ieee80211_output.c revision 286437
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 286437 2015-08-08 01:10:17Z adrian $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/endian.h>
39
40#include <sys/socket.h>
41
42#include <net/bpf.h>
43#include <net/ethernet.h>
44#include <net/if.h>
45#include <net/if_var.h>
46#include <net/if_llc.h>
47#include <net/if_media.h>
48#include <net/if_vlan_var.h>
49
50#include <net80211/ieee80211_var.h>
51#include <net80211/ieee80211_regdomain.h>
52#ifdef IEEE80211_SUPPORT_SUPERG
53#include <net80211/ieee80211_superg.h>
54#endif
55#ifdef IEEE80211_SUPPORT_TDMA
56#include <net80211/ieee80211_tdma.h>
57#endif
58#include <net80211/ieee80211_wds.h>
59#include <net80211/ieee80211_mesh.h>
60
61#if defined(INET) || defined(INET6)
62#include <netinet/in.h>
63#endif
64
65#ifdef INET
66#include <netinet/if_ether.h>
67#include <netinet/in_systm.h>
68#include <netinet/ip.h>
69#endif
70#ifdef INET6
71#include <netinet/ip6.h>
72#endif
73
74#include <security/mac/mac_framework.h>
75
76#define	ETHER_HEADER_COPY(dst, src) \
77	memcpy(dst, src, sizeof(struct ether_header))
78
79/* unalligned little endian access */
80#define LE_WRITE_2(p, v) do {				\
81	((uint8_t *)(p))[0] = (v) & 0xff;		\
82	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83} while (0)
84#define LE_WRITE_4(p, v) do {				\
85	((uint8_t *)(p))[0] = (v) & 0xff;		\
86	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
87	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
88	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
89} while (0)
90
91static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
92	u_int hdrsize, u_int ciphdrsize, u_int mtu);
93static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
94
95#ifdef IEEE80211_DEBUG
96/*
97 * Decide if an outbound management frame should be
98 * printed when debugging is enabled.  This filters some
99 * of the less interesting frames that come frequently
100 * (e.g. beacons).
101 */
102static __inline int
103doprint(struct ieee80211vap *vap, int subtype)
104{
105	switch (subtype) {
106	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
107		return (vap->iv_opmode == IEEE80211_M_IBSS);
108	}
109	return 1;
110}
111#endif
112
113/*
114 * Transmit a frame to the given destination on the given VAP.
115 *
116 * It's up to the caller to figure out the details of who this
117 * is going to and resolving the node.
118 *
119 * This routine takes care of queuing it for power save,
120 * A-MPDU state stuff, fast-frames state stuff, encapsulation
121 * if required, then passing it up to the driver layer.
122 *
123 * This routine (for now) consumes the mbuf and frees the node
124 * reference; it ideally will return a TX status which reflects
125 * whether the mbuf was consumed or not, so the caller can
126 * free the mbuf (if appropriate) and the node reference (again,
127 * if appropriate.)
128 */
129int
130ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
131    struct ieee80211_node *ni)
132{
133	struct ieee80211com *ic = vap->iv_ic;
134	struct ifnet *ifp = vap->iv_ifp;
135	int error, len, mcast;
136
137	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138	    (m->m_flags & M_PWR_SAV) == 0) {
139		/*
140		 * Station in power save mode; pass the frame
141		 * to the 802.11 layer and continue.  We'll get
142		 * the frame back when the time is right.
143		 * XXX lose WDS vap linkage?
144		 */
145		if (ieee80211_pwrsave(ni, m) != 0)
146			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
147		ieee80211_free_node(ni);
148
149		/*
150		 * We queued it fine, so tell the upper layer
151		 * that we consumed it.
152		 */
153		return (0);
154	}
155	/* calculate priority so drivers can find the tx queue */
156	if (ieee80211_classify(ni, m)) {
157		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
158		    ni->ni_macaddr, NULL,
159		    "%s", "classification failure");
160		vap->iv_stats.is_tx_classify++;
161		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
162		m_freem(m);
163		ieee80211_free_node(ni);
164
165		/* XXX better status? */
166		return (0);
167	}
168	/*
169	 * Stash the node pointer.  Note that we do this after
170	 * any call to ieee80211_dwds_mcast because that code
171	 * uses any existing value for rcvif to identify the
172	 * interface it (might have been) received on.
173	 */
174	m->m_pkthdr.rcvif = (void *)ni;
175	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
176	len = m->m_pkthdr.len;
177
178	BPF_MTAP(ifp, m);		/* 802.3 tx */
179
180	/*
181	 * Check if A-MPDU tx aggregation is setup or if we
182	 * should try to enable it.  The sta must be associated
183	 * with HT and A-MPDU enabled for use.  When the policy
184	 * routine decides we should enable A-MPDU we issue an
185	 * ADDBA request and wait for a reply.  The frame being
186	 * encapsulated will go out w/o using A-MPDU, or possibly
187	 * it might be collected by the driver and held/retransmit.
188	 * The default ic_ampdu_enable routine handles staggering
189	 * ADDBA requests in case the receiver NAK's us or we are
190	 * otherwise unable to establish a BA stream.
191	 */
192	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
193	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
194	    (m->m_flags & M_EAPOL) == 0) {
195		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
196		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
197
198		ieee80211_txampdu_count_packet(tap);
199		if (IEEE80211_AMPDU_RUNNING(tap)) {
200			/*
201			 * Operational, mark frame for aggregation.
202			 *
203			 * XXX do tx aggregation here
204			 */
205			m->m_flags |= M_AMPDU_MPDU;
206		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
207		    ic->ic_ampdu_enable(ni, tap)) {
208			/*
209			 * Not negotiated yet, request service.
210			 */
211			ieee80211_ampdu_request(ni, tap);
212			/* XXX hold frame for reply? */
213		}
214	}
215
216#ifdef IEEE80211_SUPPORT_SUPERG
217	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
218		m = ieee80211_ff_check(ni, m);
219		if (m == NULL) {
220			/* NB: any ni ref held on stageq */
221			return (0);
222		}
223	}
224#endif /* IEEE80211_SUPPORT_SUPERG */
225
226	/*
227	 * Grab the TX lock - serialise the TX process from this
228	 * point (where TX state is being checked/modified)
229	 * through to driver queue.
230	 */
231	IEEE80211_TX_LOCK(ic);
232
233	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
234		/*
235		 * Encapsulate the packet in prep for transmission.
