ieee80211_output.c revision 289165
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 289165 2015-10-12 04:55:20Z adrian $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/endian.h>
39
40#include <sys/socket.h>
41
42#include <net/bpf.h>
43#include <net/ethernet.h>
44#include <net/if.h>
45#include <net/if_var.h>
46#include <net/if_llc.h>
47#include <net/if_media.h>
48#include <net/if_vlan_var.h>
49
50#include <net80211/ieee80211_var.h>
51#include <net80211/ieee80211_regdomain.h>
52#ifdef IEEE80211_SUPPORT_SUPERG
53#include <net80211/ieee80211_superg.h>
54#endif
55#ifdef IEEE80211_SUPPORT_TDMA
56#include <net80211/ieee80211_tdma.h>
57#endif
58#include <net80211/ieee80211_wds.h>
59#include <net80211/ieee80211_mesh.h>
60
61#if defined(INET) || defined(INET6)
62#include <netinet/in.h>
63#endif
64
65#ifdef INET
66#include <netinet/if_ether.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#endif
70#ifdef INET6
71#include <netinet/ip6.h>
72#endif
73
74#include <security/mac/mac_framework.h>
75
76#define	ETHER_HEADER_COPY(dst, src) \
77	memcpy(dst, src, sizeof(struct ether_header))
78
79/* unalligned little endian access */
80#define LE_WRITE_2(p, v) do {				\
81	((uint8_t *)(p))[0] = (v) & 0xff;		\
82	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83} while (0)
84#define LE_WRITE_4(p, v) do {				\
85	((uint8_t *)(p))[0] = (v) & 0xff;		\
86	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
87	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
88	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
89} while (0)
90
91static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
92	u_int hdrsize, u_int ciphdrsize, u_int mtu);
93static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
94
95#ifdef IEEE80211_DEBUG
96/*
97 * Decide if an outbound management frame should be
98 * printed when debugging is enabled.  This filters some
99 * of the less interesting frames that come frequently
100 * (e.g. beacons).
101 */
102static __inline int
103doprint(struct ieee80211vap *vap, int subtype)
104{
105	switch (subtype) {
106	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
107		return (vap->iv_opmode == IEEE80211_M_IBSS);
108	}
109	return 1;
110}
111#endif
112
113/*
114 * Transmit a frame to the given destination on the given VAP.
115 *
116 * It's up to the caller to figure out the details of who this
117 * is going to and resolving the node.
118 *
119 * This routine takes care of queuing it for power save,
120 * A-MPDU state stuff, fast-frames state stuff, encapsulation
121 * if required, then passing it up to the driver layer.
122 *
123 * This routine (for now) consumes the mbuf and frees the node
124 * reference; it ideally will return a TX status which reflects
125 * whether the mbuf was consumed or not, so the caller can
126 * free the mbuf (if appropriate) and the node reference (again,
127 * if appropriate.)
128 */
129int
130ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
131    struct ieee80211_node *ni)
132{
133	struct ieee80211com *ic = vap->iv_ic;
134	struct ifnet *ifp = vap->iv_ifp;
135	int len, mcast;
136
137	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138	    (m->m_flags & M_PWR_SAV) == 0) {
139		/*
140		 * Station in power save mode; pass the frame
141		 * to the 802.11 layer and continue.  We'll get
142		 * the frame back when the time is right.
143		 * XXX lose WDS vap linkage?
144		 */
145		if (ieee80211_pwrsave(ni, m) != 0)
146			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
147		ieee80211_free_node(ni);
148
149		/*
150		 * We queued it fine, so tell the upper layer
151		 * that we consumed it.
152		 */
153		return (0);
154	}
155	/* calculate priority so drivers can find the tx queue */
156	if (ieee80211_classify(ni, m)) {
157		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
158		    ni->ni_macaddr, NULL,
159		    "%s", "classification failure");
160		vap->iv_stats.is_tx_classify++;
161		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
162		m_freem(m);
163		ieee80211_free_node(ni);
164
165		/* XXX better status? */
166		return (0);
167	}
168	/*
169	 * Stash the node pointer.  Note that we do this after
170	 * any call to ieee80211_dwds_mcast because that code
171	 * uses any existing value for rcvif to identify the
172	 * interface it (might have been) received on.
173	 */
174	m->m_pkthdr.rcvif = (void *)ni;
175	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
176	len = m->m_pkthdr.len;
177
178	BPF_MTAP(ifp, m);		/* 802.3 tx */
179
180	/*
181	 * Check if A-MPDU tx aggregation is setup or if we
182	 * should try to enable it.  The sta must be associated
183	 * with HT and A-MPDU enabled for use.  When the policy
184	 * routine decides we should enable A-MPDU we issue an
185	 * ADDBA request and wait for a reply.  The frame being
186	 * encapsulated will go out w/o using A-MPDU, or possibly
187	 * it might be collected by the driver and held/retransmit.
188	 * The default ic_ampdu_enable routine handles staggering
189	 * ADDBA requests in case the receiver NAK's us or we are
190	 * otherwise unable to establish a BA stream.
191	 */
192	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
193	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
194	    (m->m_flags & M_EAPOL) == 0) {
195		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
196		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
197
198		ieee80211_txampdu_count_packet(tap);
199		if (IEEE80211_AMPDU_RUNNING(tap)) {
200			/*
201			 * Operational, mark frame for aggregation.
202			 *
203			 * XXX do tx aggregation here
204			 */
205			m->m_flags |= M_AMPDU_MPDU;
206		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
207		    ic->ic_ampdu_enable(ni, tap)) {
208			/*
209			 * Not negotiated yet, request service.
210			 */
211			ieee80211_ampdu_request(ni, tap);
212			/* XXX hold frame for reply? */
213		}
214	}
215
216	/*
217	 * XXX If we aren't doing AMPDU TX then we /could/ do
218	 * fast-frames encapsulation, however right now this
219	 * output logic doesn't handle that case.
220	 *
221	 * So we'll be limited to "fast-frames" xmit for non-11n STA
222	 * and "no fast frames" xmit for 11n STAs.
223	 * It'd be nice to eventually test fast-frames out by
224	 * gracefully falling from failing A-MPDU transmission
225	 * (driver says no, fail to negotiate it with peer) to
226	 * using fast-frames.
227	 *
228	 * Note: we can actually put A-MSDU's inside an A-MPDU,
229	 * so hopefully we can figure out how to make that particular
230	 * combination work right.
231	 */
232#ifdef IEEE80211_SUPPORT_SUPERG
233	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
234		m = ieee80211_ff_check(ni, m);
235		if (m == NULL) {
236			/* NB: any ni ref held on stageq */
237			return (0);
238		}
239	}
240#endif /* IEEE80211_SUPPORT_SUPERG */
241
242	/*
243	 * Grab the TX lock - serialise the TX process from this
244	 * point (where TX state is being checked/modified)
245	 * through to driver queue.
246	 */
247	IEEE80211_TX_LOCK(ic);
248
249	/*
250	 * XXX make the encap and transmit code a separate function
251	 * so things like the FF (and later A-MSDU) path can just call
252	 * it for flushed frames.
253	 */
254	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
255		/*
256		 * Encapsulate the packet in prep for transmission.
257		 */
258		m = ieee80211_encap(vap, ni, m);
259		if (m == NULL) {
260			/* NB: stat+msg handled in ieee80211_encap */
261			IEEE80211_TX_UNLOCK(ic);
262			ieee80211_free_node(ni);
263			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
264			return (ENOBUFS);
265		}
266	}
267	(void) ieee80211_parent_xmitpkt(ic, m);
268
269	/*
270	 * Unlock at this point - no need to hold it across
271	 * ieee80211_free_node() (ie, the comlock)
272	 */
273	IEEE80211_TX_UNLOCK(ic);
274	ic->ic_lastdata = ticks;
275
276	return (0);
277}
278
279
280
281/*
282 * Send the given mbuf through the given vap.
283 *
284 * This consumes the mbuf regardless of whether the transmit
285 * was successful or not.
286 *
287 * This does none of the initial checks that ieee80211_start()
288 * does (eg CAC timeout, interface wakeup) - the caller must
289 * do this first.
290 */
291static int
292ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
293{
294#define	IS_DWDS(vap) \
295	(vap->iv_opmode == IEEE80211_M_WDS && \
296	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
297	struct ieee80211com *ic = vap->iv_ic;
298	struct ifnet *ifp = vap->iv_ifp;
299	struct ieee80211_node *ni;
300	struct ether_header *eh;
301
302	/*
303	 * Cancel any background scan.
304	 */
305	if (ic->ic_flags & IEEE80211_F_SCAN)
306		ieee80211_cancel_anyscan(vap);
307	/*
308	 * Find the node for the destination so we can do
309	 * things like power save and fast frames aggregation.
310	 *
311	 * NB: past this point various code assumes the first
312	 *     mbuf has the 802.3 header present (and contiguous).
313	 */
314	ni = NULL;
315	if (m->m_len < sizeof(struct ether_header) &&
316	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
317		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
318		    "discard frame, %s\n", "m_pullup failed");
319		vap->iv_stats.is_tx_nobuf++;	/* XXX */
320		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
321		return (ENOBUFS);
322	}
323	eh = mtod(m, struct ether_header *);
324	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
325		if (IS_DWDS(vap)) {
326			/*
327			 * Only unicast frames from the above go out
328			 * DWDS vaps; multicast frames are handled by
329			 * dispatching the frame as it comes through
330			 * the AP vap (see below).
331			 */
332			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
333			    eh->ether_dhost, "mcast", "%s", "on DWDS");
334			vap->iv_stats.is_dwds_mcast++;
335			m_freem(m);
336			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
337			/* XXX better status? */
338			return (ENOBUFS);
339		}
340		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
341			/*
342			 * Spam DWDS vap's w/ multicast traffic.
343			 */
344			/* XXX only if dwds in use? */
345			ieee80211_dwds_mcast(vap, m);
346		}
347	}
348#ifdef IEEE80211_SUPPORT_MESH
349	if (vap->iv_opmode != IEEE80211_M_MBSS) {
350#endif
351		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
352		if (ni == NULL) {
353			/* NB: ieee80211_find_txnode does stat+msg */
354			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
355			m_freem(m);
356			/* XXX better status? */
357			return (ENOBUFS);
358		}
359		if (ni->ni_associd == 0 &&
360		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
361			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
362			    eh->ether_dhost, NULL,
363			    "sta not associated (type 0x%04x)",
364			    htons(eh->ether_type));
365			vap->iv_stats.is_tx_notassoc++;
366			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
367			m_freem(m);
368			ieee80211_free_node(ni);
369			/* XXX better status? */
370			return (ENOBUFS);
371		}
372#ifdef IEEE80211_SUPPORT_MESH
373	} else {
374		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
375			/*
376			 * Proxy station only if configured.
377			 */
378			if (!ieee80211_mesh_isproxyena(vap)) {
379				IEEE80211_DISCARD_MAC(vap,
380				    IEEE80211_MSG_OUTPUT |
381				    IEEE80211_MSG_MESH,
382				    eh->ether_dhost, NULL,
383				    "%s", "proxy not enabled");
384				vap->iv_stats.is_mesh_notproxy++;
385				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
386				m_freem(m);
387				/* XXX better status? */
388				return (ENOBUFS);
389			}
390			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
391			    "forward frame from DS SA(%6D), DA(%6D)\n",
392			    eh->ether_shost, ":",
393			    eh->ether_dhost, ":");
394			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
395		}
396		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
397		if (ni == NULL) {
398			/*
399			 * NB: ieee80211_mesh_discover holds/disposes
400			 * frame (e.g. queueing on path discovery).
401			 */
402			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
403			/* XXX better status? */
404			return (ENOBUFS);
405		}
406	}
407#endif
408
409	/*
410	 * We've resolved the sender, so attempt to transmit it.
411	 */
412
413	if (vap->iv_state == IEEE80211_S_SLEEP) {
414		/*
415		 * In power save; queue frame and then  wakeup device
416		 * for transmit.
417		 */
418		ic->ic_lastdata = ticks;
419		if (ieee80211_pwrsave(ni, m) != 0)
420			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
421		ieee80211_free_node(ni);
422		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
423		return (0);
424	}
425
426	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
427		return (ENOBUFS);
428	return (0);
429#undef	IS_DWDS
430}
431
432/*
433 * Start method for vap's.  All packets from the stack come
434 * through here.  We handle common processing of the packets
435 * before dispatching them to the underlying device.
436 *
437 * if_transmit() requires that the mbuf be consumed by this call
438 * regardless of the return condition.
439 */
440int
441ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
442{
443	struct ieee80211vap *vap = ifp->if_softc;
444	struct ieee80211com *ic = vap->iv_ic;
445
446	/*
447	 * No data frames go out unless we're running.
448	 * Note in particular this covers CAC and CSA
449	 * states (though maybe we should check muting
450	 * for CSA).
451	 */
452	if (vap->iv_state != IEEE80211_S_RUN &&
453	    vap->iv_state != IEEE80211_S_SLEEP) {
454		IEEE80211_LOCK(ic);
455		/* re-check under the com lock to avoid races */
456		if (vap->iv_state != IEEE80211_S_RUN &&
457		    vap->iv_state != IEEE80211_S_SLEEP) {
458			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
459			    "%s: ignore queue, in %s state\n",
460			    __func__, ieee80211_state_name[vap->iv_state]);
461			vap->iv_stats.is_tx_badstate++;
462			IEEE80211_UNLOCK(ic);
463			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
464			m_freem(m);
465			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
466			return (ENETDOWN);
467		}
468		IEEE80211_UNLOCK(ic);
469	}
470
471	/*
472	 * Sanitize mbuf flags for net80211 use.  We cannot
473	 * clear M_PWR_SAV or M_MORE_DATA because these may
474	 * be set for frames that are re-submitted from the
475	 * power save queue.
476	 *
477	 * NB: This must be done before ieee80211_classify as
478	 *     it marks EAPOL in frames with M_EAPOL.
479	 */
480	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
481
482	/*
483	 * Bump to the packet transmission path.
484	 * The mbuf will be consumed here.
