 *
2883 * This does a couple of things:
2884 *
2885 * + If the frame transmitted was a success, it schedules a future
2886 *   event which will transition the interface to scan.
2887 *   If a state transition _then_ occurs before that event occurs,
2888 *   said state transition will cancel this callout.
2889 *
2890 * + If the frame transmit was a failure, it immediately schedules
2891 *   the transition back to scan.
2892 */
2893static void
2894ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2895{
2896	struct ieee80211vap *vap = ni->ni_vap;
2897	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2898
2899	/*
2900	 * Frame transmit completed; arrange timer callback.  If
2901	 * transmit was successfuly we wait for response.  Otherwise
2902	 * we arrange an immediate callback instead of doing the
2903	 * callback directly since we don't know what state the driver
2904	 * is in (e.g. what locks it is holding).  This work should
2905	 * not be too time-critical and not happen too often so the
2906	 * added overhead is acceptable.
2907	 *
2908	 * XXX what happens if !acked but response shows up before callback?
2909	 */
2910	if (vap->iv_state == ostate) {
2911		callout_reset(&vap->iv_mgtsend,
2912			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2913			ieee80211_tx_mgt_timeout, vap);
2914	}
2915}
2916
2917static void
2918ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2919	struct ieee80211_node *ni)
2920{
2921	struct ieee80211vap *vap = ni->ni_vap;
2922	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2923	struct ieee80211com *ic = ni->ni_ic;
2924	struct ieee80211_rateset *rs = &ni->ni_rates;
2925	uint16_t capinfo;
2926
2927	/*
2928	 * beacon frame format
2929	 *	[8] time stamp
2930	 *	[2] beacon interval
2931	 *	[2] cabability information
2932	 *	[tlv] ssid
2933	 *	[tlv] supported rates
2934	 *	[3] parameter set (DS)
2935	 *	[8] CF parameter set (optional)
2936	 *	[tlv] parameter set (IBSS/TIM)
2937	 *	[tlv] country (optional)
2938	 *	[3] power control (optional)
2939	 *	[5] channel switch announcement (CSA) (optional)
2940	 *	[tlv] extended rate phy (ERP)
2941	 *	[tlv] extended supported rates
2942	 *	[tlv] RSN parameters
2943	 *	[tlv] HT capabilities
2944	 *	[tlv] HT information
2945	 * XXX Vendor-specific OIDs (e.g. Atheros)
2946	 *	[tlv] WPA parameters
2947	 *	[tlv] WME parameters
2948	 *	[tlv] Vendor OUI HT capabilities (optional)
2949	 *	[tlv] Vendor OUI HT information (optional)
2950	 *	[tlv] Atheros capabilities (optional)
2951	 *	[tlv] TDMA parameters (optional)
2952	 *	[tlv] Mesh ID (MBSS)
2953	 *	[tlv] Mesh Conf (MBSS)
2954	 *	[tlv] application data (optional)
2955	 */
2956
2957	memset(bo, 0, sizeof(*bo));
2958
2959	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2960	frm += 8;
2961	*(uint16_t *)frm = htole16(ni->ni_intval);
2962	frm += 2;
2963	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2964	bo->bo_caps = (uint16_t *)frm;
2965	*(uint16_t *)frm = htole16(capinfo);
2966	frm += 2;
2967	*frm++ = IEEE80211_ELEMID_SSID;
2968	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2969		*frm++ = ni->ni_esslen;
2970		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2971		frm += ni->ni_esslen;
2972	} else
2973		*frm++ = 0;
2974	frm = ieee80211_add_rates(frm, rs);
2975	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2976		*frm++ = IEEE80211_ELEMID_DSPARMS;
2977		*frm++ = 1;
2978		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2979	}
2980	if (ic->ic_flags & IEEE80211_F_PCF) {
2981		bo->bo_cfp = frm;
