ieee80211_output.c revision 289164
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 289164 2015-10-12 04:30:38Z adrian $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/endian.h>
39
40#include <sys/socket.h>
41
42#include <net/bpf.h>
43#include <net/ethernet.h>
44#include <net/if.h>
45#include <net/if_var.h>
46#include <net/if_llc.h>
47#include <net/if_media.h>
48#include <net/if_vlan_var.h>
49
50#include <net80211/ieee80211_var.h>
51#include <net80211/ieee80211_regdomain.h>
52#ifdef IEEE80211_SUPPORT_SUPERG
53#include <net80211/ieee80211_superg.h>
54#endif
55#ifdef IEEE80211_SUPPORT_TDMA
56#include <net80211/ieee80211_tdma.h>
57#endif
58#include <net80211/ieee80211_wds.h>
59#include <net80211/ieee80211_mesh.h>
60
61#if defined(INET) || defined(INET6)
62#include <netinet/in.h>
63#endif
64
65#ifdef INET
66#include <netinet/if_ether.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#endif
70#ifdef INET6
71#include <netinet/ip6.h>
72#endif
73
74#include <security/mac/mac_framework.h>
75
76#define	ETHER_HEADER_COPY(dst, src) \
77	memcpy(dst, src, sizeof(struct ether_header))
78
79/* unalligned little endian access */
80#define LE_WRITE_2(p, v) do {				\
81	((uint8_t *)(p))[0] = (v) & 0xff;		\
82	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83} while (0)
84#define LE_WRITE_4(p, v) do {				\
85	((uint8_t *)(p))[0] = (v) & 0xff;		\
86	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
87	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
88	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
89} while (0)
90
91static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
92	u_int hdrsize, u_int ciphdrsize, u_int mtu);
93static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
94
95#ifdef IEEE80211_DEBUG
96/*
97 * Decide if an outbound management frame should be
98 * printed when debugging is enabled.  This filters some
99 * of the less interesting frames that come frequently
100 * (e.g. beacons).
101 */
102static __inline int
103doprint(struct ieee80211vap *vap, int subtype)
104{
105	switch (subtype) {
106	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
107		return (vap->iv_opmode == IEEE80211_M_IBSS);
108	}
109	return 1;
110}
111#endif
112
113/*
114 * Transmit a frame to the given destination on the given VAP.
115 *
116 * It's up to the caller to figure out the details of who this
117 * is going to and resolving the node.
118 *
119 * This routine takes care of queuing it for power save,
120 * A-MPDU state stuff, fast-frames state stuff, encapsulation
121 * if required, then passing it up to the driver layer.
122 *
123 * This routine (for now) consumes the mbuf and frees the node
124 * reference; it ideally will return a TX status which reflects
125 * whether the mbuf was consumed or not, so the caller can
126 * free the mbuf (if appropriate) and the node reference (again,
127 * if appropriate.)
128 */
129int
130ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
131    struct ieee80211_node *ni)
132{
133	struct ieee80211com *ic = vap->iv_ic;
134	struct ifnet *ifp = vap->iv_ifp;
135	int len, mcast;
136
137	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138	    (m->m_flags & M_PWR_SAV) == 0) {
139		/*
140		 * Station in power save mode; pass the frame
141		 * to the 802.11 layer and continue.  We'll get
142		 * the frame back when the time is right.
143		 * XXX lose WDS vap linkage?
144		 */
145		if (ieee80211_pwrsave(ni, m) != 0)
146			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
147		ieee80211_free_node(ni);
148
149		/*
150		 * We queued it fine, so tell the upper layer
151		 * that we consumed it.
152		 */
153		return (0);
154	}
155	/* calculate priority so drivers can find the tx queue */
156	if (ieee80211_classify(ni, m)) {
157		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
158		    ni->ni_macaddr, NULL,
159		    "%s", "classification failure");
160		vap->iv_stats.is_tx_classify++;
161		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
162		m_freem(m);
163		ieee80211_free_node(ni);
164
165		/* XXX better status? */
166		return (0);
167	}
168	/*
169	 * Stash the node pointer.  Note that we do this after
170	 * any call to ieee80211_dwds_mcast because that code
171	 * uses any existing value for rcvif to identify the
172	 * interface it (might have been) received on.
173	 */
174	m->m_pkthdr.rcvif = (void *)ni;
175	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
176	len = m->m_pkthdr.len;
177
178	BPF_MTAP(ifp, m);		/* 802.3 tx */
179
180	/*
181	 * Check if A-MPDU tx aggregation is setup or if we
182	 * should try to enable it.  The sta must be associated
183	 * with HT and A-MPDU enabled for use.  When the policy
184	 * routine decides we should enable A-MPDU we issue an
185	 * ADDBA request and wait for a reply.  The frame being
186	 * encapsulated will go out w/o using A-MPDU, or possibly
187	 * it might be collected by the driver and held/retransmit.
188	 * The default ic_ampdu_enable routine handles staggering
189	 * ADDBA requests in case the receiver NAK's us or we are
190	 * otherwise unable to establish a BA stream.
191	 */
192	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
193	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
194	    (m->m_flags & M_EAPOL) == 0) {
195		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
196		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
197
198		ieee80211_txampdu_count_packet(tap);
199		if (IEEE80211_AMPDU_RUNNING(tap)) {
200			/*
201			 * Operational, mark frame for aggregation.
202			 *
203			 * XXX do tx aggregation here
204			 */
205			m->m_flags |= M_AMPDU_MPDU;
206		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
207		    ic->ic_ampdu_enable(ni, tap)) {
208			/*
209			 * Not negotiated yet, request service.
210			 */
211			ieee80211_ampdu_request(ni, tap);
212			/* XXX hold frame for reply? */
213		}
214	}
215
216	/*
217	 * XXX If we aren't doing AMPDU TX then we /could/ do
218	 * fast-frames encapsulation, however right now this
219	 * output logic doesn't handle that case.
220	 *
221	 * So we'll be limited to "fast-frames" xmit for non-11n STA
222	 * and "no fast frames" xmit for 11n STAs.
223	 * It'd be nice to eventually test fast-frames out by
224	 * gracefully falling from failing A-MPDU transmission
225	 * (driver says no, fail to negotiate it with peer) to
226	 * using fast-frames.
227	 *
228	 * Note: we can actually put A-MSDU's inside an A-MPDU,
229	 * so hopefully we can figure out how to make that particular
230	 * combination work right.
231	 */
232#ifdef IEEE80211_SUPPORT_SUPERG
233	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
234		m = ieee80211_ff_check(ni, m);
235		if (m == NULL) {
236			/* NB: any ni ref held on stageq */
237			return (0);
238		}
239	}
240#endif /* IEEE80211_SUPPORT_SUPERG */
241
242	/*
243	 * Grab the TX lock - serialise the TX process from this
244	 * point (where TX state is being checked/modified)
245	 * through to driver queue.
246	 */
247	IEEE80211_TX_LOCK(ic);
248
249	/*
250	 * XXX make the encap and transmit code a separate function
251	 * so things like the FF (and later A-MSDU) path can just call
252	 * it for flushed frames.
253	 */
254	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
255		/*
256		 * Encapsulate the packet in prep for transmission.
257		 */
258		m = ieee80211_encap(vap, ni, m);
259		if (m == NULL) {
260			/* NB: stat+msg handled in ieee80211_encap */
261			IEEE80211_TX_UNLOCK(ic);
262			ieee80211_free_node(ni);
263			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
264			return (ENOBUFS);
265		}
266	}
267	(void) ieee80211_parent_xmitpkt(ic, m);
268
269	/*
270	 * Unlock at this point - no need to hold it across
271	 * ieee80211_free_node() (ie, the comlock)
272	 */
273	IEEE80211_TX_UNLOCK(ic);
274	ic->ic_lastdata = ticks;
275
276	return (0);
277}
278
279
280
281/*
282 * Send the given mbuf through the given vap.
283 *
284 * This consumes the mbuf regardless of whether the transmit
285 * was successful or not.
286 *
287 * This does none of the initial checks that ieee80211_start()
288 * does (eg CAC timeout, interface wakeup) - the caller must
289 * do this first.
290 */
291static int
292ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
293{
294#define	IS_DWDS(vap) \
295	(vap->iv_opmode == IEEE80211_M_WDS && \
296	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
297	struct ieee80211com *ic = vap->iv_ic;
298	struct ifnet *ifp = vap->iv_ifp;
299	struct ieee80211_node *ni;
300	struct ether_header *eh;
301
302	/*
303	 * Cancel any background scan.
304	 */
305	if (ic->ic_flags & IEEE80211_F_SCAN)
306		ieee80211_cancel_anyscan(vap);
307	/*
308	 * Find the node for the destination so we can do
309	 * things like power save and fast frames aggregation.
310	 *
311	 * NB: past this point various code assumes the first
312	 *     mbuf has the 802.3 header present (and contiguous).
313	 */
314	ni = NULL;
315	if (m->m_len < sizeof(struct ether_header) &&
316	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
317		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
318		    "discard frame, %s\n", "m_pullup failed");
319		vap->iv_stats.is_tx_nobuf++;	/* XXX */
320		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
321		return (ENOBUFS);
322	}
323	eh = mtod(m, struct ether_header *);
324	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
325		if (IS_DWDS(vap)) {
326			/*
327			 * Only unicast frames from the above go out
328			 * DWDS vaps; multicast frames are handled by
329			 * dispatching the frame as it comes through
330			 * the AP vap (see below).
331			 */
332			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
333			    eh->ether_dhost, "mcast", "%s", "on DWDS");
334			vap->iv_stats.is_dwds_mcast++;
335			m_freem(m);
336			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
337			/* XXX better status? */
338			return (ENOBUFS);
339		}
340		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
341			/*
342			 * Spam DWDS vap's w/ multicast traffic.
343			 */
344			/* XXX only if dwds in use? */
345			ieee80211_dwds_mcast(vap, m);
346		}
347	}
348#ifdef IEEE80211_SUPPORT_MESH
349	if (vap->iv_opmode != IEEE80211_M_MBSS) {
350#endif
351		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
352		if (ni == NULL) {
353			/* NB: ieee80211_find_txnode does stat+msg */
354			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
355			m_freem(m);
356			/* XXX better status? */
357			return (ENOBUFS);
358		}
359		if (ni->ni_associd == 0 &&
360		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
361			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
362			    eh->ether_dhost, NULL,
363			    "sta not associated (type 0x%04x)",
364			    htons(eh->ether_type));
365			vap->iv_stats.is_tx_notassoc++;
366			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
367			m_freem(m);
368			ieee80211_free_node(ni);
369			/* XXX better status? */
370			return (ENOBUFS);
371		}
372#ifdef IEEE80211_SUPPORT_MESH
373	} else {
374		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
375			/*
376			 * Proxy station only if configured.
377			 */
378			if (!ieee80211_mesh_isproxyena(vap)) {
379				IEEE80211_DISCARD_MAC(vap,
380				    IEEE80211_MSG_OUTPUT |
381				    IEEE80211_MSG_MESH,
382				    eh->ether_dhost, NULL,
383				    "%s", "proxy not enabled");
384				vap->iv_stats.is_mesh_notproxy++;
385				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
386				m_freem(m);
387				/* XXX better status? */
388				return (ENOBUFS);
389			}
390			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
391			    "forward frame from DS SA(%6D), DA(%6D)\n",
392			    eh->ether_shost, ":",
393			    eh->ether_dhost, ":");
394			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
395		}
396		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
397		if (ni == NULL) {
398			/*
399			 * NB: ieee80211_mesh_discover holds/disposes
400			 * frame (e.g. queueing on path discovery).
401			 */
402			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
403			/* XXX better status? */
404			return (ENOBUFS);
405		}
406	}
407#endif
408
409	/*
410	 * We've resolved the sender, so attempt to transmit it.
411	 */
412
413	if (vap->iv_state == IEEE80211_S_SLEEP) {
414		/*
415		 * In power save; queue frame and then  wakeup device
416		 * for transmit.
417		 */
418		ic->ic_lastdata = ticks;
419		if (ieee80211_pwrsave(ni, m) != 0)
420			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
421		ieee80211_free_node(ni);
422		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
423		return (0);
424	}
425
426	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
427		return (ENOBUFS);
428	return (0);
429#undef	IS_DWDS
430}
431
432/*
433 * Start method for vap's.  All packets from the stack come
434 * through here.  We handle common processing of the packets
435 * before dispatching them to the underlying device.
436 *
437 * if_transmit() requires that the mbuf be consumed by this call
438 * regardless of the return condition.
439 */
440int
441ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
442{
443	struct ieee80211vap *vap = ifp->if_softc;
444	struct ieee80211com *ic = vap->iv_ic;
445
446	/*
447	 * No data frames go out unless we're running.
448	 * Note in particular this covers CAC and CSA
449	 * states (though maybe we should check muting
450	 * for CSA).
451	 */
452	if (vap->iv_state != IEEE80211_S_RUN &&
453	    vap->iv_state != IEEE80211_S_SLEEP) {
454		IEEE80211_LOCK(ic);
455		/* re-check under the com lock to avoid races */
456		if (vap->iv_state != IEEE80211_S_RUN &&
457		    vap->iv_state != IEEE80211_S_SLEEP) {
458			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
459			    "%s: ignore queue, in %s state\n",
460			    __func__, ieee80211_state_name[vap->iv_state]);
461			vap->iv_stats.is_tx_badstate++;
462			IEEE80211_UNLOCK(ic);
463			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
464			m_freem(m);
465			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
466			return (ENETDOWN);
467		}
468		IEEE80211_UNLOCK(ic);
469	}
470
471	/*
472	 * Sanitize mbuf flags for net80211 use.  We cannot
473	 * clear M_PWR_SAV or M_MORE_DATA because these may
474	 * be set for frames that are re-submitted from the
475	 * power save queue.
476	 *
477	 * NB: This must be done before ieee80211_classify as
478	 *     it marks EAPOL in frames with M_EAPOL.
479	 */
480	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
481
482	/*
483	 * Bump to the packet transmission path.
484	 * The mbuf will be consumed here.