236		 */
237		m = ieee80211_encap(vap, ni, m);
238		if (m == NULL) {
239			/* NB: stat+msg handled in ieee80211_encap */
240			IEEE80211_TX_UNLOCK(ic);
241			ieee80211_free_node(ni);
242			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
243			return (ENOBUFS);
244		}
245	}
246	error = ieee80211_parent_xmitpkt(ic, m);
247
248	/*
249	 * Unlock at this point - no need to hold it across
250	 * ieee80211_free_node() (ie, the comlock)
251	 */
252	IEEE80211_TX_UNLOCK(ic);
253	if (error != 0) {
254		/* NB: IFQ_HANDOFF reclaims mbuf */
255		ieee80211_free_node(ni);
256		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
257	} else {
258		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
259		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
260		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
261	}
262	ic->ic_lastdata = ticks;
263
264	return (0);
265}
266
267
268
269/*
270 * Send the given mbuf through the given vap.
271 *
272 * This consumes the mbuf regardless of whether the transmit
273 * was successful or not.
274 *
275 * This does none of the initial checks that ieee80211_start()
276 * does (eg CAC timeout, interface wakeup) - the caller must
277 * do this first.
278 */
279static int
280ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
281{
282#define	IS_DWDS(vap) \
283	(vap->iv_opmode == IEEE80211_M_WDS && \
284	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
285	struct ieee80211com *ic = vap->iv_ic;
286	struct ifnet *ifp = vap->iv_ifp;
287	struct ieee80211_node *ni;
288	struct ether_header *eh;
289
290	/*
291	 * Cancel any background scan.
292	 */
293	if (ic->ic_flags & IEEE80211_F_SCAN)
294		ieee80211_cancel_anyscan(vap);
295	/*
296	 * Find the node for the destination so we can do
297	 * things like power save and fast frames aggregation.
298	 *
299	 * NB: past this point various code assumes the first
300	 *     mbuf has the 802.3 header present (and contiguous).
301	 */
302	ni = NULL;
303	if (m->m_len < sizeof(struct ether_header) &&
304	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
305		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
306		    "discard frame, %s\n", "m_pullup failed");
307		vap->iv_stats.is_tx_nobuf++;	/* XXX */
308		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
309		return (ENOBUFS);
310	}
311	eh = mtod(m, struct ether_header *);
312	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
313		if (IS_DWDS(vap)) {
314			/*
315			 * Only unicast frames from the above go out
316			 * DWDS vaps; multicast frames are handled by
317			 * dispatching the frame as it comes through
318			 * the AP vap (see below).
319			 */
320			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
321			    eh->ether_dhost, "mcast", "%s", "on DWDS");
322			vap->iv_stats.is_dwds_mcast++;
323			m_freem(m);
324			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
325			/* XXX better status? */
326			return (ENOBUFS);
327		}
328		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
329			/*
330			 * Spam DWDS vap's w/ multicast traffic.
331			 */
332			/* XXX only if dwds in use? */
333			ieee80211_dwds_mcast(vap, m);
334		}
335	}
336#ifdef IEEE80211_SUPPORT_MESH
337	if (vap->iv_opmode != IEEE80211_M_MBSS) {
338#endif
339		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
340		if (ni == NULL) {
341			/* NB: ieee80211_find_txnode does stat+msg */
342			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
343			m_freem(m);
344			/* XXX better status? */
345			return (ENOBUFS);
346		}
347		if (ni->ni_associd == 0 &&
348		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
349			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
350			    eh->ether_dhost, NULL,
351			    "sta not associated (type 0x%04x)",
352			    htons(eh->ether_type));
353			vap->iv_stats.is_tx_notassoc++;
354			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
355			m_freem(m);
356			ieee80211_free_node(ni);
357			/* XXX better status? */
358			return (ENOBUFS);
359		}
360#ifdef IEEE80211_SUPPORT_MESH
361	} else {
362		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
363			/*
364			 * Proxy station only if configured.
365			 */
366			if (!ieee80211_mesh_isproxyena(vap)) {
367				IEEE80211_DISCARD_MAC(vap,
368				    IEEE80211_MSG_OUTPUT |
369				    IEEE80211_MSG_MESH,
370				    eh->ether_dhost, NULL,
371				    "%s", "proxy not enabled");
372				vap->iv_stats.is_mesh_notproxy++;
373				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374				m_freem(m);
375				/* XXX better status? */
376				return (ENOBUFS);
377			}
378			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
379			    "forward frame from DS SA(%6D), DA(%6D)\n",
380			    eh->ether_shost, ":",
381			    eh->ether_dhost, ":");
382			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
383		}
384		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
385		if (ni == NULL) {
386			/*
387			 * NB: ieee80211_mesh_discover holds/disposes
388			 * frame (e.g. queueing on path discovery).
389			 */
390			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
391			/* XXX better status? */
392			return (ENOBUFS);
393		}
394	}
395#endif
396
397	/*
398	 * We've resolved the sender, so attempt to transmit it.
399	 */
400
401	if (vap->iv_state == IEEE80211_S_SLEEP) {
402		/*
403		 * In power save; queue frame and then  wakeup device
404		 * for transmit.
405		 */
406		ic->ic_lastdata = ticks;
407		if (ieee80211_pwrsave(ni, m) != 0)
408			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
409		ieee80211_free_node(ni);
410		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
411		return (0);
412	}
413
414	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
415		return (ENOBUFS);
416	return (0);
417#undef	IS_DWDS
418}
419
420/*
421 * Start method for vap's.  All packets from the stack come
422 * through here.  We handle common processing of the packets
423 * before dispatching them to the underlying device.
424 *
425 * if_transmit() requires that the mbuf be consumed by this call
426 * regardless of the return condition.
427 */
428int
429ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
430{
431	struct ieee80211vap *vap = ifp->if_softc;
432	struct ieee80211com *ic = vap->iv_ic;
433	struct ifnet *parent = ic->ic_ifp;
434
435	/* NB: parent must be up and running */
436	if (!IFNET_IS_UP_RUNNING(parent)) {
437		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
438		    "%s: ignore queue, parent %s not up+running\n",
439		    __func__, parent->if_xname);
440		m_freem(m);
441		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
442		return (ENETDOWN);
443	}
444
445	/*
446	 * No data frames go out unless we're running.
447	 * Note in particular this covers CAC and CSA
448	 * states (though maybe we should check muting
449	 * for CSA).
450	 */
451	if (vap->iv_state != IEEE80211_S_RUN &&
452	    vap->iv_state != IEEE80211_S_SLEEP) {
453		IEEE80211_LOCK(ic);
454		/* re-check under the com lock to avoid races */
455		if (vap->iv_state != IEEE80211_S_RUN &&
456		    vap->iv_state != IEEE80211_S_SLEEP) {
457			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
458			    "%s: ignore queue, in %s state\n",
459			    __func__, ieee80211_state_name[vap->iv_state]);
460			vap->iv_stats.is_tx_badstate++;
461			IEEE80211_UNLOCK(ic);
462			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
463			m_freem(m);
464			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
465			return (ENETDOWN);
466		}
467		IEEE80211_UNLOCK(ic);
468	}
469
470	/*
471	 * Sanitize mbuf flags for net80211 use.  We cannot
472	 * clear M_PWR_SAV or M_MORE_DATA because these may
473	 * be set for frames that are re-submitted from the
474	 * power save queue.