2982		frm = ieee80211_add_cfparms(frm, ic);
2983	}
2984	bo->bo_tim = frm;
2985	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2986		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2987		*frm++ = 2;
2988		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2989		bo->bo_tim_len = 0;
2990	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2991	    vap->iv_opmode == IEEE80211_M_MBSS) {
2992		/* TIM IE is the same for Mesh and Hostap */
2993		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2994
2995		tie->tim_ie = IEEE80211_ELEMID_TIM;
2996		tie->tim_len = 4;	/* length */
2997		tie->tim_count = 0;	/* DTIM count */
2998		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2999		tie->tim_bitctl = 0;	/* bitmap control */
3000		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3001		frm += sizeof(struct ieee80211_tim_ie);
3002		bo->bo_tim_len = 1;
3003	}
3004	bo->bo_tim_trailer = frm;
3005	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3006	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3007		frm = ieee80211_add_countryie(frm, ic);
3008	if (vap->iv_flags & IEEE80211_F_DOTH) {
3009		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3010			frm = ieee80211_add_powerconstraint(frm, vap);
3011		bo->bo_csa = frm;
3012		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3013			frm = ieee80211_add_csa(frm, vap);
3014	} else
3015		bo->bo_csa = frm;
3016
3017	if (vap->iv_flags & IEEE80211_F_DOTH) {
3018		bo->bo_quiet = frm;
3019		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3020		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3021			if (vap->iv_quiet)
3022				frm = ieee80211_add_quiet(frm,vap);
3023		}
3024	} else
3025		bo->bo_quiet = frm;
3026
3027	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3028		bo->bo_erp = frm;
3029		frm = ieee80211_add_erp(frm, ic);
3030	}
3031	frm = ieee80211_add_xrates(frm, rs);
3032	frm = ieee80211_add_rsn(frm, vap);
3033	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3034		frm = ieee80211_add_htcap(frm, ni);
3035		bo->bo_htinfo = frm;
3036		frm = ieee80211_add_htinfo(frm, ni);
3037	}
3038	frm = ieee80211_add_wpa(frm, vap);
3039	if (vap->iv_flags & IEEE80211_F_WME) {
3040		bo->bo_wme = frm;
3041		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3042	}
3043	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3044	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3045		frm = ieee80211_add_htcap_vendor(frm, ni);
3046		frm = ieee80211_add_htinfo_vendor(frm, ni);
3047	}
3048#ifdef IEEE80211_SUPPORT_SUPERG
3049	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3050		bo->bo_ath = frm;
3051		frm = ieee80211_add_athcaps(frm, ni);
3052	}
3053#endif
3054#ifdef IEEE80211_SUPPORT_TDMA
3055	if (vap->iv_caps & IEEE80211_C_TDMA) {
3056		bo->bo_tdma = frm;
3057		frm = ieee80211_add_tdma(frm, vap);
3058	}
3059#endif
3060	if (vap->iv_appie_beacon != NULL) {
3061		bo->bo_appie = frm;
3062		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3063		frm = add_appie(frm, vap->iv_appie_beacon);
3064	}
3065#ifdef IEEE80211_SUPPORT_MESH
3066	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3067		frm = ieee80211_add_meshid(frm, vap);
3068		bo->bo_meshconf = frm;
3069		frm = ieee80211_add_meshconf(frm, vap);
3070	}
3071#endif
3072	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3073	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3074	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3075}
3076
3077/*
3078 * Allocate a beacon frame and fillin the appropriate bits.
