ieee80211_output.c revision 288636
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 288636 2015-10-03 22:12:25Z adrian $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/endian.h>
39
40#include <sys/socket.h>
41
42#include <net/bpf.h>
43#include <net/ethernet.h>
44#include <net/if.h>
45#include <net/if_var.h>
46#include <net/if_llc.h>
47#include <net/if_media.h>
48#include <net/if_vlan_var.h>
49
50#include <net80211/ieee80211_var.h>
51#include <net80211/ieee80211_regdomain.h>
52#ifdef IEEE80211_SUPPORT_SUPERG
53#include <net80211/ieee80211_superg.h>
54#endif
55#ifdef IEEE80211_SUPPORT_TDMA
56#include <net80211/ieee80211_tdma.h>
57#endif
58#include <net80211/ieee80211_wds.h>
59#include <net80211/ieee80211_mesh.h>
60
61#if defined(INET) || defined(INET6)
62#include <netinet/in.h>
63#endif
64
65#ifdef INET
66#include <netinet/if_ether.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#endif
70#ifdef INET6
71#include <netinet/ip6.h>
72#endif
73
74#include <security/mac/mac_framework.h>
75
76#define	ETHER_HEADER_COPY(dst, src) \
77	memcpy(dst, src, sizeof(struct ether_header))
78
79/* unalligned little endian access */
80#define LE_WRITE_2(p, v) do {				\
81	((uint8_t *)(p))[0] = (v) & 0xff;		\
82	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83} while (0)
84#define LE_WRITE_4(p, v) do {				\
85	((uint8_t *)(p))[0] = (v) & 0xff;		\
86	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
87	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
88	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
89} while (0)
90
91static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
92	u_int hdrsize, u_int ciphdrsize, u_int mtu);
93static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
94
95#ifdef IEEE80211_DEBUG
96/*
97 * Decide if an outbound management frame should be
98 * printed when debugging is enabled.  This filters some
99 * of the less interesting frames that come frequently
100 * (e.g. beacons).
101 */
102static __inline int
103doprint(struct ieee80211vap *vap, int subtype)
104{
105	switch (subtype) {
106	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
107		return (vap->iv_opmode == IEEE80211_M_IBSS);
108	}
109	return 1;
110}
111#endif
112
113/*
114 * Transmit a frame to the given destination on the given VAP.
115 *
116 * It's up to the caller to figure out the details of who this
117 * is going to and resolving the node.
118 *
119 * This routine takes care of queuing it for power save,
120 * A-MPDU state stuff, fast-frames state stuff, encapsulation
121 * if required, then passing it up to the driver layer.
122 *
123 * This routine (for now) consumes the mbuf and frees the node
124 * reference; it ideally will return a TX status which reflects
125 * whether the mbuf was consumed or not, so the caller can
126 * free the mbuf (if appropriate) and the node reference (again,
127 * if appropriate.)
128 */
129int
130ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
131    struct ieee80211_node *ni)
132{
133	struct ieee80211com *ic = vap->iv_ic;
134	struct ifnet *ifp = vap->iv_ifp;
135	int error, len, mcast;
136
137	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138	    (m->m_flags & M_PWR_SAV) == 0) {
139		/*
140		 * Station in power save mode; pass the frame
141		 * to the 802.11 layer and continue.  We'll get
142		 * the frame back when the time is right.
143		 * XXX lose WDS vap linkage?
144		 */
145		if (ieee80211_pwrsave(ni, m) != 0)
146			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
147		ieee80211_free_node(ni);
148
149		/*
150		 * We queued it fine, so tell the upper layer
151		 * that we consumed it.
152		 */
153		return (0);
154	}
155	/* calculate priority so drivers can find the tx queue */
156	if (ieee80211_classify(ni, m)) {
157		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
158		    ni->ni_macaddr, NULL,
159		    "%s", "classification failure");
160		vap->iv_stats.is_tx_classify++;
161		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
162		m_freem(m);
163		ieee80211_free_node(ni);
164
165		/* XXX better status? */
166		return (0);
167	}
168	/*
169	 * Stash the node pointer.  Note that we do this after
170	 * any call to ieee80211_dwds_mcast because that code
171	 * uses any existing value for rcvif to identify the
172	 * interface it (might have been) received on.
173	 */
174	m->m_pkthdr.rcvif = (void *)ni;
175	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
176	len = m->m_pkthdr.len;
177
178	BPF_MTAP(ifp, m);		/* 802.3 tx */
179
180	/*
181	 * Check if A-MPDU tx aggregation is setup or if we
182	 * should try to enable it.  The sta must be associated
183	 * with HT and A-MPDU enabled for use.  When the policy
184	 * routine decides we should enable A-MPDU we issue an
185	 * ADDBA request and wait for a reply.  The frame being
186	 * encapsulated will go out w/o using A-MPDU, or possibly
187	 * it might be collected by the driver and held/retransmit.
188	 * The default ic_ampdu_enable routine handles staggering
189	 * ADDBA requests in case the receiver NAK's us or we are
190	 * otherwise unable to establish a BA stream.
191	 */
192	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
193	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
194	    (m->m_flags & M_EAPOL) == 0) {
195		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
196		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
197
198		ieee80211_txampdu_count_packet(tap);
199		if (IEEE80211_AMPDU_RUNNING(tap)) {
200			/*
201			 * Operational, mark frame for aggregation.
202			 *
203			 * XXX do tx aggregation here
204			 */
205			m->m_flags |= M_AMPDU_MPDU;
206		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
207		    ic->ic_ampdu_enable(ni, tap)) {
208			/*
209			 * Not negotiated yet, request service.
210			 */
211			ieee80211_ampdu_request(ni, tap);
212			/* XXX hold frame for reply? */
213		}
214	}
215
216	/*
217	 * XXX If we aren't doing AMPDU TX then we /could/ do
218	 * fast-frames encapsulation, however right now this
219	 * output logic doesn't handle that case.
220	 *
221	 * So we'll be limited to "fast-frames" xmit for non-11n STA
222	 * and "no fast frames" xmit for 11n STAs.
223	 * It'd be nice to eventually test fast-frames out by
224	 * gracefully falling from failing A-MPDU transmission
225	 * (driver says no, fail to negotiate it with peer) to
226	 * using fast-frames.
227	 *
228	 * Note: we can actually put A-MSDU's inside an A-MPDU,
229	 * so hopefully we can figure out how to make that particular
230	 * combination work right.
231	 */
232#ifdef IEEE80211_SUPPORT_SUPERG
233	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
234		m = ieee80211_ff_check(ni, m);
235		if (m == NULL) {
236			/* NB: any ni ref held on stageq */
237			return (0);
238		}
239	}
240#endif /* IEEE80211_SUPPORT_SUPERG */
241
242	/*
243	 * Grab the TX lock - serialise the TX process from this
244	 * point (where TX state is being checked/modified)
245	 * through to driver queue.
246	 */
247	IEEE80211_TX_LOCK(ic);
248
249	/*
250	 * XXX make the encap and transmit code a separate function
251	 * so things like the FF (and later A-MSDU) path can just call
252	 * it for flushed frames.
253	 */
254	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
255		/*
256		 * Encapsulate the packet in prep for transmission.
257		 */
258		m = ieee80211_encap(vap, ni, m);
259		if (m == NULL) {
260			/* NB: stat+msg handled in ieee80211_encap */
261			IEEE80211_TX_UNLOCK(ic);
262			ieee80211_free_node(ni);
263			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
264			return (ENOBUFS);
265		}
266	}
267	error = ieee80211_parent_xmitpkt(ic, m);
268
269	/*
270	 * Unlock at this point - no need to hold it across
271	 * ieee80211_free_node() (ie, the comlock)
272	 */
273	IEEE80211_TX_UNLOCK(ic);
274	if (error != 0) {
275		/* NB: IFQ_HANDOFF reclaims mbuf */
276		ieee80211_free_node(ni);
277		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
278	}
279	ic->ic_lastdata = ticks;
280
281	return (0);
282}
283
284
285
286/*
287 * Send the given mbuf through the given vap.
288 *
289 * This consumes the mbuf regardless of whether the transmit
290 * was successful or not.
291 *
292 * This does none of the initial checks that ieee80211_start()
293 * does (eg CAC timeout, interface wakeup) - the caller must
294 * do this first.
295 */
296static int
297ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
298{
299#define	IS_DWDS(vap) \
300	(vap->iv_opmode == IEEE80211_M_WDS && \
301	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
302	struct ieee80211com *ic = vap->iv_ic;
303	struct ifnet *ifp = vap->iv_ifp;
304	struct ieee80211_node *ni;
305	struct ether_header *eh;
306
307	/*
308	 * Cancel any background scan.
309	 */
310	if (ic->ic_flags & IEEE80211_F_SCAN)
311		ieee80211_cancel_anyscan(vap);
312	/*
313	 * Find the node for the destination so we can do
314	 * things like power save and fast frames aggregation.
315	 *
316	 * NB: past this point various code assumes the first
317	 *     mbuf has the 802.3 header present (and contiguous).
318	 */
319	ni = NULL;
320	if (m->m_len < sizeof(struct ether_header) &&
321	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
322		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
323		    "discard frame, %s\n", "m_pullup failed");
324		vap->iv_stats.is_tx_nobuf++;	/* XXX */
325		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
326		return (ENOBUFS);
327	}
328	eh = mtod(m, struct ether_header *);
329	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
330		if (IS_DWDS(vap)) {
331			/*
332			 * Only unicast frames from the above go out
333			 * DWDS vaps; multicast frames are handled by
334			 * dispatching the frame as it comes through
335			 * the AP vap (see below).
336			 */
337			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
338			    eh->ether_dhost, "mcast", "%s", "on DWDS");
339			vap->iv_stats.is_dwds_mcast++;
340			m_freem(m);
341			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
342			/* XXX better status? */
343			return (ENOBUFS);
344		}
345		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
346			/*
347			 * Spam DWDS vap's w/ multicast traffic.
348			 */
349			/* XXX only if dwds in use? */
350			ieee80211_dwds_mcast(vap, m);
351		}
352	}
353#ifdef IEEE80211_SUPPORT_MESH
354	if (vap->iv_opmode != IEEE80211_M_MBSS) {
355#endif
356		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
357		if (ni == NULL) {
358			/* NB: ieee80211_find_txnode does stat+msg */
359			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
360			m_freem(m);
361			/* XXX better status? */
362			return (ENOBUFS);
363		}
364		if (ni->ni_associd == 0 &&
365		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
366			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
367			    eh->ether_dhost, NULL,
368			    "sta not associated (type 0x%04x)",
369			    htons(eh->ether_type));
370			vap->iv_stats.is_tx_notassoc++;
371			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
372			m_freem(m);
373			ieee80211_free_node(ni);
374			/* XXX better status? */
375			return (ENOBUFS);
376		}
377#ifdef IEEE80211_SUPPORT_MESH
378	} else {
379		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
380			/*
381			 * Proxy station only if configured.
382			 */
383			if (!ieee80211_mesh_isproxyena(vap)) {
384				IEEE80211_DISCARD_MAC(vap,
385				    IEEE80211_MSG_OUTPUT |
386				    IEEE80211_MSG_MESH,
387				    eh->ether_dhost, NULL,
388				    "%s", "proxy not enabled");
389				vap->iv_stats.is_mesh_notproxy++;
390				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
391				m_freem(m);
392				/* XXX better status? */
393				return (ENOBUFS);
394			}
395			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
396			    "forward frame from DS SA(%6D), DA(%6D)\n",
397			    eh->ether_shost, ":",
398			    eh->ether_dhost, ":");
399			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
400		}
401		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
402		if (ni == NULL) {
403			/*
404			 * NB: ieee80211_mesh_discover holds/disposes
405			 * frame (e.g. queueing on path discovery).
406			 */
407			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
408			/* XXX better status? */
409			return (ENOBUFS);
410		}
411	}
412#endif
413
414	/*
415	 * We've resolved the sender, so attempt to transmit it.
416	 */
417
418	if (vap->iv_state == IEEE80211_S_SLEEP) {
419		/*
420		 * In power save; queue frame and then  wakeup device
421		 * for transmit.
422		 */
423		ic->ic_lastdata = ticks;
424		if (ieee80211_pwrsave(ni, m) != 0)
425			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
426		ieee80211_free_node(ni);
427		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
428		return (0);
429	}
430
431	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
432		return (ENOBUFS);
433	return (0);
434#undef	IS_DWDS
435}
436
437/*
438 * Start method for vap's.  All packets from the stack come
439 * through here.  We handle common processing of the packets
440 * before dispatching them to the underlying device.
441 *
442 * if_transmit() requires that the mbuf be consumed by this call
443 * regardless of the return condition.
444 */
445int
446ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
447{
448	struct ieee80211vap *vap = ifp->if_softc;
449	struct ieee80211com *ic = vap->iv_ic;
450
451	/*
452	 * No data frames go out unless we're running.
453	 * Note in particular this covers CAC and CSA
454	 * states (though maybe we should check muting
455	 * for CSA).
456	 */
457	if (vap->iv_state != IEEE80211_S_RUN &&
458	    vap->iv_state != IEEE80211_S_SLEEP) {
459		IEEE80211_LOCK(ic);
460		/* re-check under the com lock to avoid races */
461		if (vap->iv_state != IEEE80211_S_RUN &&
462		    vap->iv_state != IEEE80211_S_SLEEP) {
463			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
464			    "%s: ignore queue, in %s state\n",
465			    __func__, ieee80211_state_name[vap->iv_state]);
466			vap->iv_stats.is_tx_badstate++;
467			IEEE80211_UNLOCK(ic);
468			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
469			m_freem(m);
470			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
471			return (ENETDOWN);
472		}
473		IEEE80211_UNLOCK(ic);
474	}
475
476	/*
477	 * Sanitize mbuf flags for net80211 use.  We cannot
478	 * clear M_PWR_SAV or M_MORE_DATA because these may
479	 * be set for frames that are re-submitted from the
480	 * power save queue.
481	 *
482	 * NB: This must be done before ieee80211_classify as
483	 *     it marks EAPOL in frames with M_EAPOL.
