ieee80211_output.c revision 295126
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 295126 2016-02-01 17:41:21Z glebius $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/kernel.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/endian.h>
40
41#include <sys/socket.h>
42
43#include <net/bpf.h>
44#include <net/ethernet.h>
45#include <net/if.h>
46#include <net/if_var.h>
47#include <net/if_llc.h>
48#include <net/if_media.h>
49#include <net/if_vlan_var.h>
50
51#include <net80211/ieee80211_var.h>
52#include <net80211/ieee80211_regdomain.h>
53#ifdef IEEE80211_SUPPORT_SUPERG
54#include <net80211/ieee80211_superg.h>
55#endif
56#ifdef IEEE80211_SUPPORT_TDMA
57#include <net80211/ieee80211_tdma.h>
58#endif
59#include <net80211/ieee80211_wds.h>
60#include <net80211/ieee80211_mesh.h>
61
62#if defined(INET) || defined(INET6)
63#include <netinet/in.h>
64#endif
65
66#ifdef INET
67#include <netinet/if_ether.h>
68#include <netinet/in_systm.h>
69#include <netinet/ip.h>
70#endif
71#ifdef INET6
72#include <netinet/ip6.h>
73#endif
74
75#include <security/mac/mac_framework.h>
76
77#define	ETHER_HEADER_COPY(dst, src) \
78	memcpy(dst, src, sizeof(struct ether_header))
79
80/* unalligned little endian access */
81#define LE_WRITE_2(p, v) do {				\
82	((uint8_t *)(p))[0] = (v) & 0xff;		\
83	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
84} while (0)
85#define LE_WRITE_4(p, v) do {				\
86	((uint8_t *)(p))[0] = (v) & 0xff;		\
87	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
88	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
89	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
90} while (0)
91
92static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
93	u_int hdrsize, u_int ciphdrsize, u_int mtu);
94static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
95
96#ifdef IEEE80211_DEBUG
97/*
98 * Decide if an outbound management frame should be
99 * printed when debugging is enabled.  This filters some
100 * of the less interesting frames that come frequently
101 * (e.g. beacons).
102 */
103static __inline int
104doprint(struct ieee80211vap *vap, int subtype)
105{
106	switch (subtype) {
107	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
108		return (vap->iv_opmode == IEEE80211_M_IBSS);
109	}
110	return 1;
111}
112#endif
113
114/*
115 * Transmit a frame to the given destination on the given VAP.
116 *
117 * It's up to the caller to figure out the details of who this
118 * is going to and resolving the node.
119 *
120 * This routine takes care of queuing it for power save,
121 * A-MPDU state stuff, fast-frames state stuff, encapsulation
122 * if required, then passing it up to the driver layer.
123 *
124 * This routine (for now) consumes the mbuf and frees the node
125 * reference; it ideally will return a TX status which reflects
126 * whether the mbuf was consumed or not, so the caller can
127 * free the mbuf (if appropriate) and the node reference (again,
128 * if appropriate.)
129 */
130int
131ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
132    struct ieee80211_node *ni)
133{
134	struct ieee80211com *ic = vap->iv_ic;
135	struct ifnet *ifp = vap->iv_ifp;
136	int len, mcast;
137
138	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
139	    (m->m_flags & M_PWR_SAV) == 0) {
140		/*
141		 * Station in power save mode; pass the frame
142		 * to the 802.11 layer and continue.  We'll get
143		 * the frame back when the time is right.
144		 * XXX lose WDS vap linkage?
145		 */
146		if (ieee80211_pwrsave(ni, m) != 0)
147			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
148		ieee80211_free_node(ni);
149
150		/*
151		 * We queued it fine, so tell the upper layer
152		 * that we consumed it.
153		 */
154		return (0);
155	}
156	/* calculate priority so drivers can find the tx queue */
157	if (ieee80211_classify(ni, m)) {
158		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
159		    ni->ni_macaddr, NULL,
160		    "%s", "classification failure");
161		vap->iv_stats.is_tx_classify++;
162		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
163		m_freem(m);
164		ieee80211_free_node(ni);
165
166		/* XXX better status? */
167		return (0);
168	}
169	/*
170	 * Stash the node pointer.  Note that we do this after
171	 * any call to ieee80211_dwds_mcast because that code
172	 * uses any existing value for rcvif to identify the
173	 * interface it (might have been) received on.
174	 */
175	m->m_pkthdr.rcvif = (void *)ni;
176	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
177	len = m->m_pkthdr.len;
178
179	BPF_MTAP(ifp, m);		/* 802.3 tx */
180
181	/*
182	 * Check if A-MPDU tx aggregation is setup or if we
183	 * should try to enable it.  The sta must be associated
184	 * with HT and A-MPDU enabled for use.  When the policy
185	 * routine decides we should enable A-MPDU we issue an
186	 * ADDBA request and wait for a reply.  The frame being
187	 * encapsulated will go out w/o using A-MPDU, or possibly
188	 * it might be collected by the driver and held/retransmit.
189	 * The default ic_ampdu_enable routine handles staggering
190	 * ADDBA requests in case the receiver NAK's us or we are
191	 * otherwise unable to establish a BA stream.
192	 */
193	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
194	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
195	    (m->m_flags & M_EAPOL) == 0) {
196		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
197		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
198
199		ieee80211_txampdu_count_packet(tap);
200		if (IEEE80211_AMPDU_RUNNING(tap)) {
201			/*
202			 * Operational, mark frame for aggregation.
203			 *
204			 * XXX do tx aggregation here
205			 */
206			m->m_flags |= M_AMPDU_MPDU;
207		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
208		    ic->ic_ampdu_enable(ni, tap)) {
209			/*
210			 * Not negotiated yet, request service.
211			 */
212			ieee80211_ampdu_request(ni, tap);
213			/* XXX hold frame for reply? */
214		}
215	}
216
217	/*
218	 * XXX If we aren't doing AMPDU TX then we /could/ do
219	 * fast-frames encapsulation, however right now this
220	 * output logic doesn't handle that case.
221	 *
222	 * So we'll be limited to "fast-frames" xmit for non-11n STA
223	 * and "no fast frames" xmit for 11n STAs.
224	 * It'd be nice to eventually test fast-frames out by
225	 * gracefully falling from failing A-MPDU transmission
226	 * (driver says no, fail to negotiate it with peer) to
227	 * using fast-frames.
228	 *
229	 * Note: we can actually put A-MSDU's inside an A-MPDU,
230	 * so hopefully we can figure out how to make that particular
231	 * combination work right.
232	 */
233#ifdef IEEE80211_SUPPORT_SUPERG
234	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
235		m = ieee80211_ff_check(ni, m);
236		if (m == NULL) {
237			/* NB: any ni ref held on stageq */
238			return (0);
239		}
240	}
241#endif /* IEEE80211_SUPPORT_SUPERG */
242
243	/*
244	 * Grab the TX lock - serialise the TX process from this
245	 * point (where TX state is being checked/modified)
246	 * through to driver queue.
247	 */
248	IEEE80211_TX_LOCK(ic);
249
250	/*
251	 * XXX make the encap and transmit code a separate function
252	 * so things like the FF (and later A-MSDU) path can just call
253	 * it for flushed frames.
254	 */
255	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
256		/*
257		 * Encapsulate the packet in prep for transmission.
258		 */
259		m = ieee80211_encap(vap, ni, m);
260		if (m == NULL) {
261			/* NB: stat+msg handled in ieee80211_encap */
262			IEEE80211_TX_UNLOCK(ic);
263			ieee80211_free_node(ni);
264			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
265			return (ENOBUFS);
266		}
267	}
268	(void) ieee80211_parent_xmitpkt(ic, m);
269
270	/*
271	 * Unlock at this point - no need to hold it across
272	 * ieee80211_free_node() (ie, the comlock)
273	 */
274	IEEE80211_TX_UNLOCK(ic);
275	ic->ic_lastdata = ticks;
276
277	return (0);
278}
279
280
281
282/*
283 * Send the given mbuf through the given vap.
284 *
285 * This consumes the mbuf regardless of whether the transmit
286 * was successful or not.
287 *
288 * This does none of the initial checks that ieee80211_start()
289 * does (eg CAC timeout, interface wakeup) - the caller must
290 * do this first.
291 */
292static int
293ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
294{
295#define	IS_DWDS(vap) \
296	(vap->iv_opmode == IEEE80211_M_WDS && \
297	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
298	struct ieee80211com *ic = vap->iv_ic;
299	struct ifnet *ifp = vap->iv_ifp;
300	struct ieee80211_node *ni;
301	struct ether_header *eh;
302
303	/*
304	 * Cancel any background scan.
305	 */
306	if (ic->ic_flags & IEEE80211_F_SCAN)
307		ieee80211_cancel_anyscan(vap);
308	/*
309	 * Find the node for the destination so we can do
310	 * things like power save and fast frames aggregation.
311	 *
312	 * NB: past this point various code assumes the first
313	 *     mbuf has the 802.3 header present (and contiguous).
314	 */
315	ni = NULL;
316	if (m->m_len < sizeof(struct ether_header) &&
317	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
318		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
319		    "discard frame, %s\n", "m_pullup failed");
320		vap->iv_stats.is_tx_nobuf++;	/* XXX */
321		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
322		return (ENOBUFS);
323	}
324	eh = mtod(m, struct ether_header *);
325	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
326		if (IS_DWDS(vap)) {
327			/*
328			 * Only unicast frames from the above go out
329			 * DWDS vaps; multicast frames are handled by
330			 * dispatching the frame as it comes through
331			 * the AP vap (see below).
332			 */
333			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
334			    eh->ether_dhost, "mcast", "%s", "on DWDS");
335			vap->iv_stats.is_dwds_mcast++;
336			m_freem(m);
337			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
338			/* XXX better status? */
339			return (ENOBUFS);
340		}
341		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
342			/*
343			 * Spam DWDS vap's w/ multicast traffic.
344			 */
345			/* XXX only if dwds in use? */
346			ieee80211_dwds_mcast(vap, m);
347		}
348	}
349#ifdef IEEE80211_SUPPORT_MESH
350	if (vap->iv_opmode != IEEE80211_M_MBSS) {
351#endif
352		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
353		if (ni == NULL) {
354			/* NB: ieee80211_find_txnode does stat+msg */
355			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
356			m_freem(m);
357			/* XXX better status? */
358			return (ENOBUFS);
359		}
360		if (ni->ni_associd == 0 &&
361		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
362			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
363			    eh->ether_dhost, NULL,
364			    "sta not associated (type 0x%04x)",
365			    htons(eh->ether_type));
366			vap->iv_stats.is_tx_notassoc++;
367			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
368			m_freem(m);
369			ieee80211_free_node(ni);
370			/* XXX better status? */
371			return (ENOBUFS);
372		}
373#ifdef IEEE80211_SUPPORT_MESH
374	} else {
375		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
376			/*
377			 * Proxy station only if configured.
378			 */
379			if (!ieee80211_mesh_isproxyena(vap)) {
380				IEEE80211_DISCARD_MAC(vap,
381				    IEEE80211_MSG_OUTPUT |
382				    IEEE80211_MSG_MESH,
383				    eh->ether_dhost, NULL,
384				    "%s", "proxy not enabled");
385				vap->iv_stats.is_mesh_notproxy++;
386				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
387				m_freem(m);
388				/* XXX better status? */
389				return (ENOBUFS);
390			}
391			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
392			    "forward frame from DS SA(%6D), DA(%6D)\n",
393			    eh->ether_shost, ":",
394			    eh->ether_dhost, ":");
395			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
396		}
397		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
398		if (ni == NULL) {
399			/*
400			 * NB: ieee80211_mesh_discover holds/disposes
401			 * frame (e.g. queueing on path discovery).
402			 */
403			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
404			/* XXX better status? */
405			return (ENOBUFS);
406		}
407	}
408#endif
409
410	/*
411	 * We've resolved the sender, so attempt to transmit it.
412	 */
413
414	if (vap->iv_state == IEEE80211_S_SLEEP) {
415		/*
416		 * In power save; queue frame and then  wakeup device
417		 * for transmit.
418		 */
419		ic->ic_lastdata = ticks;
420		if (ieee80211_pwrsave(ni, m) != 0)
421			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
422		ieee80211_free_node(ni);
423		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
424		return (0);
425	}
426
427	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
428		return (ENOBUFS);
429	return (0);
430#undef	IS_DWDS
431}
432
433/*
434 * Start method for vap's.  All packets from the stack come
435 * through here.  We handle common processing of the packets
436 * before dispatching them to the underlying device.
437 *
438 * if_transmit() requires that the mbuf be consumed by this call
439 * regardless of the return condition.
440 */
441int
442ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
443{
444	struct ieee80211vap *vap = ifp->if_softc;
445	struct ieee80211com *ic = vap->iv_ic;
446
447	/*
448	 * No data frames go out unless we're running.
449	 * Note in particular this covers CAC and CSA
450	 * states (though maybe we should check muting
451	 * for CSA).
452	 */
453	if (vap->iv_state != IEEE80211_S_RUN &&
454	    vap->iv_state != IEEE80211_S_SLEEP) {
455		IEEE80211_LOCK(ic);
456		/* re-check under the com lock to avoid races */
457		if (vap->iv_state != IEEE80211_S_RUN &&
458		    vap->iv_state != IEEE80211_S_SLEEP) {
459			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
460			    "%s: ignore queue, in %s state\n",
461			    __func__, ieee80211_state_name[vap->iv_state]);
462			vap->iv_stats.is_tx_badstate++;
463			IEEE80211_UNLOCK(ic);
464			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
465			m_freem(m);
466			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
467			return (ENETDOWN);
468		}
469		IEEE80211_UNLOCK(ic);
470	}
471
472	/*
473	 * Sanitize mbuf flags for net80211 use.  We cannot
474	 * clear M_PWR_SAV or M_MORE_DATA because these may
475	 * be set for frames that are re-submitted from the
476	 * power save queue.
477	 *
478	 * NB: This must be done before ieee80211_classify as
479	 *     it marks EAPOL in frames with M_EAPOL.
480	 */
481	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
482
483	/*
484	 * Bump to the packet transmission path.
