ieee80211_output.c revision 296233
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 296233 2016-02-29 20:56:02Z avos $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kernel.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/endian.h>
40
41#include <sys/socket.h>
42
43#include <net/bpf.h>
44#include <net/ethernet.h>
45#include <net/if.h>
46#include <net/if_var.h>
47#include <net/if_llc.h>
48#include <net/if_media.h>
49#include <net/if_vlan_var.h>
50
51#include <net80211/ieee80211_var.h>
52#include <net80211/ieee80211_regdomain.h>
53#ifdef IEEE80211_SUPPORT_SUPERG
54#include <net80211/ieee80211_superg.h>
55#endif
56#ifdef IEEE80211_SUPPORT_TDMA
57#include <net80211/ieee80211_tdma.h>
58#endif
59#include <net80211/ieee80211_wds.h>
60#include <net80211/ieee80211_mesh.h>
61
62#if defined(INET) || defined(INET6)
63#include <netinet/in.h>
64#endif
65
66#ifdef INET
67#include <netinet/if_ether.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#endif
71#ifdef INET6
72#include <netinet/ip6.h>
73#endif
74
75#include <security/mac/mac_framework.h>
76
77#define	ETHER_HEADER_COPY(dst, src) \
78	memcpy(dst, src, sizeof(struct ether_header))
79
80/* unalligned little endian access */
81#define LE_WRITE_2(p, v) do {				\
82	((uint8_t *)(p))[0] = (v) & 0xff;		\
83	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
84} while (0)
85#define LE_WRITE_4(p, v) do {				\
86	((uint8_t *)(p))[0] = (v) & 0xff;		\
87	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
88	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
89	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
90} while (0)
91
92static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
93	u_int hdrsize, u_int ciphdrsize, u_int mtu);
94static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
95
96#ifdef IEEE80211_DEBUG
97/*
98 * Decide if an outbound management frame should be
99 * printed when debugging is enabled.  This filters some
100 * of the less interesting frames that come frequently
101 * (e.g. beacons).
102 */
103static __inline int
104doprint(struct ieee80211vap *vap, int subtype)
105{
106	switch (subtype) {
107	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
108		return (vap->iv_opmode == IEEE80211_M_IBSS);
109	}
110	return 1;
111}
112#endif
113
114/*
115 * Transmit a frame to the given destination on the given VAP.
116 *
117 * It's up to the caller to figure out the details of who this
118 * is going to and resolving the node.
119 *
120 * This routine takes care of queuing it for power save,
121 * A-MPDU state stuff, fast-frames state stuff, encapsulation
122 * if required, then passing it up to the driver layer.
123 *
124 * This routine (for now) consumes the mbuf and frees the node
125 * reference; it ideally will return a TX status which reflects
126 * whether the mbuf was consumed or not, so the caller can
127 * free the mbuf (if appropriate) and the node reference (again,
128 * if appropriate.)
129 */
130int
131ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
132    struct ieee80211_node *ni)
133{
134	struct ieee80211com *ic = vap->iv_ic;
135	struct ifnet *ifp = vap->iv_ifp;
136	int len, mcast;
137
138	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
139	    (m->m_flags & M_PWR_SAV) == 0) {
140		/*
141		 * Station in power save mode; pass the frame
142		 * to the 802.11 layer and continue.  We'll get
143		 * the frame back when the time is right.
144		 * XXX lose WDS vap linkage?
145		 */
146		if (ieee80211_pwrsave(ni, m) != 0)
147			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
148		ieee80211_free_node(ni);
149
150		/*
151		 * We queued it fine, so tell the upper layer
152		 * that we consumed it.
153		 */
154		return (0);
155	}
156	/* calculate priority so drivers can find the tx queue */
157	if (ieee80211_classify(ni, m)) {
158		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
159		    ni->ni_macaddr, NULL,
160		    "%s", "classification failure");
161		vap->iv_stats.is_tx_classify++;
162		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
163		m_freem(m);
164		ieee80211_free_node(ni);
165
166		/* XXX better status? */
167		return (0);
168	}
169	/*
170	 * Stash the node pointer.  Note that we do this after
171	 * any call to ieee80211_dwds_mcast because that code
172	 * uses any existing value for rcvif to identify the
173	 * interface it (might have been) received on.
174	 */
175	m->m_pkthdr.rcvif = (void *)ni;
176	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
177	len = m->m_pkthdr.len;
178
179	BPF_MTAP(ifp, m);		/* 802.3 tx */
180
181	/*
182	 * Check if A-MPDU tx aggregation is setup or if we
183	 * should try to enable it.  The sta must be associated
184	 * with HT and A-MPDU enabled for use.  When the policy
185	 * routine decides we should enable A-MPDU we issue an
186	 * ADDBA request and wait for a reply.  The frame being
187	 * encapsulated will go out w/o using A-MPDU, or possibly
188	 * it might be collected by the driver and held/retransmit.
189	 * The default ic_ampdu_enable routine handles staggering
190	 * ADDBA requests in case the receiver NAK's us or we are
191	 * otherwise unable to establish a BA stream.
192	 */
193	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
194	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
195	    (m->m_flags & M_EAPOL) == 0) {
196		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
197		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
198
199		ieee80211_txampdu_count_packet(tap);
200		if (IEEE80211_AMPDU_RUNNING(tap)) {
201			/*
202			 * Operational, mark frame for aggregation.
203			 *
204			 * XXX do tx aggregation here
205			 */
206			m->m_flags |= M_AMPDU_MPDU;
207		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
208		    ic->ic_ampdu_enable(ni, tap)) {
209			/*
210			 * Not negotiated yet, request service.
211			 */
212			ieee80211_ampdu_request(ni, tap);
213			/* XXX hold frame for reply? */
214		}
215	}
216
217	/*
218	 * XXX If we aren't doing AMPDU TX then we /could/ do
219	 * fast-frames encapsulation, however right now this
220	 * output logic doesn't handle that case.
221	 *
222	 * So we'll be limited to "fast-frames" xmit for non-11n STA
223	 * and "no fast frames" xmit for 11n STAs.
224	 * It'd be nice to eventually test fast-frames out by
225	 * gracefully falling from failing A-MPDU transmission
226	 * (driver says no, fail to negotiate it with peer) to
227	 * using fast-frames.
228	 *
229	 * Note: we can actually put A-MSDU's inside an A-MPDU,
230	 * so hopefully we can figure out how to make that particular
231	 * combination work right.
232	 */
233#ifdef IEEE80211_SUPPORT_SUPERG
234	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
235		m = ieee80211_ff_check(ni, m);
236		if (m == NULL) {
237			/* NB: any ni ref held on stageq */
238			return (0);
239		}
240	}
241#endif /* IEEE80211_SUPPORT_SUPERG */
242
243	/*
244	 * Grab the TX lock - serialise the TX process from this
245	 * point (where TX state is being checked/modified)
246	 * through to driver queue.
247	 */
248	IEEE80211_TX_LOCK(ic);
249
250	/*
251	 * XXX make the encap and transmit code a separate function
252	 * so things like the FF (and later A-MSDU) path can just call
253	 * it for flushed frames.
254	 */
255	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
256		/*
257		 * Encapsulate the packet in prep for transmission.
258		 */
259		m = ieee80211_encap(vap, ni, m);
260		if (m == NULL) {
261			/* NB: stat+msg handled in ieee80211_encap */
262			IEEE80211_TX_UNLOCK(ic);
263			ieee80211_free_node(ni);
264			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
265			return (ENOBUFS);
266		}
267	}
268	(void) ieee80211_parent_xmitpkt(ic, m);
269
270	/*
271	 * Unlock at this point - no need to hold it across
272	 * ieee80211_free_node() (ie, the comlock)
273	 */
274	IEEE80211_TX_UNLOCK(ic);
275	ic->ic_lastdata = ticks;
276
277	return (0);
278}
279
280
281
282/*
283 * Send the given mbuf through the given vap.
284 *
285 * This consumes the mbuf regardless of whether the transmit
286 * was successful or not.
287 *
288 * This does none of the initial checks that ieee80211_start()
289 * does (eg CAC timeout, interface wakeup) - the caller must
290 * do this first.
291 */
292static int
293ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
294{
295#define	IS_DWDS(vap) \
296	(vap->iv_opmode == IEEE80211_M_WDS && \
297	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
298	struct ieee80211com *ic = vap->iv_ic;
299	struct ifnet *ifp = vap->iv_ifp;
300	struct ieee80211_node *ni;
301	struct ether_header *eh;
302
303	/*
304	 * Cancel any background scan.
305	 */
306	if (ic->ic_flags & IEEE80211_F_SCAN)
307		ieee80211_cancel_anyscan(vap);
308	/*
309	 * Find the node for the destination so we can do
310	 * things like power save and fast frames aggregation.
311	 *
312	 * NB: past this point various code assumes the first
313	 *     mbuf has the 802.3 header present (and contiguous).
314	 */
315	ni = NULL;
316	if (m->m_len < sizeof(struct ether_header) &&
317	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
318		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
319		    "discard frame, %s\n", "m_pullup failed");
320		vap->iv_stats.is_tx_nobuf++;	/* XXX */
321		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
322		return (ENOBUFS);
323	}
324	eh = mtod(m, struct ether_header *);
325	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
326		if (IS_DWDS(vap)) {
327			/*
328			 * Only unicast frames from the above go out
329			 * DWDS vaps; multicast frames are handled by
330			 * dispatching the frame as it comes through
331			 * the AP vap (see below).
332			 */
333			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
334			    eh->ether_dhost, "mcast", "%s", "on DWDS");
335			vap->iv_stats.is_dwds_mcast++;
336			m_freem(m);
337			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
338			/* XXX better status? */
339			return (ENOBUFS);
340		}
341		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
342			/*
343			 * Spam DWDS vap's w/ multicast traffic.
344			 */
345			/* XXX only if dwds in use? */
346			ieee80211_dwds_mcast(vap, m);
347		}
348	}
349#ifdef IEEE80211_SUPPORT_MESH
350	if (vap->iv_opmode != IEEE80211_M_MBSS) {
351#endif
352		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
353		if (ni == NULL) {
354			/* NB: ieee80211_find_txnode does stat+msg */
355			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
356			m_freem(m);
357			/* XXX better status? */
358			return (ENOBUFS);
359		}
360		if (ni->ni_associd == 0 &&
361		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
362			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
363			    eh->ether_dhost, NULL,
364			    "sta not associated (type 0x%04x)",
365			    htons(eh->ether_type));
366			vap->iv_stats.is_tx_notassoc++;
367			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
368			m_freem(m);
369			ieee80211_free_node(ni);
370			/* XXX better status? */
371			return (ENOBUFS);
372		}
373#ifdef IEEE80211_SUPPORT_MESH
374	} else {
375		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
376			/*
377			 * Proxy station only if configured.
378			 */
379			if (!ieee80211_mesh_isproxyena(vap)) {
380				IEEE80211_DISCARD_MAC(vap,
381				    IEEE80211_MSG_OUTPUT |
382				    IEEE80211_MSG_MESH,
383				    eh->ether_dhost, NULL,
384				    "%s", "proxy not enabled");
385				vap->iv_stats.is_mesh_notproxy++;
386				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
387				m_freem(m);
388				/* XXX better status? */
389				return (ENOBUFS);
390			}
391			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
392			    "forward frame from DS SA(%6D), DA(%6D)\n",
393			    eh->ether_shost, ":",
394			    eh->ether_dhost, ":");
395			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
396		}
397		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
398		if (ni == NULL) {
399			/*
400			 * NB: ieee80211_mesh_discover holds/disposes
401			 * frame (e.g. queueing on path discovery).
402			 */
403			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
404			/* XXX better status? */
405			return (ENOBUFS);
406		}
407	}
408#endif
409
410	/*
411	 * We've resolved the sender, so attempt to transmit it.
412	 */
413
414	if (vap->iv_state == IEEE80211_S_SLEEP) {
415		/*
416		 * In power save; queue frame and then  wakeup device
417		 * for transmit.
418		 */
419		ic->ic_lastdata = ticks;
420		if (ieee80211_pwrsave(ni, m) != 0)
421			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
422		ieee80211_free_node(ni);
423		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
424		return (0);
425	}
426
427	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
428		return (ENOBUFS);
429	return (0);
430#undef	IS_DWDS
431}
432
433/*
434 * Start method for vap's.  All packets from the stack come
435 * through here.  We handle common processing of the packets
436 * before dispatching them to the underlying device.
437 *
438 * if_transmit() requires that the mbuf be consumed by this call
439 * regardless of the return condition.
440 */
441int
442ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
443{
444	struct ieee80211vap *vap = ifp->if_softc;
445	struct ieee80211com *ic = vap->iv_ic;
446
447	/*
448	 * No data frames go out unless we're running.
449	 * Note in particular this covers CAC and CSA
450	 * states (though maybe we should check muting
451	 * for CSA).
452	 */
453	if (vap->iv_state != IEEE80211_S_RUN &&
454	    vap->iv_state != IEEE80211_S_SLEEP) {
455		IEEE80211_LOCK(ic);
456		/* re-check under the com lock to avoid races */
457		if (vap->iv_state != IEEE80211_S_RUN &&
458		    vap->iv_state != IEEE80211_S_SLEEP) {
459			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
460			    "%s: ignore queue, in %s state\n",
461			    __func__, ieee80211_state_name[vap->iv_state]);
462			vap->iv_stats.is_tx_badstate++;
463			IEEE80211_UNLOCK(ic);
464			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
465			m_freem(m);
466			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
467			return (ENETDOWN);
468		}
469		IEEE80211_UNLOCK(ic);
470	}
471
472	/*
473	 * Sanitize mbuf flags for net80211 use.  We cannot
474	 * clear M_PWR_SAV or M_MORE_DATA because these may
475	 * be set for frames that are re-submitted from the
476	 * power save queue.
477	 *
478	 * NB: This must be done before ieee80211_classify as
479	 *     it marks EAPOL in frames with M_EAPOL.
480	 */
481	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
482
483	/*
484	 * Bump to the packet transmission path.
485	 * The mbuf will be consumed here.