484	 */
485	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
486
487	/*
488	 * Bump to the packet transmission path.
489	 * The mbuf will be consumed here.
490	 */
491	return (ieee80211_start_pkt(vap, m));
492}
493
494void
495ieee80211_vap_qflush(struct ifnet *ifp)
496{
497
498	/* Empty for now */
499}
500
501/*
502 * 802.11 raw output routine.
503 *
504 * XXX TODO: this (and other send routines) should correctly
505 * XXX keep the pwr mgmt bit set if it decides to call into the
506 * XXX driver to send a frame whilst the state is SLEEP.
507 *
508 * Otherwise the peer may decide that we're awake and flood us
509 * with traffic we are still too asleep to receive!
510 */
511int
512ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
513    struct mbuf *m, const struct ieee80211_bpf_params *params)
514{
515	struct ieee80211com *ic = vap->iv_ic;
516	int error;
517
518	/*
519	 * Set node - the caller has taken a reference, so ensure
520	 * that the mbuf has the same node value that
521	 * it would if it were going via the normal path.
522	 */
523	m->m_pkthdr.rcvif = (void *)ni;
524
525	/*
526	 * Attempt to add bpf transmit parameters.
527	 *
528	 * For now it's ok to fail; the raw_xmit api still takes
529	 * them as an option.
530	 *
531	 * Later on when ic_raw_xmit() has params removed,
532	 * they'll have to be added - so fail the transmit if
533	 * they can't be.
534	 */
535	if (params)
536		(void) ieee80211_add_xmit_params(m, params);
537
538	error = ic->ic_raw_xmit(ni, m, params);
539	if (error)
540		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
541	return (error);
542}
543
544/*
545 * 802.11 output routine. This is (currently) used only to
546 * connect bpf write calls to the 802.11 layer for injecting
547 * raw 802.11 frames.
548 */
549int
550ieee80211_output(struct ifnet *ifp, struct mbuf *m,
551	const struct sockaddr *dst, struct route *ro)
552{
553#define senderr(e) do { error = (e); goto bad;} while (0)
554	struct ieee80211_node *ni = NULL;
555	struct ieee80211vap *vap;
556	struct ieee80211_frame *wh;
557	struct ieee80211com *ic = NULL;
558	int error;
559	int ret;
560
561	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
562		/*
563		 * Short-circuit requests if the vap is marked OACTIVE
564		 * as this can happen because a packet came down through
565		 * ieee80211_start before the vap entered RUN state in
566		 * which case it's ok to just drop the frame.  This
567		 * should not be necessary but callers of if_output don't
568		 * check OACTIVE.
569		 */
570		senderr(ENETDOWN);
571	}
572	vap = ifp->if_softc;
573	ic = vap->iv_ic;
574	/*
575	 * Hand to the 802.3 code if not tagged as
576	 * a raw 802.11 frame.
577	 */
578	if (dst->sa_family != AF_IEEE80211)
579		return vap->iv_output(ifp, m, dst, ro);
580#ifdef MAC
581	error = mac_ifnet_check_transmit(ifp, m);
582	if (error)
583		senderr(error);
584#endif
585	if (ifp->if_flags & IFF_MONITOR)
586		senderr(ENETDOWN);
587	if (!IFNET_IS_UP_RUNNING(ifp))
588		senderr(ENETDOWN);
589	if (vap->iv_state == IEEE80211_S_CAC) {
590		IEEE80211_DPRINTF(vap,
591		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
592		    "block %s frame in CAC state\n", "raw data");
593		vap->iv_stats.is_tx_badstate++;
594		senderr(EIO);		/* XXX */
595	} else if (vap->iv_state == IEEE80211_S_SCAN)
596		senderr(EIO);
597	/* XXX bypass bridge, pfil, carp, etc. */
598
599	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
600		senderr(EIO);	/* XXX */
601	wh = mtod(m, struct ieee80211_frame *);
602	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
603	    IEEE80211_FC0_VERSION_0)
604		senderr(EIO);	/* XXX */
605
606	/* locate destination node */
607	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
608	case IEEE80211_FC1_DIR_NODS:
609	case IEEE80211_FC1_DIR_FROMDS:
610		ni = ieee80211_find_txnode(vap, wh->i_addr1);
611		break;
612	case IEEE80211_FC1_DIR_TODS:
613	case IEEE80211_FC1_DIR_DSTODS:
614		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
615			senderr(EIO);	/* XXX */
616		ni = ieee80211_find_txnode(vap, wh->i_addr3);
617		break;
618	default:
619		senderr(EIO);	/* XXX */
620	}
621	if (ni == NULL) {
622		/*
623		 * Permit packets w/ bpf params through regardless
624		 * (see below about sa_len).
625		 */
626		if (dst->sa_len == 0)
627			senderr(EHOSTUNREACH);
628		ni = ieee80211_ref_node(vap->iv_bss);
629	}
630
631	/*
632	 * Sanitize mbuf for net80211 flags leaked from above.
633	 *
634	 * NB: This must be done before ieee80211_classify as
635	 *     it marks EAPOL in frames with M_EAPOL.
636	 */
637	m->m_flags &= ~M_80211_TX;
638
639	/* calculate priority so drivers can find the tx queue */
640	/* XXX assumes an 802.3 frame */
641	if (ieee80211_classify(ni, m))
642		senderr(EIO);		/* XXX */
643
644	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
645	IEEE80211_NODE_STAT(ni, tx_data);
646	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
647		IEEE80211_NODE_STAT(ni, tx_mcast);
648		m->m_flags |= M_MCAST;
649	} else
650		IEEE80211_NODE_STAT(ni, tx_ucast);
651	/* NB: ieee80211_encap does not include 802.11 header */
652	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
653
654	IEEE80211_TX_LOCK(ic);
655
656	/*
657	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
658	 * present by setting the sa_len field of the sockaddr (yes,
659	 * this is a hack).
660	 * NB: we assume sa_data is suitably aligned to cast.
661	 */
662	ret = ieee80211_raw_output(vap, ni, m,
663	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
664		dst->sa_data : NULL));
665	IEEE80211_TX_UNLOCK(ic);
666	return (ret);
667bad:
668	if (m != NULL)
669		m_freem(m);
670	if (ni != NULL)
671		ieee80211_free_node(ni);
672	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
673	return error;
674#undef senderr
675}
676
677/*
678 * Set the direction field and address fields of an outgoing
679 * frame.  Note this should be called early on in constructing
680 * a frame as it sets i_fc[1]; other bits can then be or'd in.
681 */
682void
683ieee80211_send_setup(
684	struct ieee80211_node *ni,
685	struct mbuf *m,
686	int type, int tid,
687	const uint8_t sa[IEEE80211_ADDR_LEN],
688	const uint8_t da[IEEE80211_ADDR_LEN],
689	const uint8_t bssid[IEEE80211_ADDR_LEN])
690{
691#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
692	struct ieee80211vap *vap = ni->ni_vap;
693	struct ieee80211_tx_ampdu *tap;
694	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
695	ieee80211_seq seqno;
696
697	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
698
699	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
700	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
701		switch (vap->iv_opmode) {
702		case IEEE80211_M_STA:
703			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
704			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
705			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
706			IEEE80211_ADDR_COPY(wh->i_addr3, da);
707			break;
708		case IEEE80211_M_IBSS:
709		case IEEE80211_M_AHDEMO:
710			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
711			IEEE80211_ADDR_COPY(wh->i_addr1, da);
712			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
713			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
714			break;
715		case IEEE80211_M_HOSTAP:
716			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
717			IEEE80211_ADDR_COPY(wh->i_addr1, da);
718			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
719			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
720			break;
721		case IEEE80211_M_WDS:
722			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
723			IEEE80211_ADDR_COPY(wh->i_addr1, da);
724			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
725			IEEE80211_ADDR_COPY(wh->i_addr3, da);
726			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
727			break;
728		case IEEE80211_M_MBSS:
729#ifdef IEEE80211_SUPPORT_MESH
730			if (IEEE80211_IS_MULTICAST(da)) {
731				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
732				/* XXX next hop */
733				IEEE80211_ADDR_COPY(wh->i_addr1, da);
734				IEEE80211_ADDR_COPY(wh->i_addr2,
735				    vap->iv_myaddr);
736			} else {
737				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
738				IEEE80211_ADDR_COPY(wh->i_addr1, da);
739				IEEE80211_ADDR_COPY(wh->i_addr2,
740				    vap->iv_myaddr);
741				IEEE80211_ADDR_COPY(wh->i_addr3, da);
742				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
743			}
744#endif
745			break;
746		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
747			break;
748		}
749	} else {
750		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
751		IEEE80211_ADDR_COPY(wh->i_addr1, da);
752		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
753#ifdef IEEE80211_SUPPORT_MESH
754		if (vap->iv_opmode == IEEE80211_M_MBSS)
755			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
756		else
757#endif
758			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
759	}
760	*(uint16_t *)&wh->i_dur[0] = 0;
761
762	tap = &ni->ni_tx_ampdu[tid];
763	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
764		m->m_flags |= M_AMPDU_MPDU;
765	else {
766		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
767				      type & IEEE80211_FC0_SUBTYPE_MASK))
768			seqno = ni->ni_txseqs[tid]++;
769		else
770			seqno = 0;
771
772		*(uint16_t *)&wh->i_seq[0] =
773		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
774		M_SEQNO_SET(m, seqno);
775	}
776
777	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
778		m->m_flags |= M_MCAST;
779#undef WH4
780}
781
782/*
783 * Send a management frame to the specified node.  The node pointer
784 * must have a reference as the pointer will be passed to the driver
785 * and potentially held for a long time.  If the frame is successfully
786 * dispatched to the driver, then it is responsible for freeing the
787 * reference (and potentially free'ing up any associated storage);
788 * otherwise deal with reclaiming any reference (on error).
789 */
790int
791ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
792	struct ieee80211_bpf_params *params)
793{
794	struct ieee80211vap *vap = ni->ni_vap;
795	struct ieee80211com *ic = ni->ni_ic;
796	struct ieee80211_frame *wh;
797	int ret;
798
799	KASSERT(ni != NULL, ("null node"));
800
801	if (vap->iv_state == IEEE80211_S_CAC) {
802		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
803		    ni, "block %s frame in CAC state",
804			ieee80211_mgt_subtype_name[
805			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
806				IEEE80211_FC0_SUBTYPE_SHIFT]);
807		vap->iv_stats.is_tx_badstate++;
808		ieee80211_free_node(ni);
809		m_freem(m);
810		return EIO;		/* XXX */
811	}
812
813	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
814	if (m == NULL) {
815		ieee80211_free_node(ni);
816		return ENOMEM;
817	}
818
819	IEEE80211_TX_LOCK(ic);
820
821	wh = mtod(m, struct ieee80211_frame *);
822	ieee80211_send_setup(ni, m,
823	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
824	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
825	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
826		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
827		    "encrypting frame (%s)", __func__);
828		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
829	}
830	m->m_flags |= M_ENCAP;		/* mark encapsulated */
831
832	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
833	M_WME_SETAC(m, params->ibp_pri);
834
835#ifdef IEEE80211_DEBUG
836	/* avoid printing too many frames */
837	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
838	    ieee80211_msg_dumppkts(vap)) {
839		printf("[%s] send %s on channel %u\n",
840		    ether_sprintf(wh->i_addr1),
841		    ieee80211_mgt_subtype_name[
842			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
843				IEEE80211_FC0_SUBTYPE_SHIFT],
844		    ieee80211_chan2ieee(ic, ic->ic_curchan));
845	}
846#endif
847	IEEE80211_NODE_STAT(ni, tx_mgmt);
848
849	ret = ieee80211_raw_output(vap, ni, m, params);
850	IEEE80211_TX_UNLOCK(ic);
851	return (ret);
852}
853
854/*
855 * Send a null data frame to the specified node.  If the station
856 * is setup for QoS then a QoS Null Data frame is constructed.
857 * If this is a WDS station then a 4-address frame is constructed.
858 *
859 * NB: the caller is assumed to have setup a node reference
860 *     for use; this is necessary to deal with a race condition
861 *     when probing for inactive stations.  Like ieee80211_mgmt_output
862 *     we must cleanup any node reference on error;  however we
863 *     can safely just unref it as we know it will never be the
864 *     last reference to the node.
865 */
866int
867ieee80211_send_nulldata(struct ieee80211_node *ni)
868{
869	struct ieee80211vap *vap = ni->ni_vap;
870	struct ieee80211com *ic = ni->ni_ic;
871	struct mbuf *m;
872	struct ieee80211_frame *wh;
873	int hdrlen;
874	uint8_t *frm;
875	int ret;
876
877	if (vap->iv_state == IEEE80211_S_CAC) {
878		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
879		    ni, "block %s frame in CAC state", "null data");
880		ieee80211_unref_node(&ni);
881		vap->iv_stats.is_tx_badstate++;
882		return EIO;		/* XXX */
883	}
884
885	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
886		hdrlen = sizeof(struct ieee80211_qosframe);
887	else
888		hdrlen = sizeof(struct ieee80211_frame);
889	/* NB: only WDS vap's get 4-address frames */
890	if (vap->iv_opmode == IEEE80211_M_WDS)
891		hdrlen += IEEE80211_ADDR_LEN;
892	if (ic->ic_flags & IEEE80211_F_DATAPAD)
893		hdrlen = roundup(hdrlen, sizeof(uint32_t));
894
895	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
896	if (m == NULL) {
897		/* XXX debug msg */
898		ieee80211_unref_node(&ni);
899		vap->iv_stats.is_tx_nobuf++;
900		return ENOMEM;
901	}
902	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
903	    ("leading space %zd", M_LEADINGSPACE(m)));
904	M_PREPEND(m, hdrlen, M_NOWAIT);
905	if (m == NULL) {
906		/* NB: cannot happen */
907		ieee80211_free_node(ni);
908		return ENOMEM;
909	}
910
911	IEEE80211_TX_LOCK(ic);
912
913	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
914	if (ni->ni_flags & IEEE80211_NODE_QOS) {
915		const int tid = WME_AC_TO_TID(WME_AC_BE);
916		uint8_t *qos;
917
918		ieee80211_send_setup(ni, m,
919		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
920		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
921
922		if (vap->iv_opmode == IEEE80211_M_WDS)
923			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
924		else
925			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
926		qos[0] = tid & IEEE80211_QOS_TID;
927		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
928			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
929		qos[1] = 0;
930	} else {
931		ieee80211_send_setup(ni, m,
932		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
933		    IEEE80211_NONQOS_TID,
934		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
935	}
936	if (vap->iv_opmode != IEEE80211_M_WDS) {
937		/* NB: power management bit is never sent by an AP */
938		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
939		    vap->iv_opmode != IEEE80211_M_HOSTAP)
940			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
941	}
942	m->m_len = m->m_pkthdr.len = hdrlen;
943	m->m_flags |= M_ENCAP;		/* mark encapsulated */
944
945	M_WME_SETAC(m, WME_AC_BE);
946
947	IEEE80211_NODE_STAT(ni, tx_data);
948
949	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
950	    "send %snull data frame on channel %u, pwr mgt %s",
951	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
952	    ieee80211_chan2ieee(ic, ic->ic_curchan),
953	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
954
955	ret = ieee80211_raw_output(vap, ni, m, NULL);
956	IEEE80211_TX_UNLOCK(ic);
957	return (ret);
958}
959
960/*
961 * Assign priority to a frame based on any vlan tag assigned
962 * to the station and/or any Diffserv setting in an IP header.