485	 */
486	return (ieee80211_start_pkt(vap, m));
487}
488
489void
490ieee80211_vap_qflush(struct ifnet *ifp)
491{
492
493	/* Empty for now */
494}
495
496/*
497 * 802.11 raw output routine.
498 *
499 * XXX TODO: this (and other send routines) should correctly
500 * XXX keep the pwr mgmt bit set if it decides to call into the
501 * XXX driver to send a frame whilst the state is SLEEP.
502 *
503 * Otherwise the peer may decide that we're awake and flood us
504 * with traffic we are still too asleep to receive!
505 */
506int
507ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
508    struct mbuf *m, const struct ieee80211_bpf_params *params)
509{
510	struct ieee80211com *ic = vap->iv_ic;
511	int error;
512
513	/*
514	 * Set node - the caller has taken a reference, so ensure
515	 * that the mbuf has the same node value that
516	 * it would if it were going via the normal path.
517	 */
518	m->m_pkthdr.rcvif = (void *)ni;
519
520	/*
521	 * Attempt to add bpf transmit parameters.
522	 *
523	 * For now it's ok to fail; the raw_xmit api still takes
524	 * them as an option.
525	 *
526	 * Later on when ic_raw_xmit() has params removed,
527	 * they'll have to be added - so fail the transmit if
528	 * they can't be.
529	 */
530	if (params)
531		(void) ieee80211_add_xmit_params(m, params);
532
533	error = ic->ic_raw_xmit(ni, m, params);
534	if (error) {
535		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
536		ieee80211_free_node(ni);
537	}
538	return (error);
539}
540
541/*
542 * 802.11 output routine. This is (currently) used only to
543 * connect bpf write calls to the 802.11 layer for injecting
544 * raw 802.11 frames.
545 */
546int
547ieee80211_output(struct ifnet *ifp, struct mbuf *m,
548	const struct sockaddr *dst, struct route *ro)
549{
550#define senderr(e) do { error = (e); goto bad;} while (0)
551	struct ieee80211_node *ni = NULL;
552	struct ieee80211vap *vap;
553	struct ieee80211_frame *wh;
554	struct ieee80211com *ic = NULL;
555	int error;
556	int ret;
557
558	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
559		/*
560		 * Short-circuit requests if the vap is marked OACTIVE
561		 * as this can happen because a packet came down through
562		 * ieee80211_start before the vap entered RUN state in
563		 * which case it's ok to just drop the frame.  This
564		 * should not be necessary but callers of if_output don't
565		 * check OACTIVE.
566		 */
567		senderr(ENETDOWN);
568	}
569	vap = ifp->if_softc;
570	ic = vap->iv_ic;
571	/*
572	 * Hand to the 802.3 code if not tagged as
573	 * a raw 802.11 frame.
574	 */
575	if (dst->sa_family != AF_IEEE80211)
576		return vap->iv_output(ifp, m, dst, ro);
577#ifdef MAC
578	error = mac_ifnet_check_transmit(ifp, m);
579	if (error)
580		senderr(error);
581#endif
582	if (ifp->if_flags & IFF_MONITOR)
583		senderr(ENETDOWN);
584	if (!IFNET_IS_UP_RUNNING(ifp))
585		senderr(ENETDOWN);
586	if (vap->iv_state == IEEE80211_S_CAC) {
587		IEEE80211_DPRINTF(vap,
588		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
589		    "block %s frame in CAC state\n", "raw data");
590		vap->iv_stats.is_tx_badstate++;
591		senderr(EIO);		/* XXX */
592	} else if (vap->iv_state == IEEE80211_S_SCAN)
593		senderr(EIO);
594	/* XXX bypass bridge, pfil, carp, etc. */
595
596	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
597		senderr(EIO);	/* XXX */
598	wh = mtod(m, struct ieee80211_frame *);
599	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
600	    IEEE80211_FC0_VERSION_0)
601		senderr(EIO);	/* XXX */
602
603	/* locate destination node */
604	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
605	case IEEE80211_FC1_DIR_NODS:
606	case IEEE80211_FC1_DIR_FROMDS:
607		ni = ieee80211_find_txnode(vap, wh->i_addr1);
608		break;
609	case IEEE80211_FC1_DIR_TODS:
610	case IEEE80211_FC1_DIR_DSTODS:
611		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
612			senderr(EIO);	/* XXX */
613		ni = ieee80211_find_txnode(vap, wh->i_addr3);
614		break;
615	default:
616		senderr(EIO);	/* XXX */
617	}
618	if (ni == NULL) {
619		/*
620		 * Permit packets w/ bpf params through regardless
621		 * (see below about sa_len).
622		 */
623		if (dst->sa_len == 0)
624			senderr(EHOSTUNREACH);
625		ni = ieee80211_ref_node(vap->iv_bss);
626	}
627
628	/*
629	 * Sanitize mbuf for net80211 flags leaked from above.
630	 *
631	 * NB: This must be done before ieee80211_classify as
632	 *     it marks EAPOL in frames with M_EAPOL.
633	 */
634	m->m_flags &= ~M_80211_TX;
635
636	/* calculate priority so drivers can find the tx queue */
637	/* XXX assumes an 802.3 frame */
638	if (ieee80211_classify(ni, m))
639		senderr(EIO);		/* XXX */
640
641	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
642	IEEE80211_NODE_STAT(ni, tx_data);
643	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
644		IEEE80211_NODE_STAT(ni, tx_mcast);
645		m->m_flags |= M_MCAST;
646	} else
647		IEEE80211_NODE_STAT(ni, tx_ucast);
648	/* NB: ieee80211_encap does not include 802.11 header */
649	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
650
651	IEEE80211_TX_LOCK(ic);
652
653	/*
654	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
655	 * present by setting the sa_len field of the sockaddr (yes,
656	 * this is a hack).
657	 * NB: we assume sa_data is suitably aligned to cast.
658	 */
659	ret = ieee80211_raw_output(vap, ni, m,
660	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
661		dst->sa_data : NULL));
662	IEEE80211_TX_UNLOCK(ic);
663	return (ret);
664bad:
665	if (m != NULL)
666		m_freem(m);
667	if (ni != NULL)
668		ieee80211_free_node(ni);
669	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
670	return error;
671#undef senderr
672}
673
674/*
675 * Set the direction field and address fields of an outgoing
676 * frame.  Note this should be called early on in constructing
677 * a frame as it sets i_fc[1]; other bits can then be or'd in.
678 */
679void
680ieee80211_send_setup(
681	struct ieee80211_node *ni,
682	struct mbuf *m,
683	int type, int tid,
684	const uint8_t sa[IEEE80211_ADDR_LEN],
685	const uint8_t da[IEEE80211_ADDR_LEN],
686	const uint8_t bssid[IEEE80211_ADDR_LEN])
687{
688#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
689	struct ieee80211vap *vap = ni->ni_vap;
690	struct ieee80211_tx_ampdu *tap;
691	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
692	ieee80211_seq seqno;
693
694	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
695
696	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
697	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
698		switch (vap->iv_opmode) {
699		case IEEE80211_M_STA:
700			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
701			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
702			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
703			IEEE80211_ADDR_COPY(wh->i_addr3, da);
704			break;
705		case IEEE80211_M_IBSS:
706		case IEEE80211_M_AHDEMO:
707			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
708			IEEE80211_ADDR_COPY(wh->i_addr1, da);
709			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
710			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
711			break;
712		case IEEE80211_M_HOSTAP:
713			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
714			IEEE80211_ADDR_COPY(wh->i_addr1, da);
715			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
716			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
717			break;
718		case IEEE80211_M_WDS:
719			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
720			IEEE80211_ADDR_COPY(wh->i_addr1, da);
721			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
722			IEEE80211_ADDR_COPY(wh->i_addr3, da);
723			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
724			break;
725		case IEEE80211_M_MBSS:
726#ifdef IEEE80211_SUPPORT_MESH
727			if (IEEE80211_IS_MULTICAST(da)) {
728				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
729				/* XXX next hop */
730				IEEE80211_ADDR_COPY(wh->i_addr1, da);
731				IEEE80211_ADDR_COPY(wh->i_addr2,
732				    vap->iv_myaddr);
733			} else {
734				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
735				IEEE80211_ADDR_COPY(wh->i_addr1, da);
736				IEEE80211_ADDR_COPY(wh->i_addr2,
737				    vap->iv_myaddr);
738				IEEE80211_ADDR_COPY(wh->i_addr3, da);
739				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
740			}
741#endif
742			break;
743		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
744			break;
745		}
746	} else {
747		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
748		IEEE80211_ADDR_COPY(wh->i_addr1, da);
749		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
750#ifdef IEEE80211_SUPPORT_MESH
751		if (vap->iv_opmode == IEEE80211_M_MBSS)
752			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
753		else
754#endif
755			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
756	}
757	*(uint16_t *)&wh->i_dur[0] = 0;
758
759	tap = &ni->ni_tx_ampdu[tid];
760	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
761		m->m_flags |= M_AMPDU_MPDU;
762	else {
763		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
764				      type & IEEE80211_FC0_SUBTYPE_MASK))
765			seqno = ni->ni_txseqs[tid]++;
766		else
767			seqno = 0;
768
769		*(uint16_t *)&wh->i_seq[0] =
770		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
771		M_SEQNO_SET(m, seqno);
772	}
773
774	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
775		m->m_flags |= M_MCAST;
776#undef WH4
777}
778
779/*
780 * Send a management frame to the specified node.  The node pointer
781 * must have a reference as the pointer will be passed to the driver
782 * and potentially held for a long time.  If the frame is successfully
783 * dispatched to the driver, then it is responsible for freeing the
784 * reference (and potentially free'ing up any associated storage);
785 * otherwise deal with reclaiming any reference (on error).
786 */
787int
788ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
789	struct ieee80211_bpf_params *params)
790{
791	struct ieee80211vap *vap = ni->ni_vap;
792	struct ieee80211com *ic = ni->ni_ic;
793	struct ieee80211_frame *wh;
794	int ret;
795
796	KASSERT(ni != NULL, ("null node"));
797
798	if (vap->iv_state == IEEE80211_S_CAC) {
799		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
800		    ni, "block %s frame in CAC state",
801			ieee80211_mgt_subtype_name[
802			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
803				IEEE80211_FC0_SUBTYPE_SHIFT]);
804		vap->iv_stats.is_tx_badstate++;
805		ieee80211_free_node(ni);
806		m_freem(m);
807		return EIO;		/* XXX */
808	}
809
810	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
811	if (m == NULL) {
812		ieee80211_free_node(ni);
813		return ENOMEM;
814	}
815
816	IEEE80211_TX_LOCK(ic);
817
818	wh = mtod(m, struct ieee80211_frame *);
819	ieee80211_send_setup(ni, m,
820	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
821	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
822	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
823		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
824		    "encrypting frame (%s)", __func__);
825		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
826	}
827	m->m_flags |= M_ENCAP;		/* mark encapsulated */
828
829	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
830	M_WME_SETAC(m, params->ibp_pri);
831
832#ifdef IEEE80211_DEBUG
833	/* avoid printing too many frames */
834	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
835	    ieee80211_msg_dumppkts(vap)) {
836		printf("[%s] send %s on channel %u\n",
837		    ether_sprintf(wh->i_addr1),
838		    ieee80211_mgt_subtype_name[
839			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
840				IEEE80211_FC0_SUBTYPE_SHIFT],
841		    ieee80211_chan2ieee(ic, ic->ic_curchan));
842	}
843#endif
844	IEEE80211_NODE_STAT(ni, tx_mgmt);
845
846	ret = ieee80211_raw_output(vap, ni, m, params);
847	IEEE80211_TX_UNLOCK(ic);
848	return (ret);
849}
850
851/*
852 * Send a null data frame to the specified node.  If the station
853 * is setup for QoS then a QoS Null Data frame is constructed.
854 * If this is a WDS station then a 4-address frame is constructed.
855 *
856 * NB: the caller is assumed to have setup a node reference
857 *     for use; this is necessary to deal with a race condition
858 *     when probing for inactive stations.  Like ieee80211_mgmt_output
859 *     we must cleanup any node reference on error;  however we
860 *     can safely just unref it as we know it will never be the
861 *     last reference to the node.
862 */
863int
864ieee80211_send_nulldata(struct ieee80211_node *ni)
865{
866	struct ieee80211vap *vap = ni->ni_vap;
867	struct ieee80211com *ic = ni->ni_ic;
868	struct mbuf *m;
869	struct ieee80211_frame *wh;
870	int hdrlen;
871	uint8_t *frm;
872	int ret;
873
874	if (vap->iv_state == IEEE80211_S_CAC) {
875		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
876		    ni, "block %s frame in CAC state", "null data");
877		ieee80211_unref_node(&ni);
878		vap->iv_stats.is_tx_badstate++;
879		return EIO;		/* XXX */
880	}
881
882	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
883		hdrlen = sizeof(struct ieee80211_qosframe);
884	else
885		hdrlen = sizeof(struct ieee80211_frame);
886	/* NB: only WDS vap's get 4-address frames */
887	if (vap->iv_opmode == IEEE80211_M_WDS)
888		hdrlen += IEEE80211_ADDR_LEN;
889	if (ic->ic_flags & IEEE80211_F_DATAPAD)
890		hdrlen = roundup(hdrlen, sizeof(uint32_t));
891
892	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
893	if (m == NULL) {
894		/* XXX debug msg */
895		ieee80211_unref_node(&ni);
896		vap->iv_stats.is_tx_nobuf++;
897		return ENOMEM;
898	}
899	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
900	    ("leading space %zd", M_LEADINGSPACE(m)));
901	M_PREPEND(m, hdrlen, M_NOWAIT);
902	if (m == NULL) {
903		/* NB: cannot happen */
904		ieee80211_free_node(ni);
905		return ENOMEM;
906	}
907
908	IEEE80211_TX_LOCK(ic);
909
910	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
911	if (ni->ni_flags & IEEE80211_NODE_QOS) {
912		const int tid = WME_AC_TO_TID(WME_AC_BE);
913		uint8_t *qos;
914
915		ieee80211_send_setup(ni, m,
916		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
917		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
918
919		if (vap->iv_opmode == IEEE80211_M_WDS)
920			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
921		else
922			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
923		qos[0] = tid & IEEE80211_QOS_TID;
924		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
925			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
926		qos[1] = 0;
927	} else {
928		ieee80211_send_setup(ni, m,
929		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
930		    IEEE80211_NONQOS_TID,
931		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
932	}
933	if (vap->iv_opmode != IEEE80211_M_WDS) {
934		/* NB: power management bit is never sent by an AP */
935		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
936		    vap->iv_opmode != IEEE80211_M_HOSTAP)
937			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
938	}
939	m->m_len = m->m_pkthdr.len = hdrlen;
940	m->m_flags |= M_ENCAP;		/* mark encapsulated */
941
942	M_WME_SETAC(m, WME_AC_BE);
943
944	IEEE80211_NODE_STAT(ni, tx_data);
945
946	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
947	    "send %snull data frame on channel %u, pwr mgt %s",
948	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
949	    ieee80211_chan2ieee(ic, ic->ic_curchan),
950	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
951
952	ret = ieee80211_raw_output(vap, ni, m, NULL);
953	IEEE80211_TX_UNLOCK(ic);
954	return (ret);
955}
956
957/*
958 * Assign priority to a frame based on any vlan tag assigned
959 * to the station and/or any Diffserv setting in an IP header.