486	 */
487	return (ieee80211_start_pkt(vap, m));
488}
489
490void
491ieee80211_vap_qflush(struct ifnet *ifp)
492{
493
494	/* Empty for now */
495}
496
497/*
498 * 802.11 raw output routine.
499 *
500 * XXX TODO: this (and other send routines) should correctly
501 * XXX keep the pwr mgmt bit set if it decides to call into the
502 * XXX driver to send a frame whilst the state is SLEEP.
503 *
504 * Otherwise the peer may decide that we're awake and flood us
505 * with traffic we are still too asleep to receive!
506 */
507int
508ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
509    struct mbuf *m, const struct ieee80211_bpf_params *params)
510{
511	struct ieee80211com *ic = vap->iv_ic;
512	int error;
513
514	/*
515	 * Set node - the caller has taken a reference, so ensure
516	 * that the mbuf has the same node value that
517	 * it would if it were going via the normal path.
518	 */
519	m->m_pkthdr.rcvif = (void *)ni;
520
521	/*
522	 * Attempt to add bpf transmit parameters.
523	 *
524	 * For now it's ok to fail; the raw_xmit api still takes
525	 * them as an option.
526	 *
527	 * Later on when ic_raw_xmit() has params removed,
528	 * they'll have to be added - so fail the transmit if
529	 * they can't be.
530	 */
531	if (params)
532		(void) ieee80211_add_xmit_params(m, params);
533
534	error = ic->ic_raw_xmit(ni, m, params);
535	if (error) {
536		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
537		ieee80211_free_node(ni);
538	}
539	return (error);
540}
541
542/*
543 * 802.11 output routine. This is (currently) used only to
544 * connect bpf write calls to the 802.11 layer for injecting
545 * raw 802.11 frames.
546 */
547int
548ieee80211_output(struct ifnet *ifp, struct mbuf *m,
549	const struct sockaddr *dst, struct route *ro)
550{
551#define senderr(e) do { error = (e); goto bad;} while (0)
552	struct ieee80211_node *ni = NULL;
553	struct ieee80211vap *vap;
554	struct ieee80211_frame *wh;
555	struct ieee80211com *ic = NULL;
556	int error;
557	int ret;
558
559	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
560		/*
561		 * Short-circuit requests if the vap is marked OACTIVE
562		 * as this can happen because a packet came down through
563		 * ieee80211_start before the vap entered RUN state in
564		 * which case it's ok to just drop the frame.  This
565		 * should not be necessary but callers of if_output don't
566		 * check OACTIVE.
567		 */
568		senderr(ENETDOWN);
569	}
570	vap = ifp->if_softc;
571	ic = vap->iv_ic;
572	/*
573	 * Hand to the 802.3 code if not tagged as
574	 * a raw 802.11 frame.
575	 */
576	if (dst->sa_family != AF_IEEE80211)
577		return vap->iv_output(ifp, m, dst, ro);
578#ifdef MAC
579	error = mac_ifnet_check_transmit(ifp, m);
580	if (error)
581		senderr(error);
582#endif
583	if (ifp->if_flags & IFF_MONITOR)
584		senderr(ENETDOWN);
585	if (!IFNET_IS_UP_RUNNING(ifp))
586		senderr(ENETDOWN);
587	if (vap->iv_state == IEEE80211_S_CAC) {
588		IEEE80211_DPRINTF(vap,
589		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
590		    "block %s frame in CAC state\n", "raw data");
591		vap->iv_stats.is_tx_badstate++;
592		senderr(EIO);		/* XXX */
593	} else if (vap->iv_state == IEEE80211_S_SCAN)
594		senderr(EIO);
595	/* XXX bypass bridge, pfil, carp, etc. */
596
597	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
598		senderr(EIO);	/* XXX */
599	wh = mtod(m, struct ieee80211_frame *);
600	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
601	    IEEE80211_FC0_VERSION_0)
602		senderr(EIO);	/* XXX */
603
604	/* locate destination node */
605	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
606	case IEEE80211_FC1_DIR_NODS:
607	case IEEE80211_FC1_DIR_FROMDS:
608		ni = ieee80211_find_txnode(vap, wh->i_addr1);
609		break;
610	case IEEE80211_FC1_DIR_TODS:
611	case IEEE80211_FC1_DIR_DSTODS:
612		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
613			senderr(EIO);	/* XXX */
614		ni = ieee80211_find_txnode(vap, wh->i_addr3);
615		break;
616	default:
617		senderr(EIO);	/* XXX */
618	}
619	if (ni == NULL) {
620		/*
621		 * Permit packets w/ bpf params through regardless
622		 * (see below about sa_len).
623		 */
624		if (dst->sa_len == 0)
625			senderr(EHOSTUNREACH);
626		ni = ieee80211_ref_node(vap->iv_bss);
627	}
628
629	/*
630	 * Sanitize mbuf for net80211 flags leaked from above.
631	 *
632	 * NB: This must be done before ieee80211_classify as
633	 *     it marks EAPOL in frames with M_EAPOL.
634	 */
635	m->m_flags &= ~M_80211_TX;
636
637	/* calculate priority so drivers can find the tx queue */
638	/* XXX assumes an 802.3 frame */
639	if (ieee80211_classify(ni, m))
640		senderr(EIO);		/* XXX */
641
642	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
643	IEEE80211_NODE_STAT(ni, tx_data);
644	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
645		IEEE80211_NODE_STAT(ni, tx_mcast);
646		m->m_flags |= M_MCAST;
647	} else
648		IEEE80211_NODE_STAT(ni, tx_ucast);
649	/* NB: ieee80211_encap does not include 802.11 header */
650	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
651
652	IEEE80211_TX_LOCK(ic);
653
654	/*
655	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
656	 * present by setting the sa_len field of the sockaddr (yes,
657	 * this is a hack).
658	 * NB: we assume sa_data is suitably aligned to cast.
659	 */
660	ret = ieee80211_raw_output(vap, ni, m,
661	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
662		dst->sa_data : NULL));
663	IEEE80211_TX_UNLOCK(ic);
664	return (ret);
665bad:
666	if (m != NULL)
667		m_freem(m);
668	if (ni != NULL)
669		ieee80211_free_node(ni);
670	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
671	return error;
672#undef senderr
673}
674
675/*
676 * Set the direction field and address fields of an outgoing
677 * frame.  Note this should be called early on in constructing
678 * a frame as it sets i_fc[1]; other bits can then be or'd in.
679 */
680void
681ieee80211_send_setup(
682	struct ieee80211_node *ni,
683	struct mbuf *m,
684	int type, int tid,
685	const uint8_t sa[IEEE80211_ADDR_LEN],
686	const uint8_t da[IEEE80211_ADDR_LEN],
687	const uint8_t bssid[IEEE80211_ADDR_LEN])
688{
689#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
690	struct ieee80211vap *vap = ni->ni_vap;
691	struct ieee80211_tx_ampdu *tap;
692	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
693	ieee80211_seq seqno;
694
695	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
696
697	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
698	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
699		switch (vap->iv_opmode) {
700		case IEEE80211_M_STA:
701			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
702			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
703			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
704			IEEE80211_ADDR_COPY(wh->i_addr3, da);
705			break;
706		case IEEE80211_M_IBSS:
707		case IEEE80211_M_AHDEMO:
708			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
709			IEEE80211_ADDR_COPY(wh->i_addr1, da);
710			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
711			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
712			break;
713		case IEEE80211_M_HOSTAP:
714			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
715			IEEE80211_ADDR_COPY(wh->i_addr1, da);
716			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
717			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
718			break;
719		case IEEE80211_M_WDS:
720			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
721			IEEE80211_ADDR_COPY(wh->i_addr1, da);
722			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
723			IEEE80211_ADDR_COPY(wh->i_addr3, da);
724			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
725			break;
726		case IEEE80211_M_MBSS:
727#ifdef IEEE80211_SUPPORT_MESH
728			if (IEEE80211_IS_MULTICAST(da)) {
729				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
730				/* XXX next hop */
731				IEEE80211_ADDR_COPY(wh->i_addr1, da);
732				IEEE80211_ADDR_COPY(wh->i_addr2,
733				    vap->iv_myaddr);
734			} else {
735				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
736				IEEE80211_ADDR_COPY(wh->i_addr1, da);
737				IEEE80211_ADDR_COPY(wh->i_addr2,
738				    vap->iv_myaddr);
739				IEEE80211_ADDR_COPY(wh->i_addr3, da);
740				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
741			}
742#endif
743			break;
744		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
745			break;
746		}
747	} else {
748		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
749		IEEE80211_ADDR_COPY(wh->i_addr1, da);
750		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
751#ifdef IEEE80211_SUPPORT_MESH
752		if (vap->iv_opmode == IEEE80211_M_MBSS)
753			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
754		else
755#endif
756			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
757	}
758	*(uint16_t *)&wh->i_dur[0] = 0;
759
760	tap = &ni->ni_tx_ampdu[tid];
761	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
762		m->m_flags |= M_AMPDU_MPDU;
763	else {
764		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
765				      type & IEEE80211_FC0_SUBTYPE_MASK))
766			seqno = ni->ni_txseqs[tid]++;
767		else
768			seqno = 0;
769
770		*(uint16_t *)&wh->i_seq[0] =
771		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
772		M_SEQNO_SET(m, seqno);
773	}
774
775	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
776		m->m_flags |= M_MCAST;
777#undef WH4
778}
779
780/*
781 * Send a management frame to the specified node.  The node pointer
782 * must have a reference as the pointer will be passed to the driver
783 * and potentially held for a long time.  If the frame is successfully
784 * dispatched to the driver, then it is responsible for freeing the
785 * reference (and potentially free'ing up any associated storage);
786 * otherwise deal with reclaiming any reference (on error).
787 */
788int
789ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
790	struct ieee80211_bpf_params *params)
791{
792	struct ieee80211vap *vap = ni->ni_vap;
793	struct ieee80211com *ic = ni->ni_ic;
794	struct ieee80211_frame *wh;
795	int ret;
796
797	KASSERT(ni != NULL, ("null node"));
798
799	if (vap->iv_state == IEEE80211_S_CAC) {
800		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
801		    ni, "block %s frame in CAC state",
802			ieee80211_mgt_subtype_name[
803			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
804				IEEE80211_FC0_SUBTYPE_SHIFT]);
805		vap->iv_stats.is_tx_badstate++;
806		ieee80211_free_node(ni);
807		m_freem(m);
808		return EIO;		/* XXX */
809	}
810
811	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
812	if (m == NULL) {
813		ieee80211_free_node(ni);
814		return ENOMEM;
815	}
816
817	IEEE80211_TX_LOCK(ic);
818
819	wh = mtod(m, struct ieee80211_frame *);
820	ieee80211_send_setup(ni, m,
821	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
822	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
823	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
824		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
825		    "encrypting frame (%s)", __func__);
826		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
827	}
828	m->m_flags |= M_ENCAP;		/* mark encapsulated */
829
830	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
831	M_WME_SETAC(m, params->ibp_pri);
832
833#ifdef IEEE80211_DEBUG
834	/* avoid printing too many frames */
835	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
836	    ieee80211_msg_dumppkts(vap)) {
837		printf("[%s] send %s on channel %u\n",
838		    ether_sprintf(wh->i_addr1),
839		    ieee80211_mgt_subtype_name[
840			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
841				IEEE80211_FC0_SUBTYPE_SHIFT],
842		    ieee80211_chan2ieee(ic, ic->ic_curchan));
843	}
844#endif
845	IEEE80211_NODE_STAT(ni, tx_mgmt);
846
847	ret = ieee80211_raw_output(vap, ni, m, params);
848	IEEE80211_TX_UNLOCK(ic);
849	return (ret);
850}
851
852static void
853ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
854    int status)
855{
856	struct ieee80211vap *vap = ni->ni_vap;
857
858	wakeup(vap);
859}
860
861/*
862 * Send a null data frame to the specified node.  If the station
863 * is setup for QoS then a QoS Null Data frame is constructed.
864 * If this is a WDS station then a 4-address frame is constructed.
865 *
866 * NB: the caller is assumed to have setup a node reference
867 *     for use; this is necessary to deal with a race condition
868 *     when probing for inactive stations.  Like ieee80211_mgmt_output
869 *     we must cleanup any node reference on error;  however we
870 *     can safely just unref it as we know it will never be the
871 *     last reference to the node.
872 */
873int
874ieee80211_send_nulldata(struct ieee80211_node *ni)
875{
876	struct ieee80211vap *vap = ni->ni_vap;
877	struct ieee80211com *ic = ni->ni_ic;
878	struct mbuf *m;
879	struct ieee80211_frame *wh;
880	int hdrlen;
881	uint8_t *frm;
882	int ret;
883
884	if (vap->iv_state == IEEE80211_S_CAC) {
885		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
886		    ni, "block %s frame in CAC state", "null data");
887		ieee80211_unref_node(&ni);
888		vap->iv_stats.is_tx_badstate++;
889		return EIO;		/* XXX */
890	}
891
892	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
893		hdrlen = sizeof(struct ieee80211_qosframe);
894	else
895		hdrlen = sizeof(struct ieee80211_frame);
896	/* NB: only WDS vap's get 4-address frames */
897	if (vap->iv_opmode == IEEE80211_M_WDS)
898		hdrlen += IEEE80211_ADDR_LEN;
899	if (ic->ic_flags & IEEE80211_F_DATAPAD)
900		hdrlen = roundup(hdrlen, sizeof(uint32_t));
901
902	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
903	if (m == NULL) {
904		/* XXX debug msg */
905		ieee80211_unref_node(&ni);
906		vap->iv_stats.is_tx_nobuf++;
907		return ENOMEM;
908	}
909	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
910	    ("leading space %zd", M_LEADINGSPACE(m)));
911	M_PREPEND(m, hdrlen, M_NOWAIT);
912	if (m == NULL) {
913		/* NB: cannot happen */
914		ieee80211_free_node(ni);
915		return ENOMEM;
916	}
917
918	IEEE80211_TX_LOCK(ic);
919
920	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
921	if (ni->ni_flags & IEEE80211_NODE_QOS) {
922		const int tid = WME_AC_TO_TID(WME_AC_BE);
923		uint8_t *qos;
924
925		ieee80211_send_setup(ni, m,
926		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
927		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
928
929		if (vap->iv_opmode == IEEE80211_M_WDS)
930			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
931		else
932			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
933		qos[0] = tid & IEEE80211_QOS_TID;
934		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
935			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
936		qos[1] = 0;
937	} else {
938		ieee80211_send_setup(ni, m,
939		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
940		    IEEE80211_NONQOS_TID,
941		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
942	}
943	if (vap->iv_opmode != IEEE80211_M_WDS) {
944		/* NB: power management bit is never sent by an AP */
945		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
946		    vap->iv_opmode != IEEE80211_M_HOSTAP)
947			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
948	}
949	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
950	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
951		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
952		    NULL);
953	}
954	m->m_len = m->m_pkthdr.len = hdrlen;
955	m->m_flags |= M_ENCAP;		/* mark encapsulated */
956
957	M_WME_SETAC(m, WME_AC_BE);
958
959	IEEE80211_NODE_STAT(ni, tx_data);
960
961	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
962	    "send %snull data frame on channel %u, pwr mgt %s",
963	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
964	    ieee80211_chan2ieee(ic, ic->ic_curchan),
965	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
966
967	ret = ieee80211_raw_output(vap, ni, m, NULL);
968	IEEE80211_TX_UNLOCK(ic);
969	return (ret);
970}
971
972/*
973 * Assign priority to a frame based on any vlan tag assigned
974 * to the station and/or any Diffserv setting in an IP header.