485	 */
486	return (ieee80211_start_pkt(vap, m));
487}
488
489void
490ieee80211_vap_qflush(struct ifnet *ifp)
491{
492
493	/* Empty for now */
494}
495
496/*
497 * 802.11 raw output routine.
498 *
499 * XXX TODO: this (and other send routines) should correctly
500 * XXX keep the pwr mgmt bit set if it decides to call into the
501 * XXX driver to send a frame whilst the state is SLEEP.
502 *
503 * Otherwise the peer may decide that we're awake and flood us
504 * with traffic we are still too asleep to receive!
505 */
506int
507ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
508    struct mbuf *m, const struct ieee80211_bpf_params *params)
509{
510	struct ieee80211com *ic = vap->iv_ic;
511	int error;
512
513	/*
514	 * Set node - the caller has taken a reference, so ensure
515	 * that the mbuf has the same node value that
516	 * it would if it were going via the normal path.
517	 */
518	m->m_pkthdr.rcvif = (void *)ni;
519
520	/*
521	 * Attempt to add bpf transmit parameters.
522	 *
523	 * For now it's ok to fail; the raw_xmit api still takes
524	 * them as an option.
525	 *
526	 * Later on when ic_raw_xmit() has params removed,
527	 * they'll have to be added - so fail the transmit if
528	 * they can't be.
529	 */
530	if (params)
531		(void) ieee80211_add_xmit_params(m, params);
532
533	error = ic->ic_raw_xmit(ni, m, params);
534	if (error)
535		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
536	return (error);
537}
538
539/*
540 * 802.11 output routine. This is (currently) used only to
541 * connect bpf write calls to the 802.11 layer for injecting
542 * raw 802.11 frames.
543 */
544int
545ieee80211_output(struct ifnet *ifp, struct mbuf *m,
546	const struct sockaddr *dst, struct route *ro)
547{
548#define senderr(e) do { error = (e); goto bad;} while (0)
549	struct ieee80211_node *ni = NULL;
550	struct ieee80211vap *vap;
551	struct ieee80211_frame *wh;
552	struct ieee80211com *ic = NULL;
553	int error;
554	int ret;
555
556	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
557		/*
558		 * Short-circuit requests if the vap is marked OACTIVE
559		 * as this can happen because a packet came down through
560		 * ieee80211_start before the vap entered RUN state in
561		 * which case it's ok to just drop the frame.  This
562		 * should not be necessary but callers of if_output don't
563		 * check OACTIVE.
564		 */
565		senderr(ENETDOWN);
566	}
567	vap = ifp->if_softc;
568	ic = vap->iv_ic;
569	/*
570	 * Hand to the 802.3 code if not tagged as
571	 * a raw 802.11 frame.
572	 */
573	if (dst->sa_family != AF_IEEE80211)
574		return vap->iv_output(ifp, m, dst, ro);
575#ifdef MAC
576	error = mac_ifnet_check_transmit(ifp, m);
577	if (error)
578		senderr(error);
579#endif
580	if (ifp->if_flags & IFF_MONITOR)
581		senderr(ENETDOWN);
582	if (!IFNET_IS_UP_RUNNING(ifp))
583		senderr(ENETDOWN);
584	if (vap->iv_state == IEEE80211_S_CAC) {
585		IEEE80211_DPRINTF(vap,
586		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
587		    "block %s frame in CAC state\n", "raw data");
588		vap->iv_stats.is_tx_badstate++;
589		senderr(EIO);		/* XXX */
590	} else if (vap->iv_state == IEEE80211_S_SCAN)
591		senderr(EIO);
592	/* XXX bypass bridge, pfil, carp, etc. */
593
594	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
595		senderr(EIO);	/* XXX */
596	wh = mtod(m, struct ieee80211_frame *);
597	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
598	    IEEE80211_FC0_VERSION_0)
599		senderr(EIO);	/* XXX */
600
601	/* locate destination node */
602	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
603	case IEEE80211_FC1_DIR_NODS:
604	case IEEE80211_FC1_DIR_FROMDS:
605		ni = ieee80211_find_txnode(vap, wh->i_addr1);
606		break;
607	case IEEE80211_FC1_DIR_TODS:
608	case IEEE80211_FC1_DIR_DSTODS:
609		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
610			senderr(EIO);	/* XXX */
611		ni = ieee80211_find_txnode(vap, wh->i_addr3);
612		break;
613	default:
614		senderr(EIO);	/* XXX */
615	}
616	if (ni == NULL) {
617		/*
618		 * Permit packets w/ bpf params through regardless
619		 * (see below about sa_len).
620		 */
621		if (dst->sa_len == 0)
622			senderr(EHOSTUNREACH);
623		ni = ieee80211_ref_node(vap->iv_bss);
624	}
625
626	/*
627	 * Sanitize mbuf for net80211 flags leaked from above.
628	 *
629	 * NB: This must be done before ieee80211_classify as
630	 *     it marks EAPOL in frames with M_EAPOL.
631	 */
632	m->m_flags &= ~M_80211_TX;
633
634	/* calculate priority so drivers can find the tx queue */
635	/* XXX assumes an 802.3 frame */
636	if (ieee80211_classify(ni, m))
637		senderr(EIO);		/* XXX */
638
639	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
640	IEEE80211_NODE_STAT(ni, tx_data);
641	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
642		IEEE80211_NODE_STAT(ni, tx_mcast);
643		m->m_flags |= M_MCAST;
644	} else
645		IEEE80211_NODE_STAT(ni, tx_ucast);
646	/* NB: ieee80211_encap does not include 802.11 header */
647	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
648
649	IEEE80211_TX_LOCK(ic);
650
651	/*
652	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
653	 * present by setting the sa_len field of the sockaddr (yes,
654	 * this is a hack).
655	 * NB: we assume sa_data is suitably aligned to cast.
656	 */
657	ret = ieee80211_raw_output(vap, ni, m,
658	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
659		dst->sa_data : NULL));
660	IEEE80211_TX_UNLOCK(ic);
661	return (ret);
662bad:
663	if (m != NULL)
664		m_freem(m);
665	if (ni != NULL)
666		ieee80211_free_node(ni);
667	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
668	return error;
669#undef senderr
670}
671
672/*
673 * Set the direction field and address fields of an outgoing
674 * frame.  Note this should be called early on in constructing
675 * a frame as it sets i_fc[1]; other bits can then be or'd in.
676 */
677void
678ieee80211_send_setup(
679	struct ieee80211_node *ni,
680	struct mbuf *m,
681	int type, int tid,
682	const uint8_t sa[IEEE80211_ADDR_LEN],
683	const uint8_t da[IEEE80211_ADDR_LEN],
684	const uint8_t bssid[IEEE80211_ADDR_LEN])
685{
686#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
687	struct ieee80211vap *vap = ni->ni_vap;
688	struct ieee80211_tx_ampdu *tap;
689	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
690	ieee80211_seq seqno;
691
692	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
693
694	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
695	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
696		switch (vap->iv_opmode) {
697		case IEEE80211_M_STA:
698			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
699			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
700			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
701			IEEE80211_ADDR_COPY(wh->i_addr3, da);
702			break;
703		case IEEE80211_M_IBSS:
704		case IEEE80211_M_AHDEMO:
705			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
706			IEEE80211_ADDR_COPY(wh->i_addr1, da);
707			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
708			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
709			break;
710		case IEEE80211_M_HOSTAP:
711			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
712			IEEE80211_ADDR_COPY(wh->i_addr1, da);
713			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
714			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
715			break;
716		case IEEE80211_M_WDS:
717			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
718			IEEE80211_ADDR_COPY(wh->i_addr1, da);
719			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
720			IEEE80211_ADDR_COPY(wh->i_addr3, da);
721			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
722			break;
723		case IEEE80211_M_MBSS:
724#ifdef IEEE80211_SUPPORT_MESH
725			if (IEEE80211_IS_MULTICAST(da)) {
726				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
727				/* XXX next hop */
728				IEEE80211_ADDR_COPY(wh->i_addr1, da);
729				IEEE80211_ADDR_COPY(wh->i_addr2,
730				    vap->iv_myaddr);
731			} else {
732				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
733				IEEE80211_ADDR_COPY(wh->i_addr1, da);
734				IEEE80211_ADDR_COPY(wh->i_addr2,
735				    vap->iv_myaddr);
736				IEEE80211_ADDR_COPY(wh->i_addr3, da);
737				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
738			}
739#endif
740			break;
741		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
742			break;
743		}
744	} else {
745		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
746		IEEE80211_ADDR_COPY(wh->i_addr1, da);
747		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
748#ifdef IEEE80211_SUPPORT_MESH
749		if (vap->iv_opmode == IEEE80211_M_MBSS)
750			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
751		else
752#endif
753			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
754	}
755	*(uint16_t *)&wh->i_dur[0] = 0;
756
757	tap = &ni->ni_tx_ampdu[tid];
758	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
759		m->m_flags |= M_AMPDU_MPDU;
760	else {
761		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
762				      type & IEEE80211_FC0_SUBTYPE_MASK))
763			seqno = ni->ni_txseqs[tid]++;
764		else
765			seqno = 0;
766
767		*(uint16_t *)&wh->i_seq[0] =
768		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
769		M_SEQNO_SET(m, seqno);
770	}
771
772	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
773		m->m_flags |= M_MCAST;
774#undef WH4
775}
776
777/*
778 * Send a management frame to the specified node.  The node pointer
779 * must have a reference as the pointer will be passed to the driver
780 * and potentially held for a long time.  If the frame is successfully
781 * dispatched to the driver, then it is responsible for freeing the
782 * reference (and potentially free'ing up any associated storage);
783 * otherwise deal with reclaiming any reference (on error).
784 */
785int
786ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
787	struct ieee80211_bpf_params *params)
788{
789	struct ieee80211vap *vap = ni->ni_vap;
790	struct ieee80211com *ic = ni->ni_ic;
791	struct ieee80211_frame *wh;
792	int ret;
793
794	KASSERT(ni != NULL, ("null node"));
795
796	if (vap->iv_state == IEEE80211_S_CAC) {
797		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
798		    ni, "block %s frame in CAC state",
799			ieee80211_mgt_subtype_name[
800			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
801				IEEE80211_FC0_SUBTYPE_SHIFT]);
802		vap->iv_stats.is_tx_badstate++;
803		ieee80211_free_node(ni);
804		m_freem(m);
805		return EIO;		/* XXX */
806	}
807
808	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
809	if (m == NULL) {
810		ieee80211_free_node(ni);
811		return ENOMEM;
812	}
813
814	IEEE80211_TX_LOCK(ic);
815
816	wh = mtod(m, struct ieee80211_frame *);
817	ieee80211_send_setup(ni, m,
818	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
819	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
820	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
821		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
822		    "encrypting frame (%s)", __func__);
823		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
824	}
825	m->m_flags |= M_ENCAP;		/* mark encapsulated */
826
827	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
828	M_WME_SETAC(m, params->ibp_pri);
829
830#ifdef IEEE80211_DEBUG
831	/* avoid printing too many frames */
832	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
833	    ieee80211_msg_dumppkts(vap)) {
834		printf("[%s] send %s on channel %u\n",
835		    ether_sprintf(wh->i_addr1),
836		    ieee80211_mgt_subtype_name[
837			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
838				IEEE80211_FC0_SUBTYPE_SHIFT],
839		    ieee80211_chan2ieee(ic, ic->ic_curchan));
840	}
841#endif
842	IEEE80211_NODE_STAT(ni, tx_mgmt);
843
844	ret = ieee80211_raw_output(vap, ni, m, params);
845	IEEE80211_TX_UNLOCK(ic);
846	return (ret);
847}
848
849/*
850 * Send a null data frame to the specified node.  If the station
851 * is setup for QoS then a QoS Null Data frame is constructed.
852 * If this is a WDS station then a 4-address frame is constructed.
853 *
854 * NB: the caller is assumed to have setup a node reference
855 *     for use; this is necessary to deal with a race condition
856 *     when probing for inactive stations.  Like ieee80211_mgmt_output
857 *     we must cleanup any node reference on error;  however we
858 *     can safely just unref it as we know it will never be the
859 *     last reference to the node.
860 */
861int
862ieee80211_send_nulldata(struct ieee80211_node *ni)
863{
864	struct ieee80211vap *vap = ni->ni_vap;
865	struct ieee80211com *ic = ni->ni_ic;
866	struct mbuf *m;
867	struct ieee80211_frame *wh;
868	int hdrlen;
869	uint8_t *frm;
870	int ret;
871
872	if (vap->iv_state == IEEE80211_S_CAC) {
873		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
874		    ni, "block %s frame in CAC state", "null data");
875		ieee80211_unref_node(&ni);
876		vap->iv_stats.is_tx_badstate++;
877		return EIO;		/* XXX */
878	}
879
880	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
881		hdrlen = sizeof(struct ieee80211_qosframe);
882	else
883		hdrlen = sizeof(struct ieee80211_frame);
884	/* NB: only WDS vap's get 4-address frames */
885	if (vap->iv_opmode == IEEE80211_M_WDS)
886		hdrlen += IEEE80211_ADDR_LEN;
887	if (ic->ic_flags & IEEE80211_F_DATAPAD)
888		hdrlen = roundup(hdrlen, sizeof(uint32_t));
889
890	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
891	if (m == NULL) {
892		/* XXX debug msg */
893		ieee80211_unref_node(&ni);
894		vap->iv_stats.is_tx_nobuf++;
895		return ENOMEM;
896	}
897	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
898	    ("leading space %zd", M_LEADINGSPACE(m)));
899	M_PREPEND(m, hdrlen, M_NOWAIT);
900	if (m == NULL) {
901		/* NB: cannot happen */
902		ieee80211_free_node(ni);
903		return ENOMEM;
904	}
905
906	IEEE80211_TX_LOCK(ic);
907
908	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
909	if (ni->ni_flags & IEEE80211_NODE_QOS) {
910		const int tid = WME_AC_TO_TID(WME_AC_BE);
911		uint8_t *qos;
912
913		ieee80211_send_setup(ni, m,
914		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
915		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
916
917		if (vap->iv_opmode == IEEE80211_M_WDS)
918			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
919		else
920			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
921		qos[0] = tid & IEEE80211_QOS_TID;
922		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
923			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
924		qos[1] = 0;
925	} else {
926		ieee80211_send_setup(ni, m,
927		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
928		    IEEE80211_NONQOS_TID,
929		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
930	}
931	if (vap->iv_opmode != IEEE80211_M_WDS) {
932		/* NB: power management bit is never sent by an AP */
933		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
934		    vap->iv_opmode != IEEE80211_M_HOSTAP)
935			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
936	}
937	m->m_len = m->m_pkthdr.len = hdrlen;
938	m->m_flags |= M_ENCAP;		/* mark encapsulated */
939
940	M_WME_SETAC(m, WME_AC_BE);
941
942	IEEE80211_NODE_STAT(ni, tx_data);
943
944	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
945	    "send %snull data frame on channel %u, pwr mgt %s",
946	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
947	    ieee80211_chan2ieee(ic, ic->ic_curchan),
948	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
949
950	ret = ieee80211_raw_output(vap, ni, m, NULL);
951	IEEE80211_TX_UNLOCK(ic);
952	return (ret);
953}
954
955/*
956 * Assign priority to a frame based on any vlan tag assigned
957 * to the station and/or any Diffserv setting in an IP header.