960 * Finally, if an ACM policy is setup (in station mode) it's
961 * applied.
962 */
963int
964ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
965{
966	const struct ether_header *eh = mtod(m, struct ether_header *);
967	int v_wme_ac, d_wme_ac, ac;
968
969	/*
970	 * Always promote PAE/EAPOL frames to high priority.
971	 */
972	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
973		/* NB: mark so others don't need to check header */
974		m->m_flags |= M_EAPOL;
975		ac = WME_AC_VO;
976		goto done;
977	}
978	/*
979	 * Non-qos traffic goes to BE.
980	 */
981	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
982		ac = WME_AC_BE;
983		goto done;
984	}
985
986	/*
987	 * If node has a vlan tag then all traffic
988	 * to it must have a matching tag.
989	 */
990	v_wme_ac = 0;
991	if (ni->ni_vlan != 0) {
992		 if ((m->m_flags & M_VLANTAG) == 0) {
993			IEEE80211_NODE_STAT(ni, tx_novlantag);
994			return 1;
995		}
996		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
997		    EVL_VLANOFTAG(ni->ni_vlan)) {
998			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
999			return 1;
1000		}
1001		/* map vlan priority to AC */
1002		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1003	}
1004
1005	/* XXX m_copydata may be too slow for fast path */
1006#ifdef INET
1007	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1008		uint8_t tos;
1009		/*
1010		 * IP frame, map the DSCP bits from the TOS field.
1011		 */
1012		/* NB: ip header may not be in first mbuf */
1013		m_copydata(m, sizeof(struct ether_header) +
1014		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1015		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1016		d_wme_ac = TID_TO_WME_AC(tos);
1017	} else {
1018#endif /* INET */
1019#ifdef INET6
1020	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1021		uint32_t flow;
1022		uint8_t tos;
1023		/*
1024		 * IPv6 frame, map the DSCP bits from the traffic class field.
1025		 */
1026		m_copydata(m, sizeof(struct ether_header) +
1027		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1028		    (caddr_t) &flow);
1029		tos = (uint8_t)(ntohl(flow) >> 20);
1030		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1031		d_wme_ac = TID_TO_WME_AC(tos);
1032	} else {
1033#endif /* INET6 */
1034		d_wme_ac = WME_AC_BE;
1035#ifdef INET6
1036	}
1037#endif
1038#ifdef INET
1039	}
1040#endif
1041	/*
1042	 * Use highest priority AC.
1043	 */
1044	if (v_wme_ac > d_wme_ac)
1045		ac = v_wme_ac;
1046	else
1047		ac = d_wme_ac;
1048
1049	/*
1050	 * Apply ACM policy.
1051	 */
1052	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1053		static const int acmap[4] = {
1054			WME_AC_BK,	/* WME_AC_BE */
1055			WME_AC_BK,	/* WME_AC_BK */
1056			WME_AC_BE,	/* WME_AC_VI */
1057			WME_AC_VI,	/* WME_AC_VO */
1058		};
1059		struct ieee80211com *ic = ni->ni_ic;
1060
1061		while (ac != WME_AC_BK &&
1062		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1063			ac = acmap[ac];
1064	}
1065done:
1066	M_WME_SETAC(m, ac);
1067	return 0;
1068}
1069
1070/*
1071 * Insure there is sufficient contiguous space to encapsulate the
1072 * 802.11 data frame.  If room isn't already there, arrange for it.
1073 * Drivers and cipher modules assume we have done the necessary work
1074 * and fail rudely if they don't find the space they need.
1075 */
1076struct mbuf *
1077ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1078	struct ieee80211_key *key, struct mbuf *m)
1079{
1080#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1081	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1082
1083	if (key != NULL) {
1084		/* XXX belongs in crypto code? */
1085		needed_space += key->wk_cipher->ic_header;
1086		/* XXX frags */
1087		/*
1088		 * When crypto is being done in the host we must insure
1089		 * the data are writable for the cipher routines; clone
1090		 * a writable mbuf chain.
1091		 * XXX handle SWMIC specially
1092		 */
1093		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1094			m = m_unshare(m, M_NOWAIT);
1095			if (m == NULL) {
1096				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1097				    "%s: cannot get writable mbuf\n", __func__);
1098				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1099				return NULL;
1100			}
1101		}
1102	}
1103	/*
1104	 * We know we are called just before stripping an Ethernet
1105	 * header and prepending an LLC header.  This means we know
1106	 * there will be
1107	 *	sizeof(struct ether_header) - sizeof(struct llc)
1108	 * bytes recovered to which we need additional space for the
1109	 * 802.11 header and any crypto header.
1110	 */
1111	/* XXX check trailing space and copy instead? */
1112	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1113		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1114		if (n == NULL) {
1115			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1116			    "%s: cannot expand storage\n", __func__);
1117			vap->iv_stats.is_tx_nobuf++;
1118			m_freem(m);
1119			return NULL;
1120		}
1121		KASSERT(needed_space <= MHLEN,
1122		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1123		/*
1124		 * Setup new mbuf to have leading space to prepend the
1125		 * 802.11 header and any crypto header bits that are
1126		 * required (the latter are added when the driver calls
1127		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1128		 */
1129		/* NB: must be first 'cuz it clobbers m_data */
1130		m_move_pkthdr(n, m);
1131		n->m_len = 0;			/* NB: m_gethdr does not set */
1132		n->m_data += needed_space;
1133		/*
1134		 * Pull up Ethernet header to create the expected layout.
1135		 * We could use m_pullup but that's overkill (i.e. we don't
1136		 * need the actual data) and it cannot fail so do it inline
1137		 * for speed.
1138		 */
1139		/* NB: struct ether_header is known to be contiguous */
1140		n->m_len += sizeof(struct ether_header);
1141		m->m_len -= sizeof(struct ether_header);
1142		m->m_data += sizeof(struct ether_header);
1143		/*
1144		 * Replace the head of the chain.
1145		 */
1146		n->m_next = m;
1147		m = n;
1148	}
1149	return m;
1150#undef TO_BE_RECLAIMED
1151}
1152
1153/*
1154 * Return the transmit key to use in sending a unicast frame.
1155 * If a unicast key is set we use that.  When no unicast key is set
1156 * we fall back to the default transmit key.
1157 */
1158static __inline struct ieee80211_key *
1159ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1160	struct ieee80211_node *ni)
1161{
1162	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1163		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1164		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1165			return NULL;
1166		return &vap->iv_nw_keys[vap->iv_def_txkey];
1167	} else {
1168		return &ni->ni_ucastkey;
1169	}
1170}
1171
1172/*
1173 * Return the transmit key to use in sending a multicast frame.
1174 * Multicast traffic always uses the group key which is installed as
1175 * the default tx key.
1176 */
1177static __inline struct ieee80211_key *
1178ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1179	struct ieee80211_node *ni)
1180{
1181	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1182	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1183		return NULL;
1184	return &vap->iv_nw_keys[vap->iv_def_txkey];
1185}
1186
1187/*
1188 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1189 * If an error is encountered NULL is returned.  The caller is required
1190 * to provide a node reference and pullup the ethernet header in the
1191 * first mbuf.
1192 *
1193 * NB: Packet is assumed to be processed by ieee80211_classify which
1194 *     marked EAPOL frames w/ M_EAPOL.
1195 */
1196struct mbuf *
1197ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1198    struct mbuf *m)
1199{
1200#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1201#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1202	struct ieee80211com *ic = ni->ni_ic;
1203#ifdef IEEE80211_SUPPORT_MESH
1204	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1205	struct ieee80211_meshcntl_ae10 *mc;
1206	struct ieee80211_mesh_route *rt = NULL;
1207	int dir = -1;
1208#endif
1209	struct ether_header eh;
1210	struct ieee80211_frame *wh;
1211	struct ieee80211_key *key;
1212	struct llc *llc;
1213	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1214	ieee80211_seq seqno;
1215	int meshhdrsize, meshae;
1216	uint8_t *qos;
1217
1218	IEEE80211_TX_LOCK_ASSERT(ic);
1219
1220	/*
1221	 * Copy existing Ethernet header to a safe place.  The
1222	 * rest of the code assumes it's ok to strip it when
1223	 * reorganizing state for the final encapsulation.
1224	 */
1225	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1226	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1227
1228	/*
1229	 * Insure space for additional headers.  First identify
1230	 * transmit key to use in calculating any buffer adjustments
1231	 * required.  This is also used below to do privacy
1232	 * encapsulation work.  Then calculate the 802.11 header
1233	 * size and any padding required by the driver.
1234	 *
1235	 * Note key may be NULL if we fall back to the default
1236	 * transmit key and that is not set.  In that case the
1237	 * buffer may not be expanded as needed by the cipher
1238	 * routines, but they will/should discard it.
1239	 */
1240	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1241		if (vap->iv_opmode == IEEE80211_M_STA ||
1242		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1243		    (vap->iv_opmode == IEEE80211_M_WDS &&
1244		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1245			key = ieee80211_crypto_getucastkey(vap, ni);
1246		else
1247			key = ieee80211_crypto_getmcastkey(vap, ni);
1248		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1249			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1250			    eh.ether_dhost,
1251			    "no default transmit key (%s) deftxkey %u",
1252			    __func__, vap->iv_def_txkey);
1253			vap->iv_stats.is_tx_nodefkey++;
1254			goto bad;
1255		}
1256	} else
1257		key = NULL;
1258	/*
1259	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1260	 * frames so suppress use.  This may be an issue if other
1261	 * ap's require all data frames to be QoS-encapsulated
1262	 * once negotiated in which case we'll need to make this
1263	 * configurable.
1264	 * NB: mesh data frames are QoS.
1265	 */
1266	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1267	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1268	    (m->m_flags & M_EAPOL) == 0;
1269	if (addqos)
1270		hdrsize = sizeof(struct ieee80211_qosframe);
1271	else
1272		hdrsize = sizeof(struct ieee80211_frame);
1273#ifdef IEEE80211_SUPPORT_MESH
1274	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1275		/*
1276		 * Mesh data frames are encapsulated according to the
1277		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1278		 * o Group Addressed data (aka multicast) originating
1279		 *   at the local sta are sent w/ 3-address format and
1280		 *   address extension mode 00
1281		 * o Individually Addressed data (aka unicast) originating
1282		 *   at the local sta are sent w/ 4-address format and
1283		 *   address extension mode 00
1284		 * o Group Addressed data forwarded from a non-mesh sta are
1285		 *   sent w/ 3-address format and address extension mode 01
1286		 * o Individually Address data from another sta are sent
1287		 *   w/ 4-address format and address extension mode 10
1288		 */
1289		is4addr = 0;		/* NB: don't use, disable */
1290		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1291			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1292			KASSERT(rt != NULL, ("route is NULL"));
1293			dir = IEEE80211_FC1_DIR_DSTODS;
1294			hdrsize += IEEE80211_ADDR_LEN;
1295			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1296				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1297				    vap->iv_myaddr)) {
1298					IEEE80211_NOTE_MAC(vap,
1299					    IEEE80211_MSG_MESH,
1300					    eh.ether_dhost,
1301					    "%s", "trying to send to ourself");
1302					goto bad;
1303				}
1304				meshae = IEEE80211_MESH_AE_10;
1305				meshhdrsize =
1306				    sizeof(struct ieee80211_meshcntl_ae10);
1307			} else {
1308				meshae = IEEE80211_MESH_AE_00;
1309				meshhdrsize =
1310				    sizeof(struct ieee80211_meshcntl);
1311			}
1312		} else {
1313			dir = IEEE80211_FC1_DIR_FROMDS;
1314			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1315				/* proxy group */
1316				meshae = IEEE80211_MESH_AE_01;
1317				meshhdrsize =
1318				    sizeof(struct ieee80211_meshcntl_ae01);
1319			} else {
1320				/* group */
1321				meshae = IEEE80211_MESH_AE_00;
1322				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1323			}
1324		}
1325	} else {
1326#endif
1327		/*
1328		 * 4-address frames need to be generated for:
1329		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1330		 * o packets sent through a vap marked for relaying
1331		 *   (e.g. a station operating with dynamic WDS)
1332		 */
1333		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1334		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1335		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1336		if (is4addr)
1337			hdrsize += IEEE80211_ADDR_LEN;
1338		meshhdrsize = meshae = 0;
1339#ifdef IEEE80211_SUPPORT_MESH
1340	}
1341#endif
1342	/*
1343	 * Honor driver DATAPAD requirement.
1344	 */
1345	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1346		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1347	else
1348		hdrspace = hdrsize;
1349
1350	if (__predict_true((m->m_flags & M_FF) == 0)) {
1351		/*
1352		 * Normal frame.