485	 * The mbuf will be consumed here.
486	 */
487	return (ieee80211_start_pkt(vap, m));
488}
489
490void
491ieee80211_vap_qflush(struct ifnet *ifp)
492{
493
494	/* Empty for now */
495}
496
497/*
498 * 802.11 raw output routine.
499 *
500 * XXX TODO: this (and other send routines) should correctly
501 * XXX keep the pwr mgmt bit set if it decides to call into the
502 * XXX driver to send a frame whilst the state is SLEEP.
503 *
504 * Otherwise the peer may decide that we're awake and flood us
505 * with traffic we are still too asleep to receive!
506 */
507int
508ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
509    struct mbuf *m, const struct ieee80211_bpf_params *params)
510{
511	struct ieee80211com *ic = vap->iv_ic;
512	int error;
513
514	/*
515	 * Set node - the caller has taken a reference, so ensure
516	 * that the mbuf has the same node value that
517	 * it would if it were going via the normal path.
518	 */
519	m->m_pkthdr.rcvif = (void *)ni;
520
521	/*
522	 * Attempt to add bpf transmit parameters.
523	 *
524	 * For now it's ok to fail; the raw_xmit api still takes
525	 * them as an option.
526	 *
527	 * Later on when ic_raw_xmit() has params removed,
528	 * they'll have to be added - so fail the transmit if
529	 * they can't be.
530	 */
531	if (params)
532		(void) ieee80211_add_xmit_params(m, params);
533
534	error = ic->ic_raw_xmit(ni, m, params);
535	if (error) {
536		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
537		ieee80211_free_node(ni);
538	}
539	return (error);
540}
541
542/*
543 * 802.11 output routine. This is (currently) used only to
544 * connect bpf write calls to the 802.11 layer for injecting
545 * raw 802.11 frames.
546 */
547int
548ieee80211_output(struct ifnet *ifp, struct mbuf *m,
549	const struct sockaddr *dst, struct route *ro)
550{
551#define senderr(e) do { error = (e); goto bad;} while (0)
552	struct ieee80211_node *ni = NULL;
553	struct ieee80211vap *vap;
554	struct ieee80211_frame *wh;
555	struct ieee80211com *ic = NULL;
556	int error;
557	int ret;
558
559	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
560		/*
561		 * Short-circuit requests if the vap is marked OACTIVE
562		 * as this can happen because a packet came down through
563		 * ieee80211_start before the vap entered RUN state in
564		 * which case it's ok to just drop the frame.  This
565		 * should not be necessary but callers of if_output don't
566		 * check OACTIVE.
567		 */
568		senderr(ENETDOWN);
569	}
570	vap = ifp->if_softc;
571	ic = vap->iv_ic;
572	/*
573	 * Hand to the 802.3 code if not tagged as
574	 * a raw 802.11 frame.
575	 */
576	if (dst->sa_family != AF_IEEE80211)
577		return vap->iv_output(ifp, m, dst, ro);
578#ifdef MAC
579	error = mac_ifnet_check_transmit(ifp, m);
580	if (error)
581		senderr(error);
582#endif
583	if (ifp->if_flags & IFF_MONITOR)
584		senderr(ENETDOWN);
585	if (!IFNET_IS_UP_RUNNING(ifp))
586		senderr(ENETDOWN);
587	if (vap->iv_state == IEEE80211_S_CAC) {
588		IEEE80211_DPRINTF(vap,
589		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
590		    "block %s frame in CAC state\n", "raw data");
591		vap->iv_stats.is_tx_badstate++;
592		senderr(EIO);		/* XXX */
593	} else if (vap->iv_state == IEEE80211_S_SCAN)
594		senderr(EIO);
595	/* XXX bypass bridge, pfil, carp, etc. */
596
597	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
598		senderr(EIO);	/* XXX */
599	wh = mtod(m, struct ieee80211_frame *);
600	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
601	    IEEE80211_FC0_VERSION_0)
602		senderr(EIO);	/* XXX */
603
604	/* locate destination node */
605	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
606	case IEEE80211_FC1_DIR_NODS:
607	case IEEE80211_FC1_DIR_FROMDS:
608		ni = ieee80211_find_txnode(vap, wh->i_addr1);
609		break;
610	case IEEE80211_FC1_DIR_TODS:
611	case IEEE80211_FC1_DIR_DSTODS:
612		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
613			senderr(EIO);	/* XXX */
614		ni = ieee80211_find_txnode(vap, wh->i_addr3);
615		break;
616	default:
617		senderr(EIO);	/* XXX */
618	}
619	if (ni == NULL) {
620		/*
621		 * Permit packets w/ bpf params through regardless
622		 * (see below about sa_len).
623		 */
624		if (dst->sa_len == 0)
625			senderr(EHOSTUNREACH);
626		ni = ieee80211_ref_node(vap->iv_bss);
627	}
628
629	/*
630	 * Sanitize mbuf for net80211 flags leaked from above.
631	 *
632	 * NB: This must be done before ieee80211_classify as
633	 *     it marks EAPOL in frames with M_EAPOL.
634	 */
635	m->m_flags &= ~M_80211_TX;
636
637	/* calculate priority so drivers can find the tx queue */
638	/* XXX assumes an 802.3 frame */
639	if (ieee80211_classify(ni, m))
640		senderr(EIO);		/* XXX */
641
642	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
643	IEEE80211_NODE_STAT(ni, tx_data);
644	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
645		IEEE80211_NODE_STAT(ni, tx_mcast);
646		m->m_flags |= M_MCAST;
647	} else
648		IEEE80211_NODE_STAT(ni, tx_ucast);
649	/* NB: ieee80211_encap does not include 802.11 header */
650	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
651
652	IEEE80211_TX_LOCK(ic);
653
654	/*
655	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
656	 * present by setting the sa_len field of the sockaddr (yes,
657	 * this is a hack).
658	 * NB: we assume sa_data is suitably aligned to cast.
659	 */
660	ret = ieee80211_raw_output(vap, ni, m,
661	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
662		dst->sa_data : NULL));
663	IEEE80211_TX_UNLOCK(ic);
664	return (ret);
665bad:
666	if (m != NULL)
667		m_freem(m);
668	if (ni != NULL)
669		ieee80211_free_node(ni);
670	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
671	return error;
672#undef senderr
673}
674
675/*
676 * Set the direction field and address fields of an outgoing
677 * frame.  Note this should be called early on in constructing
678 * a frame as it sets i_fc[1]; other bits can then be or'd in.
679 */
680void
681ieee80211_send_setup(
682	struct ieee80211_node *ni,
683	struct mbuf *m,
684	int type, int tid,
685	const uint8_t sa[IEEE80211_ADDR_LEN],
686	const uint8_t da[IEEE80211_ADDR_LEN],
687	const uint8_t bssid[IEEE80211_ADDR_LEN])
688{
689#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
690	struct ieee80211vap *vap = ni->ni_vap;
691	struct ieee80211_tx_ampdu *tap;
692	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
693	ieee80211_seq seqno;
694
695	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
696
697	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
698	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
699		switch (vap->iv_opmode) {
700		case IEEE80211_M_STA:
701			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
702			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
703			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
704			IEEE80211_ADDR_COPY(wh->i_addr3, da);
705			break;
706		case IEEE80211_M_IBSS:
707		case IEEE80211_M_AHDEMO:
708			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
709			IEEE80211_ADDR_COPY(wh->i_addr1, da);
710			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
711			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
712			break;
713		case IEEE80211_M_HOSTAP:
714			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
715			IEEE80211_ADDR_COPY(wh->i_addr1, da);
716			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
717			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
718			break;
719		case IEEE80211_M_WDS:
720			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
721			IEEE80211_ADDR_COPY(wh->i_addr1, da);
722			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
723			IEEE80211_ADDR_COPY(wh->i_addr3, da);
724			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
725			break;
726		case IEEE80211_M_MBSS:
727#ifdef IEEE80211_SUPPORT_MESH
728			if (IEEE80211_IS_MULTICAST(da)) {
729				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
730				/* XXX next hop */
731				IEEE80211_ADDR_COPY(wh->i_addr1, da);
732				IEEE80211_ADDR_COPY(wh->i_addr2,
733				    vap->iv_myaddr);
734			} else {
735				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
736				IEEE80211_ADDR_COPY(wh->i_addr1, da);
737				IEEE80211_ADDR_COPY(wh->i_addr2,
738				    vap->iv_myaddr);
739				IEEE80211_ADDR_COPY(wh->i_addr3, da);
740				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
741			}
742#endif
743			break;
744		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
745			break;
746		}
747	} else {
748		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
749		IEEE80211_ADDR_COPY(wh->i_addr1, da);
750		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
751#ifdef IEEE80211_SUPPORT_MESH
752		if (vap->iv_opmode == IEEE80211_M_MBSS)
753			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
754		else
755#endif
756			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
757	}
758	*(uint16_t *)&wh->i_dur[0] = 0;
759
760	tap = &ni->ni_tx_ampdu[tid];
761	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
762		m->m_flags |= M_AMPDU_MPDU;
763	else {
764		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
765				      type & IEEE80211_FC0_SUBTYPE_MASK))
766			seqno = ni->ni_txseqs[tid]++;
767		else
768			seqno = 0;
769
770		*(uint16_t *)&wh->i_seq[0] =
771		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
772		M_SEQNO_SET(m, seqno);
773	}
774
775	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
776		m->m_flags |= M_MCAST;
777#undef WH4
778}
779
780/*
781 * Send a management frame to the specified node.  The node pointer
782 * must have a reference as the pointer will be passed to the driver
783 * and potentially held for a long time.  If the frame is successfully
784 * dispatched to the driver, then it is responsible for freeing the
785 * reference (and potentially free'ing up any associated storage);
786 * otherwise deal with reclaiming any reference (on error).
787 */
788int
789ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
790	struct ieee80211_bpf_params *params)
791{
792	struct ieee80211vap *vap = ni->ni_vap;
793	struct ieee80211com *ic = ni->ni_ic;
794	struct ieee80211_frame *wh;
795	int ret;
796
797	KASSERT(ni != NULL, ("null node"));
798
799	if (vap->iv_state == IEEE80211_S_CAC) {
800		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
801		    ni, "block %s frame in CAC state",
802			ieee80211_mgt_subtype_name[
803			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
804				IEEE80211_FC0_SUBTYPE_SHIFT]);
805		vap->iv_stats.is_tx_badstate++;
806		ieee80211_free_node(ni);
807		m_freem(m);
808		return EIO;		/* XXX */
809	}
810
811	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
812	if (m == NULL) {
813		ieee80211_free_node(ni);
814		return ENOMEM;
815	}
816
817	IEEE80211_TX_LOCK(ic);
818
819	wh = mtod(m, struct ieee80211_frame *);
820	ieee80211_send_setup(ni, m,
821	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
822	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
823	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
824		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
825		    "encrypting frame (%s)", __func__);
826		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
827	}
828	m->m_flags |= M_ENCAP;		/* mark encapsulated */
829
830	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
831	M_WME_SETAC(m, params->ibp_pri);
832
833#ifdef IEEE80211_DEBUG
834	/* avoid printing too many frames */
835	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
836	    ieee80211_msg_dumppkts(vap)) {
837		printf("[%s] send %s on channel %u\n",
838		    ether_sprintf(wh->i_addr1),
839		    ieee80211_mgt_subtype_name[
840			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
841				IEEE80211_FC0_SUBTYPE_SHIFT],
842		    ieee80211_chan2ieee(ic, ic->ic_curchan));
843	}
844#endif
845	IEEE80211_NODE_STAT(ni, tx_mgmt);
846
847	ret = ieee80211_raw_output(vap, ni, m, params);
848	IEEE80211_TX_UNLOCK(ic);
849	return (ret);
850}
851
852/*
853 * Send a null data frame to the specified node.  If the station
854 * is setup for QoS then a QoS Null Data frame is constructed.
855 * If this is a WDS station then a 4-address frame is constructed.
856 *
857 * NB: the caller is assumed to have setup a node reference
858 *     for use; this is necessary to deal with a race condition
859 *     when probing for inactive stations.  Like ieee80211_mgmt_output
860 *     we must cleanup any node reference on error;  however we
861 *     can safely just unref it as we know it will never be the
862 *     last reference to the node.
863 */
864int
865ieee80211_send_nulldata(struct ieee80211_node *ni)
866{
867	struct ieee80211vap *vap = ni->ni_vap;
868	struct ieee80211com *ic = ni->ni_ic;
869	struct mbuf *m;
870	struct ieee80211_frame *wh;
871	int hdrlen;
872	uint8_t *frm;
873	int ret;
874
875	if (vap->iv_state == IEEE80211_S_CAC) {
876		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
877		    ni, "block %s frame in CAC state", "null data");
878		ieee80211_unref_node(&ni);
879		vap->iv_stats.is_tx_badstate++;
880		return EIO;		/* XXX */
881	}
882
883	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
884		hdrlen = sizeof(struct ieee80211_qosframe);
885	else
886		hdrlen = sizeof(struct ieee80211_frame);
887	/* NB: only WDS vap's get 4-address frames */
888	if (vap->iv_opmode == IEEE80211_M_WDS)
889		hdrlen += IEEE80211_ADDR_LEN;
890	if (ic->ic_flags & IEEE80211_F_DATAPAD)
891		hdrlen = roundup(hdrlen, sizeof(uint32_t));
892
893	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
894	if (m == NULL) {
895		/* XXX debug msg */
896		ieee80211_unref_node(&ni);
897		vap->iv_stats.is_tx_nobuf++;
898		return ENOMEM;
899	}
900	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
901	    ("leading space %zd", M_LEADINGSPACE(m)));
902	M_PREPEND(m, hdrlen, M_NOWAIT);
903	if (m == NULL) {
904		/* NB: cannot happen */
905		ieee80211_free_node(ni);
906		return ENOMEM;
907	}
908
909	IEEE80211_TX_LOCK(ic);
910
911	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
912	if (ni->ni_flags & IEEE80211_NODE_QOS) {
913		const int tid = WME_AC_TO_TID(WME_AC_BE);
914		uint8_t *qos;
915
916		ieee80211_send_setup(ni, m,
917		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
918		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
919
920		if (vap->iv_opmode == IEEE80211_M_WDS)
921			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
922		else
923			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
924		qos[0] = tid & IEEE80211_QOS_TID;
925		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
926			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
927		qos[1] = 0;
928	} else {
929		ieee80211_send_setup(ni, m,
930		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
931		    IEEE80211_NONQOS_TID,
932		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
933	}
934	if (vap->iv_opmode != IEEE80211_M_WDS) {
935		/* NB: power management bit is never sent by an AP */
936		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
937		    vap->iv_opmode != IEEE80211_M_HOSTAP)
938			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
939	}
940	m->m_len = m->m_pkthdr.len = hdrlen;
941	m->m_flags |= M_ENCAP;		/* mark encapsulated */
942
943	M_WME_SETAC(m, WME_AC_BE);
944
945	IEEE80211_NODE_STAT(ni, tx_data);
946
947	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
948	    "send %snull data frame on channel %u, pwr mgt %s",
949	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
950	    ieee80211_chan2ieee(ic, ic->ic_curchan),
951	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
952
953	ret = ieee80211_raw_output(vap, ni, m, NULL);
954	IEEE80211_TX_UNLOCK(ic);
955	return (ret);
956}
957
958/*
959 * Assign priority to a frame based on any vlan tag assigned
960 * to the station and/or any Diffserv setting in an IP header.