958 * Finally, if an ACM policy is setup (in station mode) it's
959 * applied.
960 */
961int
962ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
963{
964	const struct ether_header *eh = mtod(m, struct ether_header *);
965	int v_wme_ac, d_wme_ac, ac;
966
967	/*
968	 * Always promote PAE/EAPOL frames to high priority.
969	 */
970	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
971		/* NB: mark so others don't need to check header */
972		m->m_flags |= M_EAPOL;
973		ac = WME_AC_VO;
974		goto done;
975	}
976	/*
977	 * Non-qos traffic goes to BE.
978	 */
979	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
980		ac = WME_AC_BE;
981		goto done;
982	}
983
984	/*
985	 * If node has a vlan tag then all traffic
986	 * to it must have a matching tag.
987	 */
988	v_wme_ac = 0;
989	if (ni->ni_vlan != 0) {
990		 if ((m->m_flags & M_VLANTAG) == 0) {
991			IEEE80211_NODE_STAT(ni, tx_novlantag);
992			return 1;
993		}
994		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
995		    EVL_VLANOFTAG(ni->ni_vlan)) {
996			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
997			return 1;
998		}
999		/* map vlan priority to AC */
1000		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1001	}
1002
1003	/* XXX m_copydata may be too slow for fast path */
1004#ifdef INET
1005	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1006		uint8_t tos;
1007		/*
1008		 * IP frame, map the DSCP bits from the TOS field.
1009		 */
1010		/* NB: ip header may not be in first mbuf */
1011		m_copydata(m, sizeof(struct ether_header) +
1012		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1013		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1014		d_wme_ac = TID_TO_WME_AC(tos);
1015	} else {
1016#endif /* INET */
1017#ifdef INET6
1018	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1019		uint32_t flow;
1020		uint8_t tos;
1021		/*
1022		 * IPv6 frame, map the DSCP bits from the traffic class field.
1023		 */
1024		m_copydata(m, sizeof(struct ether_header) +
1025		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1026		    (caddr_t) &flow);
1027		tos = (uint8_t)(ntohl(flow) >> 20);
1028		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1029		d_wme_ac = TID_TO_WME_AC(tos);
1030	} else {
1031#endif /* INET6 */
1032		d_wme_ac = WME_AC_BE;
1033#ifdef INET6
1034	}
1035#endif
1036#ifdef INET
1037	}
1038#endif
1039	/*
1040	 * Use highest priority AC.
1041	 */
1042	if (v_wme_ac > d_wme_ac)
1043		ac = v_wme_ac;
1044	else
1045		ac = d_wme_ac;
1046
1047	/*
1048	 * Apply ACM policy.
1049	 */
1050	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1051		static const int acmap[4] = {
1052			WME_AC_BK,	/* WME_AC_BE */
1053			WME_AC_BK,	/* WME_AC_BK */
1054			WME_AC_BE,	/* WME_AC_VI */
1055			WME_AC_VI,	/* WME_AC_VO */
1056		};
1057		struct ieee80211com *ic = ni->ni_ic;
1058
1059		while (ac != WME_AC_BK &&
1060		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1061			ac = acmap[ac];
1062	}
1063done:
1064	M_WME_SETAC(m, ac);
1065	return 0;
1066}
1067
1068/*
1069 * Insure there is sufficient contiguous space to encapsulate the
1070 * 802.11 data frame.  If room isn't already there, arrange for it.
1071 * Drivers and cipher modules assume we have done the necessary work
1072 * and fail rudely if they don't find the space they need.
1073 */
1074struct mbuf *
1075ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1076	struct ieee80211_key *key, struct mbuf *m)
1077{
1078#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1079	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1080
1081	if (key != NULL) {
1082		/* XXX belongs in crypto code? */
1083		needed_space += key->wk_cipher->ic_header;
1084		/* XXX frags */
1085		/*
1086		 * When crypto is being done in the host we must insure
1087		 * the data are writable for the cipher routines; clone
1088		 * a writable mbuf chain.
1089		 * XXX handle SWMIC specially
1090		 */
1091		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1092			m = m_unshare(m, M_NOWAIT);
1093			if (m == NULL) {
1094				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1095				    "%s: cannot get writable mbuf\n", __func__);
1096				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1097				return NULL;
1098			}
1099		}
1100	}
1101	/*
1102	 * We know we are called just before stripping an Ethernet
1103	 * header and prepending an LLC header.  This means we know
1104	 * there will be
1105	 *	sizeof(struct ether_header) - sizeof(struct llc)
1106	 * bytes recovered to which we need additional space for the
1107	 * 802.11 header and any crypto header.
1108	 */
1109	/* XXX check trailing space and copy instead? */
1110	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1111		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1112		if (n == NULL) {
1113			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1114			    "%s: cannot expand storage\n", __func__);
1115			vap->iv_stats.is_tx_nobuf++;
1116			m_freem(m);
1117			return NULL;
1118		}
1119		KASSERT(needed_space <= MHLEN,
1120		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1121		/*
1122		 * Setup new mbuf to have leading space to prepend the
1123		 * 802.11 header and any crypto header bits that are
1124		 * required (the latter are added when the driver calls
1125		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1126		 */
1127		/* NB: must be first 'cuz it clobbers m_data */
1128		m_move_pkthdr(n, m);
1129		n->m_len = 0;			/* NB: m_gethdr does not set */
1130		n->m_data += needed_space;
1131		/*
1132		 * Pull up Ethernet header to create the expected layout.
1133		 * We could use m_pullup but that's overkill (i.e. we don't
1134		 * need the actual data) and it cannot fail so do it inline
1135		 * for speed.
1136		 */
1137		/* NB: struct ether_header is known to be contiguous */
1138		n->m_len += sizeof(struct ether_header);
1139		m->m_len -= sizeof(struct ether_header);
1140		m->m_data += sizeof(struct ether_header);
1141		/*
1142		 * Replace the head of the chain.
1143		 */
1144		n->m_next = m;
1145		m = n;
1146	}
1147	return m;
1148#undef TO_BE_RECLAIMED
1149}
1150
1151/*
1152 * Return the transmit key to use in sending a unicast frame.
1153 * If a unicast key is set we use that.  When no unicast key is set
1154 * we fall back to the default transmit key.
1155 */
1156static __inline struct ieee80211_key *
1157ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1158	struct ieee80211_node *ni)
1159{
1160	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1161		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1162		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1163			return NULL;
1164		return &vap->iv_nw_keys[vap->iv_def_txkey];
1165	} else {
1166		return &ni->ni_ucastkey;
1167	}
1168}
1169
1170/*
1171 * Return the transmit key to use in sending a multicast frame.
1172 * Multicast traffic always uses the group key which is installed as
1173 * the default tx key.
1174 */
1175static __inline struct ieee80211_key *
1176ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1177	struct ieee80211_node *ni)
1178{
1179	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1180	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1181		return NULL;
1182	return &vap->iv_nw_keys[vap->iv_def_txkey];
1183}
1184
1185/*
1186 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1187 * If an error is encountered NULL is returned.  The caller is required
1188 * to provide a node reference and pullup the ethernet header in the
1189 * first mbuf.
1190 *
1191 * NB: Packet is assumed to be processed by ieee80211_classify which
1192 *     marked EAPOL frames w/ M_EAPOL.
1193 */
1194struct mbuf *
1195ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1196    struct mbuf *m)
1197{
1198#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1199#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1200	struct ieee80211com *ic = ni->ni_ic;
1201#ifdef IEEE80211_SUPPORT_MESH
1202	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1203	struct ieee80211_meshcntl_ae10 *mc;
1204	struct ieee80211_mesh_route *rt = NULL;
1205	int dir = -1;
1206#endif
1207	struct ether_header eh;
1208	struct ieee80211_frame *wh;
1209	struct ieee80211_key *key;
1210	struct llc *llc;
1211	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1212	ieee80211_seq seqno;
1213	int meshhdrsize, meshae;
1214	uint8_t *qos;
1215
1216	IEEE80211_TX_LOCK_ASSERT(ic);
1217
1218	/*
1219	 * Copy existing Ethernet header to a safe place.  The
1220	 * rest of the code assumes it's ok to strip it when
1221	 * reorganizing state for the final encapsulation.
1222	 */
1223	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1224	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1225
1226	/*
1227	 * Insure space for additional headers.  First identify
1228	 * transmit key to use in calculating any buffer adjustments
1229	 * required.  This is also used below to do privacy
1230	 * encapsulation work.  Then calculate the 802.11 header
1231	 * size and any padding required by the driver.
1232	 *
1233	 * Note key may be NULL if we fall back to the default
1234	 * transmit key and that is not set.  In that case the
1235	 * buffer may not be expanded as needed by the cipher
1236	 * routines, but they will/should discard it.
1237	 */
1238	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1239		if (vap->iv_opmode == IEEE80211_M_STA ||
1240		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1241		    (vap->iv_opmode == IEEE80211_M_WDS &&
1242		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1243			key = ieee80211_crypto_getucastkey(vap, ni);
1244		else
1245			key = ieee80211_crypto_getmcastkey(vap, ni);
1246		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1247			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1248			    eh.ether_dhost,
1249			    "no default transmit key (%s) deftxkey %u",
1250			    __func__, vap->iv_def_txkey);
1251			vap->iv_stats.is_tx_nodefkey++;
1252			goto bad;
1253		}
1254	} else
1255		key = NULL;
1256	/*
1257	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1258	 * frames so suppress use.  This may be an issue if other
1259	 * ap's require all data frames to be QoS-encapsulated
1260	 * once negotiated in which case we'll need to make this
1261	 * configurable.
1262	 * NB: mesh data frames are QoS.
1263	 */
1264	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1265	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1266	    (m->m_flags & M_EAPOL) == 0;
1267	if (addqos)
1268		hdrsize = sizeof(struct ieee80211_qosframe);
1269	else
1270		hdrsize = sizeof(struct ieee80211_frame);
1271#ifdef IEEE80211_SUPPORT_MESH
1272	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1273		/*
1274		 * Mesh data frames are encapsulated according to the
1275		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1276		 * o Group Addressed data (aka multicast) originating
1277		 *   at the local sta are sent w/ 3-address format and
1278		 *   address extension mode 00
1279		 * o Individually Addressed data (aka unicast) originating
1280		 *   at the local sta are sent w/ 4-address format and
1281		 *   address extension mode 00
1282		 * o Group Addressed data forwarded from a non-mesh sta are
1283		 *   sent w/ 3-address format and address extension mode 01
1284		 * o Individually Address data from another sta are sent
1285		 *   w/ 4-address format and address extension mode 10
1286		 */
1287		is4addr = 0;		/* NB: don't use, disable */
1288		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1289			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1290			KASSERT(rt != NULL, ("route is NULL"));
1291			dir = IEEE80211_FC1_DIR_DSTODS;
1292			hdrsize += IEEE80211_ADDR_LEN;
1293			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1294				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1295				    vap->iv_myaddr)) {
1296					IEEE80211_NOTE_MAC(vap,
1297					    IEEE80211_MSG_MESH,
1298					    eh.ether_dhost,
1299					    "%s", "trying to send to ourself");
1300					goto bad;
1301				}
1302				meshae = IEEE80211_MESH_AE_10;
1303				meshhdrsize =
1304				    sizeof(struct ieee80211_meshcntl_ae10);
1305			} else {
1306				meshae = IEEE80211_MESH_AE_00;
1307				meshhdrsize =
1308				    sizeof(struct ieee80211_meshcntl);
1309			}
1310		} else {
1311			dir = IEEE80211_FC1_DIR_FROMDS;
1312			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1313				/* proxy group */
1314				meshae = IEEE80211_MESH_AE_01;
1315				meshhdrsize =
1316				    sizeof(struct ieee80211_meshcntl_ae01);
1317			} else {
1318				/* group */
1319				meshae = IEEE80211_MESH_AE_00;
1320				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1321			}
1322		}
1323	} else {
1324#endif
1325		/*
1326		 * 4-address frames need to be generated for:
1327		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1328		 * o packets sent through a vap marked for relaying
1329		 *   (e.g. a station operating with dynamic WDS)
1330		 */
1331		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1332		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1333		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1334		if (is4addr)
1335			hdrsize += IEEE80211_ADDR_LEN;
1336		meshhdrsize = meshae = 0;
1337#ifdef IEEE80211_SUPPORT_MESH
1338	}
1339#endif
1340	/*
1341	 * Honor driver DATAPAD requirement.
1342	 */
1343	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1344		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1345	else
1346		hdrspace = hdrsize;
1347
1348	if (__predict_true((m->m_flags & M_FF) == 0)) {
1349		/*
1350		 * Normal frame.