1353		 */
1354		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1355		if (m == NULL) {
1356			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1357			goto bad;
1358		}
1359		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1360		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1361		llc = mtod(m, struct llc *);
1362		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1363		llc->llc_control = LLC_UI;
1364		llc->llc_snap.org_code[0] = 0;
1365		llc->llc_snap.org_code[1] = 0;
1366		llc->llc_snap.org_code[2] = 0;
1367		llc->llc_snap.ether_type = eh.ether_type;
1368	} else {
1369#ifdef IEEE80211_SUPPORT_SUPERG
1370		/*
1371		 * Aggregated frame.
1372		 */
1373		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1374		if (m == NULL)
1375#endif
1376			goto bad;
1377	}
1378	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1379
1380	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1381	if (m == NULL) {
1382		vap->iv_stats.is_tx_nobuf++;
1383		goto bad;
1384	}
1385	wh = mtod(m, struct ieee80211_frame *);
1386	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1387	*(uint16_t *)wh->i_dur = 0;
1388	qos = NULL;	/* NB: quiet compiler */
1389	if (is4addr) {
1390		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1391		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1392		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1393		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1394		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1395	} else switch (vap->iv_opmode) {
1396	case IEEE80211_M_STA:
1397		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1398		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1399		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1400		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1401		break;
1402	case IEEE80211_M_IBSS:
1403	case IEEE80211_M_AHDEMO:
1404		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1405		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1406		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1407		/*
1408		 * NB: always use the bssid from iv_bss as the
1409		 *     neighbor's may be stale after an ibss merge
1410		 */
1411		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1412		break;
1413	case IEEE80211_M_HOSTAP:
1414		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1415		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1416		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1417		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1418		break;
1419#ifdef IEEE80211_SUPPORT_MESH
1420	case IEEE80211_M_MBSS:
1421		/* NB: offset by hdrspace to deal with DATAPAD */
1422		mc = (struct ieee80211_meshcntl_ae10 *)
1423		     (mtod(m, uint8_t *) + hdrspace);
1424		wh->i_fc[1] = dir;
1425		switch (meshae) {
1426		case IEEE80211_MESH_AE_00:	/* no proxy */
1427			mc->mc_flags = 0;
1428			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1429				IEEE80211_ADDR_COPY(wh->i_addr1,
1430				    ni->ni_macaddr);
1431				IEEE80211_ADDR_COPY(wh->i_addr2,
1432				    vap->iv_myaddr);
1433				IEEE80211_ADDR_COPY(wh->i_addr3,
1434				    eh.ether_dhost);
1435				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1436				    eh.ether_shost);
1437				qos =((struct ieee80211_qosframe_addr4 *)
1438				    wh)->i_qos;
1439			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1440				 /* mcast */
1441				IEEE80211_ADDR_COPY(wh->i_addr1,
1442				    eh.ether_dhost);
1443				IEEE80211_ADDR_COPY(wh->i_addr2,
1444				    vap->iv_myaddr);
1445				IEEE80211_ADDR_COPY(wh->i_addr3,
1446				    eh.ether_shost);
1447				qos = ((struct ieee80211_qosframe *)
1448				    wh)->i_qos;
1449			}
1450			break;
1451		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1452			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1453			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1454			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1455			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1456			mc->mc_flags = 1;
1457			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1458			    eh.ether_shost);
1459			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1460			break;
1461		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1462			KASSERT(rt != NULL, ("route is NULL"));
1463			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1464			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1465			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1466			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1467			mc->mc_flags = IEEE80211_MESH_AE_10;
1468			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1469			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1470			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1471			break;
1472		default:
1473			KASSERT(0, ("meshae %d", meshae));
1474			break;
1475		}
1476		mc->mc_ttl = ms->ms_ttl;
1477		ms->ms_seq++;
1478		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1479		break;
1480#endif
1481	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1482	default:
1483		goto bad;
1484	}
1485	if (m->m_flags & M_MORE_DATA)
1486		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1487	if (addqos) {
1488		int ac, tid;
1489
1490		if (is4addr) {
1491			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1492		/* NB: mesh case handled earlier */
1493		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1494			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1495		ac = M_WME_GETAC(m);
1496		/* map from access class/queue to 11e header priorty value */
1497		tid = WME_AC_TO_TID(ac);
1498		qos[0] = tid & IEEE80211_QOS_TID;
1499		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1500			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1501#ifdef IEEE80211_SUPPORT_MESH
1502		if (vap->iv_opmode == IEEE80211_M_MBSS)
1503			qos[1] = IEEE80211_QOS_MC;
1504		else
1505#endif
1506			qos[1] = 0;
1507		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1508
1509		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1510			/*
1511			 * NB: don't assign a sequence # to potential
1512			 * aggregates; we expect this happens at the
1513			 * point the frame comes off any aggregation q
1514			 * as otherwise we may introduce holes in the
1515			 * BA sequence space and/or make window accouting
1516			 * more difficult.
1517			 *
1518			 * XXX may want to control this with a driver
1519			 * capability; this may also change when we pull
1520			 * aggregation up into net80211
1521			 */
1522			seqno = ni->ni_txseqs[tid]++;
1523			*(uint16_t *)wh->i_seq =
1524			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1525			M_SEQNO_SET(m, seqno);
1526		}
1527	} else {
1528		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1529		*(uint16_t *)wh->i_seq =
1530		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1531		M_SEQNO_SET(m, seqno);
1532	}
1533
1534
1535	/* check if xmit fragmentation is required */
1536	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1537	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1538	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1539	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1540	if (key != NULL) {
1541		/*
1542		 * IEEE 802.1X: send EAPOL frames always in the clear.
1543		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1544		 */
1545		if ((m->m_flags & M_EAPOL) == 0 ||
1546		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1547		     (vap->iv_opmode == IEEE80211_M_STA ?
1548		      !IEEE80211_KEY_UNDEFINED(key) :
1549		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1550			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1551			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1552				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1553				    eh.ether_dhost,
1554				    "%s", "enmic failed, discard frame");
1555				vap->iv_stats.is_crypto_enmicfail++;
1556				goto bad;
1557			}
1558		}
1559	}
1560	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1561	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1562		goto bad;
1563
1564	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1565
1566	IEEE80211_NODE_STAT(ni, tx_data);
1567	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1568		IEEE80211_NODE_STAT(ni, tx_mcast);
1569		m->m_flags |= M_MCAST;
1570	} else
1571		IEEE80211_NODE_STAT(ni, tx_ucast);
1572	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1573
1574	return m;
1575bad:
1576	if (m != NULL)
1577		m_freem(m);
1578	return NULL;
1579#undef WH4
1580#undef MC01
1581}
1582
1583void
1584ieee80211_free_mbuf(struct mbuf *m)
1585{
1586	struct mbuf *next;
1587
1588	if (m == NULL)
1589		return;
1590
1591	do {
1592		next = m->m_nextpkt;
1593		m->m_nextpkt = NULL;
1594		m_freem(m);
1595	} while ((m = next) != NULL);
1596}
1597
1598/*
1599 * Fragment the frame according to the specified mtu.
1600 * The size of the 802.11 header (w/o padding) is provided
1601 * so we don't need to recalculate it.  We create a new
1602 * mbuf for each fragment and chain it through m_nextpkt;
1603 * we might be able to optimize this by reusing the original
1604 * packet's mbufs but that is significantly more complicated.
1605 */
1606static int
1607ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1608	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1609{
1610	struct ieee80211com *ic = vap->iv_ic;
1611	struct ieee80211_frame *wh, *whf;
1612	struct mbuf *m, *prev;
1613	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1614	u_int hdrspace;
1615
1616	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1617	KASSERT(m0->m_pkthdr.len > mtu,
1618		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1619
1620	/*
1621	 * Honor driver DATAPAD requirement.
1622	 */
1623	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1624		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1625	else
1626		hdrspace = hdrsize;
1627
1628	wh = mtod(m0, struct ieee80211_frame *);
1629	/* NB: mark the first frag; it will be propagated below */
1630	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1631	totalhdrsize = hdrspace + ciphdrsize;
1632	fragno = 1;
1633	off = mtu - ciphdrsize;
1634	remainder = m0->m_pkthdr.len - off;
1635	prev = m0;
1636	do {
1637		fragsize = totalhdrsize + remainder;
1638		if (fragsize > mtu)
1639			fragsize = mtu;
1640		/* XXX fragsize can be >2048! */
1641		KASSERT(fragsize < MCLBYTES,
1642			("fragment size %u too big!", fragsize));
1643		if (fragsize > MHLEN)
1644			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1645		else
1646			m = m_gethdr(M_NOWAIT, MT_DATA);
1647		if (m == NULL)
1648			goto bad;
1649		/* leave room to prepend any cipher header */
1650		m_align(m, fragsize - ciphdrsize);
1651
1652		/*
1653		 * Form the header in the fragment.  Note that since
1654		 * we mark the first fragment with the MORE_FRAG bit
1655		 * it automatically is propagated to each fragment; we
1656		 * need only clear it on the last fragment (done below).
1657		 * NB: frag 1+ dont have Mesh Control field present.
1658		 */
1659		whf = mtod(m, struct ieee80211_frame *);
1660		memcpy(whf, wh, hdrsize);
1661#ifdef IEEE80211_SUPPORT_MESH
1662		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1663			if (IEEE80211_IS_DSTODS(wh))
1664				((struct ieee80211_qosframe_addr4 *)
1665				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1666			else
1667				((struct ieee80211_qosframe *)
1668				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1669		}
1670#endif
1671		*(uint16_t *)&whf->i_seq[0] |= htole16(
1672			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1673				IEEE80211_SEQ_FRAG_SHIFT);
1674		fragno++;
1675
1676		payload = fragsize - totalhdrsize;
1677		/* NB: destination is known to be contiguous */
1678
1679		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1680		m->m_len = hdrspace + payload;
1681		m->m_pkthdr.len = hdrspace + payload;
1682		m->m_flags |= M_FRAG;
1683
1684		/* chain up the fragment */
1685		prev->m_nextpkt = m;
1686		prev = m;
1687
1688		/* deduct fragment just formed */
1689		remainder -= payload;
1690		off += payload;
1691	} while (remainder != 0);
1692
1693	/* set the last fragment */
1694	m->m_flags |= M_LASTFRAG;
1695	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1696
1697	/* strip first mbuf now that everything has been copied */
1698	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1699	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1700
1701	vap->iv_stats.is_tx_fragframes++;
1702	vap->iv_stats.is_tx_frags += fragno-1;
1703
1704	return 1;
1705bad:
1706	/* reclaim fragments but leave original frame for caller to free */
1707	ieee80211_free_mbuf(m0->m_nextpkt);
1708	m0->m_nextpkt = NULL;
1709	return 0;
1710}
1711
1712/*
1713 * Add a supported rates element id to a frame.
1714 */
1715uint8_t *
1716ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1717{
1718	int nrates;
1719
1720	*frm++ = IEEE80211_ELEMID_RATES;
1721	nrates = rs->rs_nrates;
1722	if (nrates > IEEE80211_RATE_SIZE)
1723		nrates = IEEE80211_RATE_SIZE;
1724	*frm++ = nrates;
1725	memcpy(frm, rs->rs_rates, nrates);
1726	return frm + nrates;
1727}
1728
1729/*
1730 * Add an extended supported rates element id to a frame.
1731 */
1732uint8_t *
1733ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1734{
1735	/*
1736	 * Add an extended supported rates element if operating in 11g mode.
1737	 */
1738	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1739		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1740		*frm++ = IEEE80211_ELEMID_XRATES;
1741		*frm++ = nrates;
1742		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1743		frm += nrates;
1744	}
1745	return frm;
1746}
1747
1748/*
1749 * Add an ssid element to a frame.
1750 */
1751uint8_t *
1752ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1753{
1754	*frm++ = IEEE80211_ELEMID_SSID;
1755	*frm++ = len;
1756	memcpy(frm, ssid, len);
1757	return frm + len;
1758}
1759
1760/*
1761 * Add an erp element to a frame.
1762 */
1763static uint8_t *
1764ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1765{
1766	uint8_t erp;
1767
1768	*frm++ = IEEE80211_ELEMID_ERP;
1769	*frm++ = 1;
1770	erp = 0;
1771	if (ic->ic_nonerpsta != 0)
1772		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1773	if (ic->ic_flags & IEEE80211_F_USEPROT)
1774		erp |= IEEE80211_ERP_USE_PROTECTION;
1775	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1776		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1777	*frm++ = erp;
1778	return frm;
1779}
1780
1781/*
1782 * Add a CFParams element to a frame.
1783 */
1784static uint8_t *
1785ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1786{
1787#define	ADDSHORT(frm, v) do {	\
1788	LE_WRITE_2(frm, v);	\
1789	frm += 2;		\
1790} while (0)
1791	*frm++ = IEEE80211_ELEMID_CFPARMS;
1792	*frm++ = 6;
1793	*frm++ = 0;		/* CFP count */
1794	*frm++ = 2;		/* CFP period */
1795	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1796	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1797	return frm;
1798#undef ADDSHORT
1799}
1800
1801static __inline uint8_t *
1802add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1803{
1804	memcpy(frm, ie->ie_data, ie->ie_len);
1805	return frm + ie->ie_len;
1806}
1807
1808static __inline uint8_t *
1809add_ie(uint8_t *frm, const uint8_t *ie)
1810{
1811	memcpy(frm, ie, 2 + ie[1]);
1812	return frm + 2 + ie[1];
1813}
1814
1815#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1816/*
1817 * Add a WME information element to a frame.
1818 */
1819uint8_t *
1820ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1821{
1822	static const struct ieee80211_wme_info info = {
1823		.wme_id		= IEEE80211_ELEMID_VENDOR,
1824		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1825		.wme_oui	= { WME_OUI_BYTES },
1826		.wme_type	= WME_OUI_TYPE,
1827		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1828		.wme_version	= WME_VERSION,
1829		.wme_info	= 0,
1830	};
1831	memcpy(frm, &info, sizeof(info));
1832	return frm + sizeof(info);
1833}
1834
1835/*
1836 * Add a WME parameters element to a frame.