961 * Finally, if an ACM policy is setup (in station mode) it's
962 * applied.
963 */
964int
965ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
966{
967	const struct ether_header *eh = mtod(m, struct ether_header *);
968	int v_wme_ac, d_wme_ac, ac;
969
970	/*
971	 * Always promote PAE/EAPOL frames to high priority.
972	 */
973	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
974		/* NB: mark so others don't need to check header */
975		m->m_flags |= M_EAPOL;
976		ac = WME_AC_VO;
977		goto done;
978	}
979	/*
980	 * Non-qos traffic goes to BE.
981	 */
982	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
983		ac = WME_AC_BE;
984		goto done;
985	}
986
987	/*
988	 * If node has a vlan tag then all traffic
989	 * to it must have a matching tag.
990	 */
991	v_wme_ac = 0;
992	if (ni->ni_vlan != 0) {
993		 if ((m->m_flags & M_VLANTAG) == 0) {
994			IEEE80211_NODE_STAT(ni, tx_novlantag);
995			return 1;
996		}
997		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
998		    EVL_VLANOFTAG(ni->ni_vlan)) {
999			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1000			return 1;
1001		}
1002		/* map vlan priority to AC */
1003		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1004	}
1005
1006	/* XXX m_copydata may be too slow for fast path */
1007#ifdef INET
1008	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1009		uint8_t tos;
1010		/*
1011		 * IP frame, map the DSCP bits from the TOS field.
1012		 */
1013		/* NB: ip header may not be in first mbuf */
1014		m_copydata(m, sizeof(struct ether_header) +
1015		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1016		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1017		d_wme_ac = TID_TO_WME_AC(tos);
1018	} else {
1019#endif /* INET */
1020#ifdef INET6
1021	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1022		uint32_t flow;
1023		uint8_t tos;
1024		/*
1025		 * IPv6 frame, map the DSCP bits from the traffic class field.
1026		 */
1027		m_copydata(m, sizeof(struct ether_header) +
1028		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1029		    (caddr_t) &flow);
1030		tos = (uint8_t)(ntohl(flow) >> 20);
1031		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1032		d_wme_ac = TID_TO_WME_AC(tos);
1033	} else {
1034#endif /* INET6 */
1035		d_wme_ac = WME_AC_BE;
1036#ifdef INET6
1037	}
1038#endif
1039#ifdef INET
1040	}
1041#endif
1042	/*
1043	 * Use highest priority AC.
1044	 */
1045	if (v_wme_ac > d_wme_ac)
1046		ac = v_wme_ac;
1047	else
1048		ac = d_wme_ac;
1049
1050	/*
1051	 * Apply ACM policy.
1052	 */
1053	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1054		static const int acmap[4] = {
1055			WME_AC_BK,	/* WME_AC_BE */
1056			WME_AC_BK,	/* WME_AC_BK */
1057			WME_AC_BE,	/* WME_AC_VI */
1058			WME_AC_VI,	/* WME_AC_VO */
1059		};
1060		struct ieee80211com *ic = ni->ni_ic;
1061
1062		while (ac != WME_AC_BK &&
1063		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1064			ac = acmap[ac];
1065	}
1066done:
1067	M_WME_SETAC(m, ac);
1068	return 0;
1069}
1070
1071/*
1072 * Insure there is sufficient contiguous space to encapsulate the
1073 * 802.11 data frame.  If room isn't already there, arrange for it.
1074 * Drivers and cipher modules assume we have done the necessary work
1075 * and fail rudely if they don't find the space they need.
1076 */
1077struct mbuf *
1078ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1079	struct ieee80211_key *key, struct mbuf *m)
1080{
1081#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1082	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1083
1084	if (key != NULL) {
1085		/* XXX belongs in crypto code? */
1086		needed_space += key->wk_cipher->ic_header;
1087		/* XXX frags */
1088		/*
1089		 * When crypto is being done in the host we must insure
1090		 * the data are writable for the cipher routines; clone
1091		 * a writable mbuf chain.
1092		 * XXX handle SWMIC specially
1093		 */
1094		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1095			m = m_unshare(m, M_NOWAIT);
1096			if (m == NULL) {
1097				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1098				    "%s: cannot get writable mbuf\n", __func__);
1099				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1100				return NULL;
1101			}
1102		}
1103	}
1104	/*
1105	 * We know we are called just before stripping an Ethernet
1106	 * header and prepending an LLC header.  This means we know
1107	 * there will be
1108	 *	sizeof(struct ether_header) - sizeof(struct llc)
1109	 * bytes recovered to which we need additional space for the
1110	 * 802.11 header and any crypto header.
1111	 */
1112	/* XXX check trailing space and copy instead? */
1113	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1114		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1115		if (n == NULL) {
1116			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1117			    "%s: cannot expand storage\n", __func__);
1118			vap->iv_stats.is_tx_nobuf++;
1119			m_freem(m);
1120			return NULL;
1121		}
1122		KASSERT(needed_space <= MHLEN,
1123		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1124		/*
1125		 * Setup new mbuf to have leading space to prepend the
1126		 * 802.11 header and any crypto header bits that are
1127		 * required (the latter are added when the driver calls
1128		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1129		 */
1130		/* NB: must be first 'cuz it clobbers m_data */
1131		m_move_pkthdr(n, m);
1132		n->m_len = 0;			/* NB: m_gethdr does not set */
1133		n->m_data += needed_space;
1134		/*
1135		 * Pull up Ethernet header to create the expected layout.
1136		 * We could use m_pullup but that's overkill (i.e. we don't
1137		 * need the actual data) and it cannot fail so do it inline
1138		 * for speed.
1139		 */
1140		/* NB: struct ether_header is known to be contiguous */
1141		n->m_len += sizeof(struct ether_header);
1142		m->m_len -= sizeof(struct ether_header);
1143		m->m_data += sizeof(struct ether_header);
1144		/*
1145		 * Replace the head of the chain.
1146		 */
1147		n->m_next = m;
1148		m = n;
1149	}
1150	return m;
1151#undef TO_BE_RECLAIMED
1152}
1153
1154/*
1155 * Return the transmit key to use in sending a unicast frame.
1156 * If a unicast key is set we use that.  When no unicast key is set
1157 * we fall back to the default transmit key.
1158 */
1159static __inline struct ieee80211_key *
1160ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1161	struct ieee80211_node *ni)
1162{
1163	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1164		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1165		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1166			return NULL;
1167		return &vap->iv_nw_keys[vap->iv_def_txkey];
1168	} else {
1169		return &ni->ni_ucastkey;
1170	}
1171}
1172
1173/*
1174 * Return the transmit key to use in sending a multicast frame.
1175 * Multicast traffic always uses the group key which is installed as
1176 * the default tx key.
1177 */
1178static __inline struct ieee80211_key *
1179ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1180	struct ieee80211_node *ni)
1181{
1182	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1183	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1184		return NULL;
1185	return &vap->iv_nw_keys[vap->iv_def_txkey];
1186}
1187
1188/*
1189 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1190 * If an error is encountered NULL is returned.  The caller is required
1191 * to provide a node reference and pullup the ethernet header in the
1192 * first mbuf.
1193 *
1194 * NB: Packet is assumed to be processed by ieee80211_classify which
1195 *     marked EAPOL frames w/ M_EAPOL.
1196 */
1197struct mbuf *
1198ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1199    struct mbuf *m)
1200{
1201#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1202#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1203	struct ieee80211com *ic = ni->ni_ic;
1204#ifdef IEEE80211_SUPPORT_MESH
1205	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1206	struct ieee80211_meshcntl_ae10 *mc;
1207	struct ieee80211_mesh_route *rt = NULL;
1208	int dir = -1;
1209#endif
1210	struct ether_header eh;
1211	struct ieee80211_frame *wh;
1212	struct ieee80211_key *key;
1213	struct llc *llc;
1214	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1215	ieee80211_seq seqno;
1216	int meshhdrsize, meshae;
1217	uint8_t *qos;
1218
1219	IEEE80211_TX_LOCK_ASSERT(ic);
1220
1221	/*
1222	 * Copy existing Ethernet header to a safe place.  The
1223	 * rest of the code assumes it's ok to strip it when
1224	 * reorganizing state for the final encapsulation.
1225	 */
1226	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1227	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1228
1229	/*
1230	 * Insure space for additional headers.  First identify
1231	 * transmit key to use in calculating any buffer adjustments
1232	 * required.  This is also used below to do privacy
1233	 * encapsulation work.  Then calculate the 802.11 header
1234	 * size and any padding required by the driver.
1235	 *
1236	 * Note key may be NULL if we fall back to the default
1237	 * transmit key and that is not set.  In that case the
1238	 * buffer may not be expanded as needed by the cipher
1239	 * routines, but they will/should discard it.
1240	 */
1241	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1242		if (vap->iv_opmode == IEEE80211_M_STA ||
1243		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1244		    (vap->iv_opmode == IEEE80211_M_WDS &&
1245		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1246			key = ieee80211_crypto_getucastkey(vap, ni);
1247		else
1248			key = ieee80211_crypto_getmcastkey(vap, ni);
1249		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1250			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1251			    eh.ether_dhost,
1252			    "no default transmit key (%s) deftxkey %u",
1253			    __func__, vap->iv_def_txkey);
1254			vap->iv_stats.is_tx_nodefkey++;
1255			goto bad;
1256		}
1257	} else
1258		key = NULL;
1259	/*
1260	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1261	 * frames so suppress use.  This may be an issue if other
1262	 * ap's require all data frames to be QoS-encapsulated
1263	 * once negotiated in which case we'll need to make this
1264	 * configurable.
1265	 * NB: mesh data frames are QoS.
1266	 */
1267	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1268	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1269	    (m->m_flags & M_EAPOL) == 0;
1270	if (addqos)
1271		hdrsize = sizeof(struct ieee80211_qosframe);
1272	else
1273		hdrsize = sizeof(struct ieee80211_frame);
1274#ifdef IEEE80211_SUPPORT_MESH
1275	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1276		/*
1277		 * Mesh data frames are encapsulated according to the
1278		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1279		 * o Group Addressed data (aka multicast) originating
1280		 *   at the local sta are sent w/ 3-address format and
1281		 *   address extension mode 00
1282		 * o Individually Addressed data (aka unicast) originating
1283		 *   at the local sta are sent w/ 4-address format and
1284		 *   address extension mode 00
1285		 * o Group Addressed data forwarded from a non-mesh sta are
1286		 *   sent w/ 3-address format and address extension mode 01
1287		 * o Individually Address data from another sta are sent
1288		 *   w/ 4-address format and address extension mode 10
1289		 */
1290		is4addr = 0;		/* NB: don't use, disable */
1291		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1292			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1293			KASSERT(rt != NULL, ("route is NULL"));
1294			dir = IEEE80211_FC1_DIR_DSTODS;
1295			hdrsize += IEEE80211_ADDR_LEN;
1296			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1297				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1298				    vap->iv_myaddr)) {
1299					IEEE80211_NOTE_MAC(vap,
1300					    IEEE80211_MSG_MESH,
1301					    eh.ether_dhost,
1302					    "%s", "trying to send to ourself");
1303					goto bad;
1304				}
1305				meshae = IEEE80211_MESH_AE_10;
1306				meshhdrsize =
1307				    sizeof(struct ieee80211_meshcntl_ae10);
1308			} else {
1309				meshae = IEEE80211_MESH_AE_00;
1310				meshhdrsize =
1311				    sizeof(struct ieee80211_meshcntl);
1312			}
1313		} else {
1314			dir = IEEE80211_FC1_DIR_FROMDS;
1315			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1316				/* proxy group */
1317				meshae = IEEE80211_MESH_AE_01;
1318				meshhdrsize =
1319				    sizeof(struct ieee80211_meshcntl_ae01);
1320			} else {
1321				/* group */
1322				meshae = IEEE80211_MESH_AE_00;
1323				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1324			}
1325		}
1326	} else {
1327#endif
1328		/*
1329		 * 4-address frames need to be generated for:
1330		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1331		 * o packets sent through a vap marked for relaying
1332		 *   (e.g. a station operating with dynamic WDS)
1333		 */
1334		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1335		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1336		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1337		if (is4addr)
1338			hdrsize += IEEE80211_ADDR_LEN;
1339		meshhdrsize = meshae = 0;
1340#ifdef IEEE80211_SUPPORT_MESH
1341	}
1342#endif
1343	/*
1344	 * Honor driver DATAPAD requirement.
1345	 */
1346	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1347		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1348	else
1349		hdrspace = hdrsize;
1350
1351	if (__predict_true((m->m_flags & M_FF) == 0)) {
1352		/*
1353		 * Normal frame.