3079 */
3080struct mbuf *
3081ieee80211_beacon_alloc(struct ieee80211_node *ni)
3082{
3083	struct ieee80211vap *vap = ni->ni_vap;
3084	struct ieee80211com *ic = ni->ni_ic;
3085	struct ifnet *ifp = vap->iv_ifp;
3086	struct ieee80211_frame *wh;
3087	struct mbuf *m;
3088	int pktlen;
3089	uint8_t *frm;
3090
3091	/*
3092	 * beacon frame format
3093	 *	[8] time stamp
3094	 *	[2] beacon interval
3095	 *	[2] cabability information
3096	 *	[tlv] ssid
3097	 *	[tlv] supported rates
3098	 *	[3] parameter set (DS)
3099	 *	[8] CF parameter set (optional)
3100	 *	[tlv] parameter set (IBSS/TIM)
3101	 *	[tlv] country (optional)
3102	 *	[3] power control (optional)
3103	 *	[5] channel switch announcement (CSA) (optional)
3104	 *	[tlv] extended rate phy (ERP)
3105	 *	[tlv] extended supported rates
3106	 *	[tlv] RSN parameters
3107	 *	[tlv] HT capabilities
3108	 *	[tlv] HT information
3109	 *	[tlv] Vendor OUI HT capabilities (optional)
3110	 *	[tlv] Vendor OUI HT information (optional)
3111	 * XXX Vendor-specific OIDs (e.g. Atheros)
3112	 *	[tlv] WPA parameters
3113	 *	[tlv] WME parameters
3114	 *	[tlv] TDMA parameters (optional)
3115	 *	[tlv] Mesh ID (MBSS)
3116	 *	[tlv] Mesh Conf (MBSS)
3117	 *	[tlv] application data (optional)
3118	 * NB: we allocate the max space required for the TIM bitmap.
3119	 * XXX how big is this?
3120	 */
3121	pktlen =   8					/* time stamp */
3122		 + sizeof(uint16_t)			/* beacon interval */
3123		 + sizeof(uint16_t)			/* capabilities */
3124		 + 2 + ni->ni_esslen			/* ssid */
3125	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3126	         + 2 + 1				/* DS parameters */
3127		 + 2 + 6				/* CF parameters */
3128		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3129		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3130		 + 2 + 1				/* power control */
3131		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3132		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3133		 + 2 + 1				/* ERP */
3134	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3135		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3136			2*sizeof(struct ieee80211_ie_wpa) : 0)
3137		 /* XXX conditional? */
3138		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3139		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3140		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3141			sizeof(struct ieee80211_wme_param) : 0)
3142#ifdef IEEE80211_SUPPORT_SUPERG
3143		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3144#endif
3145#ifdef IEEE80211_SUPPORT_TDMA
3146		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3147			sizeof(struct ieee80211_tdma_param) : 0)
3148#endif
3149#ifdef IEEE80211_SUPPORT_MESH
3150		 + 2 + ni->ni_meshidlen
3151		 + sizeof(struct ieee80211_meshconf_ie)
3152#endif
3153		 + IEEE80211_MAX_APPIE
3154		 ;
3155	m = ieee80211_getmgtframe(&frm,
3156		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3157	if (m == NULL) {
3158		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3159			"%s: cannot get buf; size %u\n", __func__, pktlen);
3160		vap->iv_stats.is_tx_nobuf++;
3161		return NULL;
3162	}
3163	ieee80211_beacon_construct(m, frm, ni);
3164
3165	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3166	KASSERT(m != NULL, ("no space for 802.11 header?"));
3167	wh = mtod(m, struct ieee80211_frame *);
3168	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3169	    IEEE80211_FC0_SUBTYPE_BEACON;
3170	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3171	*(uint16_t *)wh->i_dur = 0;
3172	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3173	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3174	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3175	*(uint16_t *)wh->i_seq = 0;
3176
3177	return m;
3178}
3179
3180/*
3181 * Update the dynamic parts of a beacon frame based on the current state.
3182 */
3183int
3184ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3185{
3186	struct ieee80211vap *vap = ni->ni_vap;
3187	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3188	struct ieee80211com *ic = ni->ni_ic;
3189	int len_changed = 0;
3190	uint16_t capinfo;
3191	struct ieee80211_frame *wh;
3192	ieee80211_seq seqno;
3193
3194	IEEE80211_LOCK(ic);
3195	/*
3196	 * Handle 11h channel change when we've reached the count.
3197	 * We must recalculate the beacon frame contents to account
3198	 * for the new channel.  Note we do this only for the first
3199	 * vap that reaches this point; subsequent vaps just update
3200	 * their beacon state to reflect the recalculated channel.
3201	 */
3202	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3203	    vap->iv_csa_count == ic->ic_csa_count) {
3204		vap->iv_csa_count = 0;
3205		/*
3206		 * Effect channel change before reconstructing the beacon
3207		 * frame contents as many places reference ni_chan.