475	 *
476	 * NB: This must be done before ieee80211_classify as
477	 *     it marks EAPOL in frames with M_EAPOL.
478	 */
479	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
480
481	/*
482	 * Bump to the packet transmission path.
483	 * The mbuf will be consumed here.
484	 */
485	return (ieee80211_start_pkt(vap, m));
486}
487
488void
489ieee80211_vap_qflush(struct ifnet *ifp)
490{
491
492	/* Empty for now */
493}
494
495/*
496 * 802.11 raw output routine.
497 *
498 * XXX TODO: this (and other send routines) should correctly
499 * XXX keep the pwr mgmt bit set if it decides to call into the
500 * XXX driver to send a frame whilst the state is SLEEP.
501 *
502 * Otherwise the peer may decide that we're awake and flood us
503 * with traffic we are still too asleep to receive!
504 */
505int
506ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
507    struct mbuf *m, const struct ieee80211_bpf_params *params)
508{
509	struct ieee80211com *ic = vap->iv_ic;
510
511	/*
512	 * Set node - the caller has taken a reference, so ensure
513	 * that the mbuf has the same node value that
514	 * it would if it were going via the normal path.
515	 */
516	m->m_pkthdr.rcvif = (void *)ni;
517
518	/*
519	 * Attempt to add bpf transmit parameters.
520	 *
521	 * For now it's ok to fail; the raw_xmit api still takes
522	 * them as an option.
523	 *
524	 * Later on when ic_raw_xmit() has params removed,
525	 * they'll have to be added - so fail the transmit if
526	 * they can't be.
527	 */
528	if (params)
529		(void) ieee80211_add_xmit_params(m, params);
530
531	return (ic->ic_raw_xmit(ni, m, params));
532}
533
534/*
535 * 802.11 output routine. This is (currently) used only to
536 * connect bpf write calls to the 802.11 layer for injecting
537 * raw 802.11 frames.
538 */
539int
540ieee80211_output(struct ifnet *ifp, struct mbuf *m,
541	const struct sockaddr *dst, struct route *ro)
542{
543#define senderr(e) do { error = (e); goto bad;} while (0)
544	struct ieee80211_node *ni = NULL;
545	struct ieee80211vap *vap;
546	struct ieee80211_frame *wh;
547	struct ieee80211com *ic = NULL;
548	int error;
549	int ret;
550
551	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
552		/*
553		 * Short-circuit requests if the vap is marked OACTIVE
554		 * as this can happen because a packet came down through
555		 * ieee80211_start before the vap entered RUN state in
556		 * which case it's ok to just drop the frame.  This
557		 * should not be necessary but callers of if_output don't
558		 * check OACTIVE.
559		 */
560		senderr(ENETDOWN);
561	}
562	vap = ifp->if_softc;
563	ic = vap->iv_ic;
564	/*
565	 * Hand to the 802.3 code if not tagged as
566	 * a raw 802.11 frame.
567	 */
568	if (dst->sa_family != AF_IEEE80211)
569		return vap->iv_output(ifp, m, dst, ro);
570#ifdef MAC
571	error = mac_ifnet_check_transmit(ifp, m);
572	if (error)
573		senderr(error);
574#endif
575	if (ifp->if_flags & IFF_MONITOR)
576		senderr(ENETDOWN);
577	if (!IFNET_IS_UP_RUNNING(ifp))
578		senderr(ENETDOWN);
579	if (vap->iv_state == IEEE80211_S_CAC) {
580		IEEE80211_DPRINTF(vap,
581		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
582		    "block %s frame in CAC state\n", "raw data");
583		vap->iv_stats.is_tx_badstate++;
584		senderr(EIO);		/* XXX */
585	} else if (vap->iv_state == IEEE80211_S_SCAN)
586		senderr(EIO);
587	/* XXX bypass bridge, pfil, carp, etc. */
588
589	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
590		senderr(EIO);	/* XXX */
591	wh = mtod(m, struct ieee80211_frame *);
592	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
593	    IEEE80211_FC0_VERSION_0)
594		senderr(EIO);	/* XXX */
595
596	/* locate destination node */
597	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
598	case IEEE80211_FC1_DIR_NODS:
599	case IEEE80211_FC1_DIR_FROMDS:
600		ni = ieee80211_find_txnode(vap, wh->i_addr1);
601		break;
602	case IEEE80211_FC1_DIR_TODS:
603	case IEEE80211_FC1_DIR_DSTODS:
604		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
605			senderr(EIO);	/* XXX */
606		ni = ieee80211_find_txnode(vap, wh->i_addr3);
607		break;
608	default:
609		senderr(EIO);	/* XXX */
610	}
611	if (ni == NULL) {
612		/*
613		 * Permit packets w/ bpf params through regardless
614		 * (see below about sa_len).
615		 */
616		if (dst->sa_len == 0)
617			senderr(EHOSTUNREACH);
618		ni = ieee80211_ref_node(vap->iv_bss);
619	}
620
621	/*
622	 * Sanitize mbuf for net80211 flags leaked from above.
623	 *
624	 * NB: This must be done before ieee80211_classify as
625	 *     it marks EAPOL in frames with M_EAPOL.
626	 */
627	m->m_flags &= ~M_80211_TX;
628
629	/* calculate priority so drivers can find the tx queue */
630	/* XXX assumes an 802.3 frame */
631	if (ieee80211_classify(ni, m))
632		senderr(EIO);		/* XXX */
633
634	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
635	IEEE80211_NODE_STAT(ni, tx_data);
636	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
637		IEEE80211_NODE_STAT(ni, tx_mcast);
638		m->m_flags |= M_MCAST;
639	} else
640		IEEE80211_NODE_STAT(ni, tx_ucast);
641	/* NB: ieee80211_encap does not include 802.11 header */
642	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
643
644	IEEE80211_TX_LOCK(ic);
645
646	/*
647	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
648	 * present by setting the sa_len field of the sockaddr (yes,
649	 * this is a hack).
650	 * NB: we assume sa_data is suitably aligned to cast.
651	 */
652	ret = ieee80211_raw_output(vap, ni, m,
653	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
654		dst->sa_data : NULL));
655	IEEE80211_TX_UNLOCK(ic);
656	return (ret);
657bad:
658	if (m != NULL)
659		m_freem(m);
660	if (ni != NULL)
661		ieee80211_free_node(ni);
662	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
663	return error;
664#undef senderr
665}
666
667/*
668 * Set the direction field and address fields of an outgoing
669 * frame.  Note this should be called early on in constructing
670 * a frame as it sets i_fc[1]; other bits can then be or'd in.