963 * Finally, if an ACM policy is setup (in station mode) it's
964 * applied.
965 */
966int
967ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
968{
969	const struct ether_header *eh = mtod(m, struct ether_header *);
970	int v_wme_ac, d_wme_ac, ac;
971
972	/*
973	 * Always promote PAE/EAPOL frames to high priority.
974	 */
975	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
976		/* NB: mark so others don't need to check header */
977		m->m_flags |= M_EAPOL;
978		ac = WME_AC_VO;
979		goto done;
980	}
981	/*
982	 * Non-qos traffic goes to BE.
983	 */
984	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
985		ac = WME_AC_BE;
986		goto done;
987	}
988
989	/*
990	 * If node has a vlan tag then all traffic
991	 * to it must have a matching tag.
992	 */
993	v_wme_ac = 0;
994	if (ni->ni_vlan != 0) {
995		 if ((m->m_flags & M_VLANTAG) == 0) {
996			IEEE80211_NODE_STAT(ni, tx_novlantag);
997			return 1;
998		}
999		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1000		    EVL_VLANOFTAG(ni->ni_vlan)) {
1001			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1002			return 1;
1003		}
1004		/* map vlan priority to AC */
1005		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1006	}
1007
1008	/* XXX m_copydata may be too slow for fast path */
1009#ifdef INET
1010	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1011		uint8_t tos;
1012		/*
1013		 * IP frame, map the DSCP bits from the TOS field.
1014		 */
1015		/* NB: ip header may not be in first mbuf */
1016		m_copydata(m, sizeof(struct ether_header) +
1017		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1018		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1019		d_wme_ac = TID_TO_WME_AC(tos);
1020	} else {
1021#endif /* INET */
1022#ifdef INET6
1023	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1024		uint32_t flow;
1025		uint8_t tos;
1026		/*
1027		 * IPv6 frame, map the DSCP bits from the traffic class field.
1028		 */
1029		m_copydata(m, sizeof(struct ether_header) +
1030		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1031		    (caddr_t) &flow);
1032		tos = (uint8_t)(ntohl(flow) >> 20);
1033		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1034		d_wme_ac = TID_TO_WME_AC(tos);
1035	} else {
1036#endif /* INET6 */
1037		d_wme_ac = WME_AC_BE;
1038#ifdef INET6
1039	}
1040#endif
1041#ifdef INET
1042	}
1043#endif
1044	/*
1045	 * Use highest priority AC.
1046	 */
1047	if (v_wme_ac > d_wme_ac)
1048		ac = v_wme_ac;
1049	else
1050		ac = d_wme_ac;
1051
1052	/*
1053	 * Apply ACM policy.
1054	 */
1055	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1056		static const int acmap[4] = {
1057			WME_AC_BK,	/* WME_AC_BE */
1058			WME_AC_BK,	/* WME_AC_BK */
1059			WME_AC_BE,	/* WME_AC_VI */
1060			WME_AC_VI,	/* WME_AC_VO */
1061		};
1062		struct ieee80211com *ic = ni->ni_ic;
1063
1064		while (ac != WME_AC_BK &&
1065		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1066			ac = acmap[ac];
1067	}
1068done:
1069	M_WME_SETAC(m, ac);
1070	return 0;
1071}
1072
1073/*
1074 * Insure there is sufficient contiguous space to encapsulate the
1075 * 802.11 data frame.  If room isn't already there, arrange for it.
1076 * Drivers and cipher modules assume we have done the necessary work
1077 * and fail rudely if they don't find the space they need.
1078 */
1079struct mbuf *
1080ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1081	struct ieee80211_key *key, struct mbuf *m)
1082{
1083#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1084	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1085
1086	if (key != NULL) {
1087		/* XXX belongs in crypto code? */
1088		needed_space += key->wk_cipher->ic_header;
1089		/* XXX frags */
1090		/*
1091		 * When crypto is being done in the host we must insure
1092		 * the data are writable for the cipher routines; clone
1093		 * a writable mbuf chain.
1094		 * XXX handle SWMIC specially
1095		 */
1096		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1097			m = m_unshare(m, M_NOWAIT);
1098			if (m == NULL) {
1099				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1100				    "%s: cannot get writable mbuf\n", __func__);
1101				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1102				return NULL;
1103			}
1104		}
1105	}
1106	/*
1107	 * We know we are called just before stripping an Ethernet
1108	 * header and prepending an LLC header.  This means we know
1109	 * there will be
1110	 *	sizeof(struct ether_header) - sizeof(struct llc)
1111	 * bytes recovered to which we need additional space for the
1112	 * 802.11 header and any crypto header.
1113	 */
1114	/* XXX check trailing space and copy instead? */
1115	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1116		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1117		if (n == NULL) {
1118			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1119			    "%s: cannot expand storage\n", __func__);
1120			vap->iv_stats.is_tx_nobuf++;
1121			m_freem(m);
1122			return NULL;
1123		}
1124		KASSERT(needed_space <= MHLEN,
1125		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1126		/*
1127		 * Setup new mbuf to have leading space to prepend the
1128		 * 802.11 header and any crypto header bits that are
1129		 * required (the latter are added when the driver calls
1130		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1131		 */
1132		/* NB: must be first 'cuz it clobbers m_data */
1133		m_move_pkthdr(n, m);
1134		n->m_len = 0;			/* NB: m_gethdr does not set */
1135		n->m_data += needed_space;
1136		/*
1137		 * Pull up Ethernet header to create the expected layout.
1138		 * We could use m_pullup but that's overkill (i.e. we don't
1139		 * need the actual data) and it cannot fail so do it inline
1140		 * for speed.
1141		 */
1142		/* NB: struct ether_header is known to be contiguous */
1143		n->m_len += sizeof(struct ether_header);
1144		m->m_len -= sizeof(struct ether_header);
1145		m->m_data += sizeof(struct ether_header);
1146		/*
1147		 * Replace the head of the chain.
1148		 */
1149		n->m_next = m;
1150		m = n;
1151	}
1152	return m;
1153#undef TO_BE_RECLAIMED
1154}
1155
1156/*
1157 * Return the transmit key to use in sending a unicast frame.
1158 * If a unicast key is set we use that.  When no unicast key is set
1159 * we fall back to the default transmit key.
1160 */
1161static __inline struct ieee80211_key *
1162ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1163	struct ieee80211_node *ni)
1164{
1165	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1166		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1167		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1168			return NULL;
1169		return &vap->iv_nw_keys[vap->iv_def_txkey];
1170	} else {
1171		return &ni->ni_ucastkey;
1172	}
1173}
1174
1175/*
1176 * Return the transmit key to use in sending a multicast frame.
1177 * Multicast traffic always uses the group key which is installed as
1178 * the default tx key.
1179 */
1180static __inline struct ieee80211_key *
1181ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1182	struct ieee80211_node *ni)
1183{
1184	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1185	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1186		return NULL;
1187	return &vap->iv_nw_keys[vap->iv_def_txkey];
1188}
1189
1190/*
1191 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1192 * If an error is encountered NULL is returned.  The caller is required
1193 * to provide a node reference and pullup the ethernet header in the
1194 * first mbuf.
1195 *
1196 * NB: Packet is assumed to be processed by ieee80211_classify which
1197 *     marked EAPOL frames w/ M_EAPOL.
1198 */
1199struct mbuf *
1200ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1201    struct mbuf *m)
1202{
1203#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1204#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1205	struct ieee80211com *ic = ni->ni_ic;
1206#ifdef IEEE80211_SUPPORT_MESH
1207	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1208	struct ieee80211_meshcntl_ae10 *mc;
1209	struct ieee80211_mesh_route *rt = NULL;
1210	int dir = -1;
1211#endif
1212	struct ether_header eh;
1213	struct ieee80211_frame *wh;
1214	struct ieee80211_key *key;
1215	struct llc *llc;
1216	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1217	ieee80211_seq seqno;
1218	int meshhdrsize, meshae;
1219	uint8_t *qos;
1220
1221	IEEE80211_TX_LOCK_ASSERT(ic);
1222
1223	/*
1224	 * Copy existing Ethernet header to a safe place.  The
1225	 * rest of the code assumes it's ok to strip it when
1226	 * reorganizing state for the final encapsulation.
1227	 */
1228	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1229	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1230
1231	/*
1232	 * Insure space for additional headers.  First identify
1233	 * transmit key to use in calculating any buffer adjustments
1234	 * required.  This is also used below to do privacy
1235	 * encapsulation work.  Then calculate the 802.11 header
1236	 * size and any padding required by the driver.
1237	 *
1238	 * Note key may be NULL if we fall back to the default
1239	 * transmit key and that is not set.  In that case the
1240	 * buffer may not be expanded as needed by the cipher
1241	 * routines, but they will/should discard it.
1242	 */
1243	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1244		if (vap->iv_opmode == IEEE80211_M_STA ||
1245		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1246		    (vap->iv_opmode == IEEE80211_M_WDS &&
1247		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1248			key = ieee80211_crypto_getucastkey(vap, ni);
1249		else
1250			key = ieee80211_crypto_getmcastkey(vap, ni);
1251		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1252			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1253			    eh.ether_dhost,
1254			    "no default transmit key (%s) deftxkey %u",
1255			    __func__, vap->iv_def_txkey);
1256			vap->iv_stats.is_tx_nodefkey++;
1257			goto bad;
1258		}
1259	} else
1260		key = NULL;
1261	/*
1262	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1263	 * frames so suppress use.  This may be an issue if other
1264	 * ap's require all data frames to be QoS-encapsulated
1265	 * once negotiated in which case we'll need to make this
1266	 * configurable.
1267	 * NB: mesh data frames are QoS.
1268	 */
1269	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1270	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1271	    (m->m_flags & M_EAPOL) == 0;
1272	if (addqos)
1273		hdrsize = sizeof(struct ieee80211_qosframe);
1274	else
1275		hdrsize = sizeof(struct ieee80211_frame);
1276#ifdef IEEE80211_SUPPORT_MESH
1277	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1278		/*
1279		 * Mesh data frames are encapsulated according to the
1280		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1281		 * o Group Addressed data (aka multicast) originating
1282		 *   at the local sta are sent w/ 3-address format and
1283		 *   address extension mode 00
1284		 * o Individually Addressed data (aka unicast) originating
1285		 *   at the local sta are sent w/ 4-address format and
1286		 *   address extension mode 00
1287		 * o Group Addressed data forwarded from a non-mesh sta are
1288		 *   sent w/ 3-address format and address extension mode 01
1289		 * o Individually Address data from another sta are sent
1290		 *   w/ 4-address format and address extension mode 10
1291		 */
1292		is4addr = 0;		/* NB: don't use, disable */
1293		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1294			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1295			KASSERT(rt != NULL, ("route is NULL"));
1296			dir = IEEE80211_FC1_DIR_DSTODS;
1297			hdrsize += IEEE80211_ADDR_LEN;
1298			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1299				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1300				    vap->iv_myaddr)) {
1301					IEEE80211_NOTE_MAC(vap,
1302					    IEEE80211_MSG_MESH,
1303					    eh.ether_dhost,
1304					    "%s", "trying to send to ourself");
1305					goto bad;
1306				}
1307				meshae = IEEE80211_MESH_AE_10;
1308				meshhdrsize =
1309				    sizeof(struct ieee80211_meshcntl_ae10);
1310			} else {
1311				meshae = IEEE80211_MESH_AE_00;
1312				meshhdrsize =
1313				    sizeof(struct ieee80211_meshcntl);
1314			}
1315		} else {
1316			dir = IEEE80211_FC1_DIR_FROMDS;
1317			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1318				/* proxy group */
1319				meshae = IEEE80211_MESH_AE_01;
1320				meshhdrsize =
1321				    sizeof(struct ieee80211_meshcntl_ae01);
1322			} else {
1323				/* group */
1324				meshae = IEEE80211_MESH_AE_00;
1325				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1326			}
1327		}
1328	} else {
1329#endif
1330		/*
1331		 * 4-address frames need to be generated for:
1332		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1333		 * o packets sent through a vap marked for relaying
1334		 *   (e.g. a station operating with dynamic WDS)
1335		 */
1336		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1337		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1338		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1339		if (is4addr)
1340			hdrsize += IEEE80211_ADDR_LEN;
1341		meshhdrsize = meshae = 0;
1342#ifdef IEEE80211_SUPPORT_MESH
1343	}
1344#endif
1345	/*
1346	 * Honor driver DATAPAD requirement.
1347	 */
1348	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1349		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1350	else
1351		hdrspace = hdrsize;
1352
1353	if (__predict_true((m->m_flags & M_FF) == 0)) {
1354		/*
1355		 * Normal frame.