975 * Finally, if an ACM policy is setup (in station mode) it's
976 * applied.
977 */
978int
979ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
980{
981	const struct ether_header *eh = mtod(m, struct ether_header *);
982	int v_wme_ac, d_wme_ac, ac;
983
984	/*
985	 * Always promote PAE/EAPOL frames to high priority.
986	 */
987	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
988		/* NB: mark so others don't need to check header */
989		m->m_flags |= M_EAPOL;
990		ac = WME_AC_VO;
991		goto done;
992	}
993	/*
994	 * Non-qos traffic goes to BE.
995	 */
996	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
997		ac = WME_AC_BE;
998		goto done;
999	}
1000
1001	/*
1002	 * If node has a vlan tag then all traffic
1003	 * to it must have a matching tag.
1004	 */
1005	v_wme_ac = 0;
1006	if (ni->ni_vlan != 0) {
1007		 if ((m->m_flags & M_VLANTAG) == 0) {
1008			IEEE80211_NODE_STAT(ni, tx_novlantag);
1009			return 1;
1010		}
1011		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1012		    EVL_VLANOFTAG(ni->ni_vlan)) {
1013			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1014			return 1;
1015		}
1016		/* map vlan priority to AC */
1017		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1018	}
1019
1020	/* XXX m_copydata may be too slow for fast path */
1021#ifdef INET
1022	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1023		uint8_t tos;
1024		/*
1025		 * IP frame, map the DSCP bits from the TOS field.
1026		 */
1027		/* NB: ip header may not be in first mbuf */
1028		m_copydata(m, sizeof(struct ether_header) +
1029		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1030		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1031		d_wme_ac = TID_TO_WME_AC(tos);
1032	} else {
1033#endif /* INET */
1034#ifdef INET6
1035	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1036		uint32_t flow;
1037		uint8_t tos;
1038		/*
1039		 * IPv6 frame, map the DSCP bits from the traffic class field.
1040		 */
1041		m_copydata(m, sizeof(struct ether_header) +
1042		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1043		    (caddr_t) &flow);
1044		tos = (uint8_t)(ntohl(flow) >> 20);
1045		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1046		d_wme_ac = TID_TO_WME_AC(tos);
1047	} else {
1048#endif /* INET6 */
1049		d_wme_ac = WME_AC_BE;
1050#ifdef INET6
1051	}
1052#endif
1053#ifdef INET
1054	}
1055#endif
1056	/*
1057	 * Use highest priority AC.
1058	 */
1059	if (v_wme_ac > d_wme_ac)
1060		ac = v_wme_ac;
1061	else
1062		ac = d_wme_ac;
1063
1064	/*
1065	 * Apply ACM policy.
1066	 */
1067	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1068		static const int acmap[4] = {
1069			WME_AC_BK,	/* WME_AC_BE */
1070			WME_AC_BK,	/* WME_AC_BK */
1071			WME_AC_BE,	/* WME_AC_VI */
1072			WME_AC_VI,	/* WME_AC_VO */
1073		};
1074		struct ieee80211com *ic = ni->ni_ic;
1075
1076		while (ac != WME_AC_BK &&
1077		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1078			ac = acmap[ac];
1079	}
1080done:
1081	M_WME_SETAC(m, ac);
1082	return 0;
1083}
1084
1085/*
1086 * Insure there is sufficient contiguous space to encapsulate the
1087 * 802.11 data frame.  If room isn't already there, arrange for it.
1088 * Drivers and cipher modules assume we have done the necessary work
1089 * and fail rudely if they don't find the space they need.
1090 */
1091struct mbuf *
1092ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1093	struct ieee80211_key *key, struct mbuf *m)
1094{
1095#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1096	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1097
1098	if (key != NULL) {
1099		/* XXX belongs in crypto code? */
1100		needed_space += key->wk_cipher->ic_header;
1101		/* XXX frags */
1102		/*
1103		 * When crypto is being done in the host we must insure
1104		 * the data are writable for the cipher routines; clone
1105		 * a writable mbuf chain.
1106		 * XXX handle SWMIC specially
1107		 */
1108		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1109			m = m_unshare(m, M_NOWAIT);
1110			if (m == NULL) {
1111				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1112				    "%s: cannot get writable mbuf\n", __func__);
1113				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1114				return NULL;
1115			}
1116		}
1117	}
1118	/*
1119	 * We know we are called just before stripping an Ethernet
1120	 * header and prepending an LLC header.  This means we know
1121	 * there will be
1122	 *	sizeof(struct ether_header) - sizeof(struct llc)
1123	 * bytes recovered to which we need additional space for the
1124	 * 802.11 header and any crypto header.
1125	 */
1126	/* XXX check trailing space and copy instead? */
1127	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1128		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1129		if (n == NULL) {
1130			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1131			    "%s: cannot expand storage\n", __func__);
1132			vap->iv_stats.is_tx_nobuf++;
1133			m_freem(m);
1134			return NULL;
1135		}
1136		KASSERT(needed_space <= MHLEN,
1137		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1138		/*
1139		 * Setup new mbuf to have leading space to prepend the
1140		 * 802.11 header and any crypto header bits that are
1141		 * required (the latter are added when the driver calls
1142		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1143		 */
1144		/* NB: must be first 'cuz it clobbers m_data */
1145		m_move_pkthdr(n, m);
1146		n->m_len = 0;			/* NB: m_gethdr does not set */
1147		n->m_data += needed_space;
1148		/*
1149		 * Pull up Ethernet header to create the expected layout.
1150		 * We could use m_pullup but that's overkill (i.e. we don't
1151		 * need the actual data) and it cannot fail so do it inline
1152		 * for speed.
1153		 */
1154		/* NB: struct ether_header is known to be contiguous */
1155		n->m_len += sizeof(struct ether_header);
1156		m->m_len -= sizeof(struct ether_header);
1157		m->m_data += sizeof(struct ether_header);
1158		/*
1159		 * Replace the head of the chain.
1160		 */
1161		n->m_next = m;
1162		m = n;
1163	}
1164	return m;
1165#undef TO_BE_RECLAIMED
1166}
1167
1168/*
1169 * Return the transmit key to use in sending a unicast frame.
1170 * If a unicast key is set we use that.  When no unicast key is set
1171 * we fall back to the default transmit key.
1172 */
1173static __inline struct ieee80211_key *
1174ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1175	struct ieee80211_node *ni)
1176{
1177	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1178		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1179		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1180			return NULL;
1181		return &vap->iv_nw_keys[vap->iv_def_txkey];
1182	} else {
1183		return &ni->ni_ucastkey;
1184	}
1185}
1186
1187/*
1188 * Return the transmit key to use in sending a multicast frame.
1189 * Multicast traffic always uses the group key which is installed as
1190 * the default tx key.
1191 */
1192static __inline struct ieee80211_key *
1193ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1194	struct ieee80211_node *ni)
1195{
1196	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1197	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1198		return NULL;
1199	return &vap->iv_nw_keys[vap->iv_def_txkey];
1200}
1201
1202/*
1203 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1204 * If an error is encountered NULL is returned.  The caller is required
1205 * to provide a node reference and pullup the ethernet header in the
1206 * first mbuf.
1207 *
1208 * NB: Packet is assumed to be processed by ieee80211_classify which
1209 *     marked EAPOL frames w/ M_EAPOL.
1210 */
1211struct mbuf *
1212ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1213    struct mbuf *m)
1214{
1215#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1216#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1217	struct ieee80211com *ic = ni->ni_ic;
1218#ifdef IEEE80211_SUPPORT_MESH
1219	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1220	struct ieee80211_meshcntl_ae10 *mc;
1221	struct ieee80211_mesh_route *rt = NULL;
1222	int dir = -1;
1223#endif
1224	struct ether_header eh;
1225	struct ieee80211_frame *wh;
1226	struct ieee80211_key *key;
1227	struct llc *llc;
1228	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1229	ieee80211_seq seqno;
1230	int meshhdrsize, meshae;
1231	uint8_t *qos;
1232
1233	IEEE80211_TX_LOCK_ASSERT(ic);
1234
1235	/*
1236	 * Copy existing Ethernet header to a safe place.  The
1237	 * rest of the code assumes it's ok to strip it when
1238	 * reorganizing state for the final encapsulation.
1239	 */
1240	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1241	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1242
1243	/*
1244	 * Insure space for additional headers.  First identify
1245	 * transmit key to use in calculating any buffer adjustments
1246	 * required.  This is also used below to do privacy
1247	 * encapsulation work.  Then calculate the 802.11 header
1248	 * size and any padding required by the driver.
1249	 *
1250	 * Note key may be NULL if we fall back to the default
1251	 * transmit key and that is not set.  In that case the
1252	 * buffer may not be expanded as needed by the cipher
1253	 * routines, but they will/should discard it.
1254	 */
1255	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1256		if (vap->iv_opmode == IEEE80211_M_STA ||
1257		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1258		    (vap->iv_opmode == IEEE80211_M_WDS &&
1259		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1260			key = ieee80211_crypto_getucastkey(vap, ni);
1261		else
1262			key = ieee80211_crypto_getmcastkey(vap, ni);
1263		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1264			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1265			    eh.ether_dhost,
1266			    "no default transmit key (%s) deftxkey %u",
1267			    __func__, vap->iv_def_txkey);
1268			vap->iv_stats.is_tx_nodefkey++;
1269			goto bad;
1270		}
1271	} else
1272		key = NULL;
1273	/*
1274	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1275	 * frames so suppress use.  This may be an issue if other
1276	 * ap's require all data frames to be QoS-encapsulated
1277	 * once negotiated in which case we'll need to make this
1278	 * configurable.
1279	 * NB: mesh data frames are QoS.
1280	 */
1281	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1282	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1283	    (m->m_flags & M_EAPOL) == 0;
1284	if (addqos)
1285		hdrsize = sizeof(struct ieee80211_qosframe);
1286	else
1287		hdrsize = sizeof(struct ieee80211_frame);
1288#ifdef IEEE80211_SUPPORT_MESH
1289	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1290		/*
1291		 * Mesh data frames are encapsulated according to the
1292		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1293		 * o Group Addressed data (aka multicast) originating
1294		 *   at the local sta are sent w/ 3-address format and
1295		 *   address extension mode 00
1296		 * o Individually Addressed data (aka unicast) originating
1297		 *   at the local sta are sent w/ 4-address format and
1298		 *   address extension mode 00
1299		 * o Group Addressed data forwarded from a non-mesh sta are
1300		 *   sent w/ 3-address format and address extension mode 01
1301		 * o Individually Address data from another sta are sent
1302		 *   w/ 4-address format and address extension mode 10
1303		 */
1304		is4addr = 0;		/* NB: don't use, disable */
1305		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1306			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1307			KASSERT(rt != NULL, ("route is NULL"));
1308			dir = IEEE80211_FC1_DIR_DSTODS;
1309			hdrsize += IEEE80211_ADDR_LEN;
1310			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1311				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1312				    vap->iv_myaddr)) {
1313					IEEE80211_NOTE_MAC(vap,
1314					    IEEE80211_MSG_MESH,
1315					    eh.ether_dhost,
1316					    "%s", "trying to send to ourself");
1317					goto bad;
1318				}
1319				meshae = IEEE80211_MESH_AE_10;
1320				meshhdrsize =
1321				    sizeof(struct ieee80211_meshcntl_ae10);
1322			} else {
1323				meshae = IEEE80211_MESH_AE_00;
1324				meshhdrsize =
1325				    sizeof(struct ieee80211_meshcntl);
1326			}
1327		} else {
1328			dir = IEEE80211_FC1_DIR_FROMDS;
1329			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1330				/* proxy group */
1331				meshae = IEEE80211_MESH_AE_01;
1332				meshhdrsize =
1333				    sizeof(struct ieee80211_meshcntl_ae01);
1334			} else {
1335				/* group */
1336				meshae = IEEE80211_MESH_AE_00;
1337				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1338			}
1339		}
1340	} else {
1341#endif
1342		/*
1343		 * 4-address frames need to be generated for:
1344		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1345		 * o packets sent through a vap marked for relaying
1346		 *   (e.g. a station operating with dynamic WDS)
1347		 */
1348		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1349		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1350		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1351		if (is4addr)
1352			hdrsize += IEEE80211_ADDR_LEN;
1353		meshhdrsize = meshae = 0;
1354#ifdef IEEE80211_SUPPORT_MESH
1355	}
1356#endif
1357	/*
1358	 * Honor driver DATAPAD requirement.
1359	 */
1360	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1361		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1362	else
1363		hdrspace = hdrsize;
1364
1365	if (__predict_true((m->m_flags & M_FF) == 0)) {
1366		/*
1367		 * Normal frame.