671 */
672void
673ieee80211_send_setup(
674	struct ieee80211_node *ni,
675	struct mbuf *m,
676	int type, int tid,
677	const uint8_t sa[IEEE80211_ADDR_LEN],
678	const uint8_t da[IEEE80211_ADDR_LEN],
679	const uint8_t bssid[IEEE80211_ADDR_LEN])
680{
681#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
682	struct ieee80211vap *vap = ni->ni_vap;
683	struct ieee80211_tx_ampdu *tap;
684	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
685	ieee80211_seq seqno;
686
687	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
688
689	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
690	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
691		switch (vap->iv_opmode) {
692		case IEEE80211_M_STA:
693			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
694			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
695			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
696			IEEE80211_ADDR_COPY(wh->i_addr3, da);
697			break;
698		case IEEE80211_M_IBSS:
699		case IEEE80211_M_AHDEMO:
700			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
701			IEEE80211_ADDR_COPY(wh->i_addr1, da);
702			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
703			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
704			break;
705		case IEEE80211_M_HOSTAP:
706			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
707			IEEE80211_ADDR_COPY(wh->i_addr1, da);
708			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
709			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
710			break;
711		case IEEE80211_M_WDS:
712			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
713			IEEE80211_ADDR_COPY(wh->i_addr1, da);
714			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
715			IEEE80211_ADDR_COPY(wh->i_addr3, da);
716			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
717			break;
718		case IEEE80211_M_MBSS:
719#ifdef IEEE80211_SUPPORT_MESH
720			if (IEEE80211_IS_MULTICAST(da)) {
721				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
722				/* XXX next hop */
723				IEEE80211_ADDR_COPY(wh->i_addr1, da);
724				IEEE80211_ADDR_COPY(wh->i_addr2,
725				    vap->iv_myaddr);
726			} else {
727				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
728				IEEE80211_ADDR_COPY(wh->i_addr1, da);
729				IEEE80211_ADDR_COPY(wh->i_addr2,
730				    vap->iv_myaddr);
731				IEEE80211_ADDR_COPY(wh->i_addr3, da);
732				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
733			}
734#endif
735			break;
736		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
737			break;
738		}
739	} else {
740		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
741		IEEE80211_ADDR_COPY(wh->i_addr1, da);
742		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
743#ifdef IEEE80211_SUPPORT_MESH
744		if (vap->iv_opmode == IEEE80211_M_MBSS)
745			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
746		else
747#endif
748			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
749	}
750	*(uint16_t *)&wh->i_dur[0] = 0;
751
752	tap = &ni->ni_tx_ampdu[tid];
753	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
754		m->m_flags |= M_AMPDU_MPDU;
755	else {
756		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
757				      type & IEEE80211_FC0_SUBTYPE_MASK))
758			seqno = ni->ni_txseqs[tid]++;
759		else
760			seqno = 0;
761
762		*(uint16_t *)&wh->i_seq[0] =
763		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
764		M_SEQNO_SET(m, seqno);
765	}
766
767	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
768		m->m_flags |= M_MCAST;
769#undef WH4
770}
771
772/*
773 * Send a management frame to the specified node.  The node pointer
774 * must have a reference as the pointer will be passed to the driver
775 * and potentially held for a long time.  If the frame is successfully
776 * dispatched to the driver, then it is responsible for freeing the
777 * reference (and potentially free'ing up any associated storage);
778 * otherwise deal with reclaiming any reference (on error).
779 */
780int
781ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
782	struct ieee80211_bpf_params *params)
783{
784	struct ieee80211vap *vap = ni->ni_vap;
785	struct ieee80211com *ic = ni->ni_ic;
786	struct ieee80211_frame *wh;
787	int ret;
788
789	KASSERT(ni != NULL, ("null node"));
790
791	if (vap->iv_state == IEEE80211_S_CAC) {
792		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
793		    ni, "block %s frame in CAC state",
794			ieee80211_mgt_subtype_name[
795			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
796				IEEE80211_FC0_SUBTYPE_SHIFT]);
797		vap->iv_stats.is_tx_badstate++;
798		ieee80211_free_node(ni);
799		m_freem(m);
800		return EIO;		/* XXX */
801	}
802
803	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
804	if (m == NULL) {
805		ieee80211_free_node(ni);
806		return ENOMEM;
807	}
808
809	IEEE80211_TX_LOCK(ic);
810
811	wh = mtod(m, struct ieee80211_frame *);
812	ieee80211_send_setup(ni, m,
813	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
814	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
815	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
816		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
817		    "encrypting frame (%s)", __func__);
818		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
819	}
820	m->m_flags |= M_ENCAP;		/* mark encapsulated */
821
822	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
823	M_WME_SETAC(m, params->ibp_pri);
824
825#ifdef IEEE80211_DEBUG
826	/* avoid printing too many frames */
827	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
828	    ieee80211_msg_dumppkts(vap)) {
829		printf("[%s] send %s on channel %u\n",
830		    ether_sprintf(wh->i_addr1),
831		    ieee80211_mgt_subtype_name[
832			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
833				IEEE80211_FC0_SUBTYPE_SHIFT],
834		    ieee80211_chan2ieee(ic, ic->ic_curchan));
835	}
836#endif
837	IEEE80211_NODE_STAT(ni, tx_mgmt);
838
839	ret = ieee80211_raw_output(vap, ni, m, params);
840	IEEE80211_TX_UNLOCK(ic);
841	return (ret);
842}
843
844/*
845 * Send a null data frame to the specified node.  If the station
846 * is setup for QoS then a QoS Null Data frame is constructed.
847 * If this is a WDS station then a 4-address frame is constructed.
848 *
849 * NB: the caller is assumed to have setup a node reference
850 *     for use; this is necessary to deal with a race condition
851 *     when probing for inactive stations.  Like ieee80211_mgmt_output
852 *     we must cleanup any node reference on error;  however we
853 *     can safely just unref it as we know it will never be the
854 *     last reference to the node.