1837 */
1838static uint8_t *
1839ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1840{
1841#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1842#define	ADDSHORT(frm, v) do {	\
1843	LE_WRITE_2(frm, v);	\
1844	frm += 2;		\
1845} while (0)
1846	/* NB: this works 'cuz a param has an info at the front */
1847	static const struct ieee80211_wme_info param = {
1848		.wme_id		= IEEE80211_ELEMID_VENDOR,
1849		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1850		.wme_oui	= { WME_OUI_BYTES },
1851		.wme_type	= WME_OUI_TYPE,
1852		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1853		.wme_version	= WME_VERSION,
1854	};
1855	int i;
1856
1857	memcpy(frm, &param, sizeof(param));
1858	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1859	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1860	*frm++ = 0;					/* reserved field */
1861	for (i = 0; i < WME_NUM_AC; i++) {
1862		const struct wmeParams *ac =
1863		       &wme->wme_bssChanParams.cap_wmeParams[i];
1864		*frm++ = SM(i, WME_PARAM_ACI)
1865		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1866		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1867		       ;
1868		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1869		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1870		       ;
1871		ADDSHORT(frm, ac->wmep_txopLimit);
1872	}
1873	return frm;
1874#undef SM
1875#undef ADDSHORT
1876}
1877#undef WME_OUI_BYTES
1878
1879/*
1880 * Add an 11h Power Constraint element to a frame.
1881 */
1882static uint8_t *
1883ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1884{
1885	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1886	/* XXX per-vap tx power limit? */
1887	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1888
1889	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1890	frm[1] = 1;
1891	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1892	return frm + 3;
1893}
1894
1895/*
1896 * Add an 11h Power Capability element to a frame.
1897 */
1898static uint8_t *
1899ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1900{
1901	frm[0] = IEEE80211_ELEMID_PWRCAP;
1902	frm[1] = 2;
1903	frm[2] = c->ic_minpower;
1904	frm[3] = c->ic_maxpower;
1905	return frm + 4;
1906}
1907
1908/*
1909 * Add an 11h Supported Channels element to a frame.
1910 */
1911static uint8_t *
1912ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1913{
1914	static const int ielen = 26;
1915
1916	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1917	frm[1] = ielen;
1918	/* XXX not correct */
1919	memcpy(frm+2, ic->ic_chan_avail, ielen);
1920	return frm + 2 + ielen;
1921}
1922
1923/*
1924 * Add an 11h Quiet time element to a frame.
1925 */
1926static uint8_t *
1927ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1928{
1929	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1930
1931	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1932	quiet->len = 6;
1933	if (vap->iv_quiet_count_value == 1)
1934		vap->iv_quiet_count_value = vap->iv_quiet_count;
1935	else if (vap->iv_quiet_count_value > 1)
1936		vap->iv_quiet_count_value--;
1937
1938	if (vap->iv_quiet_count_value == 0) {
1939		/* value 0 is reserved as per 802.11h standerd */
1940		vap->iv_quiet_count_value = 1;
1941	}
1942
1943	quiet->tbttcount = vap->iv_quiet_count_value;
1944	quiet->period = vap->iv_quiet_period;
1945	quiet->duration = htole16(vap->iv_quiet_duration);
1946	quiet->offset = htole16(vap->iv_quiet_offset);
1947	return frm + sizeof(*quiet);
1948}
1949
1950/*
1951 * Add an 11h Channel Switch Announcement element to a frame.
1952 * Note that we use the per-vap CSA count to adjust the global
1953 * counter so we can use this routine to form probe response
1954 * frames and get the current count.
1955 */
1956static uint8_t *
1957ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1958{
1959	struct ieee80211com *ic = vap->iv_ic;
1960	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1961
1962	csa->csa_ie = IEEE80211_ELEMID_CSA;
1963	csa->csa_len = 3;
1964	csa->csa_mode = 1;		/* XXX force quiet on channel */
1965	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1966	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1967	return frm + sizeof(*csa);
1968}
1969
1970/*
1971 * Add an 11h country information element to a frame.
1972 */
1973static uint8_t *
1974ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1975{
1976
1977	if (ic->ic_countryie == NULL ||
1978	    ic->ic_countryie_chan != ic->ic_bsschan) {
1979		/*
1980		 * Handle lazy construction of ie.  This is done on
1981		 * first use and after a channel change that requires
1982		 * re-calculation.
1983		 */
1984		if (ic->ic_countryie != NULL)
1985			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
1986		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1987		if (ic->ic_countryie == NULL)
1988			return frm;
1989		ic->ic_countryie_chan = ic->ic_bsschan;
1990	}
1991	return add_appie(frm, ic->ic_countryie);
1992}
1993
1994uint8_t *
1995ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1996{
1997	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1998		return (add_ie(frm, vap->iv_wpa_ie));
1999	else {
2000		/* XXX else complain? */
2001		return (frm);
2002	}
2003}
2004
2005uint8_t *
2006ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2007{
2008	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2009		return (add_ie(frm, vap->iv_rsn_ie));
2010	else {
2011		/* XXX else complain? */
2012		return (frm);
2013	}
2014}
2015
2016uint8_t *
2017ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2018{
2019	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2020		*frm++ = IEEE80211_ELEMID_QOS;
2021		*frm++ = 1;
2022		*frm++ = 0;
2023	}
2024
2025	return (frm);
2026}
2027
2028/*
2029 * Send a probe request frame with the specified ssid
2030 * and any optional information element data.
2031 */
2032int
2033ieee80211_send_probereq(struct ieee80211_node *ni,
2034	const uint8_t sa[IEEE80211_ADDR_LEN],
2035	const uint8_t da[IEEE80211_ADDR_LEN],
2036	const uint8_t bssid[IEEE80211_ADDR_LEN],
2037	const uint8_t *ssid, size_t ssidlen)
2038{
2039	struct ieee80211vap *vap = ni->ni_vap;
2040	struct ieee80211com *ic = ni->ni_ic;
2041	const struct ieee80211_txparam *tp;
2042	struct ieee80211_bpf_params params;
2043	struct ieee80211_frame *wh;
2044	const struct ieee80211_rateset *rs;
2045	struct mbuf *m;
2046	uint8_t *frm;
2047	int ret;
2048
2049	if (vap->iv_state == IEEE80211_S_CAC) {
2050		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2051		    "block %s frame in CAC state", "probe request");
2052		vap->iv_stats.is_tx_badstate++;
2053		return EIO;		/* XXX */
2054	}
2055
2056	/*
2057	 * Hold a reference on the node so it doesn't go away until after
2058	 * the xmit is complete all the way in the driver.  On error we
2059	 * will remove our reference.
2060	 */
2061	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2062		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2063		__func__, __LINE__,
2064		ni, ether_sprintf(ni->ni_macaddr),
2065		ieee80211_node_refcnt(ni)+1);
2066	ieee80211_ref_node(ni);
2067
2068	/*
2069	 * prreq frame format
2070	 *	[tlv] ssid
2071	 *	[tlv] supported rates
2072	 *	[tlv] RSN (optional)
2073	 *	[tlv] extended supported rates
2074	 *	[tlv] WPA (optional)
2075	 *	[tlv] user-specified ie's
2076	 */
2077	m = ieee80211_getmgtframe(&frm,
2078		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2079	       	 2 + IEEE80211_NWID_LEN
2080	       + 2 + IEEE80211_RATE_SIZE
2081	       + sizeof(struct ieee80211_ie_wpa)
2082	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2083	       + sizeof(struct ieee80211_ie_wpa)
2084	       + (vap->iv_appie_probereq != NULL ?
2085		   vap->iv_appie_probereq->ie_len : 0)
2086	);
2087	if (m == NULL) {
2088		vap->iv_stats.is_tx_nobuf++;
2089		ieee80211_free_node(ni);
2090		return ENOMEM;
2091	}
2092
2093	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2094	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2095	frm = ieee80211_add_rates(frm, rs);
2096	frm = ieee80211_add_rsn(frm, vap);
2097	frm = ieee80211_add_xrates(frm, rs);
2098	frm = ieee80211_add_wpa(frm, vap);
2099	if (vap->iv_appie_probereq != NULL)
2100		frm = add_appie(frm, vap->iv_appie_probereq);
2101	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2102
2103	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2104	    ("leading space %zd", M_LEADINGSPACE(m)));
2105	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2106	if (m == NULL) {
2107		/* NB: cannot happen */
2108		ieee80211_free_node(ni);
2109		return ENOMEM;
2110	}
2111
2112	IEEE80211_TX_LOCK(ic);
2113	wh = mtod(m, struct ieee80211_frame *);
2114	ieee80211_send_setup(ni, m,
2115	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2116	     IEEE80211_NONQOS_TID, sa, da, bssid);
2117	/* XXX power management? */
2118	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2119
2120	M_WME_SETAC(m, WME_AC_BE);
2121
2122	IEEE80211_NODE_STAT(ni, tx_probereq);
2123	IEEE80211_NODE_STAT(ni, tx_mgmt);
2124
2125	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2126	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2127	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2128	    ssidlen, ssid);
2129
2130	memset(&params, 0, sizeof(params));
2131	params.ibp_pri = M_WME_GETAC(m);
2132	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2133	params.ibp_rate0 = tp->mgmtrate;
2134	if (IEEE80211_IS_MULTICAST(da)) {
2135		params.ibp_flags |= IEEE80211_BPF_NOACK;
2136		params.ibp_try0 = 1;
2137	} else
2138		params.ibp_try0 = tp->maxretry;
2139	params.ibp_power = ni->ni_txpower;
2140	ret = ieee80211_raw_output(vap, ni, m, &params);
2141	IEEE80211_TX_UNLOCK(ic);
2142	return (ret);
2143}
2144
2145/*
2146 * Calculate capability information for mgt frames.
2147 */
2148uint16_t
2149ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2150{
2151	struct ieee80211com *ic = vap->iv_ic;
2152	uint16_t capinfo;
2153
2154	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2155
2156	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2157		capinfo = IEEE80211_CAPINFO_ESS;
2158	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2159		capinfo = IEEE80211_CAPINFO_IBSS;
2160	else
2161		capinfo = 0;
2162	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2163		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2164	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2165	    IEEE80211_IS_CHAN_2GHZ(chan))
2166		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2167	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2168		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2169	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2170		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2171	return capinfo;
2172}
2173
2174/*
2175 * Send a management frame.  The node is for the destination (or ic_bss
2176 * when in station mode).  Nodes other than ic_bss have their reference
2177 * count bumped to reflect our use for an indeterminant time.
2178 */
2179int
2180ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2181{
2182#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2183#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2184	struct ieee80211vap *vap = ni->ni_vap;
2185	struct ieee80211com *ic = ni->ni_ic;
2186	struct ieee80211_node *bss = vap->iv_bss;
2187	struct ieee80211_bpf_params params;
2188	struct mbuf *m;
2189	uint8_t *frm;
2190	uint16_t capinfo;
2191	int has_challenge, is_shared_key, ret, status;
2192
2193	KASSERT(ni != NULL, ("null node"));
2194
2195	/*
2196	 * Hold a reference on the node so it doesn't go away until after
2197	 * the xmit is complete all the way in the driver.  On error we
2198	 * will remove our reference.
2199	 */
2200	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2201		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2202		__func__, __LINE__,
2203		ni, ether_sprintf(ni->ni_macaddr),
2204		ieee80211_node_refcnt(ni)+1);
2205	ieee80211_ref_node(ni);
2206
2207	memset(&params, 0, sizeof(params));
2208	switch (type) {
2209
2210	case IEEE80211_FC0_SUBTYPE_AUTH:
2211		status = arg >> 16;
2212		arg &= 0xffff;
2213		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2214		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2215		    ni->ni_challenge != NULL);
2216
2217		/*
2218		 * Deduce whether we're doing open authentication or
2219		 * shared key authentication.  We do the latter if
2220		 * we're in the middle of a shared key authentication
2221		 * handshake or if we're initiating an authentication
2222		 * request and configured to use shared key.
2223		 */
2224		is_shared_key = has_challenge ||
2225		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2226		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2227		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2228
2229		m = ieee80211_getmgtframe(&frm,
2230			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2231			  3 * sizeof(uint16_t)
2232			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2233				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2234		);
2235		if (m == NULL)
2236			senderr(ENOMEM, is_tx_nobuf);
2237
2238		((uint16_t *)frm)[0] =
2239		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2240		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2241		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2242		((uint16_t *)frm)[2] = htole16(status);/* status */
2243
2244		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2245			((uint16_t *)frm)[3] =
2246			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2247			    IEEE80211_ELEMID_CHALLENGE);
2248			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2249			    IEEE80211_CHALLENGE_LEN);
2250			m->m_pkthdr.len = m->m_len =
2251				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2252			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2253				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2254				    "request encrypt frame (%s)", __func__);
2255				/* mark frame for encryption */
2256				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2257			}
2258		} else
2259			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2260
2261		/* XXX not right for shared key */
2262		if (status == IEEE80211_STATUS_SUCCESS)
2263			IEEE80211_NODE_STAT(ni, tx_auth);
2264		else
2265			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2266
2267		if (vap->iv_opmode == IEEE80211_M_STA)
2268			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2269				(void *) vap->iv_state);
2270		break;
2271
2272	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2273		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2274		    "send station deauthenticate (reason %d)", arg);
2275		m = ieee80211_getmgtframe(&frm,
2276			ic->ic_headroom + sizeof(struct ieee80211_frame),
2277			sizeof(uint16_t));
2278		if (m == NULL)
2279			senderr(ENOMEM, is_tx_nobuf);
2280		*(uint16_t *)frm = htole16(arg);	/* reason */
2281		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2282
2283		IEEE80211_NODE_STAT(ni, tx_deauth);
2284		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2285
2286		ieee80211_node_unauthorize(ni);		/* port closed */
2287		break;
2288
2289	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2290	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2291		/*
2292		 * asreq frame format
2293		 *	[2] capability information
2294		 *	[2] listen interval
2295		 *	[6*] current AP address (reassoc only)
2296		 *	[tlv] ssid
2297		 *	[tlv] supported rates
2298		 *	[tlv] extended supported rates
2299		 *	[4] power capability (optional)
2300		 *	[28] supported channels (optional)
2301		 *	[tlv] HT capabilities
2302		 *	[tlv] WME (optional)
2303		 *	[tlv] Vendor OUI HT capabilities (optional)
2304		 *	[tlv] Atheros capabilities (if negotiated)
2305		 *	[tlv] AppIE's (optional)
2306		 */
2307		m = ieee80211_getmgtframe(&frm,
2308			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2309			 sizeof(uint16_t)
2310		       + sizeof(uint16_t)
2311		       + IEEE80211_ADDR_LEN
2312		       + 2 + IEEE80211_NWID_LEN
2313		       + 2 + IEEE80211_RATE_SIZE
2314		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2315		       + 4
2316		       + 2 + 26
2317		       + sizeof(struct ieee80211_wme_info)
2318		       + sizeof(struct ieee80211_ie_htcap)
2319		       + 4 + sizeof(struct ieee80211_ie_htcap)
2320#ifdef IEEE80211_SUPPORT_SUPERG
2321		       + sizeof(struct ieee80211_ath_ie)
2322#endif
2323		       + (vap->iv_appie_wpa != NULL ?