1356		 */
1357		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1358		if (m == NULL) {
1359			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1360			goto bad;
1361		}
1362		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1363		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1364		llc = mtod(m, struct llc *);
1365		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1366		llc->llc_control = LLC_UI;
1367		llc->llc_snap.org_code[0] = 0;
1368		llc->llc_snap.org_code[1] = 0;
1369		llc->llc_snap.org_code[2] = 0;
1370		llc->llc_snap.ether_type = eh.ether_type;
1371	} else {
1372#ifdef IEEE80211_SUPPORT_SUPERG
1373		/*
1374		 * Aggregated frame.
1375		 */
1376		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1377		if (m == NULL)
1378#endif
1379			goto bad;
1380	}
1381	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1382
1383	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1384	if (m == NULL) {
1385		vap->iv_stats.is_tx_nobuf++;
1386		goto bad;
1387	}
1388	wh = mtod(m, struct ieee80211_frame *);
1389	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1390	*(uint16_t *)wh->i_dur = 0;
1391	qos = NULL;	/* NB: quiet compiler */
1392	if (is4addr) {
1393		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1394		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1395		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1396		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1397		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1398	} else switch (vap->iv_opmode) {
1399	case IEEE80211_M_STA:
1400		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1401		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1402		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1403		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1404		break;
1405	case IEEE80211_M_IBSS:
1406	case IEEE80211_M_AHDEMO:
1407		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1408		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1409		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1410		/*
1411		 * NB: always use the bssid from iv_bss as the
1412		 *     neighbor's may be stale after an ibss merge
1413		 */
1414		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1415		break;
1416	case IEEE80211_M_HOSTAP:
1417		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1418		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1419		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1420		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1421		break;
1422#ifdef IEEE80211_SUPPORT_MESH
1423	case IEEE80211_M_MBSS:
1424		/* NB: offset by hdrspace to deal with DATAPAD */
1425		mc = (struct ieee80211_meshcntl_ae10 *)
1426		     (mtod(m, uint8_t *) + hdrspace);
1427		wh->i_fc[1] = dir;
1428		switch (meshae) {
1429		case IEEE80211_MESH_AE_00:	/* no proxy */
1430			mc->mc_flags = 0;
1431			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1432				IEEE80211_ADDR_COPY(wh->i_addr1,
1433				    ni->ni_macaddr);
1434				IEEE80211_ADDR_COPY(wh->i_addr2,
1435				    vap->iv_myaddr);
1436				IEEE80211_ADDR_COPY(wh->i_addr3,
1437				    eh.ether_dhost);
1438				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1439				    eh.ether_shost);
1440				qos =((struct ieee80211_qosframe_addr4 *)
1441				    wh)->i_qos;
1442			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1443				 /* mcast */
1444				IEEE80211_ADDR_COPY(wh->i_addr1,
1445				    eh.ether_dhost);
1446				IEEE80211_ADDR_COPY(wh->i_addr2,
1447				    vap->iv_myaddr);
1448				IEEE80211_ADDR_COPY(wh->i_addr3,
1449				    eh.ether_shost);
1450				qos = ((struct ieee80211_qosframe *)
1451				    wh)->i_qos;
1452			}
1453			break;
1454		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1455			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1456			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1457			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1458			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1459			mc->mc_flags = 1;
1460			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1461			    eh.ether_shost);
1462			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1463			break;
1464		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1465			KASSERT(rt != NULL, ("route is NULL"));
1466			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1467			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1468			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1469			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1470			mc->mc_flags = IEEE80211_MESH_AE_10;
1471			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1472			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1473			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1474			break;
1475		default:
1476			KASSERT(0, ("meshae %d", meshae));
1477			break;
1478		}
1479		mc->mc_ttl = ms->ms_ttl;
1480		ms->ms_seq++;
1481		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1482		break;
1483#endif
1484	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1485	default:
1486		goto bad;
1487	}
1488	if (m->m_flags & M_MORE_DATA)
1489		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1490	if (addqos) {
1491		int ac, tid;
1492
1493		if (is4addr) {
1494			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1495		/* NB: mesh case handled earlier */
1496		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1497			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1498		ac = M_WME_GETAC(m);
1499		/* map from access class/queue to 11e header priorty value */
1500		tid = WME_AC_TO_TID(ac);
1501		qos[0] = tid & IEEE80211_QOS_TID;
1502		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1503			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1504#ifdef IEEE80211_SUPPORT_MESH
1505		if (vap->iv_opmode == IEEE80211_M_MBSS)
1506			qos[1] = IEEE80211_QOS_MC;
1507		else
1508#endif
1509			qos[1] = 0;
1510		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1511
1512		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1513			/*
1514			 * NB: don't assign a sequence # to potential
1515			 * aggregates; we expect this happens at the
1516			 * point the frame comes off any aggregation q
1517			 * as otherwise we may introduce holes in the
1518			 * BA sequence space and/or make window accouting
1519			 * more difficult.
1520			 *
1521			 * XXX may want to control this with a driver
1522			 * capability; this may also change when we pull
1523			 * aggregation up into net80211
1524			 */
1525			seqno = ni->ni_txseqs[tid]++;
1526			*(uint16_t *)wh->i_seq =
1527			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1528			M_SEQNO_SET(m, seqno);
1529		}
1530	} else {
1531		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1532		*(uint16_t *)wh->i_seq =
1533		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1534		M_SEQNO_SET(m, seqno);
1535	}
1536
1537
1538	/* check if xmit fragmentation is required */
1539	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1540	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1541	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1542	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1543	if (key != NULL) {
1544		/*
1545		 * IEEE 802.1X: send EAPOL frames always in the clear.
1546		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1547		 */
1548		if ((m->m_flags & M_EAPOL) == 0 ||
1549		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1550		     (vap->iv_opmode == IEEE80211_M_STA ?
1551		      !IEEE80211_KEY_UNDEFINED(key) :
1552		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1553			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1554			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1555				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1556				    eh.ether_dhost,
1557				    "%s", "enmic failed, discard frame");
1558				vap->iv_stats.is_crypto_enmicfail++;
1559				goto bad;
1560			}
1561		}
1562	}
1563	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1564	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1565		goto bad;
1566
1567	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1568
1569	IEEE80211_NODE_STAT(ni, tx_data);
1570	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1571		IEEE80211_NODE_STAT(ni, tx_mcast);
1572		m->m_flags |= M_MCAST;
1573	} else
1574		IEEE80211_NODE_STAT(ni, tx_ucast);
1575	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1576
1577	return m;
1578bad:
1579	if (m != NULL)
1580		m_freem(m);
1581	return NULL;
1582#undef WH4
1583#undef MC01
1584}
1585
1586/*
1587 * Fragment the frame according to the specified mtu.
1588 * The size of the 802.11 header (w/o padding) is provided
1589 * so we don't need to recalculate it.  We create a new
1590 * mbuf for each fragment and chain it through m_nextpkt;
1591 * we might be able to optimize this by reusing the original
1592 * packet's mbufs but that is significantly more complicated.
1593 */
1594static int
1595ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1596	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1597{
1598	struct ieee80211com *ic = vap->iv_ic;
1599	struct ieee80211_frame *wh, *whf;
1600	struct mbuf *m, *prev, *next;
1601	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1602	u_int hdrspace;
1603
1604	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1605	KASSERT(m0->m_pkthdr.len > mtu,
1606		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1607
1608	/*
1609	 * Honor driver DATAPAD requirement.
1610	 */
1611	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1612		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1613	else
1614		hdrspace = hdrsize;
1615
1616	wh = mtod(m0, struct ieee80211_frame *);
1617	/* NB: mark the first frag; it will be propagated below */
1618	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1619	totalhdrsize = hdrspace + ciphdrsize;
1620	fragno = 1;
1621	off = mtu - ciphdrsize;
1622	remainder = m0->m_pkthdr.len - off;
1623	prev = m0;
1624	do {
1625		fragsize = totalhdrsize + remainder;
1626		if (fragsize > mtu)
1627			fragsize = mtu;
1628		/* XXX fragsize can be >2048! */
1629		KASSERT(fragsize < MCLBYTES,
1630			("fragment size %u too big!", fragsize));
1631		if (fragsize > MHLEN)
1632			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1633		else
1634			m = m_gethdr(M_NOWAIT, MT_DATA);
1635		if (m == NULL)
1636			goto bad;
1637		/* leave room to prepend any cipher header */
1638		m_align(m, fragsize - ciphdrsize);
1639
1640		/*
1641		 * Form the header in the fragment.  Note that since
1642		 * we mark the first fragment with the MORE_FRAG bit
1643		 * it automatically is propagated to each fragment; we
1644		 * need only clear it on the last fragment (done below).
1645		 * NB: frag 1+ dont have Mesh Control field present.
1646		 */
1647		whf = mtod(m, struct ieee80211_frame *);
1648		memcpy(whf, wh, hdrsize);
1649#ifdef IEEE80211_SUPPORT_MESH
1650		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1651			if (IEEE80211_IS_DSTODS(wh))
1652				((struct ieee80211_qosframe_addr4 *)
1653				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1654			else
1655				((struct ieee80211_qosframe *)
1656				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1657		}
1658#endif
1659		*(uint16_t *)&whf->i_seq[0] |= htole16(
1660			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1661				IEEE80211_SEQ_FRAG_SHIFT);
1662		fragno++;
1663
1664		payload = fragsize - totalhdrsize;
1665		/* NB: destination is known to be contiguous */
1666
1667		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1668		m->m_len = hdrspace + payload;
1669		m->m_pkthdr.len = hdrspace + payload;
1670		m->m_flags |= M_FRAG;
1671
1672		/* chain up the fragment */
1673		prev->m_nextpkt = m;
1674		prev = m;
1675
1676		/* deduct fragment just formed */
1677		remainder -= payload;
1678		off += payload;
1679	} while (remainder != 0);
1680
1681	/* set the last fragment */
1682	m->m_flags |= M_LASTFRAG;
1683	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1684
1685	/* strip first mbuf now that everything has been copied */
1686	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1687	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1688
1689	vap->iv_stats.is_tx_fragframes++;
1690	vap->iv_stats.is_tx_frags += fragno-1;
1691
1692	return 1;
1693bad:
1694	/* reclaim fragments but leave original frame for caller to free */
1695	for (m = m0->m_nextpkt; m != NULL; m = next) {
1696		next = m->m_nextpkt;
1697		m->m_nextpkt = NULL;		/* XXX paranoid */
1698		m_freem(m);
1699	}
1700	m0->m_nextpkt = NULL;
1701	return 0;
1702}
1703
1704/*
1705 * Add a supported rates element id to a frame.
1706 */
1707uint8_t *
1708ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1709{
1710	int nrates;
1711
1712	*frm++ = IEEE80211_ELEMID_RATES;
1713	nrates = rs->rs_nrates;
1714	if (nrates > IEEE80211_RATE_SIZE)
1715		nrates = IEEE80211_RATE_SIZE;
1716	*frm++ = nrates;
1717	memcpy(frm, rs->rs_rates, nrates);
1718	return frm + nrates;
1719}
1720
1721/*
1722 * Add an extended supported rates element id to a frame.
1723 */
1724uint8_t *
1725ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1726{
1727	/*
1728	 * Add an extended supported rates element if operating in 11g mode.
1729	 */
1730	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1731		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1732		*frm++ = IEEE80211_ELEMID_XRATES;
1733		*frm++ = nrates;
1734		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1735		frm += nrates;
1736	}
1737	return frm;
1738}
1739
1740/*
1741 * Add an ssid element to a frame.
1742 */
1743uint8_t *
1744ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1745{
1746	*frm++ = IEEE80211_ELEMID_SSID;
1747	*frm++ = len;
1748	memcpy(frm, ssid, len);
1749	return frm + len;
1750}
1751
1752/*
1753 * Add an erp element to a frame.
1754 */
1755static uint8_t *
1756ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1757{
1758	uint8_t erp;
1759
1760	*frm++ = IEEE80211_ELEMID_ERP;
1761	*frm++ = 1;
1762	erp = 0;
1763	if (ic->ic_nonerpsta != 0)
1764		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1765	if (ic->ic_flags & IEEE80211_F_USEPROT)
1766		erp |= IEEE80211_ERP_USE_PROTECTION;
1767	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1768		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1769	*frm++ = erp;
1770	return frm;
1771}
1772
1773/*
1774 * Add a CFParams element to a frame.
1775 */
1776static uint8_t *
1777ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1778{
1779#define	ADDSHORT(frm, v) do {	\
1780	LE_WRITE_2(frm, v);	\
1781	frm += 2;		\
1782} while (0)
1783	*frm++ = IEEE80211_ELEMID_CFPARMS;
1784	*frm++ = 6;
1785	*frm++ = 0;		/* CFP count */
1786	*frm++ = 2;		/* CFP period */
1787	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1788	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1789	return frm;
1790#undef ADDSHORT
1791}
1792
1793static __inline uint8_t *
1794add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1795{
1796	memcpy(frm, ie->ie_data, ie->ie_len);
1797	return frm + ie->ie_len;
1798}
1799
1800static __inline uint8_t *
1801add_ie(uint8_t *frm, const uint8_t *ie)
1802{
1803	memcpy(frm, ie, 2 + ie[1]);
1804	return frm + 2 + ie[1];
1805}
1806
1807#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1808/*
1809 * Add a WME information element to a frame.
1810 */
1811uint8_t *
1812ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1813{
1814	static const struct ieee80211_wme_info info = {
1815		.wme_id		= IEEE80211_ELEMID_VENDOR,
1816		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1817		.wme_oui	= { WME_OUI_BYTES },
1818		.wme_type	= WME_OUI_TYPE,
1819		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1820		.wme_version	= WME_VERSION,
1821		.wme_info	= 0,
1822	};
1823	memcpy(frm, &info, sizeof(info));
1824	return frm + sizeof(info);
1825}
1826
1827/*
1828 * Add a WME parameters element to a frame.