855 */
856int
857ieee80211_send_nulldata(struct ieee80211_node *ni)
858{
859	struct ieee80211vap *vap = ni->ni_vap;
860	struct ieee80211com *ic = ni->ni_ic;
861	struct mbuf *m;
862	struct ieee80211_frame *wh;
863	int hdrlen;
864	uint8_t *frm;
865	int ret;
866
867	if (vap->iv_state == IEEE80211_S_CAC) {
868		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
869		    ni, "block %s frame in CAC state", "null data");
870		ieee80211_unref_node(&ni);
871		vap->iv_stats.is_tx_badstate++;
872		return EIO;		/* XXX */
873	}
874
875	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
876		hdrlen = sizeof(struct ieee80211_qosframe);
877	else
878		hdrlen = sizeof(struct ieee80211_frame);
879	/* NB: only WDS vap's get 4-address frames */
880	if (vap->iv_opmode == IEEE80211_M_WDS)
881		hdrlen += IEEE80211_ADDR_LEN;
882	if (ic->ic_flags & IEEE80211_F_DATAPAD)
883		hdrlen = roundup(hdrlen, sizeof(uint32_t));
884
885	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
886	if (m == NULL) {
887		/* XXX debug msg */
888		ieee80211_unref_node(&ni);
889		vap->iv_stats.is_tx_nobuf++;
890		return ENOMEM;
891	}
892	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
893	    ("leading space %zd", M_LEADINGSPACE(m)));
894	M_PREPEND(m, hdrlen, M_NOWAIT);
895	if (m == NULL) {
896		/* NB: cannot happen */
897		ieee80211_free_node(ni);
898		return ENOMEM;
899	}
900
901	IEEE80211_TX_LOCK(ic);
902
903	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
904	if (ni->ni_flags & IEEE80211_NODE_QOS) {
905		const int tid = WME_AC_TO_TID(WME_AC_BE);
906		uint8_t *qos;
907
908		ieee80211_send_setup(ni, m,
909		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
910		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
911
912		if (vap->iv_opmode == IEEE80211_M_WDS)
913			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
914		else
915			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
916		qos[0] = tid & IEEE80211_QOS_TID;
917		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
918			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
919		qos[1] = 0;
920	} else {
921		ieee80211_send_setup(ni, m,
922		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
923		    IEEE80211_NONQOS_TID,
924		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
925	}
926	if (vap->iv_opmode != IEEE80211_M_WDS) {
927		/* NB: power management bit is never sent by an AP */
928		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
929		    vap->iv_opmode != IEEE80211_M_HOSTAP)
930			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
931	}
932	m->m_len = m->m_pkthdr.len = hdrlen;
933	m->m_flags |= M_ENCAP;		/* mark encapsulated */
934
935	M_WME_SETAC(m, WME_AC_BE);
936
937	IEEE80211_NODE_STAT(ni, tx_data);
938
939	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
940	    "send %snull data frame on channel %u, pwr mgt %s",
941	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
942	    ieee80211_chan2ieee(ic, ic->ic_curchan),
943	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
944
945	ret = ieee80211_raw_output(vap, ni, m, NULL);
946	IEEE80211_TX_UNLOCK(ic);
947	return (ret);
948}
949
950/*
951 * Assign priority to a frame based on any vlan tag assigned
952 * to the station and/or any Diffserv setting in an IP header.
953 * Finally, if an ACM policy is setup (in station mode) it's
954 * applied.
955 */
956int
957ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
958{
959	const struct ether_header *eh = mtod(m, struct ether_header *);
960	int v_wme_ac, d_wme_ac, ac;
961
962	/*
963	 * Always promote PAE/EAPOL frames to high priority.
964	 */
965	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
966		/* NB: mark so others don't need to check header */
967		m->m_flags |= M_EAPOL;
968		ac = WME_AC_VO;
969		goto done;
970	}
971	/*
972	 * Non-qos traffic goes to BE.
973	 */
974	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
975		ac = WME_AC_BE;
976		goto done;
977	}
978
979	/*
980	 * If node has a vlan tag then all traffic
981	 * to it must have a matching tag.
982	 */
983	v_wme_ac = 0;
984	if (ni->ni_vlan != 0) {
985		 if ((m->m_flags & M_VLANTAG) == 0) {
986			IEEE80211_NODE_STAT(ni, tx_novlantag);
987			return 1;
988		}
989		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
990		    EVL_VLANOFTAG(ni->ni_vlan)) {
991			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
992			return 1;
993		}
994		/* map vlan priority to AC */
995		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
996	}
997
998	/* XXX m_copydata may be too slow for fast path */
999#ifdef INET
1000	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1001		uint8_t tos;
1002		/*
1003		 * IP frame, map the DSCP bits from the TOS field.
1004		 */
1005		/* NB: ip header may not be in first mbuf */
1006		m_copydata(m, sizeof(struct ether_header) +
1007		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1008		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1009		d_wme_ac = TID_TO_WME_AC(tos);
1010	} else {
1011#endif /* INET */
1012#ifdef INET6
1013	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1014		uint32_t flow;
1015		uint8_t tos;
1016		/*
1017		 * IPv6 frame, map the DSCP bits from the traffic class field.
1018		 */
1019		m_copydata(m, sizeof(struct ether_header) +
1020		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1021		    (caddr_t) &flow);
1022		tos = (uint8_t)(ntohl(flow) >> 20);
1023		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1024		d_wme_ac = TID_TO_WME_AC(tos);
1025	} else {
1026#endif /* INET6 */
1027		d_wme_ac = WME_AC_BE;
1028#ifdef INET6
1029	}
1030#endif
1031#ifdef INET
1032	}
1033#endif
1034	/*
1035	 * Use highest priority AC.
1036	 */
1037	if (v_wme_ac > d_wme_ac)
1038		ac = v_wme_ac;
1039	else
1040		ac = d_wme_ac;
1041
1042	/*
1043	 * Apply ACM policy.
1044	 */
1045	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1046		static const int acmap[4] = {
1047			WME_AC_BK,	/* WME_AC_BE */
1048			WME_AC_BK,	/* WME_AC_BK */
1049			WME_AC_BE,	/* WME_AC_VI */
1050			WME_AC_VI,	/* WME_AC_VO */
1051		};
1052		struct ieee80211com *ic = ni->ni_ic;
1053
1054		while (ac != WME_AC_BK &&
1055		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1056			ac = acmap[ac];
1057	}
1058done:
1059	M_WME_SETAC(m, ac);
1060	return 0;
1061}
1062
1063/*
1064 * Insure there is sufficient contiguous space to encapsulate the
1065 * 802.11 data frame.  If room isn't already there, arrange for it.
1066 * Drivers and cipher modules assume we have done the necessary work
1067 * and fail rudely if they don't find the space they need.
1068 */
1069struct mbuf *
1070ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1071	struct ieee80211_key *key, struct mbuf *m)
1072{
1073#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1074	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1075
1076	if (key != NULL) {
1077		/* XXX belongs in crypto code? */
1078		needed_space += key->wk_cipher->ic_header;
1079		/* XXX frags */
1080		/*
1081		 * When crypto is being done in the host we must insure
1082		 * the data are writable for the cipher routines; clone
1083		 * a writable mbuf chain.
1084		 * XXX handle SWMIC specially
1085		 */
1086		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1087			m = m_unshare(m, M_NOWAIT);
1088			if (m == NULL) {
1089				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1090				    "%s: cannot get writable mbuf\n", __func__);
1091				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1092				return NULL;
1093			}
1094		}
1095	}
1096	/*
1097	 * We know we are called just before stripping an Ethernet
1098	 * header and prepending an LLC header.  This means we know
1099	 * there will be
1100	 *	sizeof(struct ether_header) - sizeof(struct llc)
1101	 * bytes recovered to which we need additional space for the
1102	 * 802.11 header and any crypto header.