1368		 */
1369		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1370		if (m == NULL) {
1371			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1372			goto bad;
1373		}
1374		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1375		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1376		llc = mtod(m, struct llc *);
1377		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1378		llc->llc_control = LLC_UI;
1379		llc->llc_snap.org_code[0] = 0;
1380		llc->llc_snap.org_code[1] = 0;
1381		llc->llc_snap.org_code[2] = 0;
1382		llc->llc_snap.ether_type = eh.ether_type;
1383	} else {
1384#ifdef IEEE80211_SUPPORT_SUPERG
1385		/*
1386		 * Aggregated frame.
1387		 */
1388		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1389		if (m == NULL)
1390#endif
1391			goto bad;
1392	}
1393	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1394
1395	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1396	if (m == NULL) {
1397		vap->iv_stats.is_tx_nobuf++;
1398		goto bad;
1399	}
1400	wh = mtod(m, struct ieee80211_frame *);
1401	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1402	*(uint16_t *)wh->i_dur = 0;
1403	qos = NULL;	/* NB: quiet compiler */
1404	if (is4addr) {
1405		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1406		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1407		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1408		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1409		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1410	} else switch (vap->iv_opmode) {
1411	case IEEE80211_M_STA:
1412		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1413		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1414		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1415		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1416		break;
1417	case IEEE80211_M_IBSS:
1418	case IEEE80211_M_AHDEMO:
1419		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1420		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1421		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1422		/*
1423		 * NB: always use the bssid from iv_bss as the
1424		 *     neighbor's may be stale after an ibss merge
1425		 */
1426		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1427		break;
1428	case IEEE80211_M_HOSTAP:
1429		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1430		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1431		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1432		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1433		break;
1434#ifdef IEEE80211_SUPPORT_MESH
1435	case IEEE80211_M_MBSS:
1436		/* NB: offset by hdrspace to deal with DATAPAD */
1437		mc = (struct ieee80211_meshcntl_ae10 *)
1438		     (mtod(m, uint8_t *) + hdrspace);
1439		wh->i_fc[1] = dir;
1440		switch (meshae) {
1441		case IEEE80211_MESH_AE_00:	/* no proxy */
1442			mc->mc_flags = 0;
1443			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1444				IEEE80211_ADDR_COPY(wh->i_addr1,
1445				    ni->ni_macaddr);
1446				IEEE80211_ADDR_COPY(wh->i_addr2,
1447				    vap->iv_myaddr);
1448				IEEE80211_ADDR_COPY(wh->i_addr3,
1449				    eh.ether_dhost);
1450				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1451				    eh.ether_shost);
1452				qos =((struct ieee80211_qosframe_addr4 *)
1453				    wh)->i_qos;
1454			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1455				 /* mcast */
1456				IEEE80211_ADDR_COPY(wh->i_addr1,
1457				    eh.ether_dhost);
1458				IEEE80211_ADDR_COPY(wh->i_addr2,
1459				    vap->iv_myaddr);
1460				IEEE80211_ADDR_COPY(wh->i_addr3,
1461				    eh.ether_shost);
1462				qos = ((struct ieee80211_qosframe *)
1463				    wh)->i_qos;
1464			}
1465			break;
1466		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1467			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1468			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1469			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1470			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1471			mc->mc_flags = 1;
1472			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1473			    eh.ether_shost);
1474			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1475			break;
1476		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1477			KASSERT(rt != NULL, ("route is NULL"));
1478			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1479			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1480			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1481			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1482			mc->mc_flags = IEEE80211_MESH_AE_10;
1483			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1484			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1485			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1486			break;
1487		default:
1488			KASSERT(0, ("meshae %d", meshae));
1489			break;
1490		}
1491		mc->mc_ttl = ms->ms_ttl;
1492		ms->ms_seq++;
1493		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1494		break;
1495#endif
1496	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1497	default:
1498		goto bad;
1499	}
1500	if (m->m_flags & M_MORE_DATA)
1501		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1502	if (addqos) {
1503		int ac, tid;
1504
1505		if (is4addr) {
1506			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1507		/* NB: mesh case handled earlier */
1508		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1509			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1510		ac = M_WME_GETAC(m);
1511		/* map from access class/queue to 11e header priorty value */
1512		tid = WME_AC_TO_TID(ac);
1513		qos[0] = tid & IEEE80211_QOS_TID;
1514		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1515			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1516#ifdef IEEE80211_SUPPORT_MESH
1517		if (vap->iv_opmode == IEEE80211_M_MBSS)
1518			qos[1] = IEEE80211_QOS_MC;
1519		else
1520#endif
1521			qos[1] = 0;
1522		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1523
1524		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1525			/*
1526			 * NB: don't assign a sequence # to potential
1527			 * aggregates; we expect this happens at the
1528			 * point the frame comes off any aggregation q
1529			 * as otherwise we may introduce holes in the
1530			 * BA sequence space and/or make window accouting
1531			 * more difficult.
1532			 *
1533			 * XXX may want to control this with a driver
1534			 * capability; this may also change when we pull
1535			 * aggregation up into net80211
1536			 */
1537			seqno = ni->ni_txseqs[tid]++;
1538			*(uint16_t *)wh->i_seq =
1539			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1540			M_SEQNO_SET(m, seqno);
1541		}
1542	} else {
1543		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1544		*(uint16_t *)wh->i_seq =
1545		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1546		M_SEQNO_SET(m, seqno);
1547	}
1548
1549
1550	/* check if xmit fragmentation is required */
1551	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1552	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1553	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1554	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1555	if (key != NULL) {
1556		/*
1557		 * IEEE 802.1X: send EAPOL frames always in the clear.
1558		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1559		 */
1560		if ((m->m_flags & M_EAPOL) == 0 ||
1561		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1562		     (vap->iv_opmode == IEEE80211_M_STA ?
1563		      !IEEE80211_KEY_UNDEFINED(key) :
1564		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1565			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1566			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1567				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1568				    eh.ether_dhost,
1569				    "%s", "enmic failed, discard frame");
1570				vap->iv_stats.is_crypto_enmicfail++;
1571				goto bad;
1572			}
1573		}
1574	}
1575	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1576	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1577		goto bad;
1578
1579	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1580
1581	IEEE80211_NODE_STAT(ni, tx_data);
1582	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1583		IEEE80211_NODE_STAT(ni, tx_mcast);
1584		m->m_flags |= M_MCAST;
1585	} else
1586		IEEE80211_NODE_STAT(ni, tx_ucast);
1587	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1588
1589	return m;
1590bad:
1591	if (m != NULL)
1592		m_freem(m);
1593	return NULL;
1594#undef WH4
1595#undef MC01
1596}
1597
1598void
1599ieee80211_free_mbuf(struct mbuf *m)
1600{
1601	struct mbuf *next;
1602
1603	if (m == NULL)
1604		return;
1605
1606	do {
1607		next = m->m_nextpkt;
1608		m->m_nextpkt = NULL;
1609		m_freem(m);
1610	} while ((m = next) != NULL);
1611}
1612
1613/*
1614 * Fragment the frame according to the specified mtu.
1615 * The size of the 802.11 header (w/o padding) is provided
1616 * so we don't need to recalculate it.  We create a new
1617 * mbuf for each fragment and chain it through m_nextpkt;
1618 * we might be able to optimize this by reusing the original
1619 * packet's mbufs but that is significantly more complicated.
1620 */
1621static int
1622ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1623	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1624{
1625	struct ieee80211com *ic = vap->iv_ic;
1626	struct ieee80211_frame *wh, *whf;
1627	struct mbuf *m, *prev;
1628	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1629	u_int hdrspace;
1630
1631	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1632	KASSERT(m0->m_pkthdr.len > mtu,
1633		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1634
1635	/*
1636	 * Honor driver DATAPAD requirement.
1637	 */
1638	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1639		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1640	else
1641		hdrspace = hdrsize;
1642
1643	wh = mtod(m0, struct ieee80211_frame *);
1644	/* NB: mark the first frag; it will be propagated below */
1645	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1646	totalhdrsize = hdrspace + ciphdrsize;
1647	fragno = 1;
1648	off = mtu - ciphdrsize;
1649	remainder = m0->m_pkthdr.len - off;
1650	prev = m0;
1651	do {
1652		fragsize = totalhdrsize + remainder;
1653		if (fragsize > mtu)
1654			fragsize = mtu;
1655		/* XXX fragsize can be >2048! */
1656		KASSERT(fragsize < MCLBYTES,
1657			("fragment size %u too big!", fragsize));
1658		if (fragsize > MHLEN)
1659			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1660		else
1661			m = m_gethdr(M_NOWAIT, MT_DATA);
1662		if (m == NULL)
1663			goto bad;
1664		/* leave room to prepend any cipher header */
1665		m_align(m, fragsize - ciphdrsize);
1666
1667		/*
1668		 * Form the header in the fragment.  Note that since
1669		 * we mark the first fragment with the MORE_FRAG bit
1670		 * it automatically is propagated to each fragment; we
1671		 * need only clear it on the last fragment (done below).
1672		 * NB: frag 1+ dont have Mesh Control field present.
1673		 */
1674		whf = mtod(m, struct ieee80211_frame *);
1675		memcpy(whf, wh, hdrsize);
1676#ifdef IEEE80211_SUPPORT_MESH
1677		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1678			if (IEEE80211_IS_DSTODS(wh))
1679				((struct ieee80211_qosframe_addr4 *)
1680				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1681			else
1682				((struct ieee80211_qosframe *)
1683				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1684		}
1685#endif
1686		*(uint16_t *)&whf->i_seq[0] |= htole16(
1687			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1688				IEEE80211_SEQ_FRAG_SHIFT);
1689		fragno++;
1690
1691		payload = fragsize - totalhdrsize;
1692		/* NB: destination is known to be contiguous */
1693
1694		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1695		m->m_len = hdrspace + payload;
1696		m->m_pkthdr.len = hdrspace + payload;
1697		m->m_flags |= M_FRAG;
1698
1699		/* chain up the fragment */
1700		prev->m_nextpkt = m;
1701		prev = m;
1702
1703		/* deduct fragment just formed */
1704		remainder -= payload;
1705		off += payload;
1706	} while (remainder != 0);
1707
1708	/* set the last fragment */
1709	m->m_flags |= M_LASTFRAG;
1710	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1711
1712	/* strip first mbuf now that everything has been copied */
1713	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1714	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1715
1716	vap->iv_stats.is_tx_fragframes++;
1717	vap->iv_stats.is_tx_frags += fragno-1;
1718
1719	return 1;
1720bad:
1721	/* reclaim fragments but leave original frame for caller to free */
1722	ieee80211_free_mbuf(m0->m_nextpkt);
1723	m0->m_nextpkt = NULL;
1724	return 0;
1725}
1726
1727/*
1728 * Add a supported rates element id to a frame.
1729 */
1730uint8_t *
1731ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1732{
1733	int nrates;
1734
1735	*frm++ = IEEE80211_ELEMID_RATES;
1736	nrates = rs->rs_nrates;
1737	if (nrates > IEEE80211_RATE_SIZE)
1738		nrates = IEEE80211_RATE_SIZE;
1739	*frm++ = nrates;
1740	memcpy(frm, rs->rs_rates, nrates);
1741	return frm + nrates;
1742}
1743
1744/*
1745 * Add an extended supported rates element id to a frame.
1746 */
1747uint8_t *
1748ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1749{
1750	/*
1751	 * Add an extended supported rates element if operating in 11g mode.
1752	 */
1753	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1754		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1755		*frm++ = IEEE80211_ELEMID_XRATES;
1756		*frm++ = nrates;
1757		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1758		frm += nrates;
1759	}
1760	return frm;
1761}
1762
1763/*
1764 * Add an ssid element to a frame.
1765 */
1766uint8_t *
1767ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1768{
1769	*frm++ = IEEE80211_ELEMID_SSID;
1770	*frm++ = len;
1771	memcpy(frm, ssid, len);
1772	return frm + len;
1773}
1774
1775/*
1776 * Add an erp element to a frame.
1777 */
1778static uint8_t *
1779ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1780{
1781	uint8_t erp;
1782
1783	*frm++ = IEEE80211_ELEMID_ERP;
1784	*frm++ = 1;
1785	erp = 0;
1786	if (ic->ic_nonerpsta != 0)
1787		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1788	if (ic->ic_flags & IEEE80211_F_USEPROT)
1789		erp |= IEEE80211_ERP_USE_PROTECTION;
1790	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1791		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1792	*frm++ = erp;
1793	return frm;
1794}
1795
1796/*
1797 * Add a CFParams element to a frame.
1798 */
1799static uint8_t *
1800ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1801{
1802#define	ADDSHORT(frm, v) do {	\
1803	LE_WRITE_2(frm, v);	\
1804	frm += 2;		\
1805} while (0)
1806	*frm++ = IEEE80211_ELEMID_CFPARMS;
1807	*frm++ = 6;
1808	*frm++ = 0;		/* CFP count */
1809	*frm++ = 2;		/* CFP period */
1810	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1811	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1812	return frm;
1813#undef ADDSHORT
1814}
1815
1816static __inline uint8_t *
1817add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1818{
1819	memcpy(frm, ie->ie_data, ie->ie_len);
1820	return frm + ie->ie_len;
1821}
1822
1823static __inline uint8_t *
1824add_ie(uint8_t *frm, const uint8_t *ie)
1825{
1826	memcpy(frm, ie, 2 + ie[1]);
1827	return frm + 2 + ie[1];
1828}
1829
1830#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1831/*
1832 * Add a WME information element to a frame.
1833 */
1834uint8_t *
1835ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1836{
1837	static const struct ieee80211_wme_info info = {
1838		.wme_id		= IEEE80211_ELEMID_VENDOR,
1839		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1840		.wme_oui	= { WME_OUI_BYTES },
1841		.wme_type	= WME_OUI_TYPE,
1842		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1843		.wme_version	= WME_VERSION,
1844		.wme_info	= 0,
1845	};
1846	memcpy(frm, &info, sizeof(info));
1847	return frm + sizeof(info);
1848}
1849
1850/*
1851 * Add a WME parameters element to a frame.