2324				vap->iv_appie_wpa->ie_len : 0)
2325		       + (vap->iv_appie_assocreq != NULL ?
2326				vap->iv_appie_assocreq->ie_len : 0)
2327		);
2328		if (m == NULL)
2329			senderr(ENOMEM, is_tx_nobuf);
2330
2331		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2332		    ("wrong mode %u", vap->iv_opmode));
2333		capinfo = IEEE80211_CAPINFO_ESS;
2334		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2335			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2336		/*
2337		 * NB: Some 11a AP's reject the request when
2338		 *     short premable is set.
2339		 */
2340		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2341		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2342			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2343		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2344		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2345			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2346		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2347		    (vap->iv_flags & IEEE80211_F_DOTH))
2348			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2349		*(uint16_t *)frm = htole16(capinfo);
2350		frm += 2;
2351
2352		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2353		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2354						    bss->ni_intval));
2355		frm += 2;
2356
2357		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2358			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2359			frm += IEEE80211_ADDR_LEN;
2360		}
2361
2362		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2363		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2364		frm = ieee80211_add_rsn(frm, vap);
2365		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2366		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2367			frm = ieee80211_add_powercapability(frm,
2368			    ic->ic_curchan);
2369			frm = ieee80211_add_supportedchannels(frm, ic);
2370		}
2371
2372		/*
2373		 * Check the channel - we may be using an 11n NIC with an
2374		 * 11n capable station, but we're configured to be an 11b
2375		 * channel.
2376		 */
2377		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2378		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2379		    ni->ni_ies.htcap_ie != NULL &&
2380		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2381			frm = ieee80211_add_htcap(frm, ni);
2382		}
2383		frm = ieee80211_add_wpa(frm, vap);
2384		if ((ic->ic_flags & IEEE80211_F_WME) &&
2385		    ni->ni_ies.wme_ie != NULL)
2386			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2387
2388		/*
2389		 * Same deal - only send HT info if we're on an 11n
2390		 * capable channel.
2391		 */
2392		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2393		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2394		    ni->ni_ies.htcap_ie != NULL &&
2395		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2396			frm = ieee80211_add_htcap_vendor(frm, ni);
2397		}
2398#ifdef IEEE80211_SUPPORT_SUPERG
2399		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2400			frm = ieee80211_add_ath(frm,
2401				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2402				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2403				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2404				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2405		}
2406#endif /* IEEE80211_SUPPORT_SUPERG */
2407		if (vap->iv_appie_assocreq != NULL)
2408			frm = add_appie(frm, vap->iv_appie_assocreq);
2409		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2410
2411		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2412			(void *) vap->iv_state);
2413		break;
2414
2415	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2416	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2417		/*
2418		 * asresp frame format
2419		 *	[2] capability information
2420		 *	[2] status
2421		 *	[2] association ID
2422		 *	[tlv] supported rates
2423		 *	[tlv] extended supported rates
2424		 *	[tlv] HT capabilities (standard, if STA enabled)
2425		 *	[tlv] HT information (standard, if STA enabled)
2426		 *	[tlv] WME (if configured and STA enabled)
2427		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2428		 *	[tlv] HT information (vendor OUI, if STA enabled)
2429		 *	[tlv] Atheros capabilities (if STA enabled)
2430		 *	[tlv] AppIE's (optional)
2431		 */
2432		m = ieee80211_getmgtframe(&frm,
2433			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2434			 sizeof(uint16_t)
2435		       + sizeof(uint16_t)
2436		       + sizeof(uint16_t)
2437		       + 2 + IEEE80211_RATE_SIZE
2438		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2439		       + sizeof(struct ieee80211_ie_htcap) + 4
2440		       + sizeof(struct ieee80211_ie_htinfo) + 4
2441		       + sizeof(struct ieee80211_wme_param)
2442#ifdef IEEE80211_SUPPORT_SUPERG
2443		       + sizeof(struct ieee80211_ath_ie)
2444#endif
2445		       + (vap->iv_appie_assocresp != NULL ?
2446				vap->iv_appie_assocresp->ie_len : 0)
2447		);
2448		if (m == NULL)
2449			senderr(ENOMEM, is_tx_nobuf);
2450
2451		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2452		*(uint16_t *)frm = htole16(capinfo);
2453		frm += 2;
2454
2455		*(uint16_t *)frm = htole16(arg);	/* status */
2456		frm += 2;
2457
2458		if (arg == IEEE80211_STATUS_SUCCESS) {
2459			*(uint16_t *)frm = htole16(ni->ni_associd);
2460			IEEE80211_NODE_STAT(ni, tx_assoc);
2461		} else
2462			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2463		frm += 2;
2464
2465		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2466		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2467		/* NB: respond according to what we received */
2468		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2469			frm = ieee80211_add_htcap(frm, ni);
2470			frm = ieee80211_add_htinfo(frm, ni);
2471		}
2472		if ((vap->iv_flags & IEEE80211_F_WME) &&
2473		    ni->ni_ies.wme_ie != NULL)
2474			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2475		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2476			frm = ieee80211_add_htcap_vendor(frm, ni);
2477			frm = ieee80211_add_htinfo_vendor(frm, ni);
2478		}
2479#ifdef IEEE80211_SUPPORT_SUPERG
2480		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2481			frm = ieee80211_add_ath(frm,
2482				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2483				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2484				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2485				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2486#endif /* IEEE80211_SUPPORT_SUPERG */
2487		if (vap->iv_appie_assocresp != NULL)
2488			frm = add_appie(frm, vap->iv_appie_assocresp);
2489		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2490		break;
2491
2492	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2493		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2494		    "send station disassociate (reason %d)", arg);
2495		m = ieee80211_getmgtframe(&frm,
2496			ic->ic_headroom + sizeof(struct ieee80211_frame),
2497			sizeof(uint16_t));
2498		if (m == NULL)
2499			senderr(ENOMEM, is_tx_nobuf);
2500		*(uint16_t *)frm = htole16(arg);	/* reason */
2501		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2502
2503		IEEE80211_NODE_STAT(ni, tx_disassoc);
2504		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2505		break;
2506
2507	default:
2508		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2509		    "invalid mgmt frame type %u", type);
2510		senderr(EINVAL, is_tx_unknownmgt);
2511		/* NOTREACHED */
2512	}
2513
2514	/* NB: force non-ProbeResp frames to the highest queue */
2515	params.ibp_pri = WME_AC_VO;
2516	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2517	/* NB: we know all frames are unicast */
2518	params.ibp_try0 = bss->ni_txparms->maxretry;
2519	params.ibp_power = bss->ni_txpower;
2520	return ieee80211_mgmt_output(ni, m, type, &params);
2521bad:
2522	ieee80211_free_node(ni);
2523	return ret;
2524#undef senderr
2525#undef HTFLAGS
2526}
2527
2528/*
2529 * Return an mbuf with a probe response frame in it.
2530 * Space is left to prepend and 802.11 header at the
2531 * front but it's left to the caller to fill in.
2532 */
2533struct mbuf *
2534ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2535{
2536	struct ieee80211vap *vap = bss->ni_vap;
2537	struct ieee80211com *ic = bss->ni_ic;
2538	const struct ieee80211_rateset *rs;
2539	struct mbuf *m;
2540	uint16_t capinfo;
2541	uint8_t *frm;
2542
2543	/*
2544	 * probe response frame format
2545	 *	[8] time stamp
2546	 *	[2] beacon interval
2547	 *	[2] cabability information
2548	 *	[tlv] ssid
2549	 *	[tlv] supported rates
2550	 *	[tlv] parameter set (FH/DS)
2551	 *	[tlv] parameter set (IBSS)
2552	 *	[tlv] country (optional)
2553	 *	[3] power control (optional)
2554	 *	[5] channel switch announcement (CSA) (optional)
2555	 *	[tlv] extended rate phy (ERP)
2556	 *	[tlv] extended supported rates
2557	 *	[tlv] RSN (optional)
2558	 *	[tlv] HT capabilities
2559	 *	[tlv] HT information
2560	 *	[tlv] WPA (optional)
2561	 *	[tlv] WME (optional)
2562	 *	[tlv] Vendor OUI HT capabilities (optional)
2563	 *	[tlv] Vendor OUI HT information (optional)
2564	 *	[tlv] Atheros capabilities
2565	 *	[tlv] AppIE's (optional)
2566	 *	[tlv] Mesh ID (MBSS)
2567	 *	[tlv] Mesh Conf (MBSS)
2568	 */
2569	m = ieee80211_getmgtframe(&frm,
2570		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2571		 8
2572	       + sizeof(uint16_t)
2573	       + sizeof(uint16_t)
2574	       + 2 + IEEE80211_NWID_LEN
2575	       + 2 + IEEE80211_RATE_SIZE
2576	       + 7	/* max(7,3) */
2577	       + IEEE80211_COUNTRY_MAX_SIZE
2578	       + 3
2579	       + sizeof(struct ieee80211_csa_ie)
2580	       + sizeof(struct ieee80211_quiet_ie)
2581	       + 3
2582	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2583	       + sizeof(struct ieee80211_ie_wpa)
2584	       + sizeof(struct ieee80211_ie_htcap)
2585	       + sizeof(struct ieee80211_ie_htinfo)
2586	       + sizeof(struct ieee80211_ie_wpa)
2587	       + sizeof(struct ieee80211_wme_param)
2588	       + 4 + sizeof(struct ieee80211_ie_htcap)
2589	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2590#ifdef IEEE80211_SUPPORT_SUPERG
2591	       + sizeof(struct ieee80211_ath_ie)
2592#endif
2593#ifdef IEEE80211_SUPPORT_MESH
2594	       + 2 + IEEE80211_MESHID_LEN
2595	       + sizeof(struct ieee80211_meshconf_ie)
2596#endif
2597	       + (vap->iv_appie_proberesp != NULL ?
2598			vap->iv_appie_proberesp->ie_len : 0)
2599	);
2600	if (m == NULL) {
2601		vap->iv_stats.is_tx_nobuf++;
2602		return NULL;
2603	}
2604
2605	memset(frm, 0, 8);	/* timestamp should be filled later */
2606	frm += 8;
2607	*(uint16_t *)frm = htole16(bss->ni_intval);
2608	frm += 2;
2609	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2610	*(uint16_t *)frm = htole16(capinfo);
2611	frm += 2;
2612
2613	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2614	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2615	frm = ieee80211_add_rates(frm, rs);
2616
2617	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2618		*frm++ = IEEE80211_ELEMID_FHPARMS;
2619		*frm++ = 5;
2620		*frm++ = bss->ni_fhdwell & 0x00ff;
2621		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2622		*frm++ = IEEE80211_FH_CHANSET(
2623		    ieee80211_chan2ieee(ic, bss->ni_chan));
2624		*frm++ = IEEE80211_FH_CHANPAT(
2625		    ieee80211_chan2ieee(ic, bss->ni_chan));
2626		*frm++ = bss->ni_fhindex;
2627	} else {
2628		*frm++ = IEEE80211_ELEMID_DSPARMS;
2629		*frm++ = 1;
2630		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2631	}
2632
2633	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2634		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2635		*frm++ = 2;
2636		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2637	}
2638	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2639	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2640		frm = ieee80211_add_countryie(frm, ic);
2641	if (vap->iv_flags & IEEE80211_F_DOTH) {
2642		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2643			frm = ieee80211_add_powerconstraint(frm, vap);
2644		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2645			frm = ieee80211_add_csa(frm, vap);
2646	}
2647	if (vap->iv_flags & IEEE80211_F_DOTH) {
2648		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2649		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2650			if (vap->iv_quiet)
2651				frm = ieee80211_add_quiet(frm, vap);
2652		}
2653	}
2654	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2655		frm = ieee80211_add_erp(frm, ic);
2656	frm = ieee80211_add_xrates(frm, rs);
2657	frm = ieee80211_add_rsn(frm, vap);
2658	/*
2659	 * NB: legacy 11b clients do not get certain ie's.
2660	 *     The caller identifies such clients by passing
2661	 *     a token in legacy to us.  Could expand this to be
2662	 *     any legacy client for stuff like HT ie's.
2663	 */
2664	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2665	    legacy != IEEE80211_SEND_LEGACY_11B) {
2666		frm = ieee80211_add_htcap(frm, bss);
2667		frm = ieee80211_add_htinfo(frm, bss);
2668	}
2669	frm = ieee80211_add_wpa(frm, vap);
2670	if (vap->iv_flags & IEEE80211_F_WME)
2671		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2672	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2673	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2674	    legacy != IEEE80211_SEND_LEGACY_11B) {
2675		frm = ieee80211_add_htcap_vendor(frm, bss);
2676		frm = ieee80211_add_htinfo_vendor(frm, bss);
2677	}
2678#ifdef IEEE80211_SUPPORT_SUPERG
2679	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2680	    legacy != IEEE80211_SEND_LEGACY_11B)
2681		frm = ieee80211_add_athcaps(frm, bss);
2682#endif
2683	if (vap->iv_appie_proberesp != NULL)
2684		frm = add_appie(frm, vap->iv_appie_proberesp);
2685#ifdef IEEE80211_SUPPORT_MESH
2686	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2687		frm = ieee80211_add_meshid(frm, vap);
2688		frm = ieee80211_add_meshconf(frm, vap);
2689	}
2690#endif
2691	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2692
2693	return m;
2694}
2695
2696/*
2697 * Send a probe response frame to the specified mac address.