1354		 */
1355		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1356		if (m == NULL) {
1357			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1358			goto bad;
1359		}
1360		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1361		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1362		llc = mtod(m, struct llc *);
1363		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1364		llc->llc_control = LLC_UI;
1365		llc->llc_snap.org_code[0] = 0;
1366		llc->llc_snap.org_code[1] = 0;
1367		llc->llc_snap.org_code[2] = 0;
1368		llc->llc_snap.ether_type = eh.ether_type;
1369	} else {
1370#ifdef IEEE80211_SUPPORT_SUPERG
1371		/*
1372		 * Aggregated frame.
1373		 */
1374		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1375		if (m == NULL)
1376#endif
1377			goto bad;
1378	}
1379	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1380
1381	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1382	if (m == NULL) {
1383		vap->iv_stats.is_tx_nobuf++;
1384		goto bad;
1385	}
1386	wh = mtod(m, struct ieee80211_frame *);
1387	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1388	*(uint16_t *)wh->i_dur = 0;
1389	qos = NULL;	/* NB: quiet compiler */
1390	if (is4addr) {
1391		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1392		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1393		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1394		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1395		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1396	} else switch (vap->iv_opmode) {
1397	case IEEE80211_M_STA:
1398		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1399		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1400		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1401		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1402		break;
1403	case IEEE80211_M_IBSS:
1404	case IEEE80211_M_AHDEMO:
1405		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1406		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1407		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1408		/*
1409		 * NB: always use the bssid from iv_bss as the
1410		 *     neighbor's may be stale after an ibss merge
1411		 */
1412		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1413		break;
1414	case IEEE80211_M_HOSTAP:
1415		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1416		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1417		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1418		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1419		break;
1420#ifdef IEEE80211_SUPPORT_MESH
1421	case IEEE80211_M_MBSS:
1422		/* NB: offset by hdrspace to deal with DATAPAD */
1423		mc = (struct ieee80211_meshcntl_ae10 *)
1424		     (mtod(m, uint8_t *) + hdrspace);
1425		wh->i_fc[1] = dir;
1426		switch (meshae) {
1427		case IEEE80211_MESH_AE_00:	/* no proxy */
1428			mc->mc_flags = 0;
1429			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1430				IEEE80211_ADDR_COPY(wh->i_addr1,
1431				    ni->ni_macaddr);
1432				IEEE80211_ADDR_COPY(wh->i_addr2,
1433				    vap->iv_myaddr);
1434				IEEE80211_ADDR_COPY(wh->i_addr3,
1435				    eh.ether_dhost);
1436				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1437				    eh.ether_shost);
1438				qos =((struct ieee80211_qosframe_addr4 *)
1439				    wh)->i_qos;
1440			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1441				 /* mcast */
1442				IEEE80211_ADDR_COPY(wh->i_addr1,
1443				    eh.ether_dhost);
1444				IEEE80211_ADDR_COPY(wh->i_addr2,
1445				    vap->iv_myaddr);
1446				IEEE80211_ADDR_COPY(wh->i_addr3,
1447				    eh.ether_shost);
1448				qos = ((struct ieee80211_qosframe *)
1449				    wh)->i_qos;
1450			}
1451			break;
1452		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1453			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1454			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1455			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1456			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1457			mc->mc_flags = 1;
1458			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1459			    eh.ether_shost);
1460			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1461			break;
1462		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1463			KASSERT(rt != NULL, ("route is NULL"));
1464			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1465			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1466			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1467			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1468			mc->mc_flags = IEEE80211_MESH_AE_10;
1469			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1470			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1471			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1472			break;
1473		default:
1474			KASSERT(0, ("meshae %d", meshae));
1475			break;
1476		}
1477		mc->mc_ttl = ms->ms_ttl;
1478		ms->ms_seq++;
1479		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1480		break;
1481#endif
1482	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1483	default:
1484		goto bad;
1485	}
1486	if (m->m_flags & M_MORE_DATA)
1487		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1488	if (addqos) {
1489		int ac, tid;
1490
1491		if (is4addr) {
1492			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1493		/* NB: mesh case handled earlier */
1494		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1495			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1496		ac = M_WME_GETAC(m);
1497		/* map from access class/queue to 11e header priorty value */
1498		tid = WME_AC_TO_TID(ac);
1499		qos[0] = tid & IEEE80211_QOS_TID;
1500		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1501			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1502#ifdef IEEE80211_SUPPORT_MESH
1503		if (vap->iv_opmode == IEEE80211_M_MBSS)
1504			qos[1] = IEEE80211_QOS_MC;
1505		else
1506#endif
1507			qos[1] = 0;
1508		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1509
1510		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1511			/*
1512			 * NB: don't assign a sequence # to potential
1513			 * aggregates; we expect this happens at the
1514			 * point the frame comes off any aggregation q
1515			 * as otherwise we may introduce holes in the
1516			 * BA sequence space and/or make window accouting
1517			 * more difficult.
1518			 *
1519			 * XXX may want to control this with a driver
1520			 * capability; this may also change when we pull
1521			 * aggregation up into net80211
1522			 */
1523			seqno = ni->ni_txseqs[tid]++;
1524			*(uint16_t *)wh->i_seq =
1525			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1526			M_SEQNO_SET(m, seqno);
1527		}
1528	} else {
1529		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1530		*(uint16_t *)wh->i_seq =
1531		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1532		M_SEQNO_SET(m, seqno);
1533	}
1534
1535
1536	/* check if xmit fragmentation is required */
1537	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1538	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1539	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1540	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1541	if (key != NULL) {
1542		/*
1543		 * IEEE 802.1X: send EAPOL frames always in the clear.
1544		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1545		 */
1546		if ((m->m_flags & M_EAPOL) == 0 ||
1547		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1548		     (vap->iv_opmode == IEEE80211_M_STA ?
1549		      !IEEE80211_KEY_UNDEFINED(key) :
1550		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1551			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1552			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1553				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1554				    eh.ether_dhost,
1555				    "%s", "enmic failed, discard frame");
1556				vap->iv_stats.is_crypto_enmicfail++;
1557				goto bad;
1558			}
1559		}
1560	}
1561	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1562	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1563		goto bad;
1564
1565	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1566
1567	IEEE80211_NODE_STAT(ni, tx_data);
1568	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1569		IEEE80211_NODE_STAT(ni, tx_mcast);
1570		m->m_flags |= M_MCAST;
1571	} else
1572		IEEE80211_NODE_STAT(ni, tx_ucast);
1573	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1574
1575	return m;
1576bad:
1577	if (m != NULL)
1578		m_freem(m);
1579	return NULL;
1580#undef WH4
1581#undef MC01
1582}
1583
1584void
1585ieee80211_free_mbuf(struct mbuf *m)
1586{
1587	struct mbuf *next;
1588
1589	if (m == NULL)
1590		return;
1591
1592	do {
1593		next = m->m_nextpkt;
1594		m->m_nextpkt = NULL;
1595		m_freem(m);
1596	} while ((m = next) != NULL);
1597}
1598
1599/*
1600 * Fragment the frame according to the specified mtu.
1601 * The size of the 802.11 header (w/o padding) is provided
1602 * so we don't need to recalculate it.  We create a new
1603 * mbuf for each fragment and chain it through m_nextpkt;
1604 * we might be able to optimize this by reusing the original
1605 * packet's mbufs but that is significantly more complicated.
1606 */
1607static int
1608ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1609	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1610{
1611	struct ieee80211com *ic = vap->iv_ic;
1612	struct ieee80211_frame *wh, *whf;
1613	struct mbuf *m, *prev;
1614	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1615	u_int hdrspace;
1616
1617	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1618	KASSERT(m0->m_pkthdr.len > mtu,
1619		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1620
1621	/*
1622	 * Honor driver DATAPAD requirement.
1623	 */
1624	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1625		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1626	else
1627		hdrspace = hdrsize;
1628
1629	wh = mtod(m0, struct ieee80211_frame *);
1630	/* NB: mark the first frag; it will be propagated below */
1631	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1632	totalhdrsize = hdrspace + ciphdrsize;
1633	fragno = 1;
1634	off = mtu - ciphdrsize;
1635	remainder = m0->m_pkthdr.len - off;
1636	prev = m0;
1637	do {
1638		fragsize = totalhdrsize + remainder;
1639		if (fragsize > mtu)
1640			fragsize = mtu;
1641		/* XXX fragsize can be >2048! */
1642		KASSERT(fragsize < MCLBYTES,
1643			("fragment size %u too big!", fragsize));
1644		if (fragsize > MHLEN)
1645			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1646		else
1647			m = m_gethdr(M_NOWAIT, MT_DATA);
1648		if (m == NULL)
1649			goto bad;
1650		/* leave room to prepend any cipher header */
1651		m_align(m, fragsize - ciphdrsize);
1652
1653		/*
1654		 * Form the header in the fragment.  Note that since
1655		 * we mark the first fragment with the MORE_FRAG bit
1656		 * it automatically is propagated to each fragment; we
1657		 * need only clear it on the last fragment (done below).
1658		 * NB: frag 1+ dont have Mesh Control field present.
1659		 */
1660		whf = mtod(m, struct ieee80211_frame *);
1661		memcpy(whf, wh, hdrsize);
1662#ifdef IEEE80211_SUPPORT_MESH
1663		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1664			if (IEEE80211_IS_DSTODS(wh))
1665				((struct ieee80211_qosframe_addr4 *)
1666				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1667			else
1668				((struct ieee80211_qosframe *)
1669				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1670		}
1671#endif
1672		*(uint16_t *)&whf->i_seq[0] |= htole16(
1673			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1674				IEEE80211_SEQ_FRAG_SHIFT);
1675		fragno++;
1676
1677		payload = fragsize - totalhdrsize;
1678		/* NB: destination is known to be contiguous */
1679
1680		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1681		m->m_len = hdrspace + payload;
1682		m->m_pkthdr.len = hdrspace + payload;
1683		m->m_flags |= M_FRAG;
1684
1685		/* chain up the fragment */
1686		prev->m_nextpkt = m;
1687		prev = m;
1688
1689		/* deduct fragment just formed */
1690		remainder -= payload;
1691		off += payload;
1692	} while (remainder != 0);
1693
1694	/* set the last fragment */
1695	m->m_flags |= M_LASTFRAG;
1696	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1697
1698	/* strip first mbuf now that everything has been copied */
1699	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1700	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1701
1702	vap->iv_stats.is_tx_fragframes++;
1703	vap->iv_stats.is_tx_frags += fragno-1;
1704
1705	return 1;
1706bad:
1707	/* reclaim fragments but leave original frame for caller to free */
1708	ieee80211_free_mbuf(m0->m_nextpkt);
1709	m0->m_nextpkt = NULL;
1710	return 0;
1711}
1712
1713/*
1714 * Add a supported rates element id to a frame.
1715 */
1716uint8_t *
1717ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1718{
1719	int nrates;
1720
1721	*frm++ = IEEE80211_ELEMID_RATES;
1722	nrates = rs->rs_nrates;
1723	if (nrates > IEEE80211_RATE_SIZE)
1724		nrates = IEEE80211_RATE_SIZE;
1725	*frm++ = nrates;
1726	memcpy(frm, rs->rs_rates, nrates);
1727	return frm + nrates;
1728}
1729
1730/*
1731 * Add an extended supported rates element id to a frame.
1732 */
1733uint8_t *
1734ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1735{
1736	/*
1737	 * Add an extended supported rates element if operating in 11g mode.
1738	 */
1739	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1740		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1741		*frm++ = IEEE80211_ELEMID_XRATES;
1742		*frm++ = nrates;
1743		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1744		frm += nrates;
1745	}
1746	return frm;
1747}
1748
1749/*
1750 * Add an ssid element to a frame.
1751 */
1752uint8_t *
1753ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1754{
1755	*frm++ = IEEE80211_ELEMID_SSID;
1756	*frm++ = len;
1757	memcpy(frm, ssid, len);
1758	return frm + len;
1759}
1760
1761/*
1762 * Add an erp element to a frame.
1763 */
1764static uint8_t *
1765ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1766{
1767	uint8_t erp;
1768
1769	*frm++ = IEEE80211_ELEMID_ERP;
1770	*frm++ = 1;
1771	erp = 0;
1772	if (ic->ic_nonerpsta != 0)
1773		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1774	if (ic->ic_flags & IEEE80211_F_USEPROT)
1775		erp |= IEEE80211_ERP_USE_PROTECTION;
1776	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1777		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1778	*frm++ = erp;
1779	return frm;
1780}
1781
1782/*
1783 * Add a CFParams element to a frame.
1784 */
1785static uint8_t *
1786ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1787{
1788#define	ADDSHORT(frm, v) do {	\
1789	LE_WRITE_2(frm, v);	\
1790	frm += 2;		\
1791} while (0)
1792	*frm++ = IEEE80211_ELEMID_CFPARMS;
1793	*frm++ = 6;
1794	*frm++ = 0;		/* CFP count */
1795	*frm++ = 2;		/* CFP period */
1796	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1797	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1798	return frm;
1799#undef ADDSHORT
1800}
1801
1802static __inline uint8_t *
1803add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1804{
1805	memcpy(frm, ie->ie_data, ie->ie_len);
1806	return frm + ie->ie_len;
1807}
1808
1809static __inline uint8_t *
1810add_ie(uint8_t *frm, const uint8_t *ie)
1811{
1812	memcpy(frm, ie, 2 + ie[1]);
1813	return frm + 2 + ie[1];
1814}
1815
1816#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1817/*
1818 * Add a WME information element to a frame.
1819 */
1820uint8_t *
1821ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1822{
1823	static const struct ieee80211_wme_info info = {
1824		.wme_id		= IEEE80211_ELEMID_VENDOR,
1825		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1826		.wme_oui	= { WME_OUI_BYTES },
1827		.wme_type	= WME_OUI_TYPE,
1828		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1829		.wme_version	= WME_VERSION,
1830		.wme_info	= 0,
1831	};
1832	memcpy(frm, &info, sizeof(info));
1833	return frm + sizeof(info);
1834}
1835
1836/*
1837 * Add a WME parameters element to a frame.