1852 */
1853static uint8_t *
1854ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1855{
1856#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1857#define	ADDSHORT(frm, v) do {	\
1858	LE_WRITE_2(frm, v);	\
1859	frm += 2;		\
1860} while (0)
1861	/* NB: this works 'cuz a param has an info at the front */
1862	static const struct ieee80211_wme_info param = {
1863		.wme_id		= IEEE80211_ELEMID_VENDOR,
1864		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1865		.wme_oui	= { WME_OUI_BYTES },
1866		.wme_type	= WME_OUI_TYPE,
1867		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1868		.wme_version	= WME_VERSION,
1869	};
1870	int i;
1871
1872	memcpy(frm, &param, sizeof(param));
1873	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1874	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1875	*frm++ = 0;					/* reserved field */
1876	for (i = 0; i < WME_NUM_AC; i++) {
1877		const struct wmeParams *ac =
1878		       &wme->wme_bssChanParams.cap_wmeParams[i];
1879		*frm++ = SM(i, WME_PARAM_ACI)
1880		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1881		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1882		       ;
1883		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1884		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1885		       ;
1886		ADDSHORT(frm, ac->wmep_txopLimit);
1887	}
1888	return frm;
1889#undef SM
1890#undef ADDSHORT
1891}
1892#undef WME_OUI_BYTES
1893
1894/*
1895 * Add an 11h Power Constraint element to a frame.
1896 */
1897static uint8_t *
1898ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1899{
1900	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1901	/* XXX per-vap tx power limit? */
1902	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1903
1904	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1905	frm[1] = 1;
1906	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1907	return frm + 3;
1908}
1909
1910/*
1911 * Add an 11h Power Capability element to a frame.
1912 */
1913static uint8_t *
1914ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1915{
1916	frm[0] = IEEE80211_ELEMID_PWRCAP;
1917	frm[1] = 2;
1918	frm[2] = c->ic_minpower;
1919	frm[3] = c->ic_maxpower;
1920	return frm + 4;
1921}
1922
1923/*
1924 * Add an 11h Supported Channels element to a frame.
1925 */
1926static uint8_t *
1927ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1928{
1929	static const int ielen = 26;
1930
1931	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1932	frm[1] = ielen;
1933	/* XXX not correct */
1934	memcpy(frm+2, ic->ic_chan_avail, ielen);
1935	return frm + 2 + ielen;
1936}
1937
1938/*
1939 * Add an 11h Quiet time element to a frame.
1940 */
1941static uint8_t *
1942ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1943{
1944	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1945
1946	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1947	quiet->len = 6;
1948	if (vap->iv_quiet_count_value == 1)
1949		vap->iv_quiet_count_value = vap->iv_quiet_count;
1950	else if (vap->iv_quiet_count_value > 1)
1951		vap->iv_quiet_count_value--;
1952
1953	if (vap->iv_quiet_count_value == 0) {
1954		/* value 0 is reserved as per 802.11h standerd */
1955		vap->iv_quiet_count_value = 1;
1956	}
1957
1958	quiet->tbttcount = vap->iv_quiet_count_value;
1959	quiet->period = vap->iv_quiet_period;
1960	quiet->duration = htole16(vap->iv_quiet_duration);
1961	quiet->offset = htole16(vap->iv_quiet_offset);
1962	return frm + sizeof(*quiet);
1963}
1964
1965/*
1966 * Add an 11h Channel Switch Announcement element to a frame.
1967 * Note that we use the per-vap CSA count to adjust the global
1968 * counter so we can use this routine to form probe response
1969 * frames and get the current count.
1970 */
1971static uint8_t *
1972ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1973{
1974	struct ieee80211com *ic = vap->iv_ic;
1975	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1976
1977	csa->csa_ie = IEEE80211_ELEMID_CSA;
1978	csa->csa_len = 3;
1979	csa->csa_mode = 1;		/* XXX force quiet on channel */
1980	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1981	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1982	return frm + sizeof(*csa);
1983}
1984
1985/*
1986 * Add an 11h country information element to a frame.
1987 */
1988static uint8_t *
1989ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1990{
1991
1992	if (ic->ic_countryie == NULL ||
1993	    ic->ic_countryie_chan != ic->ic_bsschan) {
1994		/*
1995		 * Handle lazy construction of ie.  This is done on
1996		 * first use and after a channel change that requires
1997		 * re-calculation.
1998		 */
1999		if (ic->ic_countryie != NULL)
2000			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2001		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2002		if (ic->ic_countryie == NULL)
2003			return frm;
2004		ic->ic_countryie_chan = ic->ic_bsschan;
2005	}
2006	return add_appie(frm, ic->ic_countryie);
2007}
2008
2009uint8_t *
2010ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2011{
2012	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2013		return (add_ie(frm, vap->iv_wpa_ie));
2014	else {
2015		/* XXX else complain? */
2016		return (frm);
2017	}
2018}
2019
2020uint8_t *
2021ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2022{
2023	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2024		return (add_ie(frm, vap->iv_rsn_ie));
2025	else {
2026		/* XXX else complain? */
2027		return (frm);
2028	}
2029}
2030
2031uint8_t *
2032ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2033{
2034	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2035		*frm++ = IEEE80211_ELEMID_QOS;
2036		*frm++ = 1;
2037		*frm++ = 0;
2038	}
2039
2040	return (frm);
2041}
2042
2043/*
2044 * Send a probe request frame with the specified ssid
2045 * and any optional information element data.
2046 */
2047int
2048ieee80211_send_probereq(struct ieee80211_node *ni,
2049	const uint8_t sa[IEEE80211_ADDR_LEN],
2050	const uint8_t da[IEEE80211_ADDR_LEN],
2051	const uint8_t bssid[IEEE80211_ADDR_LEN],
2052	const uint8_t *ssid, size_t ssidlen)
2053{
2054	struct ieee80211vap *vap = ni->ni_vap;
2055	struct ieee80211com *ic = ni->ni_ic;
2056	const struct ieee80211_txparam *tp;
2057	struct ieee80211_bpf_params params;
2058	struct ieee80211_frame *wh;
2059	const struct ieee80211_rateset *rs;
2060	struct mbuf *m;
2061	uint8_t *frm;
2062	int ret;
2063
2064	if (vap->iv_state == IEEE80211_S_CAC) {
2065		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2066		    "block %s frame in CAC state", "probe request");
2067		vap->iv_stats.is_tx_badstate++;
2068		return EIO;		/* XXX */
2069	}
2070
2071	/*
2072	 * Hold a reference on the node so it doesn't go away until after
2073	 * the xmit is complete all the way in the driver.  On error we
2074	 * will remove our reference.
2075	 */
2076	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2077		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2078		__func__, __LINE__,
2079		ni, ether_sprintf(ni->ni_macaddr),
2080		ieee80211_node_refcnt(ni)+1);
2081	ieee80211_ref_node(ni);
2082
2083	/*
2084	 * prreq frame format
2085	 *	[tlv] ssid
2086	 *	[tlv] supported rates
2087	 *	[tlv] RSN (optional)
2088	 *	[tlv] extended supported rates
2089	 *	[tlv] WPA (optional)
2090	 *	[tlv] user-specified ie's
2091	 */
2092	m = ieee80211_getmgtframe(&frm,
2093		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2094	       	 2 + IEEE80211_NWID_LEN
2095	       + 2 + IEEE80211_RATE_SIZE
2096	       + sizeof(struct ieee80211_ie_wpa)
2097	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2098	       + sizeof(struct ieee80211_ie_wpa)
2099	       + (vap->iv_appie_probereq != NULL ?
2100		   vap->iv_appie_probereq->ie_len : 0)
2101	);
2102	if (m == NULL) {
2103		vap->iv_stats.is_tx_nobuf++;
2104		ieee80211_free_node(ni);
2105		return ENOMEM;
2106	}
2107
2108	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2109	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2110	frm = ieee80211_add_rates(frm, rs);
2111	frm = ieee80211_add_rsn(frm, vap);
2112	frm = ieee80211_add_xrates(frm, rs);
2113	frm = ieee80211_add_wpa(frm, vap);
2114	if (vap->iv_appie_probereq != NULL)
2115		frm = add_appie(frm, vap->iv_appie_probereq);
2116	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2117
2118	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2119	    ("leading space %zd", M_LEADINGSPACE(m)));
2120	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2121	if (m == NULL) {
2122		/* NB: cannot happen */
2123		ieee80211_free_node(ni);
2124		return ENOMEM;
2125	}
2126
2127	IEEE80211_TX_LOCK(ic);
2128	wh = mtod(m, struct ieee80211_frame *);
2129	ieee80211_send_setup(ni, m,
2130	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2131	     IEEE80211_NONQOS_TID, sa, da, bssid);
2132	/* XXX power management? */
2133	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2134
2135	M_WME_SETAC(m, WME_AC_BE);
2136
2137	IEEE80211_NODE_STAT(ni, tx_probereq);
2138	IEEE80211_NODE_STAT(ni, tx_mgmt);
2139
2140	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2141	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2142	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2143	    ssidlen, ssid);
2144
2145	memset(&params, 0, sizeof(params));
2146	params.ibp_pri = M_WME_GETAC(m);
2147	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2148	params.ibp_rate0 = tp->mgmtrate;
2149	if (IEEE80211_IS_MULTICAST(da)) {
2150		params.ibp_flags |= IEEE80211_BPF_NOACK;
2151		params.ibp_try0 = 1;
2152	} else
2153		params.ibp_try0 = tp->maxretry;
2154	params.ibp_power = ni->ni_txpower;
2155	ret = ieee80211_raw_output(vap, ni, m, &params);
2156	IEEE80211_TX_UNLOCK(ic);
2157	return (ret);
2158}
2159
2160/*
2161 * Calculate capability information for mgt frames.
2162 */
2163uint16_t
2164ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2165{
2166	struct ieee80211com *ic = vap->iv_ic;
2167	uint16_t capinfo;
2168
2169	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2170
2171	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2172		capinfo = IEEE80211_CAPINFO_ESS;
2173	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2174		capinfo = IEEE80211_CAPINFO_IBSS;
2175	else
2176		capinfo = 0;
2177	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2178		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2179	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2180	    IEEE80211_IS_CHAN_2GHZ(chan))
2181		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2182	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2183		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2184	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2185		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2186	return capinfo;
2187}
2188
2189/*
2190 * Send a management frame.  The node is for the destination (or ic_bss
2191 * when in station mode).  Nodes other than ic_bss have their reference
2192 * count bumped to reflect our use for an indeterminant time.
2193 */
2194int
2195ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2196{
2197#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2198#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2199	struct ieee80211vap *vap = ni->ni_vap;
2200	struct ieee80211com *ic = ni->ni_ic;
2201	struct ieee80211_node *bss = vap->iv_bss;
2202	struct ieee80211_bpf_params params;
2203	struct mbuf *m;
2204	uint8_t *frm;
2205	uint16_t capinfo;
2206	int has_challenge, is_shared_key, ret, status;
2207
2208	KASSERT(ni != NULL, ("null node"));
2209
2210	/*
2211	 * Hold a reference on the node so it doesn't go away until after
2212	 * the xmit is complete all the way in the driver.  On error we
2213	 * will remove our reference.
2214	 */
2215	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2216		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2217		__func__, __LINE__,
2218		ni, ether_sprintf(ni->ni_macaddr),
2219		ieee80211_node_refcnt(ni)+1);
2220	ieee80211_ref_node(ni);
2221
2222	memset(&params, 0, sizeof(params));
2223	switch (type) {
2224
2225	case IEEE80211_FC0_SUBTYPE_AUTH:
2226		status = arg >> 16;
2227		arg &= 0xffff;
2228		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2229		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2230		    ni->ni_challenge != NULL);
2231
2232		/*
2233		 * Deduce whether we're doing open authentication or
2234		 * shared key authentication.  We do the latter if
2235		 * we're in the middle of a shared key authentication
2236		 * handshake or if we're initiating an authentication
2237		 * request and configured to use shared key.
2238		 */
2239		is_shared_key = has_challenge ||
2240		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2241		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2242		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2243
2244		m = ieee80211_getmgtframe(&frm,
2245			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2246			  3 * sizeof(uint16_t)
2247			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2248				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2249		);
2250		if (m == NULL)
2251			senderr(ENOMEM, is_tx_nobuf);
2252
2253		((uint16_t *)frm)[0] =
2254		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2255		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2256		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2257		((uint16_t *)frm)[2] = htole16(status);/* status */
2258
2259		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2260			((uint16_t *)frm)[3] =
2261			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2262			    IEEE80211_ELEMID_CHALLENGE);
2263			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2264			    IEEE80211_CHALLENGE_LEN);
2265			m->m_pkthdr.len = m->m_len =
2266				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2267			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2268				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2269				    "request encrypt frame (%s)", __func__);
2270				/* mark frame for encryption */
2271				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2272			}
2273		} else
2274			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2275
2276		/* XXX not right for shared key */
2277		if (status == IEEE80211_STATUS_SUCCESS)
2278			IEEE80211_NODE_STAT(ni, tx_auth);
2279		else
2280			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2281
2282		if (vap->iv_opmode == IEEE80211_M_STA)
2283			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2284				(void *) vap->iv_state);
2285		break;
2286
2287	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2288		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2289		    "send station deauthenticate (reason %d)", arg);
2290		m = ieee80211_getmgtframe(&frm,
2291			ic->ic_headroom + sizeof(struct ieee80211_frame),
2292			sizeof(uint16_t));
2293		if (m == NULL)
2294			senderr(ENOMEM, is_tx_nobuf);
2295		*(uint16_t *)frm = htole16(arg);	/* reason */
2296		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2297
2298		IEEE80211_NODE_STAT(ni, tx_deauth);
2299		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2300
2301		ieee80211_node_unauthorize(ni);		/* port closed */
2302		break;
2303
2304	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2305	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2306		/*
2307		 * asreq frame format
2308		 *	[2] capability information
2309		 *	[2] listen interval
2310		 *	[6*] current AP address (reassoc only)
2311		 *	[tlv] ssid
2312		 *	[tlv] supported rates
2313		 *	[tlv] extended supported rates
2314		 *	[4] power capability (optional)
2315		 *	[28] supported channels (optional)
2316		 *	[tlv] HT capabilities
2317		 *	[tlv] WME (optional)
2318		 *	[tlv] Vendor OUI HT capabilities (optional)
2319		 *	[tlv] Atheros capabilities (if negotiated)
2320		 *	[tlv] AppIE's (optional)
2321		 */
2322		m = ieee80211_getmgtframe(&frm,
2323			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2324			 sizeof(uint16_t)
2325		       + sizeof(uint16_t)
2326		       + IEEE80211_ADDR_LEN
2327		       + 2 + IEEE80211_NWID_LEN
2328		       + 2 + IEEE80211_RATE_SIZE
2329		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2330		       + 4
2331		       + 2 + 26
2332		       + sizeof(struct ieee80211_wme_info)
2333		       + sizeof(struct ieee80211_ie_htcap)
2334		       + 4 + sizeof(struct ieee80211_ie_htcap)
2335#ifdef IEEE80211_SUPPORT_SUPERG
2336		       + sizeof(struct ieee80211_ath_ie)
2337#endif
2338		       + (vap->iv_appie_wpa != NULL ?