1829 */
1830static uint8_t *
1831ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1832{
1833#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1834#define	ADDSHORT(frm, v) do {	\
1835	LE_WRITE_2(frm, v);	\
1836	frm += 2;		\
1837} while (0)
1838	/* NB: this works 'cuz a param has an info at the front */
1839	static const struct ieee80211_wme_info param = {
1840		.wme_id		= IEEE80211_ELEMID_VENDOR,
1841		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1842		.wme_oui	= { WME_OUI_BYTES },
1843		.wme_type	= WME_OUI_TYPE,
1844		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1845		.wme_version	= WME_VERSION,
1846	};
1847	int i;
1848
1849	memcpy(frm, &param, sizeof(param));
1850	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1851	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1852	*frm++ = 0;					/* reserved field */
1853	for (i = 0; i < WME_NUM_AC; i++) {
1854		const struct wmeParams *ac =
1855		       &wme->wme_bssChanParams.cap_wmeParams[i];
1856		*frm++ = SM(i, WME_PARAM_ACI)
1857		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1858		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1859		       ;
1860		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1861		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1862		       ;
1863		ADDSHORT(frm, ac->wmep_txopLimit);
1864	}
1865	return frm;
1866#undef SM
1867#undef ADDSHORT
1868}
1869#undef WME_OUI_BYTES
1870
1871/*
1872 * Add an 11h Power Constraint element to a frame.
1873 */
1874static uint8_t *
1875ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1876{
1877	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1878	/* XXX per-vap tx power limit? */
1879	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1880
1881	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1882	frm[1] = 1;
1883	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1884	return frm + 3;
1885}
1886
1887/*
1888 * Add an 11h Power Capability element to a frame.
1889 */
1890static uint8_t *
1891ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1892{
1893	frm[0] = IEEE80211_ELEMID_PWRCAP;
1894	frm[1] = 2;
1895	frm[2] = c->ic_minpower;
1896	frm[3] = c->ic_maxpower;
1897	return frm + 4;
1898}
1899
1900/*
1901 * Add an 11h Supported Channels element to a frame.
1902 */
1903static uint8_t *
1904ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1905{
1906	static const int ielen = 26;
1907
1908	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1909	frm[1] = ielen;
1910	/* XXX not correct */
1911	memcpy(frm+2, ic->ic_chan_avail, ielen);
1912	return frm + 2 + ielen;
1913}
1914
1915/*
1916 * Add an 11h Quiet time element to a frame.
1917 */
1918static uint8_t *
1919ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1920{
1921	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1922
1923	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1924	quiet->len = 6;
1925	if (vap->iv_quiet_count_value == 1)
1926		vap->iv_quiet_count_value = vap->iv_quiet_count;
1927	else if (vap->iv_quiet_count_value > 1)
1928		vap->iv_quiet_count_value--;
1929
1930	if (vap->iv_quiet_count_value == 0) {
1931		/* value 0 is reserved as per 802.11h standerd */
1932		vap->iv_quiet_count_value = 1;
1933	}
1934
1935	quiet->tbttcount = vap->iv_quiet_count_value;
1936	quiet->period = vap->iv_quiet_period;
1937	quiet->duration = htole16(vap->iv_quiet_duration);
1938	quiet->offset = htole16(vap->iv_quiet_offset);
1939	return frm + sizeof(*quiet);
1940}
1941
1942/*
1943 * Add an 11h Channel Switch Announcement element to a frame.
1944 * Note that we use the per-vap CSA count to adjust the global
1945 * counter so we can use this routine to form probe response
1946 * frames and get the current count.
1947 */
1948static uint8_t *
1949ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1950{
1951	struct ieee80211com *ic = vap->iv_ic;
1952	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1953
1954	csa->csa_ie = IEEE80211_ELEMID_CSA;
1955	csa->csa_len = 3;
1956	csa->csa_mode = 1;		/* XXX force quiet on channel */
1957	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1958	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1959	return frm + sizeof(*csa);
1960}
1961
1962/*
1963 * Add an 11h country information element to a frame.
1964 */
1965static uint8_t *
1966ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1967{
1968
1969	if (ic->ic_countryie == NULL ||
1970	    ic->ic_countryie_chan != ic->ic_bsschan) {
1971		/*
1972		 * Handle lazy construction of ie.  This is done on
1973		 * first use and after a channel change that requires
1974		 * re-calculation.
1975		 */
1976		if (ic->ic_countryie != NULL)
1977			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
1978		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1979		if (ic->ic_countryie == NULL)
1980			return frm;
1981		ic->ic_countryie_chan = ic->ic_bsschan;
1982	}
1983	return add_appie(frm, ic->ic_countryie);
1984}
1985
1986uint8_t *
1987ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1988{
1989	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1990		return (add_ie(frm, vap->iv_wpa_ie));
1991	else {
1992		/* XXX else complain? */
1993		return (frm);
1994	}
1995}
1996
1997uint8_t *
1998ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
1999{
2000	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2001		return (add_ie(frm, vap->iv_rsn_ie));
2002	else {
2003		/* XXX else complain? */
2004		return (frm);
2005	}
2006}
2007
2008uint8_t *
2009ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2010{
2011	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2012		*frm++ = IEEE80211_ELEMID_QOS;
2013		*frm++ = 1;
2014		*frm++ = 0;
2015	}
2016
2017	return (frm);
2018}
2019
2020/*
2021 * Send a probe request frame with the specified ssid
2022 * and any optional information element data.
2023 */
2024int
2025ieee80211_send_probereq(struct ieee80211_node *ni,
2026	const uint8_t sa[IEEE80211_ADDR_LEN],
2027	const uint8_t da[IEEE80211_ADDR_LEN],
2028	const uint8_t bssid[IEEE80211_ADDR_LEN],
2029	const uint8_t *ssid, size_t ssidlen)
2030{
2031	struct ieee80211vap *vap = ni->ni_vap;
2032	struct ieee80211com *ic = ni->ni_ic;
2033	const struct ieee80211_txparam *tp;
2034	struct ieee80211_bpf_params params;
2035	struct ieee80211_frame *wh;
2036	const struct ieee80211_rateset *rs;
2037	struct mbuf *m;
2038	uint8_t *frm;
2039	int ret;
2040
2041	if (vap->iv_state == IEEE80211_S_CAC) {
2042		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2043		    "block %s frame in CAC state", "probe request");
2044		vap->iv_stats.is_tx_badstate++;
2045		return EIO;		/* XXX */
2046	}
2047
2048	/*
2049	 * Hold a reference on the node so it doesn't go away until after
2050	 * the xmit is complete all the way in the driver.  On error we
2051	 * will remove our reference.
2052	 */
2053	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2054		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2055		__func__, __LINE__,
2056		ni, ether_sprintf(ni->ni_macaddr),
2057		ieee80211_node_refcnt(ni)+1);
2058	ieee80211_ref_node(ni);
2059
2060	/*
2061	 * prreq frame format
2062	 *	[tlv] ssid
2063	 *	[tlv] supported rates
2064	 *	[tlv] RSN (optional)
2065	 *	[tlv] extended supported rates
2066	 *	[tlv] WPA (optional)
2067	 *	[tlv] user-specified ie's
2068	 */
2069	m = ieee80211_getmgtframe(&frm,
2070		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2071	       	 2 + IEEE80211_NWID_LEN
2072	       + 2 + IEEE80211_RATE_SIZE
2073	       + sizeof(struct ieee80211_ie_wpa)
2074	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2075	       + sizeof(struct ieee80211_ie_wpa)
2076	       + (vap->iv_appie_probereq != NULL ?
2077		   vap->iv_appie_probereq->ie_len : 0)
2078	);
2079	if (m == NULL) {
2080		vap->iv_stats.is_tx_nobuf++;
2081		ieee80211_free_node(ni);
2082		return ENOMEM;
2083	}
2084
2085	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2086	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2087	frm = ieee80211_add_rates(frm, rs);
2088	frm = ieee80211_add_rsn(frm, vap);
2089	frm = ieee80211_add_xrates(frm, rs);
2090	frm = ieee80211_add_wpa(frm, vap);
2091	if (vap->iv_appie_probereq != NULL)
2092		frm = add_appie(frm, vap->iv_appie_probereq);
2093	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2094
2095	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2096	    ("leading space %zd", M_LEADINGSPACE(m)));
2097	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2098	if (m == NULL) {
2099		/* NB: cannot happen */
2100		ieee80211_free_node(ni);
2101		return ENOMEM;
2102	}
2103
2104	IEEE80211_TX_LOCK(ic);
2105	wh = mtod(m, struct ieee80211_frame *);
2106	ieee80211_send_setup(ni, m,
2107	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2108	     IEEE80211_NONQOS_TID, sa, da, bssid);
2109	/* XXX power management? */
2110	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2111
2112	M_WME_SETAC(m, WME_AC_BE);
2113
2114	IEEE80211_NODE_STAT(ni, tx_probereq);
2115	IEEE80211_NODE_STAT(ni, tx_mgmt);
2116
2117	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2118	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2119	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2120	    ssidlen, ssid);
2121
2122	memset(&params, 0, sizeof(params));
2123	params.ibp_pri = M_WME_GETAC(m);
2124	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2125	params.ibp_rate0 = tp->mgmtrate;
2126	if (IEEE80211_IS_MULTICAST(da)) {
2127		params.ibp_flags |= IEEE80211_BPF_NOACK;
2128		params.ibp_try0 = 1;
2129	} else
2130		params.ibp_try0 = tp->maxretry;
2131	params.ibp_power = ni->ni_txpower;
2132	ret = ieee80211_raw_output(vap, ni, m, &params);
2133	IEEE80211_TX_UNLOCK(ic);
2134	return (ret);
2135}
2136
2137/*
2138 * Calculate capability information for mgt frames.
2139 */
2140uint16_t
2141ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2142{
2143	struct ieee80211com *ic = vap->iv_ic;
2144	uint16_t capinfo;
2145
2146	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2147
2148	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2149		capinfo = IEEE80211_CAPINFO_ESS;
2150	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2151		capinfo = IEEE80211_CAPINFO_IBSS;
2152	else
2153		capinfo = 0;
2154	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2155		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2156	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2157	    IEEE80211_IS_CHAN_2GHZ(chan))
2158		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2159	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2160		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2161	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2162		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2163	return capinfo;
2164}
2165
2166/*
2167 * Send a management frame.  The node is for the destination (or ic_bss
2168 * when in station mode).  Nodes other than ic_bss have their reference
2169 * count bumped to reflect our use for an indeterminant time.
2170 */
2171int
2172ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2173{
2174#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2175#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2176	struct ieee80211vap *vap = ni->ni_vap;
2177	struct ieee80211com *ic = ni->ni_ic;
2178	struct ieee80211_node *bss = vap->iv_bss;
2179	struct ieee80211_bpf_params params;
2180	struct mbuf *m;
2181	uint8_t *frm;
2182	uint16_t capinfo;
2183	int has_challenge, is_shared_key, ret, status;
2184
2185	KASSERT(ni != NULL, ("null node"));
2186
2187	/*
2188	 * Hold a reference on the node so it doesn't go away until after
2189	 * the xmit is complete all the way in the driver.  On error we
2190	 * will remove our reference.
2191	 */
2192	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2193		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2194		__func__, __LINE__,
2195		ni, ether_sprintf(ni->ni_macaddr),
2196		ieee80211_node_refcnt(ni)+1);
2197	ieee80211_ref_node(ni);
2198
2199	memset(&params, 0, sizeof(params));
2200	switch (type) {
2201
2202	case IEEE80211_FC0_SUBTYPE_AUTH:
2203		status = arg >> 16;
2204		arg &= 0xffff;
2205		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2206		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2207		    ni->ni_challenge != NULL);
2208
2209		/*
2210		 * Deduce whether we're doing open authentication or
2211		 * shared key authentication.  We do the latter if
2212		 * we're in the middle of a shared key authentication
2213		 * handshake or if we're initiating an authentication
2214		 * request and configured to use shared key.
2215		 */
2216		is_shared_key = has_challenge ||
2217		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2218		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2219		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2220
2221		m = ieee80211_getmgtframe(&frm,
2222			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2223			  3 * sizeof(uint16_t)
2224			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2225				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2226		);
2227		if (m == NULL)
2228			senderr(ENOMEM, is_tx_nobuf);
2229
2230		((uint16_t *)frm)[0] =
2231		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2232		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2233		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2234		((uint16_t *)frm)[2] = htole16(status);/* status */
2235
2236		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2237			((uint16_t *)frm)[3] =
2238			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2239			    IEEE80211_ELEMID_CHALLENGE);
2240			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2241			    IEEE80211_CHALLENGE_LEN);
2242			m->m_pkthdr.len = m->m_len =
2243				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2244			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2245				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2246				    "request encrypt frame (%s)", __func__);
2247				/* mark frame for encryption */
2248				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2249			}
2250		} else
2251			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2252
2253		/* XXX not right for shared key */
2254		if (status == IEEE80211_STATUS_SUCCESS)
2255			IEEE80211_NODE_STAT(ni, tx_auth);
2256		else
2257			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2258
2259		if (vap->iv_opmode == IEEE80211_M_STA)
2260			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2261				(void *) vap->iv_state);
2262		break;
2263
2264	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2265		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2266		    "send station deauthenticate (reason %d)", arg);
2267		m = ieee80211_getmgtframe(&frm,
2268			ic->ic_headroom + sizeof(struct ieee80211_frame),
2269			sizeof(uint16_t));
2270		if (m == NULL)
2271			senderr(ENOMEM, is_tx_nobuf);
2272		*(uint16_t *)frm = htole16(arg);	/* reason */
2273		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2274
2275		IEEE80211_NODE_STAT(ni, tx_deauth);
2276		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2277
2278		ieee80211_node_unauthorize(ni);		/* port closed */
2279		break;
2280
2281	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2282	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2283		/*
2284		 * asreq frame format
2285		 *	[2] capability information
2286		 *	[2] listen interval
2287		 *	[6*] current AP address (reassoc only)
2288		 *	[tlv] ssid
2289		 *	[tlv] supported rates
2290		 *	[tlv] extended supported rates
2291		 *	[4] power capability (optional)
2292		 *	[28] supported channels (optional)
2293		 *	[tlv] HT capabilities
2294		 *	[tlv] WME (optional)
2295		 *	[tlv] Vendor OUI HT capabilities (optional)
2296		 *	[tlv] Atheros capabilities (if negotiated)
2297		 *	[tlv] AppIE's (optional)
2298		 */
2299		m = ieee80211_getmgtframe(&frm,
2300			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2301			 sizeof(uint16_t)
2302		       + sizeof(uint16_t)
2303		       + IEEE80211_ADDR_LEN
2304		       + 2 + IEEE80211_NWID_LEN
2305		       + 2 + IEEE80211_RATE_SIZE
2306		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2307		       + 4
2308		       + 2 + 26
2309		       + sizeof(struct ieee80211_wme_info)
2310		       + sizeof(struct ieee80211_ie_htcap)
2311		       + 4 + sizeof(struct ieee80211_ie_htcap)
2312#ifdef IEEE80211_SUPPORT_SUPERG
2313		       + sizeof(struct ieee80211_ath_ie)
2314#endif
2315		       + (vap->iv_appie_wpa != NULL ?