1838 */
1839static uint8_t *
1840ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1841{
1842#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1843#define	ADDSHORT(frm, v) do {	\
1844	LE_WRITE_2(frm, v);	\
1845	frm += 2;		\
1846} while (0)
1847	/* NB: this works 'cuz a param has an info at the front */
1848	static const struct ieee80211_wme_info param = {
1849		.wme_id		= IEEE80211_ELEMID_VENDOR,
1850		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1851		.wme_oui	= { WME_OUI_BYTES },
1852		.wme_type	= WME_OUI_TYPE,
1853		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1854		.wme_version	= WME_VERSION,
1855	};
1856	int i;
1857
1858	memcpy(frm, &param, sizeof(param));
1859	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1860	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1861	*frm++ = 0;					/* reserved field */
1862	for (i = 0; i < WME_NUM_AC; i++) {
1863		const struct wmeParams *ac =
1864		       &wme->wme_bssChanParams.cap_wmeParams[i];
1865		*frm++ = SM(i, WME_PARAM_ACI)
1866		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1867		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1868		       ;
1869		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1870		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1871		       ;
1872		ADDSHORT(frm, ac->wmep_txopLimit);
1873	}
1874	return frm;
1875#undef SM
1876#undef ADDSHORT
1877}
1878#undef WME_OUI_BYTES
1879
1880/*
1881 * Add an 11h Power Constraint element to a frame.
1882 */
1883static uint8_t *
1884ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1885{
1886	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1887	/* XXX per-vap tx power limit? */
1888	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1889
1890	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1891	frm[1] = 1;
1892	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1893	return frm + 3;
1894}
1895
1896/*
1897 * Add an 11h Power Capability element to a frame.
1898 */
1899static uint8_t *
1900ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1901{
1902	frm[0] = IEEE80211_ELEMID_PWRCAP;
1903	frm[1] = 2;
1904	frm[2] = c->ic_minpower;
1905	frm[3] = c->ic_maxpower;
1906	return frm + 4;
1907}
1908
1909/*
1910 * Add an 11h Supported Channels element to a frame.
1911 */
1912static uint8_t *
1913ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1914{
1915	static const int ielen = 26;
1916
1917	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1918	frm[1] = ielen;
1919	/* XXX not correct */
1920	memcpy(frm+2, ic->ic_chan_avail, ielen);
1921	return frm + 2 + ielen;
1922}
1923
1924/*
1925 * Add an 11h Quiet time element to a frame.
1926 */
1927static uint8_t *
1928ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1929{
1930	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1931
1932	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1933	quiet->len = 6;
1934	if (vap->iv_quiet_count_value == 1)
1935		vap->iv_quiet_count_value = vap->iv_quiet_count;
1936	else if (vap->iv_quiet_count_value > 1)
1937		vap->iv_quiet_count_value--;
1938
1939	if (vap->iv_quiet_count_value == 0) {
1940		/* value 0 is reserved as per 802.11h standerd */
1941		vap->iv_quiet_count_value = 1;
1942	}
1943
1944	quiet->tbttcount = vap->iv_quiet_count_value;
1945	quiet->period = vap->iv_quiet_period;
1946	quiet->duration = htole16(vap->iv_quiet_duration);
1947	quiet->offset = htole16(vap->iv_quiet_offset);
1948	return frm + sizeof(*quiet);
1949}
1950
1951/*
1952 * Add an 11h Channel Switch Announcement element to a frame.
1953 * Note that we use the per-vap CSA count to adjust the global
1954 * counter so we can use this routine to form probe response
1955 * frames and get the current count.
1956 */
1957static uint8_t *
1958ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1959{
1960	struct ieee80211com *ic = vap->iv_ic;
1961	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1962
1963	csa->csa_ie = IEEE80211_ELEMID_CSA;
1964	csa->csa_len = 3;
1965	csa->csa_mode = 1;		/* XXX force quiet on channel */
1966	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1967	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1968	return frm + sizeof(*csa);
1969}
1970
1971/*
1972 * Add an 11h country information element to a frame.
1973 */
1974static uint8_t *
1975ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1976{
1977
1978	if (ic->ic_countryie == NULL ||
1979	    ic->ic_countryie_chan != ic->ic_bsschan) {
1980		/*
1981		 * Handle lazy construction of ie.  This is done on
1982		 * first use and after a channel change that requires
1983		 * re-calculation.
1984		 */
1985		if (ic->ic_countryie != NULL)
1986			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
1987		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1988		if (ic->ic_countryie == NULL)
1989			return frm;
1990		ic->ic_countryie_chan = ic->ic_bsschan;
1991	}
1992	return add_appie(frm, ic->ic_countryie);
1993}
1994
1995uint8_t *
1996ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1997{
1998	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1999		return (add_ie(frm, vap->iv_wpa_ie));
2000	else {
2001		/* XXX else complain? */
2002		return (frm);
2003	}
2004}
2005
2006uint8_t *
2007ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2008{
2009	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2010		return (add_ie(frm, vap->iv_rsn_ie));
2011	else {
2012		/* XXX else complain? */
2013		return (frm);
2014	}
2015}
2016
2017uint8_t *
2018ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2019{
2020	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2021		*frm++ = IEEE80211_ELEMID_QOS;
2022		*frm++ = 1;
2023		*frm++ = 0;
2024	}
2025
2026	return (frm);
2027}
2028
2029/*
2030 * Send a probe request frame with the specified ssid
2031 * and any optional information element data.
2032 */
2033int
2034ieee80211_send_probereq(struct ieee80211_node *ni,
2035	const uint8_t sa[IEEE80211_ADDR_LEN],
2036	const uint8_t da[IEEE80211_ADDR_LEN],
2037	const uint8_t bssid[IEEE80211_ADDR_LEN],
2038	const uint8_t *ssid, size_t ssidlen)
2039{
2040	struct ieee80211vap *vap = ni->ni_vap;
2041	struct ieee80211com *ic = ni->ni_ic;
2042	const struct ieee80211_txparam *tp;
2043	struct ieee80211_bpf_params params;
2044	struct ieee80211_frame *wh;
2045	const struct ieee80211_rateset *rs;
2046	struct mbuf *m;
2047	uint8_t *frm;
2048	int ret;
2049
2050	if (vap->iv_state == IEEE80211_S_CAC) {
2051		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2052		    "block %s frame in CAC state", "probe request");
2053		vap->iv_stats.is_tx_badstate++;
2054		return EIO;		/* XXX */
2055	}
2056
2057	/*
2058	 * Hold a reference on the node so it doesn't go away until after
2059	 * the xmit is complete all the way in the driver.  On error we
2060	 * will remove our reference.
2061	 */
2062	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2063		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2064		__func__, __LINE__,
2065		ni, ether_sprintf(ni->ni_macaddr),
2066		ieee80211_node_refcnt(ni)+1);
2067	ieee80211_ref_node(ni);
2068
2069	/*
2070	 * prreq frame format
2071	 *	[tlv] ssid
2072	 *	[tlv] supported rates
2073	 *	[tlv] RSN (optional)
2074	 *	[tlv] extended supported rates
2075	 *	[tlv] WPA (optional)
2076	 *	[tlv] user-specified ie's
2077	 */
2078	m = ieee80211_getmgtframe(&frm,
2079		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2080	       	 2 + IEEE80211_NWID_LEN
2081	       + 2 + IEEE80211_RATE_SIZE
2082	       + sizeof(struct ieee80211_ie_wpa)
2083	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2084	       + sizeof(struct ieee80211_ie_wpa)
2085	       + (vap->iv_appie_probereq != NULL ?
2086		   vap->iv_appie_probereq->ie_len : 0)
2087	);
2088	if (m == NULL) {
2089		vap->iv_stats.is_tx_nobuf++;
2090		ieee80211_free_node(ni);
2091		return ENOMEM;
2092	}
2093
2094	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2095	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2096	frm = ieee80211_add_rates(frm, rs);
2097	frm = ieee80211_add_rsn(frm, vap);
2098	frm = ieee80211_add_xrates(frm, rs);
2099	frm = ieee80211_add_wpa(frm, vap);
2100	if (vap->iv_appie_probereq != NULL)
2101		frm = add_appie(frm, vap->iv_appie_probereq);
2102	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2103
2104	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2105	    ("leading space %zd", M_LEADINGSPACE(m)));
2106	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2107	if (m == NULL) {
2108		/* NB: cannot happen */
2109		ieee80211_free_node(ni);
2110		return ENOMEM;
2111	}
2112
2113	IEEE80211_TX_LOCK(ic);
2114	wh = mtod(m, struct ieee80211_frame *);
2115	ieee80211_send_setup(ni, m,
2116	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2117	     IEEE80211_NONQOS_TID, sa, da, bssid);
2118	/* XXX power management? */
2119	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2120
2121	M_WME_SETAC(m, WME_AC_BE);
2122
2123	IEEE80211_NODE_STAT(ni, tx_probereq);
2124	IEEE80211_NODE_STAT(ni, tx_mgmt);
2125
2126	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2127	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2128	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2129	    ssidlen, ssid);
2130
2131	memset(&params, 0, sizeof(params));
2132	params.ibp_pri = M_WME_GETAC(m);
2133	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2134	params.ibp_rate0 = tp->mgmtrate;
2135	if (IEEE80211_IS_MULTICAST(da)) {
2136		params.ibp_flags |= IEEE80211_BPF_NOACK;
2137		params.ibp_try0 = 1;
2138	} else
2139		params.ibp_try0 = tp->maxretry;
2140	params.ibp_power = ni->ni_txpower;
2141	ret = ieee80211_raw_output(vap, ni, m, &params);
2142	IEEE80211_TX_UNLOCK(ic);
2143	return (ret);
2144}
2145
2146/*
2147 * Calculate capability information for mgt frames.
2148 */
2149uint16_t
2150ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2151{
2152	struct ieee80211com *ic = vap->iv_ic;
2153	uint16_t capinfo;
2154
2155	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2156
2157	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2158		capinfo = IEEE80211_CAPINFO_ESS;
2159	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2160		capinfo = IEEE80211_CAPINFO_IBSS;
2161	else
2162		capinfo = 0;
2163	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2164		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2165	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2166	    IEEE80211_IS_CHAN_2GHZ(chan))
2167		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2168	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2169		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2170	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2171		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2172	return capinfo;
2173}
2174
2175/*
2176 * Send a management frame.  The node is for the destination (or ic_bss
2177 * when in station mode).  Nodes other than ic_bss have their reference
2178 * count bumped to reflect our use for an indeterminant time.
2179 */
2180int
2181ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2182{
2183#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2184#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2185	struct ieee80211vap *vap = ni->ni_vap;
2186	struct ieee80211com *ic = ni->ni_ic;
2187	struct ieee80211_node *bss = vap->iv_bss;
2188	struct ieee80211_bpf_params params;
2189	struct mbuf *m;
2190	uint8_t *frm;
2191	uint16_t capinfo;
2192	int has_challenge, is_shared_key, ret, status;
2193
2194	KASSERT(ni != NULL, ("null node"));
2195
2196	/*
2197	 * Hold a reference on the node so it doesn't go away until after
2198	 * the xmit is complete all the way in the driver.  On error we
2199	 * will remove our reference.
2200	 */
2201	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2202		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2203		__func__, __LINE__,
2204		ni, ether_sprintf(ni->ni_macaddr),
2205		ieee80211_node_refcnt(ni)+1);
2206	ieee80211_ref_node(ni);
2207
2208	memset(&params, 0, sizeof(params));
2209	switch (type) {
2210
2211	case IEEE80211_FC0_SUBTYPE_AUTH:
2212		status = arg >> 16;
2213		arg &= 0xffff;
2214		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2215		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2216		    ni->ni_challenge != NULL);
2217
2218		/*
2219		 * Deduce whether we're doing open authentication or
2220		 * shared key authentication.  We do the latter if
2221		 * we're in the middle of a shared key authentication
2222		 * handshake or if we're initiating an authentication
2223		 * request and configured to use shared key.
2224		 */
2225		is_shared_key = has_challenge ||
2226		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2227		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2228		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2229
2230		m = ieee80211_getmgtframe(&frm,
2231			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2232			  3 * sizeof(uint16_t)
2233			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2234				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2235		);
2236		if (m == NULL)
2237			senderr(ENOMEM, is_tx_nobuf);
2238
2239		((uint16_t *)frm)[0] =
2240		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2241		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2242		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2243		((uint16_t *)frm)[2] = htole16(status);/* status */
2244
2245		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2246			((uint16_t *)frm)[3] =
2247			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2248			    IEEE80211_ELEMID_CHALLENGE);
2249			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2250			    IEEE80211_CHALLENGE_LEN);
2251			m->m_pkthdr.len = m->m_len =
2252				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2253			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2254				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2255				    "request encrypt frame (%s)", __func__);
2256				/* mark frame for encryption */
2257				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2258			}
2259		} else
2260			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2261
2262		/* XXX not right for shared key */
2263		if (status == IEEE80211_STATUS_SUCCESS)
2264			IEEE80211_NODE_STAT(ni, tx_auth);
2265		else
2266			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2267
2268		if (vap->iv_opmode == IEEE80211_M_STA)
2269			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2270				(void *) vap->iv_state);
2271		break;
2272
2273	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2274		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2275		    "send station deauthenticate (reason %d)", arg);
2276		m = ieee80211_getmgtframe(&frm,
2277			ic->ic_headroom + sizeof(struct ieee80211_frame),
2278			sizeof(uint16_t));
2279		if (m == NULL)
2280			senderr(ENOMEM, is_tx_nobuf);
2281		*(uint16_t *)frm = htole16(arg);	/* reason */
2282		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2283
2284		IEEE80211_NODE_STAT(ni, tx_deauth);
2285		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2286
2287		ieee80211_node_unauthorize(ni);		/* port closed */
2288		break;
2289
2290	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2291	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2292		/*
2293		 * asreq frame format
2294		 *	[2] capability information
2295		 *	[2] listen interval
2296		 *	[6*] current AP address (reassoc only)
2297		 *	[tlv] ssid
2298		 *	[tlv] supported rates
2299		 *	[tlv] extended supported rates
2300		 *	[4] power capability (optional)
2301		 *	[28] supported channels (optional)
2302		 *	[tlv] HT capabilities
2303		 *	[tlv] WME (optional)
2304		 *	[tlv] Vendor OUI HT capabilities (optional)
2305		 *	[tlv] Atheros capabilities (if negotiated)
2306		 *	[tlv] AppIE's (optional)
2307		 */
2308		m = ieee80211_getmgtframe(&frm,
2309			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2310			 sizeof(uint16_t)
2311		       + sizeof(uint16_t)
2312		       + IEEE80211_ADDR_LEN
2313		       + 2 + IEEE80211_NWID_LEN
2314		       + 2 + IEEE80211_RATE_SIZE
2315		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2316		       + 4
2317		       + 2 + 26
2318		       + sizeof(struct ieee80211_wme_info)
2319		       + sizeof(struct ieee80211_ie_htcap)
2320		       + 4 + sizeof(struct ieee80211_ie_htcap)
2321#ifdef IEEE80211_SUPPORT_SUPERG
2322		       + sizeof(struct ieee80211_ath_ie)
2323#endif
2324		       + (vap->iv_appie_wpa != NULL ?