2339				vap->iv_appie_wpa->ie_len : 0)
2340		       + (vap->iv_appie_assocreq != NULL ?
2341				vap->iv_appie_assocreq->ie_len : 0)
2342		);
2343		if (m == NULL)
2344			senderr(ENOMEM, is_tx_nobuf);
2345
2346		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2347		    ("wrong mode %u", vap->iv_opmode));
2348		capinfo = IEEE80211_CAPINFO_ESS;
2349		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2350			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2351		/*
2352		 * NB: Some 11a AP's reject the request when
2353		 *     short premable is set.
2354		 */
2355		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2356		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2357			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2358		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2359		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2360			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2361		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2362		    (vap->iv_flags & IEEE80211_F_DOTH))
2363			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2364		*(uint16_t *)frm = htole16(capinfo);
2365		frm += 2;
2366
2367		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2368		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2369						    bss->ni_intval));
2370		frm += 2;
2371
2372		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2373			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2374			frm += IEEE80211_ADDR_LEN;
2375		}
2376
2377		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2378		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2379		frm = ieee80211_add_rsn(frm, vap);
2380		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2381		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2382			frm = ieee80211_add_powercapability(frm,
2383			    ic->ic_curchan);
2384			frm = ieee80211_add_supportedchannels(frm, ic);
2385		}
2386
2387		/*
2388		 * Check the channel - we may be using an 11n NIC with an
2389		 * 11n capable station, but we're configured to be an 11b
2390		 * channel.
2391		 */
2392		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2393		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2394		    ni->ni_ies.htcap_ie != NULL &&
2395		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2396			frm = ieee80211_add_htcap(frm, ni);
2397		}
2398		frm = ieee80211_add_wpa(frm, vap);
2399		if ((ic->ic_flags & IEEE80211_F_WME) &&
2400		    ni->ni_ies.wme_ie != NULL)
2401			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2402
2403		/*
2404		 * Same deal - only send HT info if we're on an 11n
2405		 * capable channel.
2406		 */
2407		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2408		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2409		    ni->ni_ies.htcap_ie != NULL &&
2410		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2411			frm = ieee80211_add_htcap_vendor(frm, ni);
2412		}
2413#ifdef IEEE80211_SUPPORT_SUPERG
2414		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2415			frm = ieee80211_add_ath(frm,
2416				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2417				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2418				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2419				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2420		}
2421#endif /* IEEE80211_SUPPORT_SUPERG */
2422		if (vap->iv_appie_assocreq != NULL)
2423			frm = add_appie(frm, vap->iv_appie_assocreq);
2424		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2425
2426		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2427			(void *) vap->iv_state);
2428		break;
2429
2430	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2431	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2432		/*
2433		 * asresp frame format
2434		 *	[2] capability information
2435		 *	[2] status
2436		 *	[2] association ID
2437		 *	[tlv] supported rates
2438		 *	[tlv] extended supported rates
2439		 *	[tlv] HT capabilities (standard, if STA enabled)
2440		 *	[tlv] HT information (standard, if STA enabled)
2441		 *	[tlv] WME (if configured and STA enabled)
2442		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2443		 *	[tlv] HT information (vendor OUI, if STA enabled)
2444		 *	[tlv] Atheros capabilities (if STA enabled)
2445		 *	[tlv] AppIE's (optional)
2446		 */
2447		m = ieee80211_getmgtframe(&frm,
2448			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2449			 sizeof(uint16_t)
2450		       + sizeof(uint16_t)
2451		       + sizeof(uint16_t)
2452		       + 2 + IEEE80211_RATE_SIZE
2453		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2454		       + sizeof(struct ieee80211_ie_htcap) + 4
2455		       + sizeof(struct ieee80211_ie_htinfo) + 4
2456		       + sizeof(struct ieee80211_wme_param)
2457#ifdef IEEE80211_SUPPORT_SUPERG
2458		       + sizeof(struct ieee80211_ath_ie)
2459#endif
2460		       + (vap->iv_appie_assocresp != NULL ?
2461				vap->iv_appie_assocresp->ie_len : 0)
2462		);
2463		if (m == NULL)
2464			senderr(ENOMEM, is_tx_nobuf);
2465
2466		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2467		*(uint16_t *)frm = htole16(capinfo);
2468		frm += 2;
2469
2470		*(uint16_t *)frm = htole16(arg);	/* status */
2471		frm += 2;
2472
2473		if (arg == IEEE80211_STATUS_SUCCESS) {
2474			*(uint16_t *)frm = htole16(ni->ni_associd);
2475			IEEE80211_NODE_STAT(ni, tx_assoc);
2476		} else
2477			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2478		frm += 2;
2479
2480		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2481		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2482		/* NB: respond according to what we received */
2483		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2484			frm = ieee80211_add_htcap(frm, ni);
2485			frm = ieee80211_add_htinfo(frm, ni);
2486		}
2487		if ((vap->iv_flags & IEEE80211_F_WME) &&
2488		    ni->ni_ies.wme_ie != NULL)
2489			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2490		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2491			frm = ieee80211_add_htcap_vendor(frm, ni);
2492			frm = ieee80211_add_htinfo_vendor(frm, ni);
2493		}
2494#ifdef IEEE80211_SUPPORT_SUPERG
2495		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2496			frm = ieee80211_add_ath(frm,
2497				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2498				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2499				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2500				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2501#endif /* IEEE80211_SUPPORT_SUPERG */
2502		if (vap->iv_appie_assocresp != NULL)
2503			frm = add_appie(frm, vap->iv_appie_assocresp);
2504		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2505		break;
2506
2507	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2508		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2509		    "send station disassociate (reason %d)", arg);
2510		m = ieee80211_getmgtframe(&frm,
2511			ic->ic_headroom + sizeof(struct ieee80211_frame),
2512			sizeof(uint16_t));
2513		if (m == NULL)
2514			senderr(ENOMEM, is_tx_nobuf);
2515		*(uint16_t *)frm = htole16(arg);	/* reason */
2516		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2517
2518		IEEE80211_NODE_STAT(ni, tx_disassoc);
2519		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2520		break;
2521
2522	default:
2523		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2524		    "invalid mgmt frame type %u", type);
2525		senderr(EINVAL, is_tx_unknownmgt);
2526		/* NOTREACHED */
2527	}
2528
2529	/* NB: force non-ProbeResp frames to the highest queue */
2530	params.ibp_pri = WME_AC_VO;
2531	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2532	/* NB: we know all frames are unicast */
2533	params.ibp_try0 = bss->ni_txparms->maxretry;
2534	params.ibp_power = bss->ni_txpower;
2535	return ieee80211_mgmt_output(ni, m, type, &params);
2536bad:
2537	ieee80211_free_node(ni);
2538	return ret;
2539#undef senderr
2540#undef HTFLAGS
2541}
2542
2543/*
2544 * Return an mbuf with a probe response frame in it.
2545 * Space is left to prepend and 802.11 header at the
2546 * front but it's left to the caller to fill in.
2547 */
2548struct mbuf *
2549ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2550{
2551	struct ieee80211vap *vap = bss->ni_vap;
2552	struct ieee80211com *ic = bss->ni_ic;
2553	const struct ieee80211_rateset *rs;
2554	struct mbuf *m;
2555	uint16_t capinfo;
2556	uint8_t *frm;
2557
2558	/*
2559	 * probe response frame format
2560	 *	[8] time stamp
2561	 *	[2] beacon interval
2562	 *	[2] cabability information
2563	 *	[tlv] ssid
2564	 *	[tlv] supported rates
2565	 *	[tlv] parameter set (FH/DS)
2566	 *	[tlv] parameter set (IBSS)
2567	 *	[tlv] country (optional)
2568	 *	[3] power control (optional)
2569	 *	[5] channel switch announcement (CSA) (optional)
2570	 *	[tlv] extended rate phy (ERP)
2571	 *	[tlv] extended supported rates
2572	 *	[tlv] RSN (optional)
2573	 *	[tlv] HT capabilities
2574	 *	[tlv] HT information
2575	 *	[tlv] WPA (optional)
2576	 *	[tlv] WME (optional)
2577	 *	[tlv] Vendor OUI HT capabilities (optional)
2578	 *	[tlv] Vendor OUI HT information (optional)
2579	 *	[tlv] Atheros capabilities
2580	 *	[tlv] AppIE's (optional)
2581	 *	[tlv] Mesh ID (MBSS)
2582	 *	[tlv] Mesh Conf (MBSS)
2583	 */
2584	m = ieee80211_getmgtframe(&frm,
2585		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2586		 8
2587	       + sizeof(uint16_t)
2588	       + sizeof(uint16_t)
2589	       + 2 + IEEE80211_NWID_LEN
2590	       + 2 + IEEE80211_RATE_SIZE
2591	       + 7	/* max(7,3) */
2592	       + IEEE80211_COUNTRY_MAX_SIZE
2593	       + 3
2594	       + sizeof(struct ieee80211_csa_ie)
2595	       + sizeof(struct ieee80211_quiet_ie)
2596	       + 3
2597	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2598	       + sizeof(struct ieee80211_ie_wpa)
2599	       + sizeof(struct ieee80211_ie_htcap)
2600	       + sizeof(struct ieee80211_ie_htinfo)
2601	       + sizeof(struct ieee80211_ie_wpa)
2602	       + sizeof(struct ieee80211_wme_param)
2603	       + 4 + sizeof(struct ieee80211_ie_htcap)
2604	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2605#ifdef IEEE80211_SUPPORT_SUPERG
2606	       + sizeof(struct ieee80211_ath_ie)
2607#endif
2608#ifdef IEEE80211_SUPPORT_MESH
2609	       + 2 + IEEE80211_MESHID_LEN
2610	       + sizeof(struct ieee80211_meshconf_ie)
2611#endif
2612	       + (vap->iv_appie_proberesp != NULL ?
2613			vap->iv_appie_proberesp->ie_len : 0)
2614	);
2615	if (m == NULL) {
2616		vap->iv_stats.is_tx_nobuf++;
2617		return NULL;
2618	}
2619
2620	memset(frm, 0, 8);	/* timestamp should be filled later */
2621	frm += 8;
2622	*(uint16_t *)frm = htole16(bss->ni_intval);
2623	frm += 2;
2624	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2625	*(uint16_t *)frm = htole16(capinfo);
2626	frm += 2;
2627
2628	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2629	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2630	frm = ieee80211_add_rates(frm, rs);
2631
2632	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2633		*frm++ = IEEE80211_ELEMID_FHPARMS;
2634		*frm++ = 5;
2635		*frm++ = bss->ni_fhdwell & 0x00ff;
2636		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2637		*frm++ = IEEE80211_FH_CHANSET(
2638		    ieee80211_chan2ieee(ic, bss->ni_chan));
2639		*frm++ = IEEE80211_FH_CHANPAT(
2640		    ieee80211_chan2ieee(ic, bss->ni_chan));
2641		*frm++ = bss->ni_fhindex;
2642	} else {
2643		*frm++ = IEEE80211_ELEMID_DSPARMS;
2644		*frm++ = 1;
2645		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2646	}
2647
2648	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2649		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2650		*frm++ = 2;
2651		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2652	}
2653	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2654	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2655		frm = ieee80211_add_countryie(frm, ic);
2656	if (vap->iv_flags & IEEE80211_F_DOTH) {
2657		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2658			frm = ieee80211_add_powerconstraint(frm, vap);
2659		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2660			frm = ieee80211_add_csa(frm, vap);
2661	}
2662	if (vap->iv_flags & IEEE80211_F_DOTH) {
2663		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2664		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2665			if (vap->iv_quiet)
2666				frm = ieee80211_add_quiet(frm, vap);
2667		}
2668	}
2669	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2670		frm = ieee80211_add_erp(frm, ic);
2671	frm = ieee80211_add_xrates(frm, rs);
2672	frm = ieee80211_add_rsn(frm, vap);
2673	/*
2674	 * NB: legacy 11b clients do not get certain ie's.
2675	 *     The caller identifies such clients by passing
2676	 *     a token in legacy to us.  Could expand this to be
2677	 *     any legacy client for stuff like HT ie's.
2678	 */
2679	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2680	    legacy != IEEE80211_SEND_LEGACY_11B) {
2681		frm = ieee80211_add_htcap(frm, bss);
2682		frm = ieee80211_add_htinfo(frm, bss);
2683	}
2684	frm = ieee80211_add_wpa(frm, vap);
2685	if (vap->iv_flags & IEEE80211_F_WME)
2686		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2687	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2688	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2689	    legacy != IEEE80211_SEND_LEGACY_11B) {
2690		frm = ieee80211_add_htcap_vendor(frm, bss);
2691		frm = ieee80211_add_htinfo_vendor(frm, bss);
2692	}
2693#ifdef IEEE80211_SUPPORT_SUPERG
2694	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2695	    legacy != IEEE80211_SEND_LEGACY_11B)
2696		frm = ieee80211_add_athcaps(frm, bss);
2697#endif
2698	if (vap->iv_appie_proberesp != NULL)
2699		frm = add_appie(frm, vap->iv_appie_proberesp);
2700#ifdef IEEE80211_SUPPORT_MESH
2701	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2702		frm = ieee80211_add_meshid(frm, vap);
2703		frm = ieee80211_add_meshconf(frm, vap);
2704	}
2705#endif
2706	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2707
2708	return m;
2709}
2710
2711/*
2712 * Send a probe response frame to the specified mac address.