2316				vap->iv_appie_wpa->ie_len : 0)
2317		       + (vap->iv_appie_assocreq != NULL ?
2318				vap->iv_appie_assocreq->ie_len : 0)
2319		);
2320		if (m == NULL)
2321			senderr(ENOMEM, is_tx_nobuf);
2322
2323		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2324		    ("wrong mode %u", vap->iv_opmode));
2325		capinfo = IEEE80211_CAPINFO_ESS;
2326		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2327			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2328		/*
2329		 * NB: Some 11a AP's reject the request when
2330		 *     short premable is set.
2331		 */
2332		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2333		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2334			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2335		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2336		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2337			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2338		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2339		    (vap->iv_flags & IEEE80211_F_DOTH))
2340			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2341		*(uint16_t *)frm = htole16(capinfo);
2342		frm += 2;
2343
2344		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2345		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2346						    bss->ni_intval));
2347		frm += 2;
2348
2349		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2350			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2351			frm += IEEE80211_ADDR_LEN;
2352		}
2353
2354		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2355		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2356		frm = ieee80211_add_rsn(frm, vap);
2357		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2358		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2359			frm = ieee80211_add_powercapability(frm,
2360			    ic->ic_curchan);
2361			frm = ieee80211_add_supportedchannels(frm, ic);
2362		}
2363
2364		/*
2365		 * Check the channel - we may be using an 11n NIC with an
2366		 * 11n capable station, but we're configured to be an 11b
2367		 * channel.
2368		 */
2369		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2370		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2371		    ni->ni_ies.htcap_ie != NULL &&
2372		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2373			frm = ieee80211_add_htcap(frm, ni);
2374		}
2375		frm = ieee80211_add_wpa(frm, vap);
2376		if ((ic->ic_flags & IEEE80211_F_WME) &&
2377		    ni->ni_ies.wme_ie != NULL)
2378			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2379
2380		/*
2381		 * Same deal - only send HT info if we're on an 11n
2382		 * capable channel.
2383		 */
2384		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2385		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2386		    ni->ni_ies.htcap_ie != NULL &&
2387		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2388			frm = ieee80211_add_htcap_vendor(frm, ni);
2389		}
2390#ifdef IEEE80211_SUPPORT_SUPERG
2391		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2392			frm = ieee80211_add_ath(frm,
2393				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2394				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2395				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2396				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2397		}
2398#endif /* IEEE80211_SUPPORT_SUPERG */
2399		if (vap->iv_appie_assocreq != NULL)
2400			frm = add_appie(frm, vap->iv_appie_assocreq);
2401		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2402
2403		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2404			(void *) vap->iv_state);
2405		break;
2406
2407	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2408	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2409		/*
2410		 * asresp frame format
2411		 *	[2] capability information
2412		 *	[2] status
2413		 *	[2] association ID
2414		 *	[tlv] supported rates
2415		 *	[tlv] extended supported rates
2416		 *	[tlv] HT capabilities (standard, if STA enabled)
2417		 *	[tlv] HT information (standard, if STA enabled)
2418		 *	[tlv] WME (if configured and STA enabled)
2419		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2420		 *	[tlv] HT information (vendor OUI, if STA enabled)
2421		 *	[tlv] Atheros capabilities (if STA enabled)
2422		 *	[tlv] AppIE's (optional)
2423		 */
2424		m = ieee80211_getmgtframe(&frm,
2425			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2426			 sizeof(uint16_t)
2427		       + sizeof(uint16_t)
2428		       + sizeof(uint16_t)
2429		       + 2 + IEEE80211_RATE_SIZE
2430		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2431		       + sizeof(struct ieee80211_ie_htcap) + 4
2432		       + sizeof(struct ieee80211_ie_htinfo) + 4
2433		       + sizeof(struct ieee80211_wme_param)
2434#ifdef IEEE80211_SUPPORT_SUPERG
2435		       + sizeof(struct ieee80211_ath_ie)
2436#endif
2437		       + (vap->iv_appie_assocresp != NULL ?
2438				vap->iv_appie_assocresp->ie_len : 0)
2439		);
2440		if (m == NULL)
2441			senderr(ENOMEM, is_tx_nobuf);
2442
2443		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2444		*(uint16_t *)frm = htole16(capinfo);
2445		frm += 2;
2446
2447		*(uint16_t *)frm = htole16(arg);	/* status */
2448		frm += 2;
2449
2450		if (arg == IEEE80211_STATUS_SUCCESS) {
2451			*(uint16_t *)frm = htole16(ni->ni_associd);
2452			IEEE80211_NODE_STAT(ni, tx_assoc);
2453		} else
2454			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2455		frm += 2;
2456
2457		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2458		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2459		/* NB: respond according to what we received */
2460		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2461			frm = ieee80211_add_htcap(frm, ni);
2462			frm = ieee80211_add_htinfo(frm, ni);
2463		}
2464		if ((vap->iv_flags & IEEE80211_F_WME) &&
2465		    ni->ni_ies.wme_ie != NULL)
2466			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2467		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2468			frm = ieee80211_add_htcap_vendor(frm, ni);
2469			frm = ieee80211_add_htinfo_vendor(frm, ni);
2470		}
2471#ifdef IEEE80211_SUPPORT_SUPERG
2472		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2473			frm = ieee80211_add_ath(frm,
2474				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2475				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2476				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2477				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2478#endif /* IEEE80211_SUPPORT_SUPERG */
2479		if (vap->iv_appie_assocresp != NULL)
2480			frm = add_appie(frm, vap->iv_appie_assocresp);
2481		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2482		break;
2483
2484	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2485		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2486		    "send station disassociate (reason %d)", arg);
2487		m = ieee80211_getmgtframe(&frm,
2488			ic->ic_headroom + sizeof(struct ieee80211_frame),
2489			sizeof(uint16_t));
2490		if (m == NULL)
2491			senderr(ENOMEM, is_tx_nobuf);
2492		*(uint16_t *)frm = htole16(arg);	/* reason */
2493		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2494
2495		IEEE80211_NODE_STAT(ni, tx_disassoc);
2496		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2497		break;
2498
2499	default:
2500		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2501		    "invalid mgmt frame type %u", type);
2502		senderr(EINVAL, is_tx_unknownmgt);
2503		/* NOTREACHED */
2504	}
2505
2506	/* NB: force non-ProbeResp frames to the highest queue */
2507	params.ibp_pri = WME_AC_VO;
2508	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2509	/* NB: we know all frames are unicast */
2510	params.ibp_try0 = bss->ni_txparms->maxretry;
2511	params.ibp_power = bss->ni_txpower;
2512	return ieee80211_mgmt_output(ni, m, type, &params);
2513bad:
2514	ieee80211_free_node(ni);
2515	return ret;
2516#undef senderr
2517#undef HTFLAGS
2518}
2519
2520/*
2521 * Return an mbuf with a probe response frame in it.
2522 * Space is left to prepend and 802.11 header at the
2523 * front but it's left to the caller to fill in.
2524 */
2525struct mbuf *
2526ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2527{
2528	struct ieee80211vap *vap = bss->ni_vap;
2529	struct ieee80211com *ic = bss->ni_ic;
2530	const struct ieee80211_rateset *rs;
2531	struct mbuf *m;
2532	uint16_t capinfo;
2533	uint8_t *frm;
2534
2535	/*
2536	 * probe response frame format
2537	 *	[8] time stamp
2538	 *	[2] beacon interval
2539	 *	[2] cabability information
2540	 *	[tlv] ssid
2541	 *	[tlv] supported rates
2542	 *	[tlv] parameter set (FH/DS)
2543	 *	[tlv] parameter set (IBSS)
2544	 *	[tlv] country (optional)
2545	 *	[3] power control (optional)
2546	 *	[5] channel switch announcement (CSA) (optional)
2547	 *	[tlv] extended rate phy (ERP)
2548	 *	[tlv] extended supported rates
2549	 *	[tlv] RSN (optional)
2550	 *	[tlv] HT capabilities
2551	 *	[tlv] HT information
2552	 *	[tlv] WPA (optional)
2553	 *	[tlv] WME (optional)
2554	 *	[tlv] Vendor OUI HT capabilities (optional)
2555	 *	[tlv] Vendor OUI HT information (optional)
2556	 *	[tlv] Atheros capabilities
2557	 *	[tlv] AppIE's (optional)
2558	 *	[tlv] Mesh ID (MBSS)
2559	 *	[tlv] Mesh Conf (MBSS)
2560	 */
2561	m = ieee80211_getmgtframe(&frm,
2562		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2563		 8
2564	       + sizeof(uint16_t)
2565	       + sizeof(uint16_t)
2566	       + 2 + IEEE80211_NWID_LEN
2567	       + 2 + IEEE80211_RATE_SIZE
2568	       + 7	/* max(7,3) */
2569	       + IEEE80211_COUNTRY_MAX_SIZE
2570	       + 3
2571	       + sizeof(struct ieee80211_csa_ie)
2572	       + sizeof(struct ieee80211_quiet_ie)
2573	       + 3
2574	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2575	       + sizeof(struct ieee80211_ie_wpa)
2576	       + sizeof(struct ieee80211_ie_htcap)
2577	       + sizeof(struct ieee80211_ie_htinfo)
2578	       + sizeof(struct ieee80211_ie_wpa)
2579	       + sizeof(struct ieee80211_wme_param)
2580	       + 4 + sizeof(struct ieee80211_ie_htcap)
2581	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2582#ifdef IEEE80211_SUPPORT_SUPERG
2583	       + sizeof(struct ieee80211_ath_ie)
2584#endif
2585#ifdef IEEE80211_SUPPORT_MESH
2586	       + 2 + IEEE80211_MESHID_LEN
2587	       + sizeof(struct ieee80211_meshconf_ie)
2588#endif
2589	       + (vap->iv_appie_proberesp != NULL ?
2590			vap->iv_appie_proberesp->ie_len : 0)
2591	);
2592	if (m == NULL) {
2593		vap->iv_stats.is_tx_nobuf++;
2594		return NULL;
2595	}
2596
2597	memset(frm, 0, 8);	/* timestamp should be filled later */
2598	frm += 8;
2599	*(uint16_t *)frm = htole16(bss->ni_intval);
2600	frm += 2;
2601	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2602	*(uint16_t *)frm = htole16(capinfo);
2603	frm += 2;
2604
2605	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2606	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2607	frm = ieee80211_add_rates(frm, rs);
2608
2609	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2610		*frm++ = IEEE80211_ELEMID_FHPARMS;
2611		*frm++ = 5;
2612		*frm++ = bss->ni_fhdwell & 0x00ff;
2613		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2614		*frm++ = IEEE80211_FH_CHANSET(
2615		    ieee80211_chan2ieee(ic, bss->ni_chan));
2616		*frm++ = IEEE80211_FH_CHANPAT(
2617		    ieee80211_chan2ieee(ic, bss->ni_chan));
2618		*frm++ = bss->ni_fhindex;
2619	} else {
2620		*frm++ = IEEE80211_ELEMID_DSPARMS;
2621		*frm++ = 1;
2622		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2623	}
2624
2625	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2626		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2627		*frm++ = 2;
2628		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2629	}
2630	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2631	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2632		frm = ieee80211_add_countryie(frm, ic);
2633	if (vap->iv_flags & IEEE80211_F_DOTH) {
2634		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2635			frm = ieee80211_add_powerconstraint(frm, vap);
2636		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2637			frm = ieee80211_add_csa(frm, vap);
2638	}
2639	if (vap->iv_flags & IEEE80211_F_DOTH) {
2640		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2641		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2642			if (vap->iv_quiet)
2643				frm = ieee80211_add_quiet(frm, vap);
2644		}
2645	}
2646	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2647		frm = ieee80211_add_erp(frm, ic);
2648	frm = ieee80211_add_xrates(frm, rs);
2649	frm = ieee80211_add_rsn(frm, vap);
2650	/*
2651	 * NB: legacy 11b clients do not get certain ie's.
2652	 *     The caller identifies such clients by passing
2653	 *     a token in legacy to us.  Could expand this to be
2654	 *     any legacy client for stuff like HT ie's.
2655	 */
2656	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2657	    legacy != IEEE80211_SEND_LEGACY_11B) {
2658		frm = ieee80211_add_htcap(frm, bss);
2659		frm = ieee80211_add_htinfo(frm, bss);
2660	}
2661	frm = ieee80211_add_wpa(frm, vap);
2662	if (vap->iv_flags & IEEE80211_F_WME)
2663		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2664	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2665	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2666	    legacy != IEEE80211_SEND_LEGACY_11B) {
2667		frm = ieee80211_add_htcap_vendor(frm, bss);
2668		frm = ieee80211_add_htinfo_vendor(frm, bss);
2669	}
2670#ifdef IEEE80211_SUPPORT_SUPERG
2671	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2672	    legacy != IEEE80211_SEND_LEGACY_11B)
2673		frm = ieee80211_add_athcaps(frm, bss);
2674#endif
2675	if (vap->iv_appie_proberesp != NULL)
2676		frm = add_appie(frm, vap->iv_appie_proberesp);
2677#ifdef IEEE80211_SUPPORT_MESH
2678	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2679		frm = ieee80211_add_meshid(frm, vap);
2680		frm = ieee80211_add_meshconf(frm, vap);
2681	}
2682#endif
2683	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2684
2685	return m;
2686}
2687
2688/*
2689 * Send a probe response frame to the specified mac address.