2325				vap->iv_appie_wpa->ie_len : 0)
2326		       + (vap->iv_appie_assocreq != NULL ?
2327				vap->iv_appie_assocreq->ie_len : 0)
2328		);
2329		if (m == NULL)
2330			senderr(ENOMEM, is_tx_nobuf);
2331
2332		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2333		    ("wrong mode %u", vap->iv_opmode));
2334		capinfo = IEEE80211_CAPINFO_ESS;
2335		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2336			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2337		/*
2338		 * NB: Some 11a AP's reject the request when
2339		 *     short premable is set.
2340		 */
2341		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2342		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2343			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2344		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2345		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2346			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2347		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2348		    (vap->iv_flags & IEEE80211_F_DOTH))
2349			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2350		*(uint16_t *)frm = htole16(capinfo);
2351		frm += 2;
2352
2353		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2354		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2355						    bss->ni_intval));
2356		frm += 2;
2357
2358		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2359			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2360			frm += IEEE80211_ADDR_LEN;
2361		}
2362
2363		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2364		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2365		frm = ieee80211_add_rsn(frm, vap);
2366		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2367		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2368			frm = ieee80211_add_powercapability(frm,
2369			    ic->ic_curchan);
2370			frm = ieee80211_add_supportedchannels(frm, ic);
2371		}
2372
2373		/*
2374		 * Check the channel - we may be using an 11n NIC with an
2375		 * 11n capable station, but we're configured to be an 11b
2376		 * channel.
2377		 */
2378		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2379		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2380		    ni->ni_ies.htcap_ie != NULL &&
2381		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2382			frm = ieee80211_add_htcap(frm, ni);
2383		}
2384		frm = ieee80211_add_wpa(frm, vap);
2385		if ((ic->ic_flags & IEEE80211_F_WME) &&
2386		    ni->ni_ies.wme_ie != NULL)
2387			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2388
2389		/*
2390		 * Same deal - only send HT info if we're on an 11n
2391		 * capable channel.
2392		 */
2393		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2394		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2395		    ni->ni_ies.htcap_ie != NULL &&
2396		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2397			frm = ieee80211_add_htcap_vendor(frm, ni);
2398		}
2399#ifdef IEEE80211_SUPPORT_SUPERG
2400		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2401			frm = ieee80211_add_ath(frm,
2402				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2403				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2404				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2405				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2406		}
2407#endif /* IEEE80211_SUPPORT_SUPERG */
2408		if (vap->iv_appie_assocreq != NULL)
2409			frm = add_appie(frm, vap->iv_appie_assocreq);
2410		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2411
2412		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2413			(void *) vap->iv_state);
2414		break;
2415
2416	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2417	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2418		/*
2419		 * asresp frame format
2420		 *	[2] capability information
2421		 *	[2] status
2422		 *	[2] association ID
2423		 *	[tlv] supported rates
2424		 *	[tlv] extended supported rates
2425		 *	[tlv] HT capabilities (standard, if STA enabled)
2426		 *	[tlv] HT information (standard, if STA enabled)
2427		 *	[tlv] WME (if configured and STA enabled)
2428		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2429		 *	[tlv] HT information (vendor OUI, if STA enabled)
2430		 *	[tlv] Atheros capabilities (if STA enabled)
2431		 *	[tlv] AppIE's (optional)
2432		 */
2433		m = ieee80211_getmgtframe(&frm,
2434			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2435			 sizeof(uint16_t)
2436		       + sizeof(uint16_t)
2437		       + sizeof(uint16_t)
2438		       + 2 + IEEE80211_RATE_SIZE
2439		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2440		       + sizeof(struct ieee80211_ie_htcap) + 4
2441		       + sizeof(struct ieee80211_ie_htinfo) + 4
2442		       + sizeof(struct ieee80211_wme_param)
2443#ifdef IEEE80211_SUPPORT_SUPERG
2444		       + sizeof(struct ieee80211_ath_ie)
2445#endif
2446		       + (vap->iv_appie_assocresp != NULL ?
2447				vap->iv_appie_assocresp->ie_len : 0)
2448		);
2449		if (m == NULL)
2450			senderr(ENOMEM, is_tx_nobuf);
2451
2452		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2453		*(uint16_t *)frm = htole16(capinfo);
2454		frm += 2;
2455
2456		*(uint16_t *)frm = htole16(arg);	/* status */
2457		frm += 2;
2458
2459		if (arg == IEEE80211_STATUS_SUCCESS) {
2460			*(uint16_t *)frm = htole16(ni->ni_associd);
2461			IEEE80211_NODE_STAT(ni, tx_assoc);
2462		} else
2463			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2464		frm += 2;
2465
2466		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2467		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2468		/* NB: respond according to what we received */
2469		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2470			frm = ieee80211_add_htcap(frm, ni);
2471			frm = ieee80211_add_htinfo(frm, ni);
2472		}
2473		if ((vap->iv_flags & IEEE80211_F_WME) &&
2474		    ni->ni_ies.wme_ie != NULL)
2475			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2476		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2477			frm = ieee80211_add_htcap_vendor(frm, ni);
2478			frm = ieee80211_add_htinfo_vendor(frm, ni);
2479		}
2480#ifdef IEEE80211_SUPPORT_SUPERG
2481		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2482			frm = ieee80211_add_ath(frm,
2483				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2484				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2485				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2486				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2487#endif /* IEEE80211_SUPPORT_SUPERG */
2488		if (vap->iv_appie_assocresp != NULL)
2489			frm = add_appie(frm, vap->iv_appie_assocresp);
2490		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2491		break;
2492
2493	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2494		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2495		    "send station disassociate (reason %d)", arg);
2496		m = ieee80211_getmgtframe(&frm,
2497			ic->ic_headroom + sizeof(struct ieee80211_frame),
2498			sizeof(uint16_t));
2499		if (m == NULL)
2500			senderr(ENOMEM, is_tx_nobuf);
2501		*(uint16_t *)frm = htole16(arg);	/* reason */
2502		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2503
2504		IEEE80211_NODE_STAT(ni, tx_disassoc);
2505		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2506		break;
2507
2508	default:
2509		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2510		    "invalid mgmt frame type %u", type);
2511		senderr(EINVAL, is_tx_unknownmgt);
2512		/* NOTREACHED */
2513	}
2514
2515	/* NB: force non-ProbeResp frames to the highest queue */
2516	params.ibp_pri = WME_AC_VO;
2517	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2518	/* NB: we know all frames are unicast */
2519	params.ibp_try0 = bss->ni_txparms->maxretry;
2520	params.ibp_power = bss->ni_txpower;
2521	return ieee80211_mgmt_output(ni, m, type, &params);
2522bad:
2523	ieee80211_free_node(ni);
2524	return ret;
2525#undef senderr
2526#undef HTFLAGS
2527}
2528
2529/*
2530 * Return an mbuf with a probe response frame in it.
2531 * Space is left to prepend and 802.11 header at the
2532 * front but it's left to the caller to fill in.
2533 */
2534struct mbuf *
2535ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2536{
2537	struct ieee80211vap *vap = bss->ni_vap;
2538	struct ieee80211com *ic = bss->ni_ic;
2539	const struct ieee80211_rateset *rs;
2540	struct mbuf *m;
2541	uint16_t capinfo;
2542	uint8_t *frm;
2543
2544	/*
2545	 * probe response frame format
2546	 *	[8] time stamp
2547	 *	[2] beacon interval
2548	 *	[2] cabability information
2549	 *	[tlv] ssid
2550	 *	[tlv] supported rates
2551	 *	[tlv] parameter set (FH/DS)
2552	 *	[tlv] parameter set (IBSS)
2553	 *	[tlv] country (optional)
2554	 *	[3] power control (optional)
2555	 *	[5] channel switch announcement (CSA) (optional)
2556	 *	[tlv] extended rate phy (ERP)
2557	 *	[tlv] extended supported rates
2558	 *	[tlv] RSN (optional)
2559	 *	[tlv] HT capabilities
2560	 *	[tlv] HT information
2561	 *	[tlv] WPA (optional)
2562	 *	[tlv] WME (optional)
2563	 *	[tlv] Vendor OUI HT capabilities (optional)
2564	 *	[tlv] Vendor OUI HT information (optional)
2565	 *	[tlv] Atheros capabilities
2566	 *	[tlv] AppIE's (optional)
2567	 *	[tlv] Mesh ID (MBSS)
2568	 *	[tlv] Mesh Conf (MBSS)
2569	 */
2570	m = ieee80211_getmgtframe(&frm,
2571		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2572		 8
2573	       + sizeof(uint16_t)
2574	       + sizeof(uint16_t)
2575	       + 2 + IEEE80211_NWID_LEN
2576	       + 2 + IEEE80211_RATE_SIZE
2577	       + 7	/* max(7,3) */
2578	       + IEEE80211_COUNTRY_MAX_SIZE
2579	       + 3
2580	       + sizeof(struct ieee80211_csa_ie)
2581	       + sizeof(struct ieee80211_quiet_ie)
2582	       + 3
2583	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2584	       + sizeof(struct ieee80211_ie_wpa)
2585	       + sizeof(struct ieee80211_ie_htcap)
2586	       + sizeof(struct ieee80211_ie_htinfo)
2587	       + sizeof(struct ieee80211_ie_wpa)
2588	       + sizeof(struct ieee80211_wme_param)
2589	       + 4 + sizeof(struct ieee80211_ie_htcap)
2590	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2591#ifdef IEEE80211_SUPPORT_SUPERG
2592	       + sizeof(struct ieee80211_ath_ie)
2593#endif
2594#ifdef IEEE80211_SUPPORT_MESH
2595	       + 2 + IEEE80211_MESHID_LEN
2596	       + sizeof(struct ieee80211_meshconf_ie)
2597#endif
2598	       + (vap->iv_appie_proberesp != NULL ?
2599			vap->iv_appie_proberesp->ie_len : 0)
2600	);
2601	if (m == NULL) {
2602		vap->iv_stats.is_tx_nobuf++;
2603		return NULL;
2604	}
2605
2606	memset(frm, 0, 8);	/* timestamp should be filled later */
2607	frm += 8;
2608	*(uint16_t *)frm = htole16(bss->ni_intval);
2609	frm += 2;
2610	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2611	*(uint16_t *)frm = htole16(capinfo);
2612	frm += 2;
2613
2614	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2615	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2616	frm = ieee80211_add_rates(frm, rs);
2617
2618	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2619		*frm++ = IEEE80211_ELEMID_FHPARMS;
2620		*frm++ = 5;
2621		*frm++ = bss->ni_fhdwell & 0x00ff;
2622		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2623		*frm++ = IEEE80211_FH_CHANSET(
2624		    ieee80211_chan2ieee(ic, bss->ni_chan));
2625		*frm++ = IEEE80211_FH_CHANPAT(
2626		    ieee80211_chan2ieee(ic, bss->ni_chan));
2627		*frm++ = bss->ni_fhindex;
2628	} else {
2629		*frm++ = IEEE80211_ELEMID_DSPARMS;
2630		*frm++ = 1;
2631		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2632	}
2633
2634	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2635		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2636		*frm++ = 2;
2637		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2638	}
2639	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2640	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2641		frm = ieee80211_add_countryie(frm, ic);
2642	if (vap->iv_flags & IEEE80211_F_DOTH) {
2643		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2644			frm = ieee80211_add_powerconstraint(frm, vap);
2645		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2646			frm = ieee80211_add_csa(frm, vap);
2647	}
2648	if (vap->iv_flags & IEEE80211_F_DOTH) {
2649		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2650		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2651			if (vap->iv_quiet)
2652				frm = ieee80211_add_quiet(frm, vap);
2653		}
2654	}
2655	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2656		frm = ieee80211_add_erp(frm, ic);
2657	frm = ieee80211_add_xrates(frm, rs);
2658	frm = ieee80211_add_rsn(frm, vap);
2659	/*
2660	 * NB: legacy 11b clients do not get certain ie's.
2661	 *     The caller identifies such clients by passing
2662	 *     a token in legacy to us.  Could expand this to be
2663	 *     any legacy client for stuff like HT ie's.
2664	 */
2665	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2666	    legacy != IEEE80211_SEND_LEGACY_11B) {
2667		frm = ieee80211_add_htcap(frm, bss);
2668		frm = ieee80211_add_htinfo(frm, bss);
2669	}
2670	frm = ieee80211_add_wpa(frm, vap);
2671	if (vap->iv_flags & IEEE80211_F_WME)
2672		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2673	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2674	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2675	    legacy != IEEE80211_SEND_LEGACY_11B) {
2676		frm = ieee80211_add_htcap_vendor(frm, bss);
2677		frm = ieee80211_add_htinfo_vendor(frm, bss);
2678	}
2679#ifdef IEEE80211_SUPPORT_SUPERG
2680	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2681	    legacy != IEEE80211_SEND_LEGACY_11B)
2682		frm = ieee80211_add_athcaps(frm, bss);
2683#endif
2684	if (vap->iv_appie_proberesp != NULL)
2685		frm = add_appie(frm, vap->iv_appie_proberesp);
2686#ifdef IEEE80211_SUPPORT_MESH
2687	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2688		frm = ieee80211_add_meshid(frm, vap);
2689		frm = ieee80211_add_meshconf(frm, vap);
2690	}
2691#endif
2692	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2693
2694	return m;
2695}
2696
2697/*
2698 * Send a probe response frame to the specified mac address.