2713 * This does not go through the normal mgt frame api so we
2714 * can specify the destination address and re-use the bss node
2715 * for the sta reference.
2716 */
2717int
2718ieee80211_send_proberesp(struct ieee80211vap *vap,
2719	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2720{
2721	struct ieee80211_node *bss = vap->iv_bss;
2722	struct ieee80211com *ic = vap->iv_ic;
2723	struct ieee80211_frame *wh;
2724	struct mbuf *m;
2725	int ret;
2726
2727	if (vap->iv_state == IEEE80211_S_CAC) {
2728		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2729		    "block %s frame in CAC state", "probe response");
2730		vap->iv_stats.is_tx_badstate++;
2731		return EIO;		/* XXX */
2732	}
2733
2734	/*
2735	 * Hold a reference on the node so it doesn't go away until after
2736	 * the xmit is complete all the way in the driver.  On error we
2737	 * will remove our reference.
2738	 */
2739	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2740	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2741	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2742	    ieee80211_node_refcnt(bss)+1);
2743	ieee80211_ref_node(bss);
2744
2745	m = ieee80211_alloc_proberesp(bss, legacy);
2746	if (m == NULL) {
2747		ieee80211_free_node(bss);
2748		return ENOMEM;
2749	}
2750
2751	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2752	KASSERT(m != NULL, ("no room for header"));
2753
2754	IEEE80211_TX_LOCK(ic);
2755	wh = mtod(m, struct ieee80211_frame *);
2756	ieee80211_send_setup(bss, m,
2757	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2758	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2759	/* XXX power management? */
2760	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2761
2762	M_WME_SETAC(m, WME_AC_BE);
2763
2764	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2765	    "send probe resp on channel %u to %s%s\n",
2766	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2767	    legacy ? " <legacy>" : "");
2768	IEEE80211_NODE_STAT(bss, tx_mgmt);
2769
2770	ret = ieee80211_raw_output(vap, bss, m, NULL);
2771	IEEE80211_TX_UNLOCK(ic);
2772	return (ret);
2773}
2774
2775/*
2776 * Allocate and build a RTS (Request To Send) control frame.
2777 */
2778struct mbuf *
2779ieee80211_alloc_rts(struct ieee80211com *ic,
2780	const uint8_t ra[IEEE80211_ADDR_LEN],
2781	const uint8_t ta[IEEE80211_ADDR_LEN],
2782	uint16_t dur)
2783{
2784	struct ieee80211_frame_rts *rts;
2785	struct mbuf *m;
2786
2787	/* XXX honor ic_headroom */
2788	m = m_gethdr(M_NOWAIT, MT_DATA);
2789	if (m != NULL) {
2790		rts = mtod(m, struct ieee80211_frame_rts *);
2791		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2792			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2793		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2794		*(u_int16_t *)rts->i_dur = htole16(dur);
2795		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2796		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2797
2798		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2799	}
2800	return m;
2801}
2802
2803/*
2804 * Allocate and build a CTS (Clear To Send) control frame.
2805 */
2806struct mbuf *
2807ieee80211_alloc_cts(struct ieee80211com *ic,
2808	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2809{
2810	struct ieee80211_frame_cts *cts;
2811	struct mbuf *m;
2812
2813	/* XXX honor ic_headroom */
2814	m = m_gethdr(M_NOWAIT, MT_DATA);
2815	if (m != NULL) {
2816		cts = mtod(m, struct ieee80211_frame_cts *);
2817		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2818			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2819		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2820		*(u_int16_t *)cts->i_dur = htole16(dur);
2821		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2822
2823		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2824	}
2825	return m;
2826}
2827
2828static void
2829ieee80211_tx_mgt_timeout(void *arg)
2830{
2831	struct ieee80211vap *vap = arg;
2832
2833	IEEE80211_LOCK(vap->iv_ic);
2834	if (vap->iv_state != IEEE80211_S_INIT &&
2835	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2836		/*
2837		 * NB: it's safe to specify a timeout as the reason here;
2838		 *     it'll only be used in the right state.
2839		 */
2840		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2841			IEEE80211_SCAN_FAIL_TIMEOUT);
2842	}
2843	IEEE80211_UNLOCK(vap->iv_ic);
2844}
2845
2846/*
2847 * This is the callback set on net80211-sourced transmitted
2848 * authentication request frames.
2849 *
2850 * This does a couple of things:
2851 *
2852 * + If the frame transmitted was a success, it schedules a future
2853 *   event which will transition the interface to scan.
2854 *   If a state transition _then_ occurs before that event occurs,
2855 *   said state transition will cancel this callout.
2856 *
2857 * + If the frame transmit was a failure, it immediately schedules
2858 *   the transition back to scan.
2859 */
2860static void
2861ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2862{
2863	struct ieee80211vap *vap = ni->ni_vap;
2864	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2865
2866	/*
2867	 * Frame transmit completed; arrange timer callback.  If
2868	 * transmit was successfuly we wait for response.  Otherwise
2869	 * we arrange an immediate callback instead of doing the
2870	 * callback directly since we don't know what state the driver
2871	 * is in (e.g. what locks it is holding).  This work should
2872	 * not be too time-critical and not happen too often so the
2873	 * added overhead is acceptable.
2874	 *
2875	 * XXX what happens if !acked but response shows up before callback?
2876	 */
2877	if (vap->iv_state == ostate) {
2878		callout_reset(&vap->iv_mgtsend,
2879			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2880			ieee80211_tx_mgt_timeout, vap);
2881	}
2882}
2883
2884static void
2885ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2886	struct ieee80211_node *ni)
2887{
2888	struct ieee80211vap *vap = ni->ni_vap;
2889	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2890	struct ieee80211com *ic = ni->ni_ic;
2891	struct ieee80211_rateset *rs = &ni->ni_rates;
2892	uint16_t capinfo;
2893
2894	/*
2895	 * beacon frame format
2896	 *	[8] time stamp
2897	 *	[2] beacon interval
2898	 *	[2] cabability information
2899	 *	[tlv] ssid
2900	 *	[tlv] supported rates
2901	 *	[3] parameter set (DS)
2902	 *	[8] CF parameter set (optional)
2903	 *	[tlv] parameter set (IBSS/TIM)
2904	 *	[tlv] country (optional)
2905	 *	[3] power control (optional)
2906	 *	[5] channel switch announcement (CSA) (optional)
2907	 *	[tlv] extended rate phy (ERP)
2908	 *	[tlv] extended supported rates
2909	 *	[tlv] RSN parameters
2910	 *	[tlv] HT capabilities
2911	 *	[tlv] HT information
2912	 * XXX Vendor-specific OIDs (e.g. Atheros)
2913	 *	[tlv] WPA parameters
2914	 *	[tlv] WME parameters
2915	 *	[tlv] Vendor OUI HT capabilities (optional)
2916	 *	[tlv] Vendor OUI HT information (optional)
2917	 *	[tlv] Atheros capabilities (optional)
2918	 *	[tlv] TDMA parameters (optional)
2919	 *	[tlv] Mesh ID (MBSS)
2920	 *	[tlv] Mesh Conf (MBSS)
2921	 *	[tlv] application data (optional)
2922	 */
2923
2924	memset(bo, 0, sizeof(*bo));
2925
2926	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2927	frm += 8;
2928	*(uint16_t *)frm = htole16(ni->ni_intval);
2929	frm += 2;
2930	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2931	bo->bo_caps = (uint16_t *)frm;
2932	*(uint16_t *)frm = htole16(capinfo);
2933	frm += 2;
2934	*frm++ = IEEE80211_ELEMID_SSID;
2935	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2936		*frm++ = ni->ni_esslen;
2937		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2938		frm += ni->ni_esslen;
2939	} else
2940		*frm++ = 0;
2941	frm = ieee80211_add_rates(frm, rs);
2942	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2943		*frm++ = IEEE80211_ELEMID_DSPARMS;
2944		*frm++ = 1;
2945		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2946	}
2947	if (ic->ic_flags & IEEE80211_F_PCF) {
2948		bo->bo_cfp = frm;
2949		frm = ieee80211_add_cfparms(frm, ic);
2950	}
2951	bo->bo_tim = frm;
2952	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2953		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2954		*frm++ = 2;
2955		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2956		bo->bo_tim_len = 0;
2957	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2958	    vap->iv_opmode == IEEE80211_M_MBSS) {
2959		/* TIM IE is the same for Mesh and Hostap */
2960		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2961
2962		tie->tim_ie = IEEE80211_ELEMID_TIM;
2963		tie->tim_len = 4;	/* length */
2964		tie->tim_count = 0;	/* DTIM count */
2965		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2966		tie->tim_bitctl = 0;	/* bitmap control */
2967		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2968		frm += sizeof(struct ieee80211_tim_ie);
2969		bo->bo_tim_len = 1;
2970	}
2971	bo->bo_tim_trailer = frm;
2972	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2973	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2974		frm = ieee80211_add_countryie(frm, ic);
2975	if (vap->iv_flags & IEEE80211_F_DOTH) {
2976		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2977			frm = ieee80211_add_powerconstraint(frm, vap);
2978		bo->bo_csa = frm;
2979		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2980			frm = ieee80211_add_csa(frm, vap);
2981	} else
2982		bo->bo_csa = frm;
2983
2984	if (vap->iv_flags & IEEE80211_F_DOTH) {
2985		bo->bo_quiet = frm;
2986		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2987		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2988			if (vap->iv_quiet)
2989				frm = ieee80211_add_quiet(frm,vap);
2990		}
2991	} else
2992		bo->bo_quiet = frm;
2993
2994	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2995		bo->bo_erp = frm;
2996		frm = ieee80211_add_erp(frm, ic);
2997	}
2998	frm = ieee80211_add_xrates(frm, rs);
2999	frm = ieee80211_add_rsn(frm, vap);
3000	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3001		frm = ieee80211_add_htcap(frm, ni);
3002		bo->bo_htinfo = frm;
3003		frm = ieee80211_add_htinfo(frm, ni);
3004	}
3005	frm = ieee80211_add_wpa(frm, vap);
3006	if (vap->iv_flags & IEEE80211_F_WME) {
3007		bo->bo_wme = frm;
3008		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3009	}
3010	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3011	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3012		frm = ieee80211_add_htcap_vendor(frm, ni);
3013		frm = ieee80211_add_htinfo_vendor(frm, ni);
3014	}
3015#ifdef IEEE80211_SUPPORT_SUPERG
3016	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3017		bo->bo_ath = frm;
3018		frm = ieee80211_add_athcaps(frm, ni);
3019	}
3020#endif
3021#ifdef IEEE80211_SUPPORT_TDMA
3022	if (vap->iv_caps & IEEE80211_C_TDMA) {
3023		bo->bo_tdma = frm;
3024		frm = ieee80211_add_tdma(frm, vap);
3025	}
3026#endif
3027	if (vap->iv_appie_beacon != NULL) {
3028		bo->bo_appie = frm;
3029		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3030		frm = add_appie(frm, vap->iv_appie_beacon);
3031	}
3032#ifdef IEEE80211_SUPPORT_MESH
3033	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3034		frm = ieee80211_add_meshid(frm, vap);
3035		bo->bo_meshconf = frm;
3036		frm = ieee80211_add_meshconf(frm, vap);
3037	}
3038#endif
3039	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3040	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3041	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3042}
3043
3044/*
3045 * Allocate a beacon frame and fillin the appropriate bits.
3046 */
3047struct mbuf *
3048ieee80211_beacon_alloc(struct ieee80211_node *ni)
3049{
3050	struct ieee80211vap *vap = ni->ni_vap;
3051	struct ieee80211com *ic = ni->ni_ic;
3052	struct ifnet *ifp = vap->iv_ifp;
3053	struct ieee80211_frame *wh;
3054	struct mbuf *m;
3055	int pktlen;
3056	uint8_t *frm;
3057
3058	/*
3059	 * beacon frame format
3060	 *	[8] time stamp
3061	 *	[2] beacon interval
3062	 *	[2] cabability information
3063	 *	[tlv] ssid
3064	 *	[tlv] supported rates
3065	 *	[3] parameter set (DS)
3066	 *	[8] CF parameter set (optional)
3067	 *	[tlv] parameter set (IBSS/TIM)
3068	 *	[tlv] country (optional)
3069	 *	[3] power control (optional)
3070	 *	[5] channel switch announcement (CSA) (optional)
3071	 *	[tlv] extended rate phy (ERP)
3072	 *	[tlv] extended supported rates
3073	 *	[tlv] RSN parameters
3074	 *	[tlv] HT capabilities
3075	 *	[tlv] HT information
3076	 *	[tlv] Vendor OUI HT capabilities (optional)
3077	 *	[tlv] Vendor OUI HT information (optional)
3078	 * XXX Vendor-specific OIDs (e.g. Atheros)
3079	 *	[tlv] WPA parameters
3080	 *	[tlv] WME parameters
3081	 *	[tlv] TDMA parameters (optional)
3082	 *	[tlv] Mesh ID (MBSS)
3083	 *	[tlv] Mesh Conf (MBSS)
3084	 *	[tlv] application data (optional)
3085	 * NB: we allocate the max space required for the TIM bitmap.
3086	 * XXX how big is this?