3208		 */
3209		if (ic->ic_csa_newchan != NULL)
3210			ieee80211_csa_completeswitch(ic);
3211		/*
3212		 * NB: ieee80211_beacon_construct clears all pending
3213		 * updates in bo_flags so we don't need to explicitly
3214		 * clear IEEE80211_BEACON_CSA.
3215		 */
3216		ieee80211_beacon_construct(m,
3217		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3218
3219		/* XXX do WME aggressive mode processing? */
3220		IEEE80211_UNLOCK(ic);
3221		return 1;		/* just assume length changed */
3222	}
3223
3224	wh = mtod(m, struct ieee80211_frame *);
3225	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3226	*(uint16_t *)&wh->i_seq[0] =
3227		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3228	M_SEQNO_SET(m, seqno);
3229
3230	/* XXX faster to recalculate entirely or just changes? */
3231	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3232	*bo->bo_caps = htole16(capinfo);
3233
3234	if (vap->iv_flags & IEEE80211_F_WME) {
3235		struct ieee80211_wme_state *wme = &ic->ic_wme;
3236
3237		/*
3238		 * Check for agressive mode change.  When there is
3239		 * significant high priority traffic in the BSS
3240		 * throttle back BE traffic by using conservative
3241		 * parameters.  Otherwise BE uses agressive params
3242		 * to optimize performance of legacy/non-QoS traffic.
3243		 */
3244		if (wme->wme_flags & WME_F_AGGRMODE) {
3245			if (wme->wme_hipri_traffic >
3246			    wme->wme_hipri_switch_thresh) {
3247				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3248				    "%s: traffic %u, disable aggressive mode\n",
3249				    __func__, wme->wme_hipri_traffic);
3250				wme->wme_flags &= ~WME_F_AGGRMODE;
3251				ieee80211_wme_updateparams_locked(vap);
3252				wme->wme_hipri_traffic =
3253					wme->wme_hipri_switch_hysteresis;
3254			} else
3255				wme->wme_hipri_traffic = 0;
3256		} else {
3257			if (wme->wme_hipri_traffic <=
3258			    wme->wme_hipri_switch_thresh) {
3259				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3260				    "%s: traffic %u, enable aggressive mode\n",
3261				    __func__, wme->wme_hipri_traffic);
3262				wme->wme_flags |= WME_F_AGGRMODE;
3263				ieee80211_wme_updateparams_locked(vap);
3264				wme->wme_hipri_traffic = 0;
3265			} else
3266				wme->wme_hipri_traffic =
3267					wme->wme_hipri_switch_hysteresis;
3268		}
3269		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3270			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3271			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3272		}
3273	}
3274
3275	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3276		ieee80211_ht_update_beacon(vap, bo);
3277		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3278	}
3279#ifdef IEEE80211_SUPPORT_TDMA
3280	if (vap->iv_caps & IEEE80211_C_TDMA) {
3281		/*
3282		 * NB: the beacon is potentially updated every TBTT.
3283		 */
3284		ieee80211_tdma_update_beacon(vap, bo);
3285	}
3286#endif
3287#ifdef IEEE80211_SUPPORT_MESH
3288	if (vap->iv_opmode == IEEE80211_M_MBSS)
3289		ieee80211_mesh_update_beacon(vap, bo);
3290#endif
3291
3292	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3293	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3294		struct ieee80211_tim_ie *tie =
3295			(struct ieee80211_tim_ie *) bo->bo_tim;
3296		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3297			u_int timlen, timoff, i;
3298			/*
3299			 * ATIM/DTIM needs updating.  If it fits in the
3300			 * current space allocated then just copy in the
3301			 * new bits.  Otherwise we need to move any trailing
3302			 * data to make room.  Note that we know there is
3303			 * contiguous space because ieee80211_beacon_allocate
3304			 * insures there is space in the mbuf to write a
3305			 * maximal-size virtual bitmap (based on iv_max_aid).
3306			 */
3307			/*
3308			 * Calculate the bitmap size and offset, copy any
3309			 * trailer out of the way, and then copy in the
3310			 * new bitmap and update the information element.