1351		 */
1352		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1353		if (m == NULL) {
1354			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1355			goto bad;
1356		}
1357		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1358		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1359		llc = mtod(m, struct llc *);
1360		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1361		llc->llc_control = LLC_UI;
1362		llc->llc_snap.org_code[0] = 0;
1363		llc->llc_snap.org_code[1] = 0;
1364		llc->llc_snap.org_code[2] = 0;
1365		llc->llc_snap.ether_type = eh.ether_type;
1366	} else {
1367#ifdef IEEE80211_SUPPORT_SUPERG
1368		/*
1369		 * Aggregated frame.
1370		 */
1371		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1372		if (m == NULL)
1373#endif
1374			goto bad;
1375	}
1376	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1377
1378	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1379	if (m == NULL) {
1380		vap->iv_stats.is_tx_nobuf++;
1381		goto bad;
1382	}
1383	wh = mtod(m, struct ieee80211_frame *);
1384	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1385	*(uint16_t *)wh->i_dur = 0;
1386	qos = NULL;	/* NB: quiet compiler */
1387	if (is4addr) {
1388		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1389		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1390		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1391		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1392		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1393	} else switch (vap->iv_opmode) {
1394	case IEEE80211_M_STA:
1395		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1396		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1397		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1398		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1399		break;
1400	case IEEE80211_M_IBSS:
1401	case IEEE80211_M_AHDEMO:
1402		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1403		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1404		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1405		/*
1406		 * NB: always use the bssid from iv_bss as the
1407		 *     neighbor's may be stale after an ibss merge
1408		 */
1409		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1410		break;
1411	case IEEE80211_M_HOSTAP:
1412		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1413		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1414		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1415		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1416		break;
1417#ifdef IEEE80211_SUPPORT_MESH
1418	case IEEE80211_M_MBSS:
1419		/* NB: offset by hdrspace to deal with DATAPAD */
1420		mc = (struct ieee80211_meshcntl_ae10 *)
1421		     (mtod(m, uint8_t *) + hdrspace);
1422		wh->i_fc[1] = dir;
1423		switch (meshae) {
1424		case IEEE80211_MESH_AE_00:	/* no proxy */
1425			mc->mc_flags = 0;
1426			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1427				IEEE80211_ADDR_COPY(wh->i_addr1,
1428				    ni->ni_macaddr);
1429				IEEE80211_ADDR_COPY(wh->i_addr2,
1430				    vap->iv_myaddr);
1431				IEEE80211_ADDR_COPY(wh->i_addr3,
1432				    eh.ether_dhost);
1433				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1434				    eh.ether_shost);
1435				qos =((struct ieee80211_qosframe_addr4 *)
1436				    wh)->i_qos;
1437			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1438				 /* mcast */
1439				IEEE80211_ADDR_COPY(wh->i_addr1,
1440				    eh.ether_dhost);
1441				IEEE80211_ADDR_COPY(wh->i_addr2,
1442				    vap->iv_myaddr);
1443				IEEE80211_ADDR_COPY(wh->i_addr3,
1444				    eh.ether_shost);
1445				qos = ((struct ieee80211_qosframe *)
1446				    wh)->i_qos;
1447			}
1448			break;
1449		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1450			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1451			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1452			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1453			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1454			mc->mc_flags = 1;
1455			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1456			    eh.ether_shost);
1457			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1458			break;
1459		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1460			KASSERT(rt != NULL, ("route is NULL"));
1461			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1462			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1463			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1464			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1465			mc->mc_flags = IEEE80211_MESH_AE_10;
1466			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1467			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1468			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1469			break;
1470		default:
1471			KASSERT(0, ("meshae %d", meshae));
1472			break;
1473		}
1474		mc->mc_ttl = ms->ms_ttl;
1475		ms->ms_seq++;
1476		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1477		break;
1478#endif
1479	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1480	default:
1481		goto bad;
1482	}
1483	if (m->m_flags & M_MORE_DATA)
1484		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1485	if (addqos) {
1486		int ac, tid;
1487
1488		if (is4addr) {
1489			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1490		/* NB: mesh case handled earlier */
1491		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1492			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1493		ac = M_WME_GETAC(m);
1494		/* map from access class/queue to 11e header priorty value */
1495		tid = WME_AC_TO_TID(ac);
1496		qos[0] = tid & IEEE80211_QOS_TID;
1497		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1498			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1499#ifdef IEEE80211_SUPPORT_MESH
1500		if (vap->iv_opmode == IEEE80211_M_MBSS)
1501			qos[1] = IEEE80211_QOS_MC;
1502		else
1503#endif
1504			qos[1] = 0;
1505		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1506
1507		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1508			/*
1509			 * NB: don't assign a sequence # to potential
1510			 * aggregates; we expect this happens at the
1511			 * point the frame comes off any aggregation q
1512			 * as otherwise we may introduce holes in the
1513			 * BA sequence space and/or make window accouting
1514			 * more difficult.
1515			 *
1516			 * XXX may want to control this with a driver
1517			 * capability; this may also change when we pull
1518			 * aggregation up into net80211
1519			 */
1520			seqno = ni->ni_txseqs[tid]++;
1521			*(uint16_t *)wh->i_seq =
1522			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1523			M_SEQNO_SET(m, seqno);
1524		}
1525	} else {
1526		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1527		*(uint16_t *)wh->i_seq =
1528		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1529		M_SEQNO_SET(m, seqno);
1530	}
1531
1532
1533	/* check if xmit fragmentation is required */
1534	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1535	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1536	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1537	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1538	if (key != NULL) {
1539		/*
1540		 * IEEE 802.1X: send EAPOL frames always in the clear.
1541		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1542		 */
1543		if ((m->m_flags & M_EAPOL) == 0 ||
1544		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1545		     (vap->iv_opmode == IEEE80211_M_STA ?
1546		      !IEEE80211_KEY_UNDEFINED(key) :
1547		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1548			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1549			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1550				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1551				    eh.ether_dhost,
1552				    "%s", "enmic failed, discard frame");
1553				vap->iv_stats.is_crypto_enmicfail++;
1554				goto bad;
1555			}
1556		}
1557	}
1558	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1559	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1560		goto bad;
1561
1562	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1563
1564	IEEE80211_NODE_STAT(ni, tx_data);
1565	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1566		IEEE80211_NODE_STAT(ni, tx_mcast);
1567		m->m_flags |= M_MCAST;
1568	} else
1569		IEEE80211_NODE_STAT(ni, tx_ucast);
1570	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1571
1572	return m;
1573bad:
1574	if (m != NULL)
1575		m_freem(m);
1576	return NULL;
1577#undef WH4
1578#undef MC01
1579}
1580
1581void
1582ieee80211_free_mbuf(struct mbuf *m)
1583{
1584	struct mbuf *next;
1585
1586	if (m == NULL)
1587		return;
1588
1589	do {
1590		next = m->m_nextpkt;
1591		m->m_nextpkt = NULL;
1592		m_freem(m);
1593	} while ((m = next) != NULL);
1594}
1595
1596/*
1597 * Fragment the frame according to the specified mtu.
1598 * The size of the 802.11 header (w/o padding) is provided
1599 * so we don't need to recalculate it.  We create a new
1600 * mbuf for each fragment and chain it through m_nextpkt;
1601 * we might be able to optimize this by reusing the original
1602 * packet's mbufs but that is significantly more complicated.
1603 */
1604static int
1605ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1606	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1607{
1608	struct ieee80211com *ic = vap->iv_ic;
1609	struct ieee80211_frame *wh, *whf;
1610	struct mbuf *m, *prev;
1611	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1612	u_int hdrspace;
1613
1614	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1615	KASSERT(m0->m_pkthdr.len > mtu,
1616		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1617
1618	/*
1619	 * Honor driver DATAPAD requirement.
1620	 */
1621	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1622		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1623	else
1624		hdrspace = hdrsize;
1625
1626	wh = mtod(m0, struct ieee80211_frame *);
1627	/* NB: mark the first frag; it will be propagated below */
1628	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1629	totalhdrsize = hdrspace + ciphdrsize;
1630	fragno = 1;
1631	off = mtu - ciphdrsize;
1632	remainder = m0->m_pkthdr.len - off;
1633	prev = m0;
1634	do {
1635		fragsize = totalhdrsize + remainder;
1636		if (fragsize > mtu)
1637			fragsize = mtu;
1638		/* XXX fragsize can be >2048! */
1639		KASSERT(fragsize < MCLBYTES,
1640			("fragment size %u too big!", fragsize));
1641		if (fragsize > MHLEN)
1642			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1643		else
1644			m = m_gethdr(M_NOWAIT, MT_DATA);
1645		if (m == NULL)
1646			goto bad;
1647		/* leave room to prepend any cipher header */
1648		m_align(m, fragsize - ciphdrsize);
1649
1650		/*
1651		 * Form the header in the fragment.  Note that since
1652		 * we mark the first fragment with the MORE_FRAG bit
1653		 * it automatically is propagated to each fragment; we
1654		 * need only clear it on the last fragment (done below).
1655		 * NB: frag 1+ dont have Mesh Control field present.
1656		 */
1657		whf = mtod(m, struct ieee80211_frame *);
1658		memcpy(whf, wh, hdrsize);
1659#ifdef IEEE80211_SUPPORT_MESH
1660		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1661			if (IEEE80211_IS_DSTODS(wh))
1662				((struct ieee80211_qosframe_addr4 *)
1663				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1664			else
1665				((struct ieee80211_qosframe *)
1666				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1667		}
1668#endif
1669		*(uint16_t *)&whf->i_seq[0] |= htole16(
1670			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1671				IEEE80211_SEQ_FRAG_SHIFT);
1672		fragno++;
1673
1674		payload = fragsize - totalhdrsize;
1675		/* NB: destination is known to be contiguous */
1676
1677		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1678		m->m_len = hdrspace + payload;
1679		m->m_pkthdr.len = hdrspace + payload;
1680		m->m_flags |= M_FRAG;
1681
1682		/* chain up the fragment */
1683		prev->m_nextpkt = m;
1684		prev = m;
1685
1686		/* deduct fragment just formed */
1687		remainder -= payload;
1688		off += payload;
1689	} while (remainder != 0);
1690
1691	/* set the last fragment */
1692	m->m_flags |= M_LASTFRAG;
1693	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1694
1695	/* strip first mbuf now that everything has been copied */
1696	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1697	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1698
1699	vap->iv_stats.is_tx_fragframes++;
1700	vap->iv_stats.is_tx_frags += fragno-1;
1701
1702	return 1;
1703bad:
1704	/* reclaim fragments but leave original frame for caller to free */
1705	ieee80211_free_mbuf(m0->m_nextpkt);
1706	m0->m_nextpkt = NULL;
1707	return 0;
1708}
1709
1710/*
1711 * Add a supported rates element id to a frame.
1712 */
1713uint8_t *
1714ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1715{
1716	int nrates;
1717
1718	*frm++ = IEEE80211_ELEMID_RATES;
1719	nrates = rs->rs_nrates;
1720	if (nrates > IEEE80211_RATE_SIZE)
1721		nrates = IEEE80211_RATE_SIZE;
1722	*frm++ = nrates;
1723	memcpy(frm, rs->rs_rates, nrates);
1724	return frm + nrates;
1725}
1726
1727/*
1728 * Add an extended supported rates element id to a frame.
1729 */
1730uint8_t *
1731ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1732{
1733	/*
1734	 * Add an extended supported rates element if operating in 11g mode.
1735	 */
1736	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1737		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1738		*frm++ = IEEE80211_ELEMID_XRATES;
1739		*frm++ = nrates;
1740		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1741		frm += nrates;
1742	}
1743	return frm;
1744}
1745
1746/*
1747 * Add an ssid element to a frame.
1748 */
1749uint8_t *
1750ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1751{
1752	*frm++ = IEEE80211_ELEMID_SSID;
1753	*frm++ = len;
1754	memcpy(frm, ssid, len);
1755	return frm + len;
1756}
1757
1758/*
1759 * Add an erp element to a frame.
1760 */
1761static uint8_t *
1762ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1763{
1764	uint8_t erp;
1765
1766	*frm++ = IEEE80211_ELEMID_ERP;
1767	*frm++ = 1;
1768	erp = 0;
1769	if (ic->ic_nonerpsta != 0)
1770		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1771	if (ic->ic_flags & IEEE80211_F_USEPROT)
1772		erp |= IEEE80211_ERP_USE_PROTECTION;
1773	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1774		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1775	*frm++ = erp;
1776	return frm;
1777}
1778
1779/*
1780 * Add a CFParams element to a frame.
1781 */
1782static uint8_t *
1783ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1784{
1785#define	ADDSHORT(frm, v) do {	\
1786	LE_WRITE_2(frm, v);	\
1787	frm += 2;		\
1788} while (0)
1789	*frm++ = IEEE80211_ELEMID_CFPARMS;
1790	*frm++ = 6;
1791	*frm++ = 0;		/* CFP count */
1792	*frm++ = 2;		/* CFP period */
1793	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1794	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1795	return frm;
1796#undef ADDSHORT
1797}
1798
1799static __inline uint8_t *
1800add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1801{
1802	memcpy(frm, ie->ie_data, ie->ie_len);
1803	return frm + ie->ie_len;
1804}
1805
1806static __inline uint8_t *
1807add_ie(uint8_t *frm, const uint8_t *ie)
1808{
1809	memcpy(frm, ie, 2 + ie[1]);
1810	return frm + 2 + ie[1];
1811}
1812
1813#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1814/*
1815 * Add a WME information element to a frame.
1816 */
1817uint8_t *
1818ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1819{
1820	static const struct ieee80211_wme_info info = {
1821		.wme_id		= IEEE80211_ELEMID_VENDOR,
1822		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1823		.wme_oui	= { WME_OUI_BYTES },
1824		.wme_type	= WME_OUI_TYPE,
1825		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1826		.wme_version	= WME_VERSION,
1827		.wme_info	= 0,
1828	};
1829	memcpy(frm, &info, sizeof(info));
1830	return frm + sizeof(info);
1831}
1832
1833/*
1834 * Add a WME parameters element to a frame.