2699 * This does not go through the normal mgt frame api so we
2700 * can specify the destination address and re-use the bss node
2701 * for the sta reference.
2702 */
2703int
2704ieee80211_send_proberesp(struct ieee80211vap *vap,
2705	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2706{
2707	struct ieee80211_node *bss = vap->iv_bss;
2708	struct ieee80211com *ic = vap->iv_ic;
2709	struct ieee80211_frame *wh;
2710	struct mbuf *m;
2711	int ret;
2712
2713	if (vap->iv_state == IEEE80211_S_CAC) {
2714		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2715		    "block %s frame in CAC state", "probe response");
2716		vap->iv_stats.is_tx_badstate++;
2717		return EIO;		/* XXX */
2718	}
2719
2720	/*
2721	 * Hold a reference on the node so it doesn't go away until after
2722	 * the xmit is complete all the way in the driver.  On error we
2723	 * will remove our reference.
2724	 */
2725	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2726	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2727	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2728	    ieee80211_node_refcnt(bss)+1);
2729	ieee80211_ref_node(bss);
2730
2731	m = ieee80211_alloc_proberesp(bss, legacy);
2732	if (m == NULL) {
2733		ieee80211_free_node(bss);
2734		return ENOMEM;
2735	}
2736
2737	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2738	KASSERT(m != NULL, ("no room for header"));
2739
2740	IEEE80211_TX_LOCK(ic);
2741	wh = mtod(m, struct ieee80211_frame *);
2742	ieee80211_send_setup(bss, m,
2743	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2744	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2745	/* XXX power management? */
2746	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2747
2748	M_WME_SETAC(m, WME_AC_BE);
2749
2750	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2751	    "send probe resp on channel %u to %s%s\n",
2752	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2753	    legacy ? " <legacy>" : "");
2754	IEEE80211_NODE_STAT(bss, tx_mgmt);
2755
2756	ret = ieee80211_raw_output(vap, bss, m, NULL);
2757	IEEE80211_TX_UNLOCK(ic);
2758	return (ret);
2759}
2760
2761/*
2762 * Allocate and build a RTS (Request To Send) control frame.
2763 */
2764struct mbuf *
2765ieee80211_alloc_rts(struct ieee80211com *ic,
2766	const uint8_t ra[IEEE80211_ADDR_LEN],
2767	const uint8_t ta[IEEE80211_ADDR_LEN],
2768	uint16_t dur)
2769{
2770	struct ieee80211_frame_rts *rts;
2771	struct mbuf *m;
2772
2773	/* XXX honor ic_headroom */
2774	m = m_gethdr(M_NOWAIT, MT_DATA);
2775	if (m != NULL) {
2776		rts = mtod(m, struct ieee80211_frame_rts *);
2777		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2778			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2779		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2780		*(u_int16_t *)rts->i_dur = htole16(dur);
2781		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2782		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2783
2784		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2785	}
2786	return m;
2787}
2788
2789/*
2790 * Allocate and build a CTS (Clear To Send) control frame.
2791 */
2792struct mbuf *
2793ieee80211_alloc_cts(struct ieee80211com *ic,
2794	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2795{
2796	struct ieee80211_frame_cts *cts;
2797	struct mbuf *m;
2798
2799	/* XXX honor ic_headroom */
2800	m = m_gethdr(M_NOWAIT, MT_DATA);
2801	if (m != NULL) {
2802		cts = mtod(m, struct ieee80211_frame_cts *);
2803		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2804			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2805		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2806		*(u_int16_t *)cts->i_dur = htole16(dur);
2807		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2808
2809		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2810	}
2811	return m;
2812}
2813
2814static void
2815ieee80211_tx_mgt_timeout(void *arg)
2816{
2817	struct ieee80211vap *vap = arg;
2818
2819	IEEE80211_LOCK(vap->iv_ic);
2820	if (vap->iv_state != IEEE80211_S_INIT &&
2821	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2822		/*
2823		 * NB: it's safe to specify a timeout as the reason here;
2824		 *     it'll only be used in the right state.
2825		 */
2826		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2827			IEEE80211_SCAN_FAIL_TIMEOUT);
2828	}
2829	IEEE80211_UNLOCK(vap->iv_ic);
2830}
2831
2832/*
2833 * This is the callback set on net80211-sourced transmitted
2834 * authentication request frames.
2835 *
2836 * This does a couple of things:
2837 *
2838 * + If the frame transmitted was a success, it schedules a future
2839 *   event which will transition the interface to scan.
2840 *   If a state transition _then_ occurs before that event occurs,
2841 *   said state transition will cancel this callout.
2842 *
2843 * + If the frame transmit was a failure, it immediately schedules
2844 *   the transition back to scan.
2845 */
2846static void
2847ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2848{
2849	struct ieee80211vap *vap = ni->ni_vap;
2850	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2851
2852	/*
2853	 * Frame transmit completed; arrange timer callback.  If
2854	 * transmit was successfuly we wait for response.  Otherwise
2855	 * we arrange an immediate callback instead of doing the
2856	 * callback directly since we don't know what state the driver
2857	 * is in (e.g. what locks it is holding).  This work should
2858	 * not be too time-critical and not happen too often so the
2859	 * added overhead is acceptable.
2860	 *
2861	 * XXX what happens if !acked but response shows up before callback?
2862	 */
2863	if (vap->iv_state == ostate) {
2864		callout_reset(&vap->iv_mgtsend,
2865			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2866			ieee80211_tx_mgt_timeout, vap);
2867	}
2868}
2869
2870static void
2871ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2872	struct ieee80211_node *ni)
2873{
2874	struct ieee80211vap *vap = ni->ni_vap;
2875	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2876	struct ieee80211com *ic = ni->ni_ic;
2877	struct ieee80211_rateset *rs = &ni->ni_rates;
2878	uint16_t capinfo;
2879
2880	/*
2881	 * beacon frame format
2882	 *	[8] time stamp
2883	 *	[2] beacon interval
2884	 *	[2] cabability information
2885	 *	[tlv] ssid
2886	 *	[tlv] supported rates
2887	 *	[3] parameter set (DS)
2888	 *	[8] CF parameter set (optional)
2889	 *	[tlv] parameter set (IBSS/TIM)
2890	 *	[tlv] country (optional)
2891	 *	[3] power control (optional)
2892	 *	[5] channel switch announcement (CSA) (optional)
2893	 *	[tlv] extended rate phy (ERP)
2894	 *	[tlv] extended supported rates
2895	 *	[tlv] RSN parameters
2896	 *	[tlv] HT capabilities
2897	 *	[tlv] HT information
2898	 * XXX Vendor-specific OIDs (e.g. Atheros)
2899	 *	[tlv] WPA parameters
2900	 *	[tlv] WME parameters
2901	 *	[tlv] Vendor OUI HT capabilities (optional)
2902	 *	[tlv] Vendor OUI HT information (optional)
2903	 *	[tlv] Atheros capabilities (optional)
2904	 *	[tlv] TDMA parameters (optional)
2905	 *	[tlv] Mesh ID (MBSS)
2906	 *	[tlv] Mesh Conf (MBSS)
2907	 *	[tlv] application data (optional)
2908	 */
2909
2910	memset(bo, 0, sizeof(*bo));
2911
2912	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2913	frm += 8;
2914	*(uint16_t *)frm = htole16(ni->ni_intval);
2915	frm += 2;
2916	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2917	bo->bo_caps = (uint16_t *)frm;
2918	*(uint16_t *)frm = htole16(capinfo);
2919	frm += 2;
2920	*frm++ = IEEE80211_ELEMID_SSID;
2921	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2922		*frm++ = ni->ni_esslen;
2923		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2924		frm += ni->ni_esslen;
2925	} else
2926		*frm++ = 0;
2927	frm = ieee80211_add_rates(frm, rs);
2928	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2929		*frm++ = IEEE80211_ELEMID_DSPARMS;
2930		*frm++ = 1;
2931		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2932	}
2933	if (ic->ic_flags & IEEE80211_F_PCF) {
2934		bo->bo_cfp = frm;
2935		frm = ieee80211_add_cfparms(frm, ic);
2936	}
2937	bo->bo_tim = frm;
2938	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2939		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2940		*frm++ = 2;
2941		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2942		bo->bo_tim_len = 0;
2943	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2944	    vap->iv_opmode == IEEE80211_M_MBSS) {
2945		/* TIM IE is the same for Mesh and Hostap */
2946		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2947
2948		tie->tim_ie = IEEE80211_ELEMID_TIM;
2949		tie->tim_len = 4;	/* length */
2950		tie->tim_count = 0;	/* DTIM count */
2951		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2952		tie->tim_bitctl = 0;	/* bitmap control */
2953		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2954		frm += sizeof(struct ieee80211_tim_ie);
2955		bo->bo_tim_len = 1;
2956	}
2957	bo->bo_tim_trailer = frm;
2958	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2959	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2960		frm = ieee80211_add_countryie(frm, ic);
2961	if (vap->iv_flags & IEEE80211_F_DOTH) {
2962		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2963			frm = ieee80211_add_powerconstraint(frm, vap);
2964		bo->bo_csa = frm;
2965		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2966			frm = ieee80211_add_csa(frm, vap);
2967	} else
2968		bo->bo_csa = frm;
2969
2970	if (vap->iv_flags & IEEE80211_F_DOTH) {
2971		bo->bo_quiet = frm;
2972		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2973		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2974			if (vap->iv_quiet)
2975				frm = ieee80211_add_quiet(frm,vap);
2976		}
2977	} else
2978		bo->bo_quiet = frm;
2979
2980	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2981		bo->bo_erp = frm;
2982		frm = ieee80211_add_erp(frm, ic);
2983	}
2984	frm = ieee80211_add_xrates(frm, rs);
2985	frm = ieee80211_add_rsn(frm, vap);
2986	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2987		frm = ieee80211_add_htcap(frm, ni);
2988		bo->bo_htinfo = frm;
2989		frm = ieee80211_add_htinfo(frm, ni);
2990	}
2991	frm = ieee80211_add_wpa(frm, vap);
2992	if (vap->iv_flags & IEEE80211_F_WME) {
2993		bo->bo_wme = frm;
2994		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2995	}
2996	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2997	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2998		frm = ieee80211_add_htcap_vendor(frm, ni);
2999		frm = ieee80211_add_htinfo_vendor(frm, ni);
3000	}
3001#ifdef IEEE80211_SUPPORT_SUPERG
3002	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3003		bo->bo_ath = frm;
3004		frm = ieee80211_add_athcaps(frm, ni);
3005	}
3006#endif
3007#ifdef IEEE80211_SUPPORT_TDMA
3008	if (vap->iv_caps & IEEE80211_C_TDMA) {
3009		bo->bo_tdma = frm;
3010		frm = ieee80211_add_tdma(frm, vap);
3011	}
3012#endif
3013	if (vap->iv_appie_beacon != NULL) {
3014		bo->bo_appie = frm;
3015		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3016		frm = add_appie(frm, vap->iv_appie_beacon);
3017	}
3018#ifdef IEEE80211_SUPPORT_MESH
3019	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3020		frm = ieee80211_add_meshid(frm, vap);
3021		bo->bo_meshconf = frm;
3022		frm = ieee80211_add_meshconf(frm, vap);
3023	}
3024#endif
3025	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3026	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3027	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3028}
3029
3030/*
3031 * Allocate a beacon frame and fillin the appropriate bits.
3032 */
3033struct mbuf *
3034ieee80211_beacon_alloc(struct ieee80211_node *ni)
3035{
3036	struct ieee80211vap *vap = ni->ni_vap;
3037	struct ieee80211com *ic = ni->ni_ic;
3038	struct ifnet *ifp = vap->iv_ifp;
3039	struct ieee80211_frame *wh;
3040	struct mbuf *m;
3041	int pktlen;
3042	uint8_t *frm;
3043
3044	/*
3045	 * beacon frame format
3046	 *	[8] time stamp
3047	 *	[2] beacon interval
3048	 *	[2] cabability information
3049	 *	[tlv] ssid
3050	 *	[tlv] supported rates
3051	 *	[3] parameter set (DS)
3052	 *	[8] CF parameter set (optional)
3053	 *	[tlv] parameter set (IBSS/TIM)
3054	 *	[tlv] country (optional)
3055	 *	[3] power control (optional)
3056	 *	[5] channel switch announcement (CSA) (optional)
3057	 *	[tlv] extended rate phy (ERP)
3058	 *	[tlv] extended supported rates
3059	 *	[tlv] RSN parameters
3060	 *	[tlv] HT capabilities
3061	 *	[tlv] HT information
3062	 *	[tlv] Vendor OUI HT capabilities (optional)
3063	 *	[tlv] Vendor OUI HT information (optional)
3064	 * XXX Vendor-specific OIDs (e.g. Atheros)
3065	 *	[tlv] WPA parameters
3066	 *	[tlv] WME parameters
3067	 *	[tlv] TDMA parameters (optional)
3068	 *	[tlv] Mesh ID (MBSS)
3069	 *	[tlv] Mesh Conf (MBSS)
3070	 *	[tlv] application data (optional)
3071	 * NB: we allocate the max space required for the TIM bitmap.
3072	 * XXX how big is this?