3311			 * Note that the tim bitmap must contain at least
3312			 * one byte and any offset must be even.
3313			 */
3314			if (vap->iv_ps_pending != 0) {
3315				timoff = 128;		/* impossibly large */
3316				for (i = 0; i < vap->iv_tim_len; i++)
3317					if (vap->iv_tim_bitmap[i]) {
3318						timoff = i &~ 1;
3319						break;
3320					}
3321				KASSERT(timoff != 128, ("tim bitmap empty!"));
3322				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3323					if (vap->iv_tim_bitmap[i])
3324						break;
3325				timlen = 1 + (i - timoff);
3326			} else {
3327				timoff = 0;
3328				timlen = 1;
3329			}
3330			if (timlen != bo->bo_tim_len) {
3331				/* copy up/down trailer */
3332				int adjust = tie->tim_bitmap+timlen
3333					   - bo->bo_tim_trailer;
3334				ovbcopy(bo->bo_tim_trailer,
3335				    bo->bo_tim_trailer+adjust,
3336				    bo->bo_tim_trailer_len);
3337				bo->bo_tim_trailer += adjust;
3338				bo->bo_erp += adjust;
3339				bo->bo_htinfo += adjust;
3340#ifdef IEEE80211_SUPPORT_SUPERG
3341				bo->bo_ath += adjust;
3342#endif
3343#ifdef IEEE80211_SUPPORT_TDMA
3344				bo->bo_tdma += adjust;
3345#endif
3346#ifdef IEEE80211_SUPPORT_MESH
3347				bo->bo_meshconf += adjust;
3348#endif
3349				bo->bo_appie += adjust;
3350				bo->bo_wme += adjust;
3351				bo->bo_csa += adjust;
3352				bo->bo_quiet += adjust;
3353				bo->bo_tim_len = timlen;
3354
3355				/* update information element */
3356				tie->tim_len = 3 + timlen;
3357				tie->tim_bitctl = timoff;
3358				len_changed = 1;
3359			}
3360			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3361				bo->bo_tim_len);
3362
3363			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3364
3365			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3366				"%s: TIM updated, pending %u, off %u, len %u\n",
3367				__func__, vap->iv_ps_pending, timoff, timlen);
3368		}
3369		/* count down DTIM period */
3370		if (tie->tim_count == 0)
3371			tie->tim_count = tie->tim_period - 1;
3372		else
3373			tie->tim_count--;
3374		/* update state for buffered multicast frames on DTIM */
3375		if (mcast && tie->tim_count == 0)
3376			tie->tim_bitctl |= 1;
3377		else
3378			tie->tim_bitctl &= ~1;
3379		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3380			struct ieee80211_csa_ie *csa =
3381			    (struct ieee80211_csa_ie *) bo->bo_csa;
3382
3383			/*
3384			 * Insert or update CSA ie.  If we're just starting
3385			 * to count down to the channel switch then we need
3386			 * to insert the CSA ie.  Otherwise we just need to
3387			 * drop the count.  The actual change happens above
3388			 * when the vap's count reaches the target count.
3389			 */
3390			if (vap->iv_csa_count == 0) {
3391				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3392				bo->bo_erp += sizeof(*csa);
3393				bo->bo_htinfo += sizeof(*csa);
3394				bo->bo_wme += sizeof(*csa);
3395#ifdef IEEE80211_SUPPORT_SUPERG
3396				bo->bo_ath += sizeof(*csa);
3397#endif
3398#ifdef IEEE80211_SUPPORT_TDMA
3399				bo->bo_tdma += sizeof(*csa);
3400#endif
3401#ifdef IEEE80211_SUPPORT_MESH
3402				bo->bo_meshconf += sizeof(*csa);
3403#endif
3404				bo->bo_appie += sizeof(*csa);
3405				bo->bo_csa_trailer_len += sizeof(*csa);
3406				bo->bo_quiet += sizeof(*csa);
3407				bo->bo_tim_trailer_len += sizeof(*csa);
3408				m->m_len += sizeof(*csa);
3409				m->m_pkthdr.len += sizeof(*csa);
3410
3411				ieee80211_add_csa(bo->bo_csa, vap);
3412			} else
3413				csa->csa_count--;
3414			vap->iv_csa_count++;
3415			/* NB: don't clear IEEE80211_BEACON_CSA */
3416		}
3417		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3418		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3419			if (vap->iv_quiet)
3420				ieee80211_add_quiet(bo->bo_quiet, vap);
3421		}
3422		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3423			/*
3424			 * ERP element needs updating.