1103	 */
1104	/* XXX check trailing space and copy instead? */
1105	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1106		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1107		if (n == NULL) {
1108			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1109			    "%s: cannot expand storage\n", __func__);
1110			vap->iv_stats.is_tx_nobuf++;
1111			m_freem(m);
1112			return NULL;
1113		}
1114		KASSERT(needed_space <= MHLEN,
1115		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1116		/*
1117		 * Setup new mbuf to have leading space to prepend the
1118		 * 802.11 header and any crypto header bits that are
1119		 * required (the latter are added when the driver calls
1120		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1121		 */
1122		/* NB: must be first 'cuz it clobbers m_data */
1123		m_move_pkthdr(n, m);
1124		n->m_len = 0;			/* NB: m_gethdr does not set */
1125		n->m_data += needed_space;
1126		/*
1127		 * Pull up Ethernet header to create the expected layout.
1128		 * We could use m_pullup but that's overkill (i.e. we don't
1129		 * need the actual data) and it cannot fail so do it inline
1130		 * for speed.
1131		 */
1132		/* NB: struct ether_header is known to be contiguous */
1133		n->m_len += sizeof(struct ether_header);
1134		m->m_len -= sizeof(struct ether_header);
1135		m->m_data += sizeof(struct ether_header);
1136		/*
1137		 * Replace the head of the chain.
1138		 */
1139		n->m_next = m;
1140		m = n;
1141	}
1142	return m;
1143#undef TO_BE_RECLAIMED
1144}
1145
1146/*
1147 * Return the transmit key to use in sending a unicast frame.
1148 * If a unicast key is set we use that.  When no unicast key is set
1149 * we fall back to the default transmit key.
1150 */
1151static __inline struct ieee80211_key *
1152ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1153	struct ieee80211_node *ni)
1154{
1155	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1156		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1157		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1158			return NULL;
1159		return &vap->iv_nw_keys[vap->iv_def_txkey];
1160	} else {
1161		return &ni->ni_ucastkey;
1162	}
1163}
1164
1165/*
1166 * Return the transmit key to use in sending a multicast frame.
1167 * Multicast traffic always uses the group key which is installed as
1168 * the default tx key.
1169 */
1170static __inline struct ieee80211_key *
1171ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1172	struct ieee80211_node *ni)
1173{
1174	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1175	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1176		return NULL;
1177	return &vap->iv_nw_keys[vap->iv_def_txkey];
1178}
1179
1180/*
1181 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1182 * If an error is encountered NULL is returned.  The caller is required
1183 * to provide a node reference and pullup the ethernet header in the
1184 * first mbuf.
1185 *
1186 * NB: Packet is assumed to be processed by ieee80211_classify which
1187 *     marked EAPOL frames w/ M_EAPOL.
1188 */
1189struct mbuf *
1190ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1191    struct mbuf *m)
1192{
1193#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1194#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1195	struct ieee80211com *ic = ni->ni_ic;
1196#ifdef IEEE80211_SUPPORT_MESH
1197	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1198	struct ieee80211_meshcntl_ae10 *mc;
1199	struct ieee80211_mesh_route *rt = NULL;
1200	int dir = -1;
1201#endif
1202	struct ether_header eh;
1203	struct ieee80211_frame *wh;
1204	struct ieee80211_key *key;
1205	struct llc *llc;
1206	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1207	ieee80211_seq seqno;
1208	int meshhdrsize, meshae;
1209	uint8_t *qos;
1210
1211	IEEE80211_TX_LOCK_ASSERT(ic);
1212
1213	/*
1214	 * Copy existing Ethernet header to a safe place.  The
1215	 * rest of the code assumes it's ok to strip it when
1216	 * reorganizing state for the final encapsulation.
1217	 */
1218	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1219	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1220
1221	/*
1222	 * Insure space for additional headers.  First identify
1223	 * transmit key to use in calculating any buffer adjustments
1224	 * required.  This is also used below to do privacy
1225	 * encapsulation work.  Then calculate the 802.11 header
1226	 * size and any padding required by the driver.
1227	 *
1228	 * Note key may be NULL if we fall back to the default
1229	 * transmit key and that is not set.  In that case the
1230	 * buffer may not be expanded as needed by the cipher
1231	 * routines, but they will/should discard it.
1232	 */
1233	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1234		if (vap->iv_opmode == IEEE80211_M_STA ||
1235		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1236		    (vap->iv_opmode == IEEE80211_M_WDS &&
1237		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1238			key = ieee80211_crypto_getucastkey(vap, ni);
1239		else
1240			key = ieee80211_crypto_getmcastkey(vap, ni);
1241		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1242			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1243			    eh.ether_dhost,
1244			    "no default transmit key (%s) deftxkey %u",
1245			    __func__, vap->iv_def_txkey);
1246			vap->iv_stats.is_tx_nodefkey++;
1247			goto bad;
1248		}
1249	} else
1250		key = NULL;
1251	/*
1252	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1253	 * frames so suppress use.  This may be an issue if other
1254	 * ap's require all data frames to be QoS-encapsulated
1255	 * once negotiated in which case we'll need to make this
1256	 * configurable.
1257	 * NB: mesh data frames are QoS.
1258	 */
1259	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1260	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1261	    (m->m_flags & M_EAPOL) == 0;
1262	if (addqos)
1263		hdrsize = sizeof(struct ieee80211_qosframe);
1264	else
1265		hdrsize = sizeof(struct ieee80211_frame);
1266#ifdef IEEE80211_SUPPORT_MESH
1267	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1268		/*
1269		 * Mesh data frames are encapsulated according to the
1270		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1271		 * o Group Addressed data (aka multicast) originating
1272		 *   at the local sta are sent w/ 3-address format and
1273		 *   address extension mode 00
1274		 * o Individually Addressed data (aka unicast) originating
1275		 *   at the local sta are sent w/ 4-address format and
1276		 *   address extension mode 00
1277		 * o Group Addressed data forwarded from a non-mesh sta are
1278		 *   sent w/ 3-address format and address extension mode 01
1279		 * o Individually Address data from another sta are sent
1280		 *   w/ 4-address format and address extension mode 10
1281		 */
1282		is4addr = 0;		/* NB: don't use, disable */
1283		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1284			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1285			KASSERT(rt != NULL, ("route is NULL"));
1286			dir = IEEE80211_FC1_DIR_DSTODS;
1287			hdrsize += IEEE80211_ADDR_LEN;
1288			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1289				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1290				    vap->iv_myaddr)) {
1291					IEEE80211_NOTE_MAC(vap,
1292					    IEEE80211_MSG_MESH,
1293					    eh.ether_dhost,
1294					    "%s", "trying to send to ourself");
1295					goto bad;
1296				}
1297				meshae = IEEE80211_MESH_AE_10;
1298				meshhdrsize =
1299				    sizeof(struct ieee80211_meshcntl_ae10);
1300			} else {
1301				meshae = IEEE80211_MESH_AE_00;
1302				meshhdrsize =
1303				    sizeof(struct ieee80211_meshcntl);
1304			}
1305		} else {
1306			dir = IEEE80211_FC1_DIR_FROMDS;
1307			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1308				/* proxy group */
1309				meshae = IEEE80211_MESH_AE_01;
1310				meshhdrsize =
1311				    sizeof(struct ieee80211_meshcntl_ae01);
1312			} else {
1313				/* group */
1314				meshae = IEEE80211_MESH_AE_00;
1315				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1316			}
1317		}
1318	} else {
1319#endif
1320		/*
1321		 * 4-address frames need to be generated for:
1322		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1323		 * o packets sent through a vap marked for relaying
1324		 *   (e.g. a station operating with dynamic WDS)
1325		 */
1326		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1327		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1328		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1329		if (is4addr)
1330			hdrsize += IEEE80211_ADDR_LEN;
1331		meshhdrsize = meshae = 0;
1332#ifdef IEEE80211_SUPPORT_MESH
1333	}
1334#endif
1335	/*
1336	 * Honor driver DATAPAD requirement.