3073	 */
3074	pktlen =   8					/* time stamp */
3075		 + sizeof(uint16_t)			/* beacon interval */
3076		 + sizeof(uint16_t)			/* capabilities */
3077		 + 2 + ni->ni_esslen			/* ssid */
3078	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3079	         + 2 + 1				/* DS parameters */
3080		 + 2 + 6				/* CF parameters */
3081		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3082		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3083		 + 2 + 1				/* power control */
3084		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3085		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3086		 + 2 + 1				/* ERP */
3087	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3088		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3089			2*sizeof(struct ieee80211_ie_wpa) : 0)
3090		 /* XXX conditional? */
3091		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3092		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3093		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3094			sizeof(struct ieee80211_wme_param) : 0)
3095#ifdef IEEE80211_SUPPORT_SUPERG
3096		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3097#endif
3098#ifdef IEEE80211_SUPPORT_TDMA
3099		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3100			sizeof(struct ieee80211_tdma_param) : 0)
3101#endif
3102#ifdef IEEE80211_SUPPORT_MESH
3103		 + 2 + ni->ni_meshidlen
3104		 + sizeof(struct ieee80211_meshconf_ie)
3105#endif
3106		 + IEEE80211_MAX_APPIE
3107		 ;
3108	m = ieee80211_getmgtframe(&frm,
3109		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3110	if (m == NULL) {
3111		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3112			"%s: cannot get buf; size %u\n", __func__, pktlen);
3113		vap->iv_stats.is_tx_nobuf++;
3114		return NULL;
3115	}
3116	ieee80211_beacon_construct(m, frm, ni);
3117
3118	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3119	KASSERT(m != NULL, ("no space for 802.11 header?"));
3120	wh = mtod(m, struct ieee80211_frame *);
3121	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3122	    IEEE80211_FC0_SUBTYPE_BEACON;
3123	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3124	*(uint16_t *)wh->i_dur = 0;
3125	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3126	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3127	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3128	*(uint16_t *)wh->i_seq = 0;
3129
3130	return m;
3131}
3132
3133/*
3134 * Update the dynamic parts of a beacon frame based on the current state.
3135 */
3136int
3137ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3138{
3139	struct ieee80211vap *vap = ni->ni_vap;
3140	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3141	struct ieee80211com *ic = ni->ni_ic;
3142	int len_changed = 0;
3143	uint16_t capinfo;
3144	struct ieee80211_frame *wh;
3145	ieee80211_seq seqno;
3146
3147	IEEE80211_LOCK(ic);
3148	/*
3149	 * Handle 11h channel change when we've reached the count.
3150	 * We must recalculate the beacon frame contents to account
3151	 * for the new channel.  Note we do this only for the first
3152	 * vap that reaches this point; subsequent vaps just update
3153	 * their beacon state to reflect the recalculated channel.
3154	 */
3155	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3156	    vap->iv_csa_count == ic->ic_csa_count) {
3157		vap->iv_csa_count = 0;
3158		/*
3159		 * Effect channel change before reconstructing the beacon
3160		 * frame contents as many places reference ni_chan.
3161		 */
3162		if (ic->ic_csa_newchan != NULL)
3163			ieee80211_csa_completeswitch(ic);
3164		/*
3165		 * NB: ieee80211_beacon_construct clears all pending
3166		 * updates in bo_flags so we don't need to explicitly
3167		 * clear IEEE80211_BEACON_CSA.
3168		 */
3169		ieee80211_beacon_construct(m,
3170		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3171
3172		/* XXX do WME aggressive mode processing? */
3173		IEEE80211_UNLOCK(ic);
3174		return 1;		/* just assume length changed */
3175	}
3176
3177	wh = mtod(m, struct ieee80211_frame *);
3178	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3179	*(uint16_t *)&wh->i_seq[0] =
3180		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3181	M_SEQNO_SET(m, seqno);
3182
3183	/* XXX faster to recalculate entirely or just changes? */
3184	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3185	*bo->bo_caps = htole16(capinfo);
3186
3187	if (vap->iv_flags & IEEE80211_F_WME) {
3188		struct ieee80211_wme_state *wme = &ic->ic_wme;
3189
3190		/*
3191		 * Check for agressive mode change.  When there is
3192		 * significant high priority traffic in the BSS
3193		 * throttle back BE traffic by using conservative
3194		 * parameters.  Otherwise BE uses agressive params
3195		 * to optimize performance of legacy/non-QoS traffic.
3196		 */
3197		if (wme->wme_flags & WME_F_AGGRMODE) {
3198			if (wme->wme_hipri_traffic >
3199			    wme->wme_hipri_switch_thresh) {
3200				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3201				    "%s: traffic %u, disable aggressive mode\n",
3202				    __func__, wme->wme_hipri_traffic);
3203				wme->wme_flags &= ~WME_F_AGGRMODE;
3204				ieee80211_wme_updateparams_locked(vap);
3205				wme->wme_hipri_traffic =
3206					wme->wme_hipri_switch_hysteresis;
3207			} else
3208				wme->wme_hipri_traffic = 0;
3209		} else {
3210			if (wme->wme_hipri_traffic <=
3211			    wme->wme_hipri_switch_thresh) {
3212				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3213				    "%s: traffic %u, enable aggressive mode\n",
3214				    __func__, wme->wme_hipri_traffic);
3215				wme->wme_flags |= WME_F_AGGRMODE;
3216				ieee80211_wme_updateparams_locked(vap);
3217				wme->wme_hipri_traffic = 0;
3218			} else
3219				wme->wme_hipri_traffic =
3220					wme->wme_hipri_switch_hysteresis;
3221		}
3222		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3223			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3224			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3225		}
3226	}
3227
3228	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3229		ieee80211_ht_update_beacon(vap, bo);
3230		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3231	}
3232#ifdef IEEE80211_SUPPORT_TDMA
3233	if (vap->iv_caps & IEEE80211_C_TDMA) {
3234		/*
3235		 * NB: the beacon is potentially updated every TBTT.
3236		 */
3237		ieee80211_tdma_update_beacon(vap, bo);
3238	}
3239#endif
3240#ifdef IEEE80211_SUPPORT_MESH
3241	if (vap->iv_opmode == IEEE80211_M_MBSS)
3242		ieee80211_mesh_update_beacon(vap, bo);
3243#endif
3244
3245	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3246	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3247		struct ieee80211_tim_ie *tie =
3248			(struct ieee80211_tim_ie *) bo->bo_tim;
3249		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3250			u_int timlen, timoff, i;
3251			/*
3252			 * ATIM/DTIM needs updating.  If it fits in the
3253			 * current space allocated then just copy in the
3254			 * new bits.  Otherwise we need to move any trailing
3255			 * data to make room.  Note that we know there is
3256			 * contiguous space because ieee80211_beacon_allocate
3257			 * insures there is space in the mbuf to write a
3258			 * maximal-size virtual bitmap (based on iv_max_aid).
3259			 */
3260			/*
3261			 * Calculate the bitmap size and offset, copy any
3262			 * trailer out of the way, and then copy in the
3263			 * new bitmap and update the information element.
3264			 * Note that the tim bitmap must contain at least
3265			 * one byte and any offset must be even.
3266			 */
3267			if (vap->iv_ps_pending != 0) {
3268				timoff = 128;		/* impossibly large */
3269				for (i = 0; i < vap->iv_tim_len; i++)
3270					if (vap->iv_tim_bitmap[i]) {
3271						timoff = i &~ 1;
3272						break;
3273					}
3274				KASSERT(timoff != 128, ("tim bitmap empty!"));
3275				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3276					if (vap->iv_tim_bitmap[i])
3277						break;
3278				timlen = 1 + (i - timoff);
3279			} else {
3280				timoff = 0;
3281				timlen = 1;
3282			}
3283			if (timlen != bo->bo_tim_len) {
3284				/* copy up/down trailer */
3285				int adjust = tie->tim_bitmap+timlen
3286					   - bo->bo_tim_trailer;
3287				ovbcopy(bo->bo_tim_trailer,
3288				    bo->bo_tim_trailer+adjust,
3289				    bo->bo_tim_trailer_len);
3290				bo->bo_tim_trailer += adjust;
3291				bo->bo_erp += adjust;
3292				bo->bo_htinfo += adjust;
3293#ifdef IEEE80211_SUPPORT_SUPERG
3294				bo->bo_ath += adjust;
3295#endif
3296#ifdef IEEE80211_SUPPORT_TDMA
3297				bo->bo_tdma += adjust;
3298#endif
3299#ifdef IEEE80211_SUPPORT_MESH
3300				bo->bo_meshconf += adjust;
3301#endif
3302				bo->bo_appie += adjust;
3303				bo->bo_wme += adjust;
3304				bo->bo_csa += adjust;
3305				bo->bo_quiet += adjust;
3306				bo->bo_tim_len = timlen;
3307
3308				/* update information element */
3309				tie->tim_len = 3 + timlen;
3310				tie->tim_bitctl = timoff;
3311				len_changed = 1;
3312			}
3313			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3314				bo->bo_tim_len);
3315
3316			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3317
3318			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3319				"%s: TIM updated, pending %u, off %u, len %u\n",
3320				__func__, vap->iv_ps_pending, timoff, timlen);
3321		}
3322		/* count down DTIM period */
3323		if (tie->tim_count == 0)
3324			tie->tim_count = tie->tim_period - 1;
3325		else
3326			tie->tim_count--;
3327		/* update state for buffered multicast frames on DTIM */
3328		if (mcast && tie->tim_count == 0)
3329			tie->tim_bitctl |= 1;
3330		else
3331			tie->tim_bitctl &= ~1;
3332		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3333			struct ieee80211_csa_ie *csa =
3334			    (struct ieee80211_csa_ie *) bo->bo_csa;
3335
3336			/*
3337			 * Insert or update CSA ie.  If we're just starting
3338			 * to count down to the channel switch then we need
3339			 * to insert the CSA ie.  Otherwise we just need to
3340			 * drop the count.  The actual change happens above
3341			 * when the vap's count reaches the target count.
3342			 */
3343			if (vap->iv_csa_count == 0) {
3344				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3345				bo->bo_erp += sizeof(*csa);
3346				bo->bo_htinfo += sizeof(*csa);
3347				bo->bo_wme += sizeof(*csa);
3348#ifdef IEEE80211_SUPPORT_SUPERG
3349				bo->bo_ath += sizeof(*csa);
3350#endif
3351#ifdef IEEE80211_SUPPORT_TDMA
3352				bo->bo_tdma += sizeof(*csa);
3353#endif
3354#ifdef IEEE80211_SUPPORT_MESH
3355				bo->bo_meshconf += sizeof(*csa);
3356#endif
3357				bo->bo_appie += sizeof(*csa);
3358				bo->bo_csa_trailer_len += sizeof(*csa);
3359				bo->bo_quiet += sizeof(*csa);
3360				bo->bo_tim_trailer_len += sizeof(*csa);
3361				m->m_len += sizeof(*csa);
3362				m->m_pkthdr.len += sizeof(*csa);
3363
3364				ieee80211_add_csa(bo->bo_csa, vap);
3365			} else
3366				csa->csa_count--;
3367			vap->iv_csa_count++;
3368			/* NB: don't clear IEEE80211_BEACON_CSA */
3369		}
3370		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3371		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3372			if (vap->iv_quiet)
3373				ieee80211_add_quiet(bo->bo_quiet, vap);
3374		}
3375		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3376			/*
3377			 * ERP element needs updating.
3378			 */
3379			(void) ieee80211_add_erp(bo->bo_erp, ic);
3380			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3381		}
3382#ifdef IEEE80211_SUPPORT_SUPERG
3383		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3384			ieee80211_add_athcaps(bo->bo_ath, ni);
3385			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3386		}
3387#endif
3388	}
3389	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3390		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3391		int aielen;
3392		uint8_t *frm;
3393
3394		aielen = 0;
3395		if (aie != NULL)
3396			aielen += aie->ie_len;
3397		if (aielen != bo->bo_appie_len) {
3398			/* copy up/down trailer */
3399			int adjust = aielen - bo->bo_appie_len;
3400			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3401				bo->bo_tim_trailer_len);
3402			bo->bo_tim_trailer += adjust;
3403			bo->bo_appie += adjust;
3404			bo->bo_appie_len = aielen;
3405
3406			len_changed = 1;
3407		}
3408		frm = bo->bo_appie;
3409		if (aie != NULL)
3410			frm  = add_appie(frm, aie);
3411		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3412	}
3413	IEEE80211_UNLOCK(ic);
3414
3415	return len_changed;
3416}
3417
3418/*
3419 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3420 * tunnel encapsulation.  The frame is assumed to have an Ethernet
3421 * header at the front that must be stripped before prepending the
3422 * LLC followed by the Ethernet header passed in (with an Ethernet
3423 * type that specifies the payload size).
3424 */
3425struct mbuf *
3426ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3427	const struct ether_header *eh)
3428{
3429	struct llc *llc;
3430	uint16_t payload;
3431
3432	/* XXX optimize by combining m_adj+M_PREPEND */
3433	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3434	llc = mtod(m, struct llc *);
3435	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3436	llc->llc_control = LLC_UI;
3437	llc->llc_snap.org_code[0] = 0;
3438	llc->llc_snap.org_code[1] = 0;
3439	llc->llc_snap.org_code[2] = 0;
3440	llc->llc_snap.ether_type = eh->ether_type;
3441	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3442
3443	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3444	if (m == NULL) {		/* XXX cannot happen */
3445		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3446			"%s: no space for ether_header\n", __func__);
3447		vap->iv_stats.is_tx_nobuf++;
3448		return NULL;
3449	}
3450	ETHER_HEADER_COPY(mtod(m, void *), eh);
3451	mtod(m, struct ether_header *)->ether_type = htons(payload);
3452	return m;
3453}
3454
3455/*
3456 * Complete an mbuf transmission.
3457 *
3458 * For now, this simply processes a completed frame after the
3459 * driver has completed it's transmission and/or retransmission.
3460 * It assumes the frame is an 802.11 encapsulated frame.
3461 *
3462 * Later on it will grow to become the exit path for a given frame
3463 * from the driver and, depending upon how it's been encapsulated
3464 * and already transmitted, it may end up doing A-MPDU retransmission,
3465 * power save requeuing, etc.
3466 *
3467 * In order for the above to work, the driver entry point to this
3468 * must not hold any driver locks.  Thus, the driver needs to delay
3469 * any actual mbuf completion until it can release said locks.
3470 *
3471 * This frees the mbuf and if the mbuf has a node reference,
3472 * the node reference will be freed.
3473 */
3474void
3475ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3476{
3477
3478	if (ni != NULL) {
3479		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3480
3481		if (status == 0) {
3482			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3483			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3484			if (m->m_flags & M_MCAST)
3485				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3486		} else
3487			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3488		if (m->m_flags & M_TXCB)
3489			ieee80211_process_callback(ni, m, status);
3490		ieee80211_free_node(ni);
3491	}
3492	m_freem(m);
3493}
3494