3087	 */
3088	pktlen =   8					/* time stamp */
3089		 + sizeof(uint16_t)			/* beacon interval */
3090		 + sizeof(uint16_t)			/* capabilities */
3091		 + 2 + ni->ni_esslen			/* ssid */
3092	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3093	         + 2 + 1				/* DS parameters */
3094		 + 2 + 6				/* CF parameters */
3095		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3096		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3097		 + 2 + 1				/* power control */
3098		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3099		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3100		 + 2 + 1				/* ERP */
3101	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3102		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3103			2*sizeof(struct ieee80211_ie_wpa) : 0)
3104		 /* XXX conditional? */
3105		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3106		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3107		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3108			sizeof(struct ieee80211_wme_param) : 0)
3109#ifdef IEEE80211_SUPPORT_SUPERG
3110		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3111#endif
3112#ifdef IEEE80211_SUPPORT_TDMA
3113		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3114			sizeof(struct ieee80211_tdma_param) : 0)
3115#endif
3116#ifdef IEEE80211_SUPPORT_MESH
3117		 + 2 + ni->ni_meshidlen
3118		 + sizeof(struct ieee80211_meshconf_ie)
3119#endif
3120		 + IEEE80211_MAX_APPIE
3121		 ;
3122	m = ieee80211_getmgtframe(&frm,
3123		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3124	if (m == NULL) {
3125		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3126			"%s: cannot get buf; size %u\n", __func__, pktlen);
3127		vap->iv_stats.is_tx_nobuf++;
3128		return NULL;
3129	}
3130	ieee80211_beacon_construct(m, frm, ni);
3131
3132	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3133	KASSERT(m != NULL, ("no space for 802.11 header?"));
3134	wh = mtod(m, struct ieee80211_frame *);
3135	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3136	    IEEE80211_FC0_SUBTYPE_BEACON;
3137	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3138	*(uint16_t *)wh->i_dur = 0;
3139	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3140	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3141	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3142	*(uint16_t *)wh->i_seq = 0;
3143
3144	return m;
3145}
3146
3147/*
3148 * Update the dynamic parts of a beacon frame based on the current state.
3149 */
3150int
3151ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3152{
3153	struct ieee80211vap *vap = ni->ni_vap;
3154	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3155	struct ieee80211com *ic = ni->ni_ic;
3156	int len_changed = 0;
3157	uint16_t capinfo;
3158	struct ieee80211_frame *wh;
3159	ieee80211_seq seqno;
3160
3161	IEEE80211_LOCK(ic);
3162	/*
3163	 * Handle 11h channel change when we've reached the count.
3164	 * We must recalculate the beacon frame contents to account
3165	 * for the new channel.  Note we do this only for the first
3166	 * vap that reaches this point; subsequent vaps just update
3167	 * their beacon state to reflect the recalculated channel.
3168	 */
3169	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3170	    vap->iv_csa_count == ic->ic_csa_count) {
3171		vap->iv_csa_count = 0;
3172		/*
3173		 * Effect channel change before reconstructing the beacon
3174		 * frame contents as many places reference ni_chan.
3175		 */
3176		if (ic->ic_csa_newchan != NULL)
3177			ieee80211_csa_completeswitch(ic);
3178		/*
3179		 * NB: ieee80211_beacon_construct clears all pending
3180		 * updates in bo_flags so we don't need to explicitly
3181		 * clear IEEE80211_BEACON_CSA.
3182		 */
3183		ieee80211_beacon_construct(m,
3184		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3185
3186		/* XXX do WME aggressive mode processing? */
3187		IEEE80211_UNLOCK(ic);
3188		return 1;		/* just assume length changed */
3189	}
3190
3191	wh = mtod(m, struct ieee80211_frame *);
3192	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3193	*(uint16_t *)&wh->i_seq[0] =
3194		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3195	M_SEQNO_SET(m, seqno);
3196
3197	/* XXX faster to recalculate entirely or just changes? */
3198	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3199	*bo->bo_caps = htole16(capinfo);
3200
3201	if (vap->iv_flags & IEEE80211_F_WME) {
3202		struct ieee80211_wme_state *wme = &ic->ic_wme;
3203
3204		/*
3205		 * Check for agressive mode change.  When there is
3206		 * significant high priority traffic in the BSS
3207		 * throttle back BE traffic by using conservative
3208		 * parameters.  Otherwise BE uses agressive params
3209		 * to optimize performance of legacy/non-QoS traffic.
3210		 */
3211		if (wme->wme_flags & WME_F_AGGRMODE) {
3212			if (wme->wme_hipri_traffic >
3213			    wme->wme_hipri_switch_thresh) {
3214				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3215				    "%s: traffic %u, disable aggressive mode\n",
3216				    __func__, wme->wme_hipri_traffic);
3217				wme->wme_flags &= ~WME_F_AGGRMODE;
3218				ieee80211_wme_updateparams_locked(vap);
3219				wme->wme_hipri_traffic =
3220					wme->wme_hipri_switch_hysteresis;
3221			} else
3222				wme->wme_hipri_traffic = 0;
3223		} else {
3224			if (wme->wme_hipri_traffic <=
3225			    wme->wme_hipri_switch_thresh) {
3226				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3227				    "%s: traffic %u, enable aggressive mode\n",
3228				    __func__, wme->wme_hipri_traffic);
3229				wme->wme_flags |= WME_F_AGGRMODE;
3230				ieee80211_wme_updateparams_locked(vap);
3231				wme->wme_hipri_traffic = 0;
3232			} else
3233				wme->wme_hipri_traffic =
3234					wme->wme_hipri_switch_hysteresis;
3235		}
3236		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3237			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3238			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3239		}
3240	}
3241
3242	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3243		ieee80211_ht_update_beacon(vap, bo);
3244		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3245	}
3246#ifdef IEEE80211_SUPPORT_TDMA
3247	if (vap->iv_caps & IEEE80211_C_TDMA) {
3248		/*
3249		 * NB: the beacon is potentially updated every TBTT.
3250		 */
3251		ieee80211_tdma_update_beacon(vap, bo);
3252	}
3253#endif
3254#ifdef IEEE80211_SUPPORT_MESH
3255	if (vap->iv_opmode == IEEE80211_M_MBSS)
3256		ieee80211_mesh_update_beacon(vap, bo);
3257#endif
3258
3259	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3260	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3261		struct ieee80211_tim_ie *tie =
3262			(struct ieee80211_tim_ie *) bo->bo_tim;
3263		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3264			u_int timlen, timoff, i;
3265			/*
3266			 * ATIM/DTIM needs updating.  If it fits in the
3267			 * current space allocated then just copy in the
3268			 * new bits.  Otherwise we need to move any trailing
3269			 * data to make room.  Note that we know there is
3270			 * contiguous space because ieee80211_beacon_allocate
3271			 * insures there is space in the mbuf to write a
3272			 * maximal-size virtual bitmap (based on iv_max_aid).
3273			 */
3274			/*
3275			 * Calculate the bitmap size and offset, copy any
3276			 * trailer out of the way, and then copy in the
3277			 * new bitmap and update the information element.
3278			 * Note that the tim bitmap must contain at least
3279			 * one byte and any offset must be even.
3280			 */
3281			if (vap->iv_ps_pending != 0) {
3282				timoff = 128;		/* impossibly large */
3283				for (i = 0; i < vap->iv_tim_len; i++)
3284					if (vap->iv_tim_bitmap[i]) {
3285						timoff = i &~ 1;
3286						break;
3287					}
3288				KASSERT(timoff != 128, ("tim bitmap empty!"));
3289				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3290					if (vap->iv_tim_bitmap[i])
3291						break;
3292				timlen = 1 + (i - timoff);
3293			} else {
3294				timoff = 0;
3295				timlen = 1;
3296			}
3297			if (timlen != bo->bo_tim_len) {
3298				/* copy up/down trailer */
3299				int adjust = tie->tim_bitmap+timlen
3300					   - bo->bo_tim_trailer;
3301				ovbcopy(bo->bo_tim_trailer,
3302				    bo->bo_tim_trailer+adjust,
3303				    bo->bo_tim_trailer_len);
3304				bo->bo_tim_trailer += adjust;
3305				bo->bo_erp += adjust;
3306				bo->bo_htinfo += adjust;
3307#ifdef IEEE80211_SUPPORT_SUPERG
3308				bo->bo_ath += adjust;
3309#endif
3310#ifdef IEEE80211_SUPPORT_TDMA
3311				bo->bo_tdma += adjust;
3312#endif
3313#ifdef IEEE80211_SUPPORT_MESH
3314				bo->bo_meshconf += adjust;
3315#endif
3316				bo->bo_appie += adjust;
3317				bo->bo_wme += adjust;
3318				bo->bo_csa += adjust;
3319				bo->bo_quiet += adjust;
3320				bo->bo_tim_len = timlen;
3321
3322				/* update information element */
3323				tie->tim_len = 3 + timlen;
3324				tie->tim_bitctl = timoff;
3325				len_changed = 1;
3326			}
3327			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3328				bo->bo_tim_len);
3329
3330			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3331
3332			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3333				"%s: TIM updated, pending %u, off %u, len %u\n",
3334				__func__, vap->iv_ps_pending, timoff, timlen);
3335		}
3336		/* count down DTIM period */
3337		if (tie->tim_count == 0)
3338			tie->tim_count = tie->tim_period - 1;
3339		else
3340			tie->tim_count--;
3341		/* update state for buffered multicast frames on DTIM */
3342		if (mcast && tie->tim_count == 0)
3343			tie->tim_bitctl |= 1;
3344		else
3345			tie->tim_bitctl &= ~1;
3346		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3347			struct ieee80211_csa_ie *csa =
3348			    (struct ieee80211_csa_ie *) bo->bo_csa;
3349
3350			/*
3351			 * Insert or update CSA ie.  If we're just starting
3352			 * to count down to the channel switch then we need
3353			 * to insert the CSA ie.  Otherwise we just need to
3354			 * drop the count.  The actual change happens above
3355			 * when the vap's count reaches the target count.
3356			 */
3357			if (vap->iv_csa_count == 0) {
3358				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3359				bo->bo_erp += sizeof(*csa);
3360				bo->bo_htinfo += sizeof(*csa);
3361				bo->bo_wme += sizeof(*csa);
3362#ifdef IEEE80211_SUPPORT_SUPERG
3363				bo->bo_ath += sizeof(*csa);
3364#endif
3365#ifdef IEEE80211_SUPPORT_TDMA
3366				bo->bo_tdma += sizeof(*csa);
3367#endif
3368#ifdef IEEE80211_SUPPORT_MESH
3369				bo->bo_meshconf += sizeof(*csa);
3370#endif
3371				bo->bo_appie += sizeof(*csa);
3372				bo->bo_csa_trailer_len += sizeof(*csa);
3373				bo->bo_quiet += sizeof(*csa);
3374				bo->bo_tim_trailer_len += sizeof(*csa);
3375				m->m_len += sizeof(*csa);
3376				m->m_pkthdr.len += sizeof(*csa);
3377
3378				ieee80211_add_csa(bo->bo_csa, vap);
3379			} else
3380				csa->csa_count--;
3381			vap->iv_csa_count++;
3382			/* NB: don't clear IEEE80211_BEACON_CSA */
3383		}
3384		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3385		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3386			if (vap->iv_quiet)
3387				ieee80211_add_quiet(bo->bo_quiet, vap);
3388		}
3389		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3390			/*
3391			 * ERP element needs updating.
3392			 */
3393			(void) ieee80211_add_erp(bo->bo_erp, ic);
3394			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3395		}
3396#ifdef IEEE80211_SUPPORT_SUPERG
3397		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3398			ieee80211_add_athcaps(bo->bo_ath, ni);
3399			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3400		}
3401#endif
3402	}
3403	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3404		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3405		int aielen;
3406		uint8_t *frm;
3407
3408		aielen = 0;
3409		if (aie != NULL)
3410			aielen += aie->ie_len;
3411		if (aielen != bo->bo_appie_len) {
3412			/* copy up/down trailer */
3413			int adjust = aielen - bo->bo_appie_len;
3414			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3415				bo->bo_tim_trailer_len);
3416			bo->bo_tim_trailer += adjust;
3417			bo->bo_appie += adjust;
3418			bo->bo_appie_len = aielen;
3419
3420			len_changed = 1;
3421		}
3422		frm = bo->bo_appie;
3423		if (aie != NULL)
3424			frm  = add_appie(frm, aie);
3425		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3426	}
3427	IEEE80211_UNLOCK(ic);
3428
3429	return len_changed;
3430}
3431
3432/*
3433 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3434 * tunnel encapsulation.  The frame is assumed to have an Ethernet
3435 * header at the front that must be stripped before prepending the
3436 * LLC followed by the Ethernet header passed in (with an Ethernet
3437 * type that specifies the payload size).
3438 */
3439struct mbuf *
3440ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3441	const struct ether_header *eh)
3442{
3443	struct llc *llc;
3444	uint16_t payload;
3445
3446	/* XXX optimize by combining m_adj+M_PREPEND */
3447	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3448	llc = mtod(m, struct llc *);
3449	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3450	llc->llc_control = LLC_UI;
3451	llc->llc_snap.org_code[0] = 0;
3452	llc->llc_snap.org_code[1] = 0;
3453	llc->llc_snap.org_code[2] = 0;
3454	llc->llc_snap.ether_type = eh->ether_type;
3455	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3456
3457	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3458	if (m == NULL) {		/* XXX cannot happen */
3459		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3460			"%s: no space for ether_header\n", __func__);
3461		vap->iv_stats.is_tx_nobuf++;
3462		return NULL;
3463	}
3464	ETHER_HEADER_COPY(mtod(m, void *), eh);
3465	mtod(m, struct ether_header *)->ether_type = htons(payload);
3466	return m;
3467}
3468
3469/*
3470 * Complete an mbuf transmission.
3471 *
3472 * For now, this simply processes a completed frame after the
3473 * driver has completed it's transmission and/or retransmission.
3474 * It assumes the frame is an 802.11 encapsulated frame.
3475 *
3476 * Later on it will grow to become the exit path for a given frame
3477 * from the driver and, depending upon how it's been encapsulated
3478 * and already transmitted, it may end up doing A-MPDU retransmission,
3479 * power save requeuing, etc.
3480 *
3481 * In order for the above to work, the driver entry point to this
3482 * must not hold any driver locks.  Thus, the driver needs to delay
3483 * any actual mbuf completion until it can release said locks.
3484 *
3485 * This frees the mbuf and if the mbuf has a node reference,
3486 * the node reference will be freed.
3487 */
3488void
3489ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3490{
3491
3492	if (ni != NULL) {
3493		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3494
3495		if (status == 0) {
3496			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3497			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3498			if (m->m_flags & M_MCAST)
3499				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3500		} else
3501			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3502		if (m->m_flags & M_TXCB)
3503			ieee80211_process_callback(ni, m, status);
3504		ieee80211_free_node(ni);
3505	}
3506	m_freem(m);
3507}
3508