1835 */
1836static uint8_t *
1837ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1838{
1839#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1840#define	ADDSHORT(frm, v) do {	\
1841	LE_WRITE_2(frm, v);	\
1842	frm += 2;		\
1843} while (0)
1844	/* NB: this works 'cuz a param has an info at the front */
1845	static const struct ieee80211_wme_info param = {
1846		.wme_id		= IEEE80211_ELEMID_VENDOR,
1847		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1848		.wme_oui	= { WME_OUI_BYTES },
1849		.wme_type	= WME_OUI_TYPE,
1850		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1851		.wme_version	= WME_VERSION,
1852	};
1853	int i;
1854
1855	memcpy(frm, &param, sizeof(param));
1856	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1857	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1858	*frm++ = 0;					/* reserved field */
1859	for (i = 0; i < WME_NUM_AC; i++) {
1860		const struct wmeParams *ac =
1861		       &wme->wme_bssChanParams.cap_wmeParams[i];
1862		*frm++ = SM(i, WME_PARAM_ACI)
1863		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1864		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1865		       ;
1866		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1867		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1868		       ;
1869		ADDSHORT(frm, ac->wmep_txopLimit);
1870	}
1871	return frm;
1872#undef SM
1873#undef ADDSHORT
1874}
1875#undef WME_OUI_BYTES
1876
1877/*
1878 * Add an 11h Power Constraint element to a frame.
1879 */
1880static uint8_t *
1881ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1882{
1883	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1884	/* XXX per-vap tx power limit? */
1885	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1886
1887	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1888	frm[1] = 1;
1889	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1890	return frm + 3;
1891}
1892
1893/*
1894 * Add an 11h Power Capability element to a frame.
1895 */
1896static uint8_t *
1897ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1898{
1899	frm[0] = IEEE80211_ELEMID_PWRCAP;
1900	frm[1] = 2;
1901	frm[2] = c->ic_minpower;
1902	frm[3] = c->ic_maxpower;
1903	return frm + 4;
1904}
1905
1906/*
1907 * Add an 11h Supported Channels element to a frame.
1908 */
1909static uint8_t *
1910ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1911{
1912	static const int ielen = 26;
1913
1914	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1915	frm[1] = ielen;
1916	/* XXX not correct */
1917	memcpy(frm+2, ic->ic_chan_avail, ielen);
1918	return frm + 2 + ielen;
1919}
1920
1921/*
1922 * Add an 11h Quiet time element to a frame.
1923 */
1924static uint8_t *
1925ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1926{
1927	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1928
1929	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1930	quiet->len = 6;
1931	if (vap->iv_quiet_count_value == 1)
1932		vap->iv_quiet_count_value = vap->iv_quiet_count;
1933	else if (vap->iv_quiet_count_value > 1)
1934		vap->iv_quiet_count_value--;
1935
1936	if (vap->iv_quiet_count_value == 0) {
1937		/* value 0 is reserved as per 802.11h standerd */
1938		vap->iv_quiet_count_value = 1;
1939	}
1940
1941	quiet->tbttcount = vap->iv_quiet_count_value;
1942	quiet->period = vap->iv_quiet_period;
1943	quiet->duration = htole16(vap->iv_quiet_duration);
1944	quiet->offset = htole16(vap->iv_quiet_offset);
1945	return frm + sizeof(*quiet);
1946}
1947
1948/*
1949 * Add an 11h Channel Switch Announcement element to a frame.
1950 * Note that we use the per-vap CSA count to adjust the global
1951 * counter so we can use this routine to form probe response
1952 * frames and get the current count.
1953 */
1954static uint8_t *
1955ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1956{
1957	struct ieee80211com *ic = vap->iv_ic;
1958	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1959
1960	csa->csa_ie = IEEE80211_ELEMID_CSA;
1961	csa->csa_len = 3;
1962	csa->csa_mode = 1;		/* XXX force quiet on channel */
1963	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1964	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1965	return frm + sizeof(*csa);
1966}
1967
1968/*
1969 * Add an 11h country information element to a frame.
1970 */
1971static uint8_t *
1972ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1973{
1974
1975	if (ic->ic_countryie == NULL ||
1976	    ic->ic_countryie_chan != ic->ic_bsschan) {
1977		/*
1978		 * Handle lazy construction of ie.  This is done on
1979		 * first use and after a channel change that requires
1980		 * re-calculation.
1981		 */
1982		if (ic->ic_countryie != NULL)
1983			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
1984		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1985		if (ic->ic_countryie == NULL)
1986			return frm;
1987		ic->ic_countryie_chan = ic->ic_bsschan;
1988	}
1989	return add_appie(frm, ic->ic_countryie);
1990}
1991
1992uint8_t *
1993ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1994{
1995	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1996		return (add_ie(frm, vap->iv_wpa_ie));
1997	else {
1998		/* XXX else complain? */
1999		return (frm);
2000	}
2001}
2002
2003uint8_t *
2004ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2005{
2006	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2007		return (add_ie(frm, vap->iv_rsn_ie));
2008	else {
2009		/* XXX else complain? */
2010		return (frm);
2011	}
2012}
2013
2014uint8_t *
2015ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2016{
2017	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2018		*frm++ = IEEE80211_ELEMID_QOS;
2019		*frm++ = 1;
2020		*frm++ = 0;
2021	}
2022
2023	return (frm);
2024}
2025
2026/*
2027 * Send a probe request frame with the specified ssid
2028 * and any optional information element data.
2029 */
2030int
2031ieee80211_send_probereq(struct ieee80211_node *ni,
2032	const uint8_t sa[IEEE80211_ADDR_LEN],
2033	const uint8_t da[IEEE80211_ADDR_LEN],
2034	const uint8_t bssid[IEEE80211_ADDR_LEN],
2035	const uint8_t *ssid, size_t ssidlen)
2036{
2037	struct ieee80211vap *vap = ni->ni_vap;
2038	struct ieee80211com *ic = ni->ni_ic;
2039	const struct ieee80211_txparam *tp;
2040	struct ieee80211_bpf_params params;
2041	struct ieee80211_frame *wh;
2042	const struct ieee80211_rateset *rs;
2043	struct mbuf *m;
2044	uint8_t *frm;
2045	int ret;
2046
2047	if (vap->iv_state == IEEE80211_S_CAC) {
2048		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2049		    "block %s frame in CAC state", "probe request");
2050		vap->iv_stats.is_tx_badstate++;
2051		return EIO;		/* XXX */
2052	}
2053
2054	/*
2055	 * Hold a reference on the node so it doesn't go away until after
2056	 * the xmit is complete all the way in the driver.  On error we
2057	 * will remove our reference.
2058	 */
2059	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2060		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2061		__func__, __LINE__,
2062		ni, ether_sprintf(ni->ni_macaddr),
2063		ieee80211_node_refcnt(ni)+1);
2064	ieee80211_ref_node(ni);
2065
2066	/*
2067	 * prreq frame format
2068	 *	[tlv] ssid
2069	 *	[tlv] supported rates
2070	 *	[tlv] RSN (optional)
2071	 *	[tlv] extended supported rates
2072	 *	[tlv] WPA (optional)
2073	 *	[tlv] user-specified ie's
2074	 */
2075	m = ieee80211_getmgtframe(&frm,
2076		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2077	       	 2 + IEEE80211_NWID_LEN
2078	       + 2 + IEEE80211_RATE_SIZE
2079	       + sizeof(struct ieee80211_ie_wpa)
2080	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2081	       + sizeof(struct ieee80211_ie_wpa)
2082	       + (vap->iv_appie_probereq != NULL ?
2083		   vap->iv_appie_probereq->ie_len : 0)
2084	);
2085	if (m == NULL) {
2086		vap->iv_stats.is_tx_nobuf++;
2087		ieee80211_free_node(ni);
2088		return ENOMEM;
2089	}
2090
2091	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2092	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2093	frm = ieee80211_add_rates(frm, rs);
2094	frm = ieee80211_add_rsn(frm, vap);
2095	frm = ieee80211_add_xrates(frm, rs);
2096	frm = ieee80211_add_wpa(frm, vap);
2097	if (vap->iv_appie_probereq != NULL)
2098		frm = add_appie(frm, vap->iv_appie_probereq);
2099	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2100
2101	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2102	    ("leading space %zd", M_LEADINGSPACE(m)));
2103	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2104	if (m == NULL) {
2105		/* NB: cannot happen */
2106		ieee80211_free_node(ni);
2107		return ENOMEM;
2108	}
2109
2110	IEEE80211_TX_LOCK(ic);
2111	wh = mtod(m, struct ieee80211_frame *);
2112	ieee80211_send_setup(ni, m,
2113	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2114	     IEEE80211_NONQOS_TID, sa, da, bssid);
2115	/* XXX power management? */
2116	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2117
2118	M_WME_SETAC(m, WME_AC_BE);
2119
2120	IEEE80211_NODE_STAT(ni, tx_probereq);
2121	IEEE80211_NODE_STAT(ni, tx_mgmt);
2122
2123	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2124	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2125	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2126	    ssidlen, ssid);
2127
2128	memset(&params, 0, sizeof(params));
2129	params.ibp_pri = M_WME_GETAC(m);
2130	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2131	params.ibp_rate0 = tp->mgmtrate;
2132	if (IEEE80211_IS_MULTICAST(da)) {
2133		params.ibp_flags |= IEEE80211_BPF_NOACK;
2134		params.ibp_try0 = 1;
2135	} else
2136		params.ibp_try0 = tp->maxretry;
2137	params.ibp_power = ni->ni_txpower;
2138	ret = ieee80211_raw_output(vap, ni, m, &params);
2139	IEEE80211_TX_UNLOCK(ic);
2140	return (ret);
2141}
2142
2143/*
2144 * Calculate capability information for mgt frames.
2145 */
2146uint16_t
2147ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2148{
2149	struct ieee80211com *ic = vap->iv_ic;
2150	uint16_t capinfo;
2151
2152	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2153
2154	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2155		capinfo = IEEE80211_CAPINFO_ESS;
2156	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2157		capinfo = IEEE80211_CAPINFO_IBSS;
2158	else
2159		capinfo = 0;
2160	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2161		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2162	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2163	    IEEE80211_IS_CHAN_2GHZ(chan))
2164		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2165	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2166		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2167	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2168		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2169	return capinfo;
2170}
2171
2172/*
2173 * Send a management frame.  The node is for the destination (or ic_bss
2174 * when in station mode).  Nodes other than ic_bss have their reference
2175 * count bumped to reflect our use for an indeterminant time.
2176 */
2177int
2178ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2179{
2180#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2181#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2182	struct ieee80211vap *vap = ni->ni_vap;
2183	struct ieee80211com *ic = ni->ni_ic;
2184	struct ieee80211_node *bss = vap->iv_bss;
2185	struct ieee80211_bpf_params params;
2186	struct mbuf *m;
2187	uint8_t *frm;
2188	uint16_t capinfo;
2189	int has_challenge, is_shared_key, ret, status;
2190
2191	KASSERT(ni != NULL, ("null node"));
2192
2193	/*
2194	 * Hold a reference on the node so it doesn't go away until after
2195	 * the xmit is complete all the way in the driver.  On error we
2196	 * will remove our reference.
2197	 */
2198	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2199		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2200		__func__, __LINE__,
2201		ni, ether_sprintf(ni->ni_macaddr),
2202		ieee80211_node_refcnt(ni)+1);
2203	ieee80211_ref_node(ni);
2204
2205	memset(&params, 0, sizeof(params));
2206	switch (type) {
2207
2208	case IEEE80211_FC0_SUBTYPE_AUTH:
2209		status = arg >> 16;
2210		arg &= 0xffff;
2211		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2212		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2213		    ni->ni_challenge != NULL);
2214
2215		/*
2216		 * Deduce whether we're doing open authentication or
2217		 * shared key authentication.  We do the latter if
2218		 * we're in the middle of a shared key authentication
2219		 * handshake or if we're initiating an authentication
2220		 * request and configured to use shared key.
2221		 */
2222		is_shared_key = has_challenge ||
2223		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2224		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2225		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2226
2227		m = ieee80211_getmgtframe(&frm,
2228			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2229			  3 * sizeof(uint16_t)
2230			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2231				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2232		);
2233		if (m == NULL)
2234			senderr(ENOMEM, is_tx_nobuf);
2235
2236		((uint16_t *)frm)[0] =
2237		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2238		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2239		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2240		((uint16_t *)frm)[2] = htole16(status);/* status */
2241
2242		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2243			((uint16_t *)frm)[3] =
2244			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2245			    IEEE80211_ELEMID_CHALLENGE);
2246			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2247			    IEEE80211_CHALLENGE_LEN);
2248			m->m_pkthdr.len = m->m_len =
2249				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2250			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2251				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2252				    "request encrypt frame (%s)", __func__);
2253				/* mark frame for encryption */
2254				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2255			}
2256		} else
2257			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2258
2259		/* XXX not right for shared key */
2260		if (status == IEEE80211_STATUS_SUCCESS)
2261			IEEE80211_NODE_STAT(ni, tx_auth);
2262		else
2263			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2264
2265		if (vap->iv_opmode == IEEE80211_M_STA)
2266			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2267				(void *) vap->iv_state);
2268		break;
2269
2270	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2271		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2272		    "send station deauthenticate (reason %d)", arg);
2273		m = ieee80211_getmgtframe(&frm,
2274			ic->ic_headroom + sizeof(struct ieee80211_frame),
2275			sizeof(uint16_t));
2276		if (m == NULL)
2277			senderr(ENOMEM, is_tx_nobuf);
2278		*(uint16_t *)frm = htole16(arg);	/* reason */
2279		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2280
2281		IEEE80211_NODE_STAT(ni, tx_deauth);
2282		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2283
2284		ieee80211_node_unauthorize(ni);		/* port closed */
2285		break;
2286
2287	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2288	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2289		/*
2290		 * asreq frame format
2291		 *	[2] capability information
2292		 *	[2] listen interval
2293		 *	[6*] current AP address (reassoc only)
2294		 *	[tlv] ssid
2295		 *	[tlv] supported rates
2296		 *	[tlv] extended supported rates
2297		 *	[4] power capability (optional)
2298		 *	[28] supported channels (optional)
2299		 *	[tlv] HT capabilities
2300		 *	[tlv] WME (optional)
2301		 *	[tlv] Vendor OUI HT capabilities (optional)
2302		 *	[tlv] Atheros capabilities (if negotiated)
2303		 *	[tlv] AppIE's (optional)
2304		 */
2305		m = ieee80211_getmgtframe(&frm,
2306			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2307			 sizeof(uint16_t)
2308		       + sizeof(uint16_t)
2309		       + IEEE80211_ADDR_LEN
2310		       + 2 + IEEE80211_NWID_LEN
2311		       + 2 + IEEE80211_RATE_SIZE
2312		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2313		       + 4
2314		       + 2 + 26
2315		       + sizeof(struct ieee80211_wme_info)
2316		       + sizeof(struct ieee80211_ie_htcap)
2317		       + 4 + sizeof(struct ieee80211_ie_htcap)
2318#ifdef IEEE80211_SUPPORT_SUPERG
2319		       + sizeof(struct ieee80211_ath_ie)
2320#endif
2321		       + (vap->iv_appie_wpa != NULL ?