2690 * This does not go through the normal mgt frame api so we
2691 * can specify the destination address and re-use the bss node
2692 * for the sta reference.
2693 */
2694int
2695ieee80211_send_proberesp(struct ieee80211vap *vap,
2696	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2697{
2698	struct ieee80211_node *bss = vap->iv_bss;
2699	struct ieee80211com *ic = vap->iv_ic;
2700	struct ieee80211_frame *wh;
2701	struct mbuf *m;
2702	int ret;
2703
2704	if (vap->iv_state == IEEE80211_S_CAC) {
2705		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2706		    "block %s frame in CAC state", "probe response");
2707		vap->iv_stats.is_tx_badstate++;
2708		return EIO;		/* XXX */
2709	}
2710
2711	/*
2712	 * Hold a reference on the node so it doesn't go away until after
2713	 * the xmit is complete all the way in the driver.  On error we
2714	 * will remove our reference.
2715	 */
2716	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2717	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2718	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2719	    ieee80211_node_refcnt(bss)+1);
2720	ieee80211_ref_node(bss);
2721
2722	m = ieee80211_alloc_proberesp(bss, legacy);
2723	if (m == NULL) {
2724		ieee80211_free_node(bss);
2725		return ENOMEM;
2726	}
2727
2728	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2729	KASSERT(m != NULL, ("no room for header"));
2730
2731	IEEE80211_TX_LOCK(ic);
2732	wh = mtod(m, struct ieee80211_frame *);
2733	ieee80211_send_setup(bss, m,
2734	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2735	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2736	/* XXX power management? */
2737	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2738
2739	M_WME_SETAC(m, WME_AC_BE);
2740
2741	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2742	    "send probe resp on channel %u to %s%s\n",
2743	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2744	    legacy ? " <legacy>" : "");
2745	IEEE80211_NODE_STAT(bss, tx_mgmt);
2746
2747	ret = ieee80211_raw_output(vap, bss, m, NULL);
2748	IEEE80211_TX_UNLOCK(ic);
2749	return (ret);
2750}
2751
2752/*
2753 * Allocate and build a RTS (Request To Send) control frame.
2754 */
2755struct mbuf *
2756ieee80211_alloc_rts(struct ieee80211com *ic,
2757	const uint8_t ra[IEEE80211_ADDR_LEN],
2758	const uint8_t ta[IEEE80211_ADDR_LEN],
2759	uint16_t dur)
2760{
2761	struct ieee80211_frame_rts *rts;
2762	struct mbuf *m;
2763
2764	/* XXX honor ic_headroom */
2765	m = m_gethdr(M_NOWAIT, MT_DATA);
2766	if (m != NULL) {
2767		rts = mtod(m, struct ieee80211_frame_rts *);
2768		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2769			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2770		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2771		*(u_int16_t *)rts->i_dur = htole16(dur);
2772		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2773		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2774
2775		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2776	}
2777	return m;
2778}
2779
2780/*
2781 * Allocate and build a CTS (Clear To Send) control frame.
2782 */
2783struct mbuf *
2784ieee80211_alloc_cts(struct ieee80211com *ic,
2785	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2786{
2787	struct ieee80211_frame_cts *cts;
2788	struct mbuf *m;
2789
2790	/* XXX honor ic_headroom */
2791	m = m_gethdr(M_NOWAIT, MT_DATA);
2792	if (m != NULL) {
2793		cts = mtod(m, struct ieee80211_frame_cts *);
2794		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2795			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2796		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2797		*(u_int16_t *)cts->i_dur = htole16(dur);
2798		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2799
2800		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2801	}
2802	return m;
2803}
2804
2805static void
2806ieee80211_tx_mgt_timeout(void *arg)
2807{
2808	struct ieee80211vap *vap = arg;
2809
2810	IEEE80211_LOCK(vap->iv_ic);
2811	if (vap->iv_state != IEEE80211_S_INIT &&
2812	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2813		/*
2814		 * NB: it's safe to specify a timeout as the reason here;
2815		 *     it'll only be used in the right state.
2816		 */
2817		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2818			IEEE80211_SCAN_FAIL_TIMEOUT);
2819	}
2820	IEEE80211_UNLOCK(vap->iv_ic);
2821}
2822
2823/*
2824 * This is the callback set on net80211-sourced transmitted
2825 * authentication request frames.
2826 *
2827 * This does a couple of things:
2828 *
2829 * + If the frame transmitted was a success, it schedules a future
2830 *   event which will transition the interface to scan.
2831 *   If a state transition _then_ occurs before that event occurs,
2832 *   said state transition will cancel this callout.
2833 *
2834 * + If the frame transmit was a failure, it immediately schedules
2835 *   the transition back to scan.
2836 */
2837static void
2838ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2839{
2840	struct ieee80211vap *vap = ni->ni_vap;
2841	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2842
2843	/*
2844	 * Frame transmit completed; arrange timer callback.  If
2845	 * transmit was successfuly we wait for response.  Otherwise
2846	 * we arrange an immediate callback instead of doing the
2847	 * callback directly since we don't know what state the driver
2848	 * is in (e.g. what locks it is holding).  This work should
2849	 * not be too time-critical and not happen too often so the
2850	 * added overhead is acceptable.
2851	 *
2852	 * XXX what happens if !acked but response shows up before callback?
2853	 */
2854	if (vap->iv_state == ostate) {
2855		callout_reset(&vap->iv_mgtsend,
2856			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2857			ieee80211_tx_mgt_timeout, vap);
2858	}
2859}
2860
2861static void
2862ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2863	struct ieee80211_node *ni)
2864{
2865	struct ieee80211vap *vap = ni->ni_vap;
2866	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2867	struct ieee80211com *ic = ni->ni_ic;
2868	struct ieee80211_rateset *rs = &ni->ni_rates;
2869	uint16_t capinfo;
2870
2871	/*
2872	 * beacon frame format
2873	 *	[8] time stamp
2874	 *	[2] beacon interval
2875	 *	[2] cabability information
2876	 *	[tlv] ssid
2877	 *	[tlv] supported rates
2878	 *	[3] parameter set (DS)
2879	 *	[8] CF parameter set (optional)
2880	 *	[tlv] parameter set (IBSS/TIM)
2881	 *	[tlv] country (optional)
2882	 *	[3] power control (optional)
2883	 *	[5] channel switch announcement (CSA) (optional)
2884	 *	[tlv] extended rate phy (ERP)
2885	 *	[tlv] extended supported rates
2886	 *	[tlv] RSN parameters
2887	 *	[tlv] HT capabilities
2888	 *	[tlv] HT information
2889	 * XXX Vendor-specific OIDs (e.g. Atheros)
2890	 *	[tlv] WPA parameters
2891	 *	[tlv] WME parameters
2892	 *	[tlv] Vendor OUI HT capabilities (optional)
2893	 *	[tlv] Vendor OUI HT information (optional)
2894	 *	[tlv] Atheros capabilities (optional)
2895	 *	[tlv] TDMA parameters (optional)
2896	 *	[tlv] Mesh ID (MBSS)
2897	 *	[tlv] Mesh Conf (MBSS)
2898	 *	[tlv] application data (optional)
2899	 */
2900
2901	memset(bo, 0, sizeof(*bo));
2902
2903	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2904	frm += 8;
2905	*(uint16_t *)frm = htole16(ni->ni_intval);
2906	frm += 2;
2907	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2908	bo->bo_caps = (uint16_t *)frm;
2909	*(uint16_t *)frm = htole16(capinfo);
2910	frm += 2;
2911	*frm++ = IEEE80211_ELEMID_SSID;
2912	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2913		*frm++ = ni->ni_esslen;
2914		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2915		frm += ni->ni_esslen;
2916	} else
2917		*frm++ = 0;
2918	frm = ieee80211_add_rates(frm, rs);
2919	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2920		*frm++ = IEEE80211_ELEMID_DSPARMS;
2921		*frm++ = 1;
2922		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2923	}
2924	if (ic->ic_flags & IEEE80211_F_PCF) {
2925		bo->bo_cfp = frm;
2926		frm = ieee80211_add_cfparms(frm, ic);
2927	}
2928	bo->bo_tim = frm;
2929	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2930		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2931		*frm++ = 2;
2932		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2933		bo->bo_tim_len = 0;
2934	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2935	    vap->iv_opmode == IEEE80211_M_MBSS) {
2936		/* TIM IE is the same for Mesh and Hostap */
2937		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2938
2939		tie->tim_ie = IEEE80211_ELEMID_TIM;
2940		tie->tim_len = 4;	/* length */
2941		tie->tim_count = 0;	/* DTIM count */
2942		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2943		tie->tim_bitctl = 0;	/* bitmap control */
2944		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2945		frm += sizeof(struct ieee80211_tim_ie);
2946		bo->bo_tim_len = 1;
2947	}
2948	bo->bo_tim_trailer = frm;
2949	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2950	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2951		frm = ieee80211_add_countryie(frm, ic);
2952	if (vap->iv_flags & IEEE80211_F_DOTH) {
2953		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2954			frm = ieee80211_add_powerconstraint(frm, vap);
2955		bo->bo_csa = frm;
2956		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2957			frm = ieee80211_add_csa(frm, vap);
2958	} else
2959		bo->bo_csa = frm;
2960
2961	if (vap->iv_flags & IEEE80211_F_DOTH) {
2962		bo->bo_quiet = frm;
2963		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2964		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2965			if (vap->iv_quiet)
2966				frm = ieee80211_add_quiet(frm,vap);
2967		}
2968	} else
2969		bo->bo_quiet = frm;
2970
2971	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2972		bo->bo_erp = frm;
2973		frm = ieee80211_add_erp(frm, ic);
2974	}
2975	frm = ieee80211_add_xrates(frm, rs);
2976	frm = ieee80211_add_rsn(frm, vap);
2977	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2978		frm = ieee80211_add_htcap(frm, ni);
2979		bo->bo_htinfo = frm;
2980		frm = ieee80211_add_htinfo(frm, ni);
2981	}
2982	frm = ieee80211_add_wpa(frm, vap);
2983	if (vap->iv_flags & IEEE80211_F_WME) {
2984		bo->bo_wme = frm;
2985		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2986	}
2987	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2988	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2989		frm = ieee80211_add_htcap_vendor(frm, ni);
2990		frm = ieee80211_add_htinfo_vendor(frm, ni);
2991	}
2992#ifdef IEEE80211_SUPPORT_SUPERG
2993	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2994		bo->bo_ath = frm;
2995		frm = ieee80211_add_athcaps(frm, ni);
2996	}
2997#endif
2998#ifdef IEEE80211_SUPPORT_TDMA
2999	if (vap->iv_caps & IEEE80211_C_TDMA) {
3000		bo->bo_tdma = frm;
3001		frm = ieee80211_add_tdma(frm, vap);
3002	}
3003#endif
3004	if (vap->iv_appie_beacon != NULL) {
3005		bo->bo_appie = frm;
3006		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3007		frm = add_appie(frm, vap->iv_appie_beacon);
3008	}
3009#ifdef IEEE80211_SUPPORT_MESH
3010	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3011		frm = ieee80211_add_meshid(frm, vap);
3012		bo->bo_meshconf = frm;
3013		frm = ieee80211_add_meshconf(frm, vap);
3014	}
3015#endif
3016	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3017	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3018	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3019}
3020
3021/*
3022 * Allocate a beacon frame and fillin the appropriate bits.
3023 */
3024struct mbuf *
3025ieee80211_beacon_alloc(struct ieee80211_node *ni)
3026{
3027	struct ieee80211vap *vap = ni->ni_vap;
3028	struct ieee80211com *ic = ni->ni_ic;
3029	struct ifnet *ifp = vap->iv_ifp;
3030	struct ieee80211_frame *wh;
3031	struct mbuf *m;
3032	int pktlen;
3033	uint8_t *frm;
3034
3035	/*
3036	 * beacon frame format
3037	 *	[8] time stamp
3038	 *	[2] beacon interval
3039	 *	[2] cabability information
3040	 *	[tlv] ssid
3041	 *	[tlv] supported rates
3042	 *	[3] parameter set (DS)
3043	 *	[8] CF parameter set (optional)
3044	 *	[tlv] parameter set (IBSS/TIM)
3045	 *	[tlv] country (optional)
3046	 *	[3] power control (optional)
3047	 *	[5] channel switch announcement (CSA) (optional)
3048	 *	[tlv] extended rate phy (ERP)
3049	 *	[tlv] extended supported rates
3050	 *	[tlv] RSN parameters
3051	 *	[tlv] HT capabilities
3052	 *	[tlv] HT information
3053	 *	[tlv] Vendor OUI HT capabilities (optional)
3054	 *	[tlv] Vendor OUI HT information (optional)
3055	 * XXX Vendor-specific OIDs (e.g. Atheros)
3056	 *	[tlv] WPA parameters
3057	 *	[tlv] WME parameters
3058	 *	[tlv] TDMA parameters (optional)
3059	 *	[tlv] Mesh ID (MBSS)
3060	 *	[tlv] Mesh Conf (MBSS)
3061	 *	[tlv] application data (optional)
3062	 * NB: we allocate the max space required for the TIM bitmap.
3063	 * XXX how big is this?