2698 * This does not go through the normal mgt frame api so we
2699 * can specify the destination address and re-use the bss node
2700 * for the sta reference.
2701 */
2702int
2703ieee80211_send_proberesp(struct ieee80211vap *vap,
2704	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2705{
2706	struct ieee80211_node *bss = vap->iv_bss;
2707	struct ieee80211com *ic = vap->iv_ic;
2708	struct ieee80211_frame *wh;
2709	struct mbuf *m;
2710	int ret;
2711
2712	if (vap->iv_state == IEEE80211_S_CAC) {
2713		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2714		    "block %s frame in CAC state", "probe response");
2715		vap->iv_stats.is_tx_badstate++;
2716		return EIO;		/* XXX */
2717	}
2718
2719	/*
2720	 * Hold a reference on the node so it doesn't go away until after
2721	 * the xmit is complete all the way in the driver.  On error we
2722	 * will remove our reference.
2723	 */
2724	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2725	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2726	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2727	    ieee80211_node_refcnt(bss)+1);
2728	ieee80211_ref_node(bss);
2729
2730	m = ieee80211_alloc_proberesp(bss, legacy);
2731	if (m == NULL) {
2732		ieee80211_free_node(bss);
2733		return ENOMEM;
2734	}
2735
2736	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2737	KASSERT(m != NULL, ("no room for header"));
2738
2739	IEEE80211_TX_LOCK(ic);
2740	wh = mtod(m, struct ieee80211_frame *);
2741	ieee80211_send_setup(bss, m,
2742	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2743	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2744	/* XXX power management? */
2745	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2746
2747	M_WME_SETAC(m, WME_AC_BE);
2748
2749	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2750	    "send probe resp on channel %u to %s%s\n",
2751	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2752	    legacy ? " <legacy>" : "");
2753	IEEE80211_NODE_STAT(bss, tx_mgmt);
2754
2755	ret = ieee80211_raw_output(vap, bss, m, NULL);
2756	IEEE80211_TX_UNLOCK(ic);
2757	return (ret);
2758}
2759
2760/*
2761 * Allocate and build a RTS (Request To Send) control frame.
2762 */
2763struct mbuf *
2764ieee80211_alloc_rts(struct ieee80211com *ic,
2765	const uint8_t ra[IEEE80211_ADDR_LEN],
2766	const uint8_t ta[IEEE80211_ADDR_LEN],
2767	uint16_t dur)
2768{
2769	struct ieee80211_frame_rts *rts;
2770	struct mbuf *m;
2771
2772	/* XXX honor ic_headroom */
2773	m = m_gethdr(M_NOWAIT, MT_DATA);
2774	if (m != NULL) {
2775		rts = mtod(m, struct ieee80211_frame_rts *);
2776		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2777			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2778		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2779		*(u_int16_t *)rts->i_dur = htole16(dur);
2780		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2781		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2782
2783		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2784	}
2785	return m;
2786}
2787
2788/*
2789 * Allocate and build a CTS (Clear To Send) control frame.
2790 */
2791struct mbuf *
2792ieee80211_alloc_cts(struct ieee80211com *ic,
2793	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2794{
2795	struct ieee80211_frame_cts *cts;
2796	struct mbuf *m;
2797
2798	/* XXX honor ic_headroom */
2799	m = m_gethdr(M_NOWAIT, MT_DATA);
2800	if (m != NULL) {
2801		cts = mtod(m, struct ieee80211_frame_cts *);
2802		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2803			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2804		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2805		*(u_int16_t *)cts->i_dur = htole16(dur);
2806		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2807
2808		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2809	}
2810	return m;
2811}
2812
2813static void
2814ieee80211_tx_mgt_timeout(void *arg)
2815{
2816	struct ieee80211vap *vap = arg;
2817
2818	IEEE80211_LOCK(vap->iv_ic);
2819	if (vap->iv_state != IEEE80211_S_INIT &&
2820	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2821		/*
2822		 * NB: it's safe to specify a timeout as the reason here;
2823		 *     it'll only be used in the right state.
2824		 */
2825		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2826			IEEE80211_SCAN_FAIL_TIMEOUT);
2827	}
2828	IEEE80211_UNLOCK(vap->iv_ic);
2829}
2830
2831/*
2832 * This is the callback set on net80211-sourced transmitted
2833 * authentication request frames.
2834 *
2835 * This does a couple of things:
2836 *
2837 * + If the frame transmitted was a success, it schedules a future
2838 *   event which will transition the interface to scan.
2839 *   If a state transition _then_ occurs before that event occurs,
2840 *   said state transition will cancel this callout.
2841 *
2842 * + If the frame transmit was a failure, it immediately schedules
2843 *   the transition back to scan.
2844 */
2845static void
2846ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2847{
2848	struct ieee80211vap *vap = ni->ni_vap;
2849	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2850
2851	/*
2852	 * Frame transmit completed; arrange timer callback.  If
2853	 * transmit was successfuly we wait for response.  Otherwise
2854	 * we arrange an immediate callback instead of doing the
2855	 * callback directly since we don't know what state the driver
2856	 * is in (e.g. what locks it is holding).  This work should
2857	 * not be too time-critical and not happen too often so the
2858	 * added overhead is acceptable.
2859	 *
2860	 * XXX what happens if !acked but response shows up before callback?
2861	 */
2862	if (vap->iv_state == ostate) {
2863		callout_reset(&vap->iv_mgtsend,
2864			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2865			ieee80211_tx_mgt_timeout, vap);
2866	}
2867}
2868
2869static void
2870ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2871	struct ieee80211_node *ni)
2872{
2873	struct ieee80211vap *vap = ni->ni_vap;
2874	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2875	struct ieee80211com *ic = ni->ni_ic;
2876	struct ieee80211_rateset *rs = &ni->ni_rates;
2877	uint16_t capinfo;
2878
2879	/*
2880	 * beacon frame format
2881	 *	[8] time stamp
2882	 *	[2] beacon interval
2883	 *	[2] cabability information
2884	 *	[tlv] ssid
2885	 *	[tlv] supported rates
2886	 *	[3] parameter set (DS)
2887	 *	[8] CF parameter set (optional)
2888	 *	[tlv] parameter set (IBSS/TIM)
2889	 *	[tlv] country (optional)
2890	 *	[3] power control (optional)
2891	 *	[5] channel switch announcement (CSA) (optional)
2892	 *	[tlv] extended rate phy (ERP)
2893	 *	[tlv] extended supported rates
2894	 *	[tlv] RSN parameters
2895	 *	[tlv] HT capabilities
2896	 *	[tlv] HT information
2897	 * XXX Vendor-specific OIDs (e.g. Atheros)
2898	 *	[tlv] WPA parameters
2899	 *	[tlv] WME parameters
2900	 *	[tlv] Vendor OUI HT capabilities (optional)
2901	 *	[tlv] Vendor OUI HT information (optional)
2902	 *	[tlv] Atheros capabilities (optional)
2903	 *	[tlv] TDMA parameters (optional)
2904	 *	[tlv] Mesh ID (MBSS)
2905	 *	[tlv] Mesh Conf (MBSS)
2906	 *	[tlv] application data (optional)
2907	 */
2908
2909	memset(bo, 0, sizeof(*bo));
2910
2911	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2912	frm += 8;
2913	*(uint16_t *)frm = htole16(ni->ni_intval);
2914	frm += 2;
2915	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2916	bo->bo_caps = (uint16_t *)frm;
2917	*(uint16_t *)frm = htole16(capinfo);
2918	frm += 2;
2919	*frm++ = IEEE80211_ELEMID_SSID;
2920	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2921		*frm++ = ni->ni_esslen;
2922		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2923		frm += ni->ni_esslen;
2924	} else
2925		*frm++ = 0;
2926	frm = ieee80211_add_rates(frm, rs);
2927	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2928		*frm++ = IEEE80211_ELEMID_DSPARMS;
2929		*frm++ = 1;
2930		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2931	}
2932	if (ic->ic_flags & IEEE80211_F_PCF) {
2933		bo->bo_cfp = frm;
2934		frm = ieee80211_add_cfparms(frm, ic);
2935	}
2936	bo->bo_tim = frm;
2937	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2938		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2939		*frm++ = 2;
2940		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2941		bo->bo_tim_len = 0;
2942	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2943	    vap->iv_opmode == IEEE80211_M_MBSS) {
2944		/* TIM IE is the same for Mesh and Hostap */
2945		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2946
2947		tie->tim_ie = IEEE80211_ELEMID_TIM;
2948		tie->tim_len = 4;	/* length */
2949		tie->tim_count = 0;	/* DTIM count */
2950		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2951		tie->tim_bitctl = 0;	/* bitmap control */
2952		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2953		frm += sizeof(struct ieee80211_tim_ie);
2954		bo->bo_tim_len = 1;
2955	}
2956	bo->bo_tim_trailer = frm;
2957	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2958	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2959		frm = ieee80211_add_countryie(frm, ic);
2960	if (vap->iv_flags & IEEE80211_F_DOTH) {
2961		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2962			frm = ieee80211_add_powerconstraint(frm, vap);
2963		bo->bo_csa = frm;
2964		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2965			frm = ieee80211_add_csa(frm, vap);
2966	} else
2967		bo->bo_csa = frm;
2968
2969	if (vap->iv_flags & IEEE80211_F_DOTH) {
2970		bo->bo_quiet = frm;
2971		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2972		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2973			if (vap->iv_quiet)
2974				frm = ieee80211_add_quiet(frm,vap);
2975		}
2976	} else
2977		bo->bo_quiet = frm;
2978
2979	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2980		bo->bo_erp = frm;
2981		frm = ieee80211_add_erp(frm, ic);
2982	}
2983	frm = ieee80211_add_xrates(frm, rs);
2984	frm = ieee80211_add_rsn(frm, vap);
2985	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2986		frm = ieee80211_add_htcap(frm, ni);
2987		bo->bo_htinfo = frm;
2988		frm = ieee80211_add_htinfo(frm, ni);
2989	}
2990	frm = ieee80211_add_wpa(frm, vap);
2991	if (vap->iv_flags & IEEE80211_F_WME) {
2992		bo->bo_wme = frm;
2993		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2994	}
2995	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2996	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2997		frm = ieee80211_add_htcap_vendor(frm, ni);
2998		frm = ieee80211_add_htinfo_vendor(frm, ni);
2999	}
3000#ifdef IEEE80211_SUPPORT_SUPERG
3001	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3002		bo->bo_ath = frm;
3003		frm = ieee80211_add_athcaps(frm, ni);
3004	}
3005#endif
3006#ifdef IEEE80211_SUPPORT_TDMA
3007	if (vap->iv_caps & IEEE80211_C_TDMA) {
3008		bo->bo_tdma = frm;
3009		frm = ieee80211_add_tdma(frm, vap);
3010	}
3011#endif
3012	if (vap->iv_appie_beacon != NULL) {
3013		bo->bo_appie = frm;
3014		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3015		frm = add_appie(frm, vap->iv_appie_beacon);
3016	}
3017#ifdef IEEE80211_SUPPORT_MESH
3018	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3019		frm = ieee80211_add_meshid(frm, vap);
3020		bo->bo_meshconf = frm;
3021		frm = ieee80211_add_meshconf(frm, vap);
3022	}
3023#endif
3024	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3025	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3026	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3027}
3028
3029/*
3030 * Allocate a beacon frame and fillin the appropriate bits.
3031 */
3032struct mbuf *
3033ieee80211_beacon_alloc(struct ieee80211_node *ni)
3034{
3035	struct ieee80211vap *vap = ni->ni_vap;
3036	struct ieee80211com *ic = ni->ni_ic;
3037	struct ifnet *ifp = vap->iv_ifp;
3038	struct ieee80211_frame *wh;
3039	struct mbuf *m;
3040	int pktlen;
3041	uint8_t *frm;
3042
3043	/*
3044	 * beacon frame format
3045	 *	[8] time stamp
3046	 *	[2] beacon interval
3047	 *	[2] cabability information
3048	 *	[tlv] ssid
3049	 *	[tlv] supported rates
3050	 *	[3] parameter set (DS)
3051	 *	[8] CF parameter set (optional)
3052	 *	[tlv] parameter set (IBSS/TIM)
3053	 *	[tlv] country (optional)
3054	 *	[3] power control (optional)
3055	 *	[5] channel switch announcement (CSA) (optional)
3056	 *	[tlv] extended rate phy (ERP)
3057	 *	[tlv] extended supported rates
3058	 *	[tlv] RSN parameters
3059	 *	[tlv] HT capabilities
3060	 *	[tlv] HT information
3061	 *	[tlv] Vendor OUI HT capabilities (optional)
3062	 *	[tlv] Vendor OUI HT information (optional)
3063	 * XXX Vendor-specific OIDs (e.g. Atheros)
3064	 *	[tlv] WPA parameters
3065	 *	[tlv] WME parameters
3066	 *	[tlv] TDMA parameters (optional)
3067	 *	[tlv] Mesh ID (MBSS)
3068	 *	[tlv] Mesh Conf (MBSS)
3069	 *	[tlv] application data (optional)
3070	 * NB: we allocate the max space required for the TIM bitmap.
3071	 * XXX how big is this?