2322				vap->iv_appie_wpa->ie_len : 0)
2323		       + (vap->iv_appie_assocreq != NULL ?
2324				vap->iv_appie_assocreq->ie_len : 0)
2325		);
2326		if (m == NULL)
2327			senderr(ENOMEM, is_tx_nobuf);
2328
2329		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2330		    ("wrong mode %u", vap->iv_opmode));
2331		capinfo = IEEE80211_CAPINFO_ESS;
2332		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2333			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2334		/*
2335		 * NB: Some 11a AP's reject the request when
2336		 *     short premable is set.
2337		 */
2338		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2339		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2340			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2341		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2342		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2343			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2344		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2345		    (vap->iv_flags & IEEE80211_F_DOTH))
2346			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2347		*(uint16_t *)frm = htole16(capinfo);
2348		frm += 2;
2349
2350		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2351		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2352						    bss->ni_intval));
2353		frm += 2;
2354
2355		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2356			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2357			frm += IEEE80211_ADDR_LEN;
2358		}
2359
2360		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2361		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2362		frm = ieee80211_add_rsn(frm, vap);
2363		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2364		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2365			frm = ieee80211_add_powercapability(frm,
2366			    ic->ic_curchan);
2367			frm = ieee80211_add_supportedchannels(frm, ic);
2368		}
2369
2370		/*
2371		 * Check the channel - we may be using an 11n NIC with an
2372		 * 11n capable station, but we're configured to be an 11b
2373		 * channel.
2374		 */
2375		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2376		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2377		    ni->ni_ies.htcap_ie != NULL &&
2378		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2379			frm = ieee80211_add_htcap(frm, ni);
2380		}
2381		frm = ieee80211_add_wpa(frm, vap);
2382		if ((ic->ic_flags & IEEE80211_F_WME) &&
2383		    ni->ni_ies.wme_ie != NULL)
2384			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2385
2386		/*
2387		 * Same deal - only send HT info if we're on an 11n
2388		 * capable channel.
2389		 */
2390		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2391		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2392		    ni->ni_ies.htcap_ie != NULL &&
2393		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2394			frm = ieee80211_add_htcap_vendor(frm, ni);
2395		}
2396#ifdef IEEE80211_SUPPORT_SUPERG
2397		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2398			frm = ieee80211_add_ath(frm,
2399				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2400				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2401				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2402				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2403		}
2404#endif /* IEEE80211_SUPPORT_SUPERG */
2405		if (vap->iv_appie_assocreq != NULL)
2406			frm = add_appie(frm, vap->iv_appie_assocreq);
2407		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2408
2409		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2410			(void *) vap->iv_state);
2411		break;
2412
2413	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2414	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2415		/*
2416		 * asresp frame format
2417		 *	[2] capability information
2418		 *	[2] status
2419		 *	[2] association ID
2420		 *	[tlv] supported rates
2421		 *	[tlv] extended supported rates
2422		 *	[tlv] HT capabilities (standard, if STA enabled)
2423		 *	[tlv] HT information (standard, if STA enabled)
2424		 *	[tlv] WME (if configured and STA enabled)
2425		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2426		 *	[tlv] HT information (vendor OUI, if STA enabled)
2427		 *	[tlv] Atheros capabilities (if STA enabled)
2428		 *	[tlv] AppIE's (optional)
2429		 */
2430		m = ieee80211_getmgtframe(&frm,
2431			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2432			 sizeof(uint16_t)
2433		       + sizeof(uint16_t)
2434		       + sizeof(uint16_t)
2435		       + 2 + IEEE80211_RATE_SIZE
2436		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2437		       + sizeof(struct ieee80211_ie_htcap) + 4
2438		       + sizeof(struct ieee80211_ie_htinfo) + 4
2439		       + sizeof(struct ieee80211_wme_param)
2440#ifdef IEEE80211_SUPPORT_SUPERG
2441		       + sizeof(struct ieee80211_ath_ie)
2442#endif
2443		       + (vap->iv_appie_assocresp != NULL ?
2444				vap->iv_appie_assocresp->ie_len : 0)
2445		);
2446		if (m == NULL)
2447			senderr(ENOMEM, is_tx_nobuf);
2448
2449		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2450		*(uint16_t *)frm = htole16(capinfo);
2451		frm += 2;
2452
2453		*(uint16_t *)frm = htole16(arg);	/* status */
2454		frm += 2;
2455
2456		if (arg == IEEE80211_STATUS_SUCCESS) {
2457			*(uint16_t *)frm = htole16(ni->ni_associd);
2458			IEEE80211_NODE_STAT(ni, tx_assoc);
2459		} else
2460			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2461		frm += 2;
2462
2463		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2464		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2465		/* NB: respond according to what we received */
2466		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2467			frm = ieee80211_add_htcap(frm, ni);
2468			frm = ieee80211_add_htinfo(frm, ni);
2469		}
2470		if ((vap->iv_flags & IEEE80211_F_WME) &&
2471		    ni->ni_ies.wme_ie != NULL)
2472			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2473		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2474			frm = ieee80211_add_htcap_vendor(frm, ni);
2475			frm = ieee80211_add_htinfo_vendor(frm, ni);
2476		}
2477#ifdef IEEE80211_SUPPORT_SUPERG
2478		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2479			frm = ieee80211_add_ath(frm,
2480				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2481				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2482				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2483				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2484#endif /* IEEE80211_SUPPORT_SUPERG */
2485		if (vap->iv_appie_assocresp != NULL)
2486			frm = add_appie(frm, vap->iv_appie_assocresp);
2487		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2488		break;
2489
2490	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2491		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2492		    "send station disassociate (reason %d)", arg);
2493		m = ieee80211_getmgtframe(&frm,
2494			ic->ic_headroom + sizeof(struct ieee80211_frame),
2495			sizeof(uint16_t));
2496		if (m == NULL)
2497			senderr(ENOMEM, is_tx_nobuf);
2498		*(uint16_t *)frm = htole16(arg);	/* reason */
2499		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2500
2501		IEEE80211_NODE_STAT(ni, tx_disassoc);
2502		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2503		break;
2504
2505	default:
2506		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2507		    "invalid mgmt frame type %u", type);
2508		senderr(EINVAL, is_tx_unknownmgt);
2509		/* NOTREACHED */
2510	}
2511
2512	/* NB: force non-ProbeResp frames to the highest queue */
2513	params.ibp_pri = WME_AC_VO;
2514	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2515	/* NB: we know all frames are unicast */
2516	params.ibp_try0 = bss->ni_txparms->maxretry;
2517	params.ibp_power = bss->ni_txpower;
2518	return ieee80211_mgmt_output(ni, m, type, &params);
2519bad:
2520	ieee80211_free_node(ni);
2521	return ret;
2522#undef senderr
2523#undef HTFLAGS
2524}
2525
2526/*
2527 * Return an mbuf with a probe response frame in it.
2528 * Space is left to prepend and 802.11 header at the
2529 * front but it's left to the caller to fill in.
2530 */
2531struct mbuf *
2532ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2533{
2534	struct ieee80211vap *vap = bss->ni_vap;
2535	struct ieee80211com *ic = bss->ni_ic;
2536	const struct ieee80211_rateset *rs;
2537	struct mbuf *m;
2538	uint16_t capinfo;
2539	uint8_t *frm;
2540
2541	/*
2542	 * probe response frame format
2543	 *	[8] time stamp
2544	 *	[2] beacon interval
2545	 *	[2] cabability information
2546	 *	[tlv] ssid
2547	 *	[tlv] supported rates
2548	 *	[tlv] parameter set (FH/DS)
2549	 *	[tlv] parameter set (IBSS)
2550	 *	[tlv] country (optional)
2551	 *	[3] power control (optional)
2552	 *	[5] channel switch announcement (CSA) (optional)
2553	 *	[tlv] extended rate phy (ERP)
2554	 *	[tlv] extended supported rates
2555	 *	[tlv] RSN (optional)
2556	 *	[tlv] HT capabilities
2557	 *	[tlv] HT information
2558	 *	[tlv] WPA (optional)
2559	 *	[tlv] WME (optional)
2560	 *	[tlv] Vendor OUI HT capabilities (optional)
2561	 *	[tlv] Vendor OUI HT information (optional)
2562	 *	[tlv] Atheros capabilities
2563	 *	[tlv] AppIE's (optional)
2564	 *	[tlv] Mesh ID (MBSS)
2565	 *	[tlv] Mesh Conf (MBSS)
2566	 */
2567	m = ieee80211_getmgtframe(&frm,
2568		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2569		 8
2570	       + sizeof(uint16_t)
2571	       + sizeof(uint16_t)
2572	       + 2 + IEEE80211_NWID_LEN
2573	       + 2 + IEEE80211_RATE_SIZE
2574	       + 7	/* max(7,3) */
2575	       + IEEE80211_COUNTRY_MAX_SIZE
2576	       + 3
2577	       + sizeof(struct ieee80211_csa_ie)
2578	       + sizeof(struct ieee80211_quiet_ie)
2579	       + 3
2580	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2581	       + sizeof(struct ieee80211_ie_wpa)
2582	       + sizeof(struct ieee80211_ie_htcap)
2583	       + sizeof(struct ieee80211_ie_htinfo)
2584	       + sizeof(struct ieee80211_ie_wpa)
2585	       + sizeof(struct ieee80211_wme_param)
2586	       + 4 + sizeof(struct ieee80211_ie_htcap)
2587	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2588#ifdef IEEE80211_SUPPORT_SUPERG
2589	       + sizeof(struct ieee80211_ath_ie)
2590#endif
2591#ifdef IEEE80211_SUPPORT_MESH
2592	       + 2 + IEEE80211_MESHID_LEN
2593	       + sizeof(struct ieee80211_meshconf_ie)
2594#endif
2595	       + (vap->iv_appie_proberesp != NULL ?
2596			vap->iv_appie_proberesp->ie_len : 0)
2597	);
2598	if (m == NULL) {
2599		vap->iv_stats.is_tx_nobuf++;
2600		return NULL;
2601	}
2602
2603	memset(frm, 0, 8);	/* timestamp should be filled later */
2604	frm += 8;
2605	*(uint16_t *)frm = htole16(bss->ni_intval);
2606	frm += 2;
2607	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2608	*(uint16_t *)frm = htole16(capinfo);
2609	frm += 2;
2610
2611	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2612	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2613	frm = ieee80211_add_rates(frm, rs);
2614
2615	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2616		*frm++ = IEEE80211_ELEMID_FHPARMS;
2617		*frm++ = 5;
2618		*frm++ = bss->ni_fhdwell & 0x00ff;
2619		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2620		*frm++ = IEEE80211_FH_CHANSET(
2621		    ieee80211_chan2ieee(ic, bss->ni_chan));
2622		*frm++ = IEEE80211_FH_CHANPAT(
2623		    ieee80211_chan2ieee(ic, bss->ni_chan));
2624		*frm++ = bss->ni_fhindex;
2625	} else {
2626		*frm++ = IEEE80211_ELEMID_DSPARMS;
2627		*frm++ = 1;
2628		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2629	}
2630
2631	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2632		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2633		*frm++ = 2;
2634		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2635	}
2636	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2637	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2638		frm = ieee80211_add_countryie(frm, ic);
2639	if (vap->iv_flags & IEEE80211_F_DOTH) {
2640		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2641			frm = ieee80211_add_powerconstraint(frm, vap);
2642		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2643			frm = ieee80211_add_csa(frm, vap);
2644	}
2645	if (vap->iv_flags & IEEE80211_F_DOTH) {
2646		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2647		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2648			if (vap->iv_quiet)
2649				frm = ieee80211_add_quiet(frm, vap);
2650		}
2651	}
2652	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2653		frm = ieee80211_add_erp(frm, ic);
2654	frm = ieee80211_add_xrates(frm, rs);
2655	frm = ieee80211_add_rsn(frm, vap);
2656	/*
2657	 * NB: legacy 11b clients do not get certain ie's.
2658	 *     The caller identifies such clients by passing
2659	 *     a token in legacy to us.  Could expand this to be
2660	 *     any legacy client for stuff like HT ie's.
2661	 */
2662	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2663	    legacy != IEEE80211_SEND_LEGACY_11B) {
2664		frm = ieee80211_add_htcap(frm, bss);
2665		frm = ieee80211_add_htinfo(frm, bss);
2666	}
2667	frm = ieee80211_add_wpa(frm, vap);
2668	if (vap->iv_flags & IEEE80211_F_WME)
2669		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2670	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2671	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2672	    legacy != IEEE80211_SEND_LEGACY_11B) {
2673		frm = ieee80211_add_htcap_vendor(frm, bss);
2674		frm = ieee80211_add_htinfo_vendor(frm, bss);
2675	}
2676#ifdef IEEE80211_SUPPORT_SUPERG
2677	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2678	    legacy != IEEE80211_SEND_LEGACY_11B)
2679		frm = ieee80211_add_athcaps(frm, bss);
2680#endif
2681	if (vap->iv_appie_proberesp != NULL)
2682		frm = add_appie(frm, vap->iv_appie_proberesp);
2683#ifdef IEEE80211_SUPPORT_MESH
2684	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2685		frm = ieee80211_add_meshid(frm, vap);
2686		frm = ieee80211_add_meshconf(frm, vap);
2687	}
2688#endif
2689	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2690
2691	return m;
2692}
2693
2694/*
2695 * Send a probe response frame to the specified mac address.