1337	 */
1338	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1339		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1340	else
1341		hdrspace = hdrsize;
1342
1343	if (__predict_true((m->m_flags & M_FF) == 0)) {
1344		/*
1345		 * Normal frame.
1346		 */
1347		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1348		if (m == NULL) {
1349			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1350			goto bad;
1351		}
1352		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1353		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1354		llc = mtod(m, struct llc *);
1355		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1356		llc->llc_control = LLC_UI;
1357		llc->llc_snap.org_code[0] = 0;
1358		llc->llc_snap.org_code[1] = 0;
1359		llc->llc_snap.org_code[2] = 0;
1360		llc->llc_snap.ether_type = eh.ether_type;
1361	} else {
1362#ifdef IEEE80211_SUPPORT_SUPERG
1363		/*
1364		 * Aggregated frame.
1365		 */
1366		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1367		if (m == NULL)
1368#endif
1369			goto bad;
1370	}
1371	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1372
1373	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1374	if (m == NULL) {
1375		vap->iv_stats.is_tx_nobuf++;
1376		goto bad;
1377	}
1378	wh = mtod(m, struct ieee80211_frame *);
1379	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1380	*(uint16_t *)wh->i_dur = 0;
1381	qos = NULL;	/* NB: quiet compiler */
1382	if (is4addr) {
1383		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1384		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1385		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1386		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1387		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1388	} else switch (vap->iv_opmode) {
1389	case IEEE80211_M_STA:
1390		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1391		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1392		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1393		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1394		break;
1395	case IEEE80211_M_IBSS:
1396	case IEEE80211_M_AHDEMO:
1397		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1398		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1399		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1400		/*
1401		 * NB: always use the bssid from iv_bss as the
1402		 *     neighbor's may be stale after an ibss merge
1403		 */
1404		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1405		break;
1406	case IEEE80211_M_HOSTAP:
1407		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1408		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1409		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1410		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1411		break;
1412#ifdef IEEE80211_SUPPORT_MESH
1413	case IEEE80211_M_MBSS:
1414		/* NB: offset by hdrspace to deal with DATAPAD */
1415		mc = (struct ieee80211_meshcntl_ae10 *)
1416		     (mtod(m, uint8_t *) + hdrspace);
1417		wh->i_fc[1] = dir;
1418		switch (meshae) {
1419		case IEEE80211_MESH_AE_00:	/* no proxy */
1420			mc->mc_flags = 0;
1421			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1422				IEEE80211_ADDR_COPY(wh->i_addr1,
1423				    ni->ni_macaddr);
1424				IEEE80211_ADDR_COPY(wh->i_addr2,
1425				    vap->iv_myaddr);
1426				IEEE80211_ADDR_COPY(wh->i_addr3,
1427				    eh.ether_dhost);
1428				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1429				    eh.ether_shost);
1430				qos =((struct ieee80211_qosframe_addr4 *)
1431				    wh)->i_qos;
1432			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1433				 /* mcast */
1434				IEEE80211_ADDR_COPY(wh->i_addr1,
1435				    eh.ether_dhost);
1436				IEEE80211_ADDR_COPY(wh->i_addr2,
1437				    vap->iv_myaddr);
1438				IEEE80211_ADDR_COPY(wh->i_addr3,
1439				    eh.ether_shost);
1440				qos = ((struct ieee80211_qosframe *)
1441				    wh)->i_qos;
1442			}
1443			break;
1444		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1445			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1446			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1447			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1448			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1449			mc->mc_flags = 1;
1450			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1451			    eh.ether_shost);
1452			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1453			break;
1454		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1455			KASSERT(rt != NULL, ("route is NULL"));
1456			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1457			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1458			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1459			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1460			mc->mc_flags = IEEE80211_MESH_AE_10;
1461			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1462			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1463			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1464			break;
1465		default:
1466			KASSERT(0, ("meshae %d", meshae));
1467			break;
1468		}
1469		mc->mc_ttl = ms->ms_ttl;
1470		ms->ms_seq++;
1471		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1472		break;
1473#endif
1474	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1475	default:
1476		goto bad;
1477	}
1478	if (m->m_flags & M_MORE_DATA)
1479		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1480	if (addqos) {
1481		int ac, tid;
1482
1483		if (is4addr) {
1484			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1485		/* NB: mesh case handled earlier */
1486		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1487			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1488		ac = M_WME_GETAC(m);
1489		/* map from access class/queue to 11e header priorty value */
1490		tid = WME_AC_TO_TID(ac);
1491		qos[0] = tid & IEEE80211_QOS_TID;
1492		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1493			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1494#ifdef IEEE80211_SUPPORT_MESH
1495		if (vap->iv_opmode == IEEE80211_M_MBSS)
1496			qos[1] = IEEE80211_QOS_MC;
1497		else
1498#endif
1499			qos[1] = 0;
1500		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1501
1502		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1503			/*
1504			 * NB: don't assign a sequence # to potential
1505			 * aggregates; we expect this happens at the
1506			 * point the frame comes off any aggregation q
1507			 * as otherwise we may introduce holes in the
1508			 * BA sequence space and/or make window accouting
1509			 * more difficult.
1510			 *
1511			 * XXX may want to control this with a driver
1512			 * capability; this may also change when we pull
1513			 * aggregation up into net80211
1514			 */
1515			seqno = ni->ni_txseqs[tid]++;
1516			*(uint16_t *)wh->i_seq =
1517			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1518			M_SEQNO_SET(m, seqno);
1519		}
1520	} else {
1521		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1522		*(uint16_t *)wh->i_seq =
1523		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1524		M_SEQNO_SET(m, seqno);
1525	}
1526
1527
1528	/* check if xmit fragmentation is required */
1529	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1530	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1531	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1532	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1533	if (key != NULL) {
1534		/*
1535		 * IEEE 802.1X: send EAPOL frames always in the clear.