3425			 */
3426			(void) ieee80211_add_erp(bo->bo_erp, ic);
3427			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3428		}
3429#ifdef IEEE80211_SUPPORT_SUPERG
3430		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3431			ieee80211_add_athcaps(bo->bo_ath, ni);
3432			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3433		}
3434#endif
3435	}
3436	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3437		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3438		int aielen;
3439		uint8_t *frm;
3440
3441		aielen = 0;
3442		if (aie != NULL)
3443			aielen += aie->ie_len;
3444		if (aielen != bo->bo_appie_len) {
3445			/* copy up/down trailer */
3446			int adjust = aielen - bo->bo_appie_len;
3447			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3448				bo->bo_tim_trailer_len);
3449			bo->bo_tim_trailer += adjust;
3450			bo->bo_appie += adjust;
3451			bo->bo_appie_len = aielen;
3452
3453			len_changed = 1;
3454		}
3455		frm = bo->bo_appie;
3456		if (aie != NULL)
3457			frm  = add_appie(frm, aie);
3458		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3459	}
3460	IEEE80211_UNLOCK(ic);
3461
3462	return len_changed;
3463}
3464
3465/*
3466 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3467 * tunnel encapsulation.  The frame is assumed to have an Ethernet
3468 * header at the front that must be stripped before prepending the
3469 * LLC followed by the Ethernet header passed in (with an Ethernet
3470 * type that specifies the payload size).
3471 */
3472struct mbuf *
3473ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3474	const struct ether_header *eh)
3475{
3476	struct llc *llc;
3477	uint16_t payload;
3478
3479	/* XXX optimize by combining m_adj+M_PREPEND */
3480	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3481	llc = mtod(m, struct llc *);
3482	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3483	llc->llc_control = LLC_UI;
3484	llc->llc_snap.org_code[0] = 0;
3485	llc->llc_snap.org_code[1] = 0;
3486	llc->llc_snap.org_code[2] = 0;
3487	llc->llc_snap.ether_type = eh->ether_type;
3488	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3489
3490	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3491	if (m == NULL) {		/* XXX cannot happen */
3492		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3493			"%s: no space for ether_header\n", __func__);
3494		vap->iv_stats.is_tx_nobuf++;
3495		return NULL;
3496	}
3497	ETHER_HEADER_COPY(mtod(m, void *), eh);
3498	mtod(m, struct ether_header *)->ether_type = htons(payload);
3499	return m;
3500}
3501
3502/*
3503 * Complete an mbuf transmission.
3504 *
3505 * For now, this simply processes a completed frame after the
3506 * driver has completed it's transmission and/or retransmission.
3507 * It assumes the frame is an 802.11 encapsulated frame.
3508 *
3509 * Later on it will grow to become the exit path for a given frame
3510 * from the driver and, depending upon how it's been encapsulated
3511 * and already transmitted, it may end up doing A-MPDU retransmission,
3512 * power save requeuing, etc.
3513 *
3514 * In order for the above to work, the driver entry point to this
3515 * must not hold any driver locks.  Thus, the driver needs to delay
3516 * any actual mbuf completion until it can release said locks.
3517 *
3518 * This frees the mbuf and if the mbuf has a node reference,
3519 * the node reference will be freed.
3520 */
3521void
3522ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3523{
3524
3525	if (ni != NULL) {
3526		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3527
3528		if (status == 0) {
3529			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3530			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3531			if (m->m_flags & M_MCAST)
3532				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3533		} else
3534			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3535		if (m->m_flags & M_TXCB)
3536			ieee80211_process_callback(ni, m, status);
3537		ieee80211_free_node(ni);
3538	}
3539	m_freem(m);
3540}
3541