2696 * This does not go through the normal mgt frame api so we
2697 * can specify the destination address and re-use the bss node
2698 * for the sta reference.
2699 */
2700int
2701ieee80211_send_proberesp(struct ieee80211vap *vap,
2702	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2703{
2704	struct ieee80211_node *bss = vap->iv_bss;
2705	struct ieee80211com *ic = vap->iv_ic;
2706	struct ieee80211_frame *wh;
2707	struct mbuf *m;
2708	int ret;
2709
2710	if (vap->iv_state == IEEE80211_S_CAC) {
2711		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2712		    "block %s frame in CAC state", "probe response");
2713		vap->iv_stats.is_tx_badstate++;
2714		return EIO;		/* XXX */
2715	}
2716
2717	/*
2718	 * Hold a reference on the node so it doesn't go away until after
2719	 * the xmit is complete all the way in the driver.  On error we
2720	 * will remove our reference.
2721	 */
2722	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2723	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2724	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2725	    ieee80211_node_refcnt(bss)+1);
2726	ieee80211_ref_node(bss);
2727
2728	m = ieee80211_alloc_proberesp(bss, legacy);
2729	if (m == NULL) {
2730		ieee80211_free_node(bss);
2731		return ENOMEM;
2732	}
2733
2734	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2735	KASSERT(m != NULL, ("no room for header"));
2736
2737	IEEE80211_TX_LOCK(ic);
2738	wh = mtod(m, struct ieee80211_frame *);
2739	ieee80211_send_setup(bss, m,
2740	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2741	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2742	/* XXX power management? */
2743	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2744
2745	M_WME_SETAC(m, WME_AC_BE);
2746
2747	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2748	    "send probe resp on channel %u to %s%s\n",
2749	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2750	    legacy ? " <legacy>" : "");
2751	IEEE80211_NODE_STAT(bss, tx_mgmt);
2752
2753	ret = ieee80211_raw_output(vap, bss, m, NULL);
2754	IEEE80211_TX_UNLOCK(ic);
2755	return (ret);
2756}
2757
2758/*
2759 * Allocate and build a RTS (Request To Send) control frame.
2760 */
2761struct mbuf *
2762ieee80211_alloc_rts(struct ieee80211com *ic,
2763	const uint8_t ra[IEEE80211_ADDR_LEN],
2764	const uint8_t ta[IEEE80211_ADDR_LEN],
2765	uint16_t dur)
2766{
2767	struct ieee80211_frame_rts *rts;
2768	struct mbuf *m;
2769
2770	/* XXX honor ic_headroom */
2771	m = m_gethdr(M_NOWAIT, MT_DATA);
2772	if (m != NULL) {
2773		rts = mtod(m, struct ieee80211_frame_rts *);
2774		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2775			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2776		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2777		*(u_int16_t *)rts->i_dur = htole16(dur);
2778		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2779		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2780
2781		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2782	}
2783	return m;
2784}
2785
2786/*
2787 * Allocate and build a CTS (Clear To Send) control frame.
2788 */
2789struct mbuf *
2790ieee80211_alloc_cts(struct ieee80211com *ic,
2791	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2792{
2793	struct ieee80211_frame_cts *cts;
2794	struct mbuf *m;
2795
2796	/* XXX honor ic_headroom */
2797	m = m_gethdr(M_NOWAIT, MT_DATA);
2798	if (m != NULL) {
2799		cts = mtod(m, struct ieee80211_frame_cts *);
2800		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2801			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2802		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2803		*(u_int16_t *)cts->i_dur = htole16(dur);
2804		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2805
2806		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2807	}
2808	return m;
2809}
2810
2811static void
2812ieee80211_tx_mgt_timeout(void *arg)
2813{
2814	struct ieee80211vap *vap = arg;
2815
2816	IEEE80211_LOCK(vap->iv_ic);
2817	if (vap->iv_state != IEEE80211_S_INIT &&
2818	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2819		/*
2820		 * NB: it's safe to specify a timeout as the reason here;
2821		 *     it'll only be used in the right state.
2822		 */
2823		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2824			IEEE80211_SCAN_FAIL_TIMEOUT);
2825	}
2826	IEEE80211_UNLOCK(vap->iv_ic);
2827}
2828
2829/*
2830 * This is the callback set on net80211-sourced transmitted
2831 * authentication request frames.
2832 *
2833 * This does a couple of things:
2834 *
2835 * + If the frame transmitted was a success, it schedules a future
2836 *   event which will transition the interface to scan.
2837 *   If a state transition _then_ occurs before that event occurs,
2838 *   said state transition will cancel this callout.
2839 *
2840 * + If the frame transmit was a failure, it immediately schedules
2841 *   the transition back to scan.
2842 */
2843static void
2844ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2845{
2846	struct ieee80211vap *vap = ni->ni_vap;
2847	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2848
2849	/*
2850	 * Frame transmit completed; arrange timer callback.  If
2851	 * transmit was successfuly we wait for response.  Otherwise
2852	 * we arrange an immediate callback instead of doing the
2853	 * callback directly since we don't know what state the driver
2854	 * is in (e.g. what locks it is holding).  This work should
2855	 * not be too time-critical and not happen too often so the
2856	 * added overhead is acceptable.
2857	 *
2858	 * XXX what happens if !acked but response shows up before callback?
2859	 */
2860	if (vap->iv_state == ostate) {
2861		callout_reset(&vap->iv_mgtsend,
2862			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2863			ieee80211_tx_mgt_timeout, vap);
2864	}
2865}
2866
2867static void
2868ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2869	struct ieee80211_node *ni)
2870{
2871	struct ieee80211vap *vap = ni->ni_vap;
2872	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2873	struct ieee80211com *ic = ni->ni_ic;
2874	struct ieee80211_rateset *rs = &ni->ni_rates;
2875	uint16_t capinfo;
2876
2877	/*
2878	 * beacon frame format
2879	 *	[8] time stamp
2880	 *	[2] beacon interval
2881	 *	[2] cabability information
2882	 *	[tlv] ssid
2883	 *	[tlv] supported rates
2884	 *	[3] parameter set (DS)
2885	 *	[8] CF parameter set (optional)
2886	 *	[tlv] parameter set (IBSS/TIM)
2887	 *	[tlv] country (optional)
2888	 *	[3] power control (optional)
2889	 *	[5] channel switch announcement (CSA) (optional)
2890	 *	[tlv] extended rate phy (ERP)
2891	 *	[tlv] extended supported rates
2892	 *	[tlv] RSN parameters
2893	 *	[tlv] HT capabilities
2894	 *	[tlv] HT information
2895	 * XXX Vendor-specific OIDs (e.g. Atheros)
2896	 *	[tlv] WPA parameters
2897	 *	[tlv] WME parameters
2898	 *	[tlv] Vendor OUI HT capabilities (optional)
2899	 *	[tlv] Vendor OUI HT information (optional)
2900	 *	[tlv] Atheros capabilities (optional)
2901	 *	[tlv] TDMA parameters (optional)
2902	 *	[tlv] Mesh ID (MBSS)
2903	 *	[tlv] Mesh Conf (MBSS)
2904	 *	[tlv] application data (optional)
2905	 */
2906
2907	memset(bo, 0, sizeof(*bo));
2908
2909	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2910	frm += 8;
2911	*(uint16_t *)frm = htole16(ni->ni_intval);
2912	frm += 2;
2913	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2914	bo->bo_caps = (uint16_t *)frm;
2915	*(uint16_t *)frm = htole16(capinfo);
2916	frm += 2;
2917	*frm++ = IEEE80211_ELEMID_SSID;
2918	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2919		*frm++ = ni->ni_esslen;
2920		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2921		frm += ni->ni_esslen;
2922	} else
2923		*frm++ = 0;
2924	frm = ieee80211_add_rates(frm, rs);
2925	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2926		*frm++ = IEEE80211_ELEMID_DSPARMS;
2927		*frm++ = 1;
2928		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2929	}
2930	if (ic->ic_flags & IEEE80211_F_PCF) {
2931		bo->bo_cfp = frm;
2932		frm = ieee80211_add_cfparms(frm, ic);
2933	}
2934	bo->bo_tim = frm;
2935	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2936		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2937		*frm++ = 2;
2938		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2939		bo->bo_tim_len = 0;
2940	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2941	    vap->iv_opmode == IEEE80211_M_MBSS) {
2942		/* TIM IE is the same for Mesh and Hostap */
2943		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2944
2945		tie->tim_ie = IEEE80211_ELEMID_TIM;
2946		tie->tim_len = 4;	/* length */
2947		tie->tim_count = 0;	/* DTIM count */
2948		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2949		tie->tim_bitctl = 0;	/* bitmap control */
2950		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2951		frm += sizeof(struct ieee80211_tim_ie);
2952		bo->bo_tim_len = 1;
2953	}
2954	bo->bo_tim_trailer = frm;
2955	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2956	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2957		frm = ieee80211_add_countryie(frm, ic);
2958	if (vap->iv_flags & IEEE80211_F_DOTH) {
2959		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2960			frm = ieee80211_add_powerconstraint(frm, vap);
2961		bo->bo_csa = frm;
2962		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2963			frm = ieee80211_add_csa(frm, vap);
2964	} else
2965		bo->bo_csa = frm;
2966
2967	if (vap->iv_flags & IEEE80211_F_DOTH) {
2968		bo->bo_quiet = frm;
2969		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2970		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2971			if (vap->iv_quiet)
2972				frm = ieee80211_add_quiet(frm,vap);
2973		}
2974	} else
2975		bo->bo_quiet = frm;
2976
2977	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2978		bo->bo_erp = frm;
2979		frm = ieee80211_add_erp(frm, ic);
2980	}
2981	frm = ieee80211_add_xrates(frm, rs);
2982	frm = ieee80211_add_rsn(frm, vap);
2983	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2984		frm = ieee80211_add_htcap(frm, ni);
2985		bo->bo_htinfo = frm;
2986		frm = ieee80211_add_htinfo(frm, ni);
2987	}
2988	frm = ieee80211_add_wpa(frm, vap);
2989	if (vap->iv_flags & IEEE80211_F_WME) {
2990		bo->bo_wme = frm;
2991		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2992	}
2993	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2994	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2995		frm = ieee80211_add_htcap_vendor(frm, ni);
2996		frm = ieee80211_add_htinfo_vendor(frm, ni);
2997	}
2998#ifdef IEEE80211_SUPPORT_SUPERG
2999	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3000		bo->bo_ath = frm;
3001		frm = ieee80211_add_athcaps(frm, ni);
3002	}
3003#endif
3004#ifdef IEEE80211_SUPPORT_TDMA
3005	if (vap->iv_caps & IEEE80211_C_TDMA) {
3006		bo->bo_tdma = frm;
3007		frm = ieee80211_add_tdma(frm, vap);
3008	}
3009#endif
3010	if (vap->iv_appie_beacon != NULL) {
3011		bo->bo_appie = frm;
3012		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3013		frm = add_appie(frm, vap->iv_appie_beacon);
3014	}
3015#ifdef IEEE80211_SUPPORT_MESH
3016	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3017		frm = ieee80211_add_meshid(frm, vap);
3018		bo->bo_meshconf = frm;
3019		frm = ieee80211_add_meshconf(frm, vap);
3020	}
3021#endif
3022	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3023	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3024	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3025}
3026
3027/*
3028 * Allocate a beacon frame and fillin the appropriate bits.
3029 */
3030struct mbuf *
3031ieee80211_beacon_alloc(struct ieee80211_node *ni)
3032{
3033	struct ieee80211vap *vap = ni->ni_vap;
3034	struct ieee80211com *ic = ni->ni_ic;
3035	struct ifnet *ifp = vap->iv_ifp;
3036	struct ieee80211_frame *wh;
3037	struct mbuf *m;
3038	int pktlen;
3039	uint8_t *frm;
3040
3041	/*
3042	 * beacon frame format
3043	 *	[8] time stamp
3044	 *	[2] beacon interval
3045	 *	[2] cabability information
3046	 *	[tlv] ssid
3047	 *	[tlv] supported rates
3048	 *	[3] parameter set (DS)
3049	 *	[8] CF parameter set (optional)
3050	 *	[tlv] parameter set (IBSS/TIM)
3051	 *	[tlv] country (optional)
3052	 *	[3] power control (optional)
3053	 *	[5] channel switch announcement (CSA) (optional)
3054	 *	[tlv] extended rate phy (ERP)
3055	 *	[tlv] extended supported rates
3056	 *	[tlv] RSN parameters
3057	 *	[tlv] HT capabilities
3058	 *	[tlv] HT information
3059	 *	[tlv] Vendor OUI HT capabilities (optional)
3060	 *	[tlv] Vendor OUI HT information (optional)
3061	 * XXX Vendor-specific OIDs (e.g. Atheros)
3062	 *	[tlv] WPA parameters
3063	 *	[tlv] WME parameters
3064	 *	[tlv] TDMA parameters (optional)
3065	 *	[tlv] Mesh ID (MBSS)
3066	 *	[tlv] Mesh Conf (MBSS)
3067	 *	[tlv] application data (optional)
3068	 * NB: we allocate the max space required for the TIM bitmap.
3069	 * XXX how big is this?