3064	 */
3065	pktlen =   8					/* time stamp */
3066		 + sizeof(uint16_t)			/* beacon interval */
3067		 + sizeof(uint16_t)			/* capabilities */
3068		 + 2 + ni->ni_esslen			/* ssid */
3069	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3070	         + 2 + 1				/* DS parameters */
3071		 + 2 + 6				/* CF parameters */
3072		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3073		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3074		 + 2 + 1				/* power control */
3075		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3076		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3077		 + 2 + 1				/* ERP */
3078	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3079		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3080			2*sizeof(struct ieee80211_ie_wpa) : 0)
3081		 /* XXX conditional? */
3082		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3083		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3084		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3085			sizeof(struct ieee80211_wme_param) : 0)
3086#ifdef IEEE80211_SUPPORT_SUPERG
3087		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3088#endif
3089#ifdef IEEE80211_SUPPORT_TDMA
3090		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3091			sizeof(struct ieee80211_tdma_param) : 0)
3092#endif
3093#ifdef IEEE80211_SUPPORT_MESH
3094		 + 2 + ni->ni_meshidlen
3095		 + sizeof(struct ieee80211_meshconf_ie)
3096#endif
3097		 + IEEE80211_MAX_APPIE
3098		 ;
3099	m = ieee80211_getmgtframe(&frm,
3100		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3101	if (m == NULL) {
3102		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3103			"%s: cannot get buf; size %u\n", __func__, pktlen);
3104		vap->iv_stats.is_tx_nobuf++;
3105		return NULL;
3106	}
3107	ieee80211_beacon_construct(m, frm, ni);
3108
3109	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3110	KASSERT(m != NULL, ("no space for 802.11 header?"));
3111	wh = mtod(m, struct ieee80211_frame *);
3112	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3113	    IEEE80211_FC0_SUBTYPE_BEACON;
3114	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3115	*(uint16_t *)wh->i_dur = 0;
3116	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3117	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3118	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3119	*(uint16_t *)wh->i_seq = 0;
3120
3121	return m;
3122}
3123
3124/*
3125 * Update the dynamic parts of a beacon frame based on the current state.
3126 */
3127int
3128ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3129{
3130	struct ieee80211vap *vap = ni->ni_vap;
3131	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3132	struct ieee80211com *ic = ni->ni_ic;
3133	int len_changed = 0;
3134	uint16_t capinfo;
3135	struct ieee80211_frame *wh;
3136	ieee80211_seq seqno;
3137
3138	IEEE80211_LOCK(ic);
3139	/*
3140	 * Handle 11h channel change when we've reached the count.
3141	 * We must recalculate the beacon frame contents to account
3142	 * for the new channel.  Note we do this only for the first
3143	 * vap that reaches this point; subsequent vaps just update
3144	 * their beacon state to reflect the recalculated channel.
3145	 */
3146	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3147	    vap->iv_csa_count == ic->ic_csa_count) {
3148		vap->iv_csa_count = 0;
3149		/*
3150		 * Effect channel change before reconstructing the beacon
3151		 * frame contents as many places reference ni_chan.
3152		 */
3153		if (ic->ic_csa_newchan != NULL)
3154			ieee80211_csa_completeswitch(ic);
3155		/*
3156		 * NB: ieee80211_beacon_construct clears all pending
3157		 * updates in bo_flags so we don't need to explicitly
3158		 * clear IEEE80211_BEACON_CSA.
3159		 */
3160		ieee80211_beacon_construct(m,
3161		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3162
3163		/* XXX do WME aggressive mode processing? */
3164		IEEE80211_UNLOCK(ic);
3165		return 1;		/* just assume length changed */
3166	}
3167
3168	wh = mtod(m, struct ieee80211_frame *);
3169	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3170	*(uint16_t *)&wh->i_seq[0] =
3171		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3172	M_SEQNO_SET(m, seqno);
3173
3174	/* XXX faster to recalculate entirely or just changes? */
3175	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3176	*bo->bo_caps = htole16(capinfo);
3177
3178	if (vap->iv_flags & IEEE80211_F_WME) {
3179		struct ieee80211_wme_state *wme = &ic->ic_wme;
3180
3181		/*
3182		 * Check for agressive mode change.  When there is
3183		 * significant high priority traffic in the BSS
3184		 * throttle back BE traffic by using conservative
3185		 * parameters.  Otherwise BE uses agressive params
3186		 * to optimize performance of legacy/non-QoS traffic.
3187		 */
3188		if (wme->wme_flags & WME_F_AGGRMODE) {
3189			if (wme->wme_hipri_traffic >
3190			    wme->wme_hipri_switch_thresh) {
3191				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3192				    "%s: traffic %u, disable aggressive mode\n",
3193				    __func__, wme->wme_hipri_traffic);
3194				wme->wme_flags &= ~WME_F_AGGRMODE;
3195				ieee80211_wme_updateparams_locked(vap);
3196				wme->wme_hipri_traffic =
3197					wme->wme_hipri_switch_hysteresis;
3198			} else
3199				wme->wme_hipri_traffic = 0;
3200		} else {
3201			if (wme->wme_hipri_traffic <=
3202			    wme->wme_hipri_switch_thresh) {
3203				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3204				    "%s: traffic %u, enable aggressive mode\n",
3205				    __func__, wme->wme_hipri_traffic);
3206				wme->wme_flags |= WME_F_AGGRMODE;
3207				ieee80211_wme_updateparams_locked(vap);
3208				wme->wme_hipri_traffic = 0;
3209			} else
3210				wme->wme_hipri_traffic =
3211					wme->wme_hipri_switch_hysteresis;
3212		}
3213		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3214			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3215			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3216		}
3217	}
3218
3219	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3220		ieee80211_ht_update_beacon(vap, bo);
3221		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3222	}
3223#ifdef IEEE80211_SUPPORT_TDMA
3224	if (vap->iv_caps & IEEE80211_C_TDMA) {
3225		/*
3226		 * NB: the beacon is potentially updated every TBTT.
3227		 */
3228		ieee80211_tdma_update_beacon(vap, bo);
3229	}
3230#endif
3231#ifdef IEEE80211_SUPPORT_MESH
3232	if (vap->iv_opmode == IEEE80211_M_MBSS)
3233		ieee80211_mesh_update_beacon(vap, bo);
3234#endif
3235
3236	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3237	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3238		struct ieee80211_tim_ie *tie =
3239			(struct ieee80211_tim_ie *) bo->bo_tim;
3240		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3241			u_int timlen, timoff, i;
3242			/*
3243			 * ATIM/DTIM needs updating.  If it fits in the
3244			 * current space allocated then just copy in the
3245			 * new bits.  Otherwise we need to move any trailing
3246			 * data to make room.  Note that we know there is
3247			 * contiguous space because ieee80211_beacon_allocate
3248			 * insures there is space in the mbuf to write a
3249			 * maximal-size virtual bitmap (based on iv_max_aid).
3250			 */
3251			/*
3252			 * Calculate the bitmap size and offset, copy any
3253			 * trailer out of the way, and then copy in the
3254			 * new bitmap and update the information element.
3255			 * Note that the tim bitmap must contain at least
3256			 * one byte and any offset must be even.
3257			 */
3258			if (vap->iv_ps_pending != 0) {
3259				timoff = 128;		/* impossibly large */
3260				for (i = 0; i < vap->iv_tim_len; i++)
3261					if (vap->iv_tim_bitmap[i]) {
3262						timoff = i &~ 1;
3263						break;
3264					}
3265				KASSERT(timoff != 128, ("tim bitmap empty!"));
3266				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3267					if (vap->iv_tim_bitmap[i])
3268						break;
3269				timlen = 1 + (i - timoff);
3270			} else {
3271				timoff = 0;
3272				timlen = 1;
3273			}
3274			if (timlen != bo->bo_tim_len) {
3275				/* copy up/down trailer */
3276				int adjust = tie->tim_bitmap+timlen
3277					   - bo->bo_tim_trailer;
3278				ovbcopy(bo->bo_tim_trailer,
3279				    bo->bo_tim_trailer+adjust,
3280				    bo->bo_tim_trailer_len);
3281				bo->bo_tim_trailer += adjust;
3282				bo->bo_erp += adjust;
3283				bo->bo_htinfo += adjust;
3284#ifdef IEEE80211_SUPPORT_SUPERG
3285				bo->bo_ath += adjust;
3286#endif
3287#ifdef IEEE80211_SUPPORT_TDMA
3288				bo->bo_tdma += adjust;
3289#endif
3290#ifdef IEEE80211_SUPPORT_MESH
3291				bo->bo_meshconf += adjust;
3292#endif
3293				bo->bo_appie += adjust;
3294				bo->bo_wme += adjust;
3295				bo->bo_csa += adjust;
3296				bo->bo_quiet += adjust;
3297				bo->bo_tim_len = timlen;
3298
3299				/* update information element */
3300				tie->tim_len = 3 + timlen;
3301				tie->tim_bitctl = timoff;
3302				len_changed = 1;
3303			}
3304			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3305				bo->bo_tim_len);
3306
3307			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3308
3309			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3310				"%s: TIM updated, pending %u, off %u, len %u\n",
3311				__func__, vap->iv_ps_pending, timoff, timlen);
3312		}
3313		/* count down DTIM period */
3314		if (tie->tim_count == 0)
3315			tie->tim_count = tie->tim_period - 1;
3316		else
3317			tie->tim_count--;
3318		/* update state for buffered multicast frames on DTIM */
3319		if (mcast && tie->tim_count == 0)
3320			tie->tim_bitctl |= 1;
3321		else
3322			tie->tim_bitctl &= ~1;
3323		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3324			struct ieee80211_csa_ie *csa =
3325			    (struct ieee80211_csa_ie *) bo->bo_csa;
3326
3327			/*
3328			 * Insert or update CSA ie.  If we're just starting
3329			 * to count down to the channel switch then we need
3330			 * to insert the CSA ie.  Otherwise we just need to
3331			 * drop the count.  The actual change happens above
3332			 * when the vap's count reaches the target count.
3333			 */
3334			if (vap->iv_csa_count == 0) {
3335				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3336				bo->bo_erp += sizeof(*csa);
3337				bo->bo_htinfo += sizeof(*csa);
3338				bo->bo_wme += sizeof(*csa);
3339#ifdef IEEE80211_SUPPORT_SUPERG
3340				bo->bo_ath += sizeof(*csa);
3341#endif
3342#ifdef IEEE80211_SUPPORT_TDMA
3343				bo->bo_tdma += sizeof(*csa);
3344#endif
3345#ifdef IEEE80211_SUPPORT_MESH
3346				bo->bo_meshconf += sizeof(*csa);
3347#endif
3348				bo->bo_appie += sizeof(*csa);
3349				bo->bo_csa_trailer_len += sizeof(*csa);
3350				bo->bo_quiet += sizeof(*csa);
3351				bo->bo_tim_trailer_len += sizeof(*csa);
3352				m->m_len += sizeof(*csa);
3353				m->m_pkthdr.len += sizeof(*csa);
3354
3355				ieee80211_add_csa(bo->bo_csa, vap);
3356			} else
3357				csa->csa_count--;
3358			vap->iv_csa_count++;
3359			/* NB: don't clear IEEE80211_BEACON_CSA */
3360		}
3361		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3362		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3363			if (vap->iv_quiet)
3364				ieee80211_add_quiet(bo->bo_quiet, vap);
3365		}
3366		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3367			/*
3368			 * ERP element needs updating.
3369			 */
3370			(void) ieee80211_add_erp(bo->bo_erp, ic);
3371			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3372		}
3373#ifdef IEEE80211_SUPPORT_SUPERG
3374		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3375			ieee80211_add_athcaps(bo->bo_ath, ni);
3376			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3377		}
3378#endif
3379	}
3380	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3381		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3382		int aielen;
3383		uint8_t *frm;
3384
3385		aielen = 0;
3386		if (aie != NULL)
3387			aielen += aie->ie_len;
3388		if (aielen != bo->bo_appie_len) {
3389			/* copy up/down trailer */
3390			int adjust = aielen - bo->bo_appie_len;
3391			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3392				bo->bo_tim_trailer_len);
3393			bo->bo_tim_trailer += adjust;
3394			bo->bo_appie += adjust;
3395			bo->bo_appie_len = aielen;
3396
3397			len_changed = 1;
3398		}
3399		frm = bo->bo_appie;
3400		if (aie != NULL)
3401			frm  = add_appie(frm, aie);
3402		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3403	}
3404	IEEE80211_UNLOCK(ic);
3405
3406	return len_changed;
3407}
3408
3409/*
3410 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3411 * tunnel encapsulation.  The frame is assumed to have an Ethernet
3412 * header at the front that must be stripped before prepending the
3413 * LLC followed by the Ethernet header passed in (with an Ethernet
3414 * type that specifies the payload size).
3415 */
3416struct mbuf *
3417ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3418	const struct ether_header *eh)
3419{
3420	struct llc *llc;
3421	uint16_t payload;
3422
3423	/* XXX optimize by combining m_adj+M_PREPEND */
3424	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3425	llc = mtod(m, struct llc *);
3426	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3427	llc->llc_control = LLC_UI;
3428	llc->llc_snap.org_code[0] = 0;
3429	llc->llc_snap.org_code[1] = 0;
3430	llc->llc_snap.org_code[2] = 0;
3431	llc->llc_snap.ether_type = eh->ether_type;
3432	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3433
3434	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3435	if (m == NULL) {		/* XXX cannot happen */
3436		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3437			"%s: no space for ether_header\n", __func__);
3438		vap->iv_stats.is_tx_nobuf++;
3439		return NULL;
3440	}
3441	ETHER_HEADER_COPY(mtod(m, void *), eh);
3442	mtod(m, struct ether_header *)->ether_type = htons(payload);
3443	return m;
3444}
3445
3446/*
3447 * Complete an mbuf transmission.
3448 *
3449 * For now, this simply processes a completed frame after the
3450 * driver has completed it's transmission and/or retransmission.
3451 * It assumes the frame is an 802.11 encapsulated frame.
3452 *
3453 * Later on it will grow to become the exit path for a given frame
3454 * from the driver and, depending upon how it's been encapsulated
3455 * and already transmitted, it may end up doing A-MPDU retransmission,
3456 * power save requeuing, etc.
3457 *
3458 * In order for the above to work, the driver entry point to this
3459 * must not hold any driver locks.  Thus, the driver needs to delay
3460 * any actual mbuf completion until it can release said locks.
3461 *
3462 * This frees the mbuf and if the mbuf has a node reference,
3463 * the node reference will be freed.
3464 */
3465void
3466ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3467{
3468
3469	if (ni != NULL) {
3470		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3471
3472		if (status == 0) {
3473			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3474			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3475			if (m->m_flags & M_MCAST)
3476				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3477		} else
3478			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3479		if (m->m_flags & M_TXCB)
3480			ieee80211_process_callback(ni, m, status);
3481		ieee80211_free_node(ni);
3482	}
3483	m_freem(m);
3484}
3485