3072	 */
3073	pktlen =   8					/* time stamp */
3074		 + sizeof(uint16_t)			/* beacon interval */
3075		 + sizeof(uint16_t)			/* capabilities */
3076		 + 2 + ni->ni_esslen			/* ssid */
3077	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3078	         + 2 + 1				/* DS parameters */
3079		 + 2 + 6				/* CF parameters */
3080		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3081		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3082		 + 2 + 1				/* power control */
3083		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3084		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3085		 + 2 + 1				/* ERP */
3086	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3087		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3088			2*sizeof(struct ieee80211_ie_wpa) : 0)
3089		 /* XXX conditional? */
3090		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3091		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3092		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3093			sizeof(struct ieee80211_wme_param) : 0)
3094#ifdef IEEE80211_SUPPORT_SUPERG
3095		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3096#endif
3097#ifdef IEEE80211_SUPPORT_TDMA
3098		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3099			sizeof(struct ieee80211_tdma_param) : 0)
3100#endif
3101#ifdef IEEE80211_SUPPORT_MESH
3102		 + 2 + ni->ni_meshidlen
3103		 + sizeof(struct ieee80211_meshconf_ie)
3104#endif
3105		 + IEEE80211_MAX_APPIE
3106		 ;
3107	m = ieee80211_getmgtframe(&frm,
3108		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3109	if (m == NULL) {
3110		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3111			"%s: cannot get buf; size %u\n", __func__, pktlen);
3112		vap->iv_stats.is_tx_nobuf++;
3113		return NULL;
3114	}
3115	ieee80211_beacon_construct(m, frm, ni);
3116
3117	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3118	KASSERT(m != NULL, ("no space for 802.11 header?"));
3119	wh = mtod(m, struct ieee80211_frame *);
3120	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3121	    IEEE80211_FC0_SUBTYPE_BEACON;
3122	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3123	*(uint16_t *)wh->i_dur = 0;
3124	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3125	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3126	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3127	*(uint16_t *)wh->i_seq = 0;
3128
3129	return m;
3130}
3131
3132/*
3133 * Update the dynamic parts of a beacon frame based on the current state.
3134 */
3135int
3136ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3137{
3138	struct ieee80211vap *vap = ni->ni_vap;
3139	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3140	struct ieee80211com *ic = ni->ni_ic;
3141	int len_changed = 0;
3142	uint16_t capinfo;
3143	struct ieee80211_frame *wh;
3144	ieee80211_seq seqno;
3145
3146	IEEE80211_LOCK(ic);
3147	/*
3148	 * Handle 11h channel change when we've reached the count.
3149	 * We must recalculate the beacon frame contents to account
3150	 * for the new channel.  Note we do this only for the first
3151	 * vap that reaches this point; subsequent vaps just update
3152	 * their beacon state to reflect the recalculated channel.
3153	 */
3154	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3155	    vap->iv_csa_count == ic->ic_csa_count) {
3156		vap->iv_csa_count = 0;
3157		/*
3158		 * Effect channel change before reconstructing the beacon
3159		 * frame contents as many places reference ni_chan.
3160		 */
3161		if (ic->ic_csa_newchan != NULL)
3162			ieee80211_csa_completeswitch(ic);
3163		/*
3164		 * NB: ieee80211_beacon_construct clears all pending
3165		 * updates in bo_flags so we don't need to explicitly
3166		 * clear IEEE80211_BEACON_CSA.
3167		 */
3168		ieee80211_beacon_construct(m,
3169		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3170
3171		/* XXX do WME aggressive mode processing? */
3172		IEEE80211_UNLOCK(ic);
3173		return 1;		/* just assume length changed */
3174	}
3175
3176	wh = mtod(m, struct ieee80211_frame *);
3177	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3178	*(uint16_t *)&wh->i_seq[0] =
3179		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3180	M_SEQNO_SET(m, seqno);
3181
3182	/* XXX faster to recalculate entirely or just changes? */
3183	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3184	*bo->bo_caps = htole16(capinfo);
3185
3186	if (vap->iv_flags & IEEE80211_F_WME) {
3187		struct ieee80211_wme_state *wme = &ic->ic_wme;
3188
3189		/*
3190		 * Check for agressive mode change.  When there is
3191		 * significant high priority traffic in the BSS
3192		 * throttle back BE traffic by using conservative
3193		 * parameters.  Otherwise BE uses agressive params
3194		 * to optimize performance of legacy/non-QoS traffic.
3195		 */
3196		if (wme->wme_flags & WME_F_AGGRMODE) {
3197			if (wme->wme_hipri_traffic >
3198			    wme->wme_hipri_switch_thresh) {
3199				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3200				    "%s: traffic %u, disable aggressive mode\n",
3201				    __func__, wme->wme_hipri_traffic);
3202				wme->wme_flags &= ~WME_F_AGGRMODE;
3203				ieee80211_wme_updateparams_locked(vap);
3204				wme->wme_hipri_traffic =
3205					wme->wme_hipri_switch_hysteresis;
3206			} else
3207				wme->wme_hipri_traffic = 0;
3208		} else {
3209			if (wme->wme_hipri_traffic <=
3210			    wme->wme_hipri_switch_thresh) {
3211				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3212				    "%s: traffic %u, enable aggressive mode\n",
3213				    __func__, wme->wme_hipri_traffic);
3214				wme->wme_flags |= WME_F_AGGRMODE;
3215				ieee80211_wme_updateparams_locked(vap);
3216				wme->wme_hipri_traffic = 0;
3217			} else
3218				wme->wme_hipri_traffic =
3219					wme->wme_hipri_switch_hysteresis;
3220		}
3221		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3222			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3223			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3224		}
3225	}
3226
3227	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3228		ieee80211_ht_update_beacon(vap, bo);
3229		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3230	}
3231#ifdef IEEE80211_SUPPORT_TDMA
3232	if (vap->iv_caps & IEEE80211_C_TDMA) {
3233		/*
3234		 * NB: the beacon is potentially updated every TBTT.
3235		 */
3236		ieee80211_tdma_update_beacon(vap, bo);
3237	}
3238#endif
3239#ifdef IEEE80211_SUPPORT_MESH
3240	if (vap->iv_opmode == IEEE80211_M_MBSS)
3241		ieee80211_mesh_update_beacon(vap, bo);
3242#endif
3243
3244	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3245	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3246		struct ieee80211_tim_ie *tie =
3247			(struct ieee80211_tim_ie *) bo->bo_tim;
3248		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3249			u_int timlen, timoff, i;
3250			/*
3251			 * ATIM/DTIM needs updating.  If it fits in the
3252			 * current space allocated then just copy in the
3253			 * new bits.  Otherwise we need to move any trailing
3254			 * data to make room.  Note that we know there is
3255			 * contiguous space because ieee80211_beacon_allocate
3256			 * insures there is space in the mbuf to write a
3257			 * maximal-size virtual bitmap (based on iv_max_aid).
3258			 */
3259			/*
3260			 * Calculate the bitmap size and offset, copy any
3261			 * trailer out of the way, and then copy in the
3262			 * new bitmap and update the information element.
3263			 * Note that the tim bitmap must contain at least
3264			 * one byte and any offset must be even.
3265			 */
3266			if (vap->iv_ps_pending != 0) {
3267				timoff = 128;		/* impossibly large */
3268				for (i = 0; i < vap->iv_tim_len; i++)
3269					if (vap->iv_tim_bitmap[i]) {
3270						timoff = i &~ 1;
3271						break;
3272					}
3273				KASSERT(timoff != 128, ("tim bitmap empty!"));
3274				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3275					if (vap->iv_tim_bitmap[i])
3276						break;
3277				timlen = 1 + (i - timoff);
3278			} else {
3279				timoff = 0;
3280				timlen = 1;
3281			}
3282			if (timlen != bo->bo_tim_len) {
3283				/* copy up/down trailer */
3284				int adjust = tie->tim_bitmap+timlen
3285					   - bo->bo_tim_trailer;
3286				ovbcopy(bo->bo_tim_trailer,
3287				    bo->bo_tim_trailer+adjust,
3288				    bo->bo_tim_trailer_len);
3289				bo->bo_tim_trailer += adjust;
3290				bo->bo_erp += adjust;
3291				bo->bo_htinfo += adjust;
3292#ifdef IEEE80211_SUPPORT_SUPERG
3293				bo->bo_ath += adjust;
3294#endif
3295#ifdef IEEE80211_SUPPORT_TDMA
3296				bo->bo_tdma += adjust;
3297#endif
3298#ifdef IEEE80211_SUPPORT_MESH
3299				bo->bo_meshconf += adjust;
3300#endif
3301				bo->bo_appie += adjust;
3302				bo->bo_wme += adjust;
3303				bo->bo_csa += adjust;
3304				bo->bo_quiet += adjust;
3305				bo->bo_tim_len = timlen;
3306
3307				/* update information element */
3308				tie->tim_len = 3 + timlen;
3309				tie->tim_bitctl = timoff;
3310				len_changed = 1;
3311			}
3312			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3313				bo->bo_tim_len);
3314
3315			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3316
3317			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3318				"%s: TIM updated, pending %u, off %u, len %u\n",
3319				__func__, vap->iv_ps_pending, timoff, timlen);
3320		}
3321		/* count down DTIM period */
3322		if (tie->tim_count == 0)
3323			tie->tim_count = tie->tim_period - 1;
3324		else
3325			tie->tim_count--;
3326		/* update state for buffered multicast frames on DTIM */
3327		if (mcast && tie->tim_count == 0)
3328			tie->tim_bitctl |= 1;
3329		else
3330			tie->tim_bitctl &= ~1;
3331		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3332			struct ieee80211_csa_ie *csa =
3333			    (struct ieee80211_csa_ie *) bo->bo_csa;
3334
3335			/*
3336			 * Insert or update CSA ie.  If we're just starting
3337			 * to count down to the channel switch then we need
3338			 * to insert the CSA ie.  Otherwise we just need to
3339			 * drop the count.  The actual change happens above
3340			 * when the vap's count reaches the target count.
3341			 */
3342			if (vap->iv_csa_count == 0) {
3343				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3344				bo->bo_erp += sizeof(*csa);
3345				bo->bo_htinfo += sizeof(*csa);
3346				bo->bo_wme += sizeof(*csa);
3347#ifdef IEEE80211_SUPPORT_SUPERG
3348				bo->bo_ath += sizeof(*csa);
3349#endif
3350#ifdef IEEE80211_SUPPORT_TDMA
3351				bo->bo_tdma += sizeof(*csa);
3352#endif
3353#ifdef IEEE80211_SUPPORT_MESH
3354				bo->bo_meshconf += sizeof(*csa);
3355#endif
3356				bo->bo_appie += sizeof(*csa);
3357				bo->bo_csa_trailer_len += sizeof(*csa);
3358				bo->bo_quiet += sizeof(*csa);
3359				bo->bo_tim_trailer_len += sizeof(*csa);
3360				m->m_len += sizeof(*csa);
3361				m->m_pkthdr.len += sizeof(*csa);
3362
3363				ieee80211_add_csa(bo->bo_csa, vap);
3364			} else
3365				csa->csa_count--;
3366			vap->iv_csa_count++;
3367			/* NB: don't clear IEEE80211_BEACON_CSA */
3368		}
3369		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3370		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3371			if (vap->iv_quiet)
3372				ieee80211_add_quiet(bo->bo_quiet, vap);
3373		}
3374		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3375			/*
3376			 * ERP element needs updating.
3377			 */
3378			(void) ieee80211_add_erp(bo->bo_erp, ic);
3379			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3380		}
3381#ifdef IEEE80211_SUPPORT_SUPERG
3382		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3383			ieee80211_add_athcaps(bo->bo_ath, ni);
3384			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3385		}
3386#endif
3387	}
3388	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3389		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3390		int aielen;
3391		uint8_t *frm;
3392
3393		aielen = 0;
3394		if (aie != NULL)
3395			aielen += aie->ie_len;
3396		if (aielen != bo->bo_appie_len) {
3397			/* copy up/down trailer */
3398			int adjust = aielen - bo->bo_appie_len;
3399			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3400				bo->bo_tim_trailer_len);
3401			bo->bo_tim_trailer += adjust;
3402			bo->bo_appie += adjust;
3403			bo->bo_appie_len = aielen;
3404
3405			len_changed = 1;
3406		}
3407		frm = bo->bo_appie;
3408		if (aie != NULL)
3409			frm  = add_appie(frm, aie);
3410		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3411	}
3412	IEEE80211_UNLOCK(ic);
3413
3414	return len_changed;
3415}
3416
3417/*
3418 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3419 * tunnel encapsulation.  The frame is assumed to have an Ethernet
3420 * header at the front that must be stripped before prepending the
3421 * LLC followed by the Ethernet header passed in (with an Ethernet
3422 * type that specifies the payload size).
3423 */
3424struct mbuf *
3425ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3426	const struct ether_header *eh)
3427{
3428	struct llc *llc;
3429	uint16_t payload;
3430
3431	/* XXX optimize by combining m_adj+M_PREPEND */
3432	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3433	llc = mtod(m, struct llc *);
3434	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3435	llc->llc_control = LLC_UI;
3436	llc->llc_snap.org_code[0] = 0;
3437	llc->llc_snap.org_code[1] = 0;
3438	llc->llc_snap.org_code[2] = 0;
3439	llc->llc_snap.ether_type = eh->ether_type;
3440	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3441
3442	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3443	if (m == NULL) {		/* XXX cannot happen */
3444		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3445			"%s: no space for ether_header\n", __func__);
3446		vap->iv_stats.is_tx_nobuf++;
3447		return NULL;
3448	}
3449	ETHER_HEADER_COPY(mtod(m, void *), eh);
3450	mtod(m, struct ether_header *)->ether_type = htons(payload);
3451	return m;
3452}
3453
3454/*
3455 * Complete an mbuf transmission.
3456 *
3457 * For now, this simply processes a completed frame after the
3458 * driver has completed it's transmission and/or retransmission.
3459 * It assumes the frame is an 802.11 encapsulated frame.
3460 *
3461 * Later on it will grow to become the exit path for a given frame
3462 * from the driver and, depending upon how it's been encapsulated
3463 * and already transmitted, it may end up doing A-MPDU retransmission,
3464 * power save requeuing, etc.
3465 *
3466 * In order for the above to work, the driver entry point to this
3467 * must not hold any driver locks.  Thus, the driver needs to delay
3468 * any actual mbuf completion until it can release said locks.
3469 *
3470 * This frees the mbuf and if the mbuf has a node reference,
3471 * the node reference will be freed.
3472 */
3473void
3474ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3475{
3476
3477	if (ni != NULL) {
3478		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3479
3480		if (status == 0) {
3481			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3482			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3483			if (m->m_flags & M_MCAST)
3484				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3485		} else
3486			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3487		if (m->m_flags & M_TXCB)
3488			ieee80211_process_callback(ni, m, status);
3489		ieee80211_free_node(ni);
3490	}
3491	m_freem(m);
3492}
3493