3070	 */
3071	pktlen =   8					/* time stamp */
3072		 + sizeof(uint16_t)			/* beacon interval */
3073		 + sizeof(uint16_t)			/* capabilities */
3074		 + 2 + ni->ni_esslen			/* ssid */
3075	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3076	         + 2 + 1				/* DS parameters */
3077		 + 2 + 6				/* CF parameters */
3078		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3079		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3080		 + 2 + 1				/* power control */
3081		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3082		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3083		 + 2 + 1				/* ERP */
3084	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3085		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3086			2*sizeof(struct ieee80211_ie_wpa) : 0)
3087		 /* XXX conditional? */
3088		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3089		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3090		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3091			sizeof(struct ieee80211_wme_param) : 0)
3092#ifdef IEEE80211_SUPPORT_SUPERG
3093		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3094#endif
3095#ifdef IEEE80211_SUPPORT_TDMA
3096		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3097			sizeof(struct ieee80211_tdma_param) : 0)
3098#endif
3099#ifdef IEEE80211_SUPPORT_MESH
3100		 + 2 + ni->ni_meshidlen
3101		 + sizeof(struct ieee80211_meshconf_ie)
3102#endif
3103		 + IEEE80211_MAX_APPIE
3104		 ;
3105	m = ieee80211_getmgtframe(&frm,
3106		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3107	if (m == NULL) {
3108		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3109			"%s: cannot get buf; size %u\n", __func__, pktlen);
3110		vap->iv_stats.is_tx_nobuf++;
3111		return NULL;
3112	}
3113	ieee80211_beacon_construct(m, frm, ni);
3114
3115	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3116	KASSERT(m != NULL, ("no space for 802.11 header?"));
3117	wh = mtod(m, struct ieee80211_frame *);
3118	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3119	    IEEE80211_FC0_SUBTYPE_BEACON;
3120	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3121	*(uint16_t *)wh->i_dur = 0;
3122	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3123	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3124	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3125	*(uint16_t *)wh->i_seq = 0;
3126
3127	return m;
3128}
3129
3130/*
3131 * Update the dynamic parts of a beacon frame based on the current state.
3132 */
3133int
3134ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3135{
3136	struct ieee80211vap *vap = ni->ni_vap;
3137	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3138	struct ieee80211com *ic = ni->ni_ic;
3139	int len_changed = 0;
3140	uint16_t capinfo;
3141	struct ieee80211_frame *wh;
3142	ieee80211_seq seqno;
3143
3144	IEEE80211_LOCK(ic);
3145	/*
3146	 * Handle 11h channel change when we've reached the count.
3147	 * We must recalculate the beacon frame contents to account
3148	 * for the new channel.  Note we do this only for the first
3149	 * vap that reaches this point; subsequent vaps just update
3150	 * their beacon state to reflect the recalculated channel.
3151	 */
3152	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3153	    vap->iv_csa_count == ic->ic_csa_count) {
3154		vap->iv_csa_count = 0;
3155		/*
3156		 * Effect channel change before reconstructing the beacon
3157		 * frame contents as many places reference ni_chan.
3158		 */
3159		if (ic->ic_csa_newchan != NULL)
3160			ieee80211_csa_completeswitch(ic);
3161		/*
3162		 * NB: ieee80211_beacon_construct clears all pending
3163		 * updates in bo_flags so we don't need to explicitly
3164		 * clear IEEE80211_BEACON_CSA.
3165		 */
3166		ieee80211_beacon_construct(m,
3167		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3168
3169		/* XXX do WME aggressive mode processing? */
3170		IEEE80211_UNLOCK(ic);
3171		return 1;		/* just assume length changed */
3172	}
3173
3174	wh = mtod(m, struct ieee80211_frame *);
3175	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3176	*(uint16_t *)&wh->i_seq[0] =
3177		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3178	M_SEQNO_SET(m, seqno);
3179
3180	/* XXX faster to recalculate entirely or just changes? */
3181	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3182	*bo->bo_caps = htole16(capinfo);
3183
3184	if (vap->iv_flags & IEEE80211_F_WME) {
3185		struct ieee80211_wme_state *wme = &ic->ic_wme;
3186
3187		/*
3188		 * Check for agressive mode change.  When there is
3189		 * significant high priority traffic in the BSS
3190		 * throttle back BE traffic by using conservative
3191		 * parameters.  Otherwise BE uses agressive params
3192		 * to optimize performance of legacy/non-QoS traffic.
3193		 */
3194		if (wme->wme_flags & WME_F_AGGRMODE) {
3195			if (wme->wme_hipri_traffic >
3196			    wme->wme_hipri_switch_thresh) {
3197				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3198				    "%s: traffic %u, disable aggressive mode\n",
3199				    __func__, wme->wme_hipri_traffic);
3200				wme->wme_flags &= ~WME_F_AGGRMODE;
3201				ieee80211_wme_updateparams_locked(vap);
3202				wme->wme_hipri_traffic =
3203					wme->wme_hipri_switch_hysteresis;
3204			} else
3205				wme->wme_hipri_traffic = 0;
3206		} else {
3207			if (wme->wme_hipri_traffic <=
3208			    wme->wme_hipri_switch_thresh) {
3209				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3210				    "%s: traffic %u, enable aggressive mode\n",
3211				    __func__, wme->wme_hipri_traffic);
3212				wme->wme_flags |= WME_F_AGGRMODE;
3213				ieee80211_wme_updateparams_locked(vap);
3214				wme->wme_hipri_traffic = 0;
3215			} else
3216				wme->wme_hipri_traffic =
3217					wme->wme_hipri_switch_hysteresis;
3218		}
3219		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3220			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3221			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3222		}
3223	}
3224
3225	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3226		ieee80211_ht_update_beacon(vap, bo);
3227		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3228	}
3229#ifdef IEEE80211_SUPPORT_TDMA
3230	if (vap->iv_caps & IEEE80211_C_TDMA) {
3231		/*
3232		 * NB: the beacon is potentially updated every TBTT.
3233		 */
3234		ieee80211_tdma_update_beacon(vap, bo);
3235	}
3236#endif
3237#ifdef IEEE80211_SUPPORT_MESH
3238	if (vap->iv_opmode == IEEE80211_M_MBSS)
3239		ieee80211_mesh_update_beacon(vap, bo);
3240#endif
3241
3242	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3243	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3244		struct ieee80211_tim_ie *tie =
3245			(struct ieee80211_tim_ie *) bo->bo_tim;
3246		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3247			u_int timlen, timoff, i;
3248			/*
3249			 * ATIM/DTIM needs updating.  If it fits in the
3250			 * current space allocated then just copy in the
3251			 * new bits.  Otherwise we need to move any trailing
3252			 * data to make room.  Note that we know there is
3253			 * contiguous space because ieee80211_beacon_allocate
3254			 * insures there is space in the mbuf to write a
3255			 * maximal-size virtual bitmap (based on iv_max_aid).
3256			 */
3257			/*
3258			 * Calculate the bitmap size and offset, copy any
3259			 * trailer out of the way, and then copy in the
3260			 * new bitmap and update the information element.
3261			 * Note that the tim bitmap must contain at least
3262			 * one byte and any offset must be even.
3263			 */
3264			if (vap->iv_ps_pending != 0) {
3265				timoff = 128;		/* impossibly large */
3266				for (i = 0; i < vap->iv_tim_len; i++)
3267					if (vap->iv_tim_bitmap[i]) {
3268						timoff = i &~ 1;
3269						break;
3270					}
3271				KASSERT(timoff != 128, ("tim bitmap empty!"));
3272				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3273					if (vap->iv_tim_bitmap[i])
3274						break;
3275				timlen = 1 + (i - timoff);
3276			} else {
3277				timoff = 0;
3278				timlen = 1;
3279			}
3280			if (timlen != bo->bo_tim_len) {
3281				/* copy up/down trailer */
3282				int adjust = tie->tim_bitmap+timlen
3283					   - bo->bo_tim_trailer;
3284				ovbcopy(bo->bo_tim_trailer,
3285				    bo->bo_tim_trailer+adjust,
3286				    bo->bo_tim_trailer_len);
3287				bo->bo_tim_trailer += adjust;
3288				bo->bo_erp += adjust;
3289				bo->bo_htinfo += adjust;
3290#ifdef IEEE80211_SUPPORT_SUPERG
3291				bo->bo_ath += adjust;
3292#endif
3293#ifdef IEEE80211_SUPPORT_TDMA
3294				bo->bo_tdma += adjust;
3295#endif
3296#ifdef IEEE80211_SUPPORT_MESH
3297				bo->bo_meshconf += adjust;
3298#endif
3299				bo->bo_appie += adjust;
3300				bo->bo_wme += adjust;
3301				bo->bo_csa += adjust;
3302				bo->bo_quiet += adjust;
3303				bo->bo_tim_len = timlen;
3304
3305				/* update information element */
3306				tie->tim_len = 3 + timlen;
3307				tie->tim_bitctl = timoff;
3308				len_changed = 1;
3309			}
3310			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3311				bo->bo_tim_len);
3312
3313			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3314
3315			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3316				"%s: TIM updated, pending %u, off %u, len %u\n",
3317				__func__, vap->iv_ps_pending, timoff, timlen);
3318		}
3319		/* count down DTIM period */
3320		if (tie->tim_count == 0)
3321			tie->tim_count = tie->tim_period - 1;
3322		else
3323			tie->tim_count--;
3324		/* update state for buffered multicast frames on DTIM */
3325		if (mcast && tie->tim_count == 0)
3326			tie->tim_bitctl |= 1;
3327		else
3328			tie->tim_bitctl &= ~1;
3329		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3330			struct ieee80211_csa_ie *csa =
3331			    (struct ieee80211_csa_ie *) bo->bo_csa;
3332
3333			/*
3334			 * Insert or update CSA ie.  If we're just starting
3335			 * to count down to the channel switch then we need
3336			 * to insert the CSA ie.  Otherwise we just need to
3337			 * drop the count.  The actual change happens above
3338			 * when the vap's count reaches the target count.
3339			 */
3340			if (vap->iv_csa_count == 0) {
3341				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3342				bo->bo_erp += sizeof(*csa);
3343				bo->bo_htinfo += sizeof(*csa);
3344				bo->bo_wme += sizeof(*csa);
3345#ifdef IEEE80211_SUPPORT_SUPERG
3346				bo->bo_ath += sizeof(*csa);
3347#endif
3348#ifdef IEEE80211_SUPPORT_TDMA
3349				bo->bo_tdma += sizeof(*csa);
3350#endif
3351#ifdef IEEE80211_SUPPORT_MESH
3352				bo->bo_meshconf += sizeof(*csa);
3353#endif
3354				bo->bo_appie += sizeof(*csa);
3355				bo->bo_csa_trailer_len += sizeof(*csa);
3356				bo->bo_quiet += sizeof(*csa);
3357				bo->bo_tim_trailer_len += sizeof(*csa);
3358				m->m_len += sizeof(*csa);
3359				m->m_pkthdr.len += sizeof(*csa);
3360
3361				ieee80211_add_csa(bo->bo_csa, vap);
3362			} else
3363				csa->csa_count--;
3364			vap->iv_csa_count++;
3365			/* NB: don't clear IEEE80211_BEACON_CSA */
3366		}
3367		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3368		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3369			if (vap->iv_quiet)
3370				ieee80211_add_quiet(bo->bo_quiet, vap);
3371		}
3372		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3373			/*
3374			 * ERP element needs updating.
3375			 */
3376			(void) ieee80211_add_erp(bo->bo_erp, ic);
3377			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3378		}
3379#ifdef IEEE80211_SUPPORT_SUPERG
3380		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3381			ieee80211_add_athcaps(bo->bo_ath, ni);
3382			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3383		}
3384#endif
3385	}
3386	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3387		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3388		int aielen;
3389		uint8_t *frm;
3390
3391		aielen = 0;
3392		if (aie != NULL)
3393			aielen += aie->ie_len;
3394		if (aielen != bo->bo_appie_len) {
3395			/* copy up/down trailer */
3396			int adjust = aielen - bo->bo_appie_len;
3397			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3398				bo->bo_tim_trailer_len);
3399			bo->bo_tim_trailer += adjust;
3400			bo->bo_appie += adjust;
3401			bo->bo_appie_len = aielen;
3402
3403			len_changed = 1;
3404		}
3405		frm = bo->bo_appie;
3406		if (aie != NULL)
3407			frm  = add_appie(frm, aie);
3408		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3409	}
3410	IEEE80211_UNLOCK(ic);
3411
3412	return len_changed;
3413}
3414
3415/*
3416 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3417 * tunnel encapsulation.  The frame is assumed to have an Ethernet
3418 * header at the front that must be stripped before prepending the
3419 * LLC followed by the Ethernet header passed in (with an Ethernet
3420 * type that specifies the payload size).
3421 */
3422struct mbuf *
3423ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3424	const struct ether_header *eh)
3425{
3426	struct llc *llc;
3427	uint16_t payload;
3428
3429	/* XXX optimize by combining m_adj+M_PREPEND */
3430	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3431	llc = mtod(m, struct llc *);
3432	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3433	llc->llc_control = LLC_UI;
3434	llc->llc_snap.org_code[0] = 0;
3435	llc->llc_snap.org_code[1] = 0;
3436	llc->llc_snap.org_code[2] = 0;
3437	llc->llc_snap.ether_type = eh->ether_type;
3438	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3439
3440	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3441	if (m == NULL) {		/* XXX cannot happen */
3442		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3443			"%s: no space for ether_header\n", __func__);
3444		vap->iv_stats.is_tx_nobuf++;
3445		return NULL;
3446	}
3447	ETHER_HEADER_COPY(mtod(m, void *), eh);
3448	mtod(m, struct ether_header *)->ether_type = htons(payload);
3449	return m;
3450}
3451
3452/*
3453 * Complete an mbuf transmission.
3454 *
3455 * For now, this simply processes a completed frame after the
3456 * driver has completed it's transmission and/or retransmission.
3457 * It assumes the frame is an 802.11 encapsulated frame.
3458 *
3459 * Later on it will grow to become the exit path for a given frame
3460 * from the driver and, depending upon how it's been encapsulated
3461 * and already transmitted, it may end up doing A-MPDU retransmission,
3462 * power save requeuing, etc.
3463 *
3464 * In order for the above to work, the driver entry point to this
3465 * must not hold any driver locks.  Thus, the driver needs to delay
3466 * any actual mbuf completion until it can release said locks.
3467 *
3468 * This frees the mbuf and if the mbuf has a node reference,
3469 * the node reference will be freed.
3470 */
3471void
3472ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3473{
3474
3475	if (ni != NULL) {
3476		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3477
3478		if (status == 0) {
3479			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3480			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3481			if (m->m_flags & M_MCAST)
3482				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3483		} else
3484			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3485		if (m->m_flags & M_TXCB)
3486			ieee80211_process_callback(ni, m, status);
3487		ieee80211_free_node(ni);
3488	}
3489	m_freem(m);
3490}
3491