1536		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1537		 */
1538		if ((m->m_flags & M_EAPOL) == 0 ||
1539		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1540		     (vap->iv_opmode == IEEE80211_M_STA ?
1541		      !IEEE80211_KEY_UNDEFINED(key) :
1542		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1543			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1544			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1545				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1546				    eh.ether_dhost,
1547				    "%s", "enmic failed, discard frame");
1548				vap->iv_stats.is_crypto_enmicfail++;
1549				goto bad;
1550			}
1551		}
1552	}
1553	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1554	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1555		goto bad;
1556
1557	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1558
1559	IEEE80211_NODE_STAT(ni, tx_data);
1560	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1561		IEEE80211_NODE_STAT(ni, tx_mcast);
1562		m->m_flags |= M_MCAST;
1563	} else
1564		IEEE80211_NODE_STAT(ni, tx_ucast);
1565	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1566
1567	return m;
1568bad:
1569	if (m != NULL)
1570		m_freem(m);
1571	return NULL;
1572#undef WH4
1573#undef MC01
1574}
1575
1576/*
1577 * Fragment the frame according to the specified mtu.
1578 * The size of the 802.11 header (w/o padding) is provided
1579 * so we don't need to recalculate it.  We create a new
1580 * mbuf for each fragment and chain it through m_nextpkt;
1581 * we might be able to optimize this by reusing the original
1582 * packet's mbufs but that is significantly more complicated.
1583 */
1584static int
1585ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1586	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1587{
1588	struct ieee80211com *ic = vap->iv_ic;
1589	struct ieee80211_frame *wh, *whf;
1590	struct mbuf *m, *prev, *next;
1591	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1592	u_int hdrspace;
1593
1594	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1595	KASSERT(m0->m_pkthdr.len > mtu,
1596		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1597
1598	/*
1599	 * Honor driver DATAPAD requirement.
1600	 */
1601	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1602		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1603	else
1604		hdrspace = hdrsize;
1605
1606	wh = mtod(m0, struct ieee80211_frame *);
1607	/* NB: mark the first frag; it will be propagated below */
1608	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1609	totalhdrsize = hdrspace + ciphdrsize;
1610	fragno = 1;
1611	off = mtu - ciphdrsize;
1612	remainder = m0->m_pkthdr.len - off;
1613	prev = m0;
1614	do {
1615		fragsize = totalhdrsize + remainder;
1616		if (fragsize > mtu)
1617			fragsize = mtu;
1618		/* XXX fragsize can be >2048! */
1619		KASSERT(fragsize < MCLBYTES,
1620			("fragment size %u too big!", fragsize));
1621		if (fragsize > MHLEN)
1622			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1623		else
1624			m = m_gethdr(M_NOWAIT, MT_DATA);
1625		if (m == NULL)
1626			goto bad;
1627		/* leave room to prepend any cipher header */
1628		m_align(m, fragsize - ciphdrsize);
1629
1630		/*
1631		 * Form the header in the fragment.  Note that since
1632		 * we mark the first fragment with the MORE_FRAG bit
1633		 * it automatically is propagated to each fragment; we
1634		 * need only clear it on the last fragment (done below).
1635		 * NB: frag 1+ dont have Mesh Control field present.
1636		 */
1637		whf = mtod(m, struct ieee80211_frame *);
1638		memcpy(whf, wh, hdrsize);
1639#ifdef IEEE80211_SUPPORT_MESH
1640		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1641			if (IEEE80211_IS_DSTODS(wh))
1642				((struct ieee80211_qosframe_addr4 *)
1643				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1644			else
1645				((struct ieee80211_qosframe *)
1646				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1647		}
1648#endif
1649		*(uint16_t *)&whf->i_seq[0] |= htole16(
1650			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1651				IEEE80211_SEQ_FRAG_SHIFT);
1652		fragno++;
1653
1654		payload = fragsize - totalhdrsize;
1655		/* NB: destination is known to be contiguous */
1656
1657		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1658		m->m_len = hdrspace + payload;
1659		m->m_pkthdr.len = hdrspace + payload;
1660		m->m_flags |= M_FRAG;
1661
1662		/* chain up the fragment */
1663		prev->m_nextpkt = m;
1664		prev = m;
1665
1666		/* deduct fragment just formed */
1667		remainder -= payload;
1668		off += payload;
1669	} while (remainder != 0);
1670
1671	/* set the last fragment */
1672	m->m_flags |= M_LASTFRAG;
1673	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1674
1675	/* strip first mbuf now that everything has been copied */
1676	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1677	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1678
1679	vap->iv_stats.is_tx_fragframes++;
1680	vap->iv_stats.is_tx_frags += fragno-1;
1681
1682	return 1;
1683bad:
1684	/* reclaim fragments but leave original frame for caller to free */
1685	for (m = m0->m_nextpkt; m != NULL; m = next) {
1686		next = m->m_nextpkt;
1687		m->m_nextpkt = NULL;		/* XXX paranoid */
1688		m_freem(m);
1689	}
1690	m0->m_nextpkt = NULL;
1691	return 0;
1692}
1693
1694/*
1695 * Add a supported rates element id to a frame.
1696 */
1697uint8_t *
1698ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1699{
1700	int nrates;
1701
1702	*frm++ = IEEE80211_ELEMID_RATES;
1703	nrates = rs->rs_nrates;
1704	if (nrates > IEEE80211_RATE_SIZE)
1705		nrates = IEEE80211_RATE_SIZE;
1706	*frm++ = nrates;
1707	memcpy(frm, rs->rs_rates, nrates);
1708	return frm + nrates;
1709}
1710
1711/*
1712 * Add an extended supported rates element id to a frame.
1713 */
1714uint8_t *
1715ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1716{
1717	/*
1718	 * Add an extended supported rates element if operating in 11g mode.
1719	 */
1720	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1721		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1722		*frm++ = IEEE80211_ELEMID_XRATES;
1723		*frm++ = nrates;
1724		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1725		frm += nrates;
1726	}
1727	return frm;
1728}
1729
1730/*
1731 * Add an ssid element to a frame.
1732 */
1733uint8_t *
1734ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1735{
1736	*frm++ = IEEE80211_ELEMID_SSID;
1737	*frm++ = len;
1738	memcpy(frm, ssid, len);
1739	return frm + len;
1740}
1741
1742/*
1743 * Add an erp element to a frame.
1744 */
1745static uint8_t *
1746ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1747{
1748	uint8_t erp;
1749
1750	*frm++ = IEEE80211_ELEMID_ERP;
1751	*frm++ = 1;
1752	erp = 0;
1753	if (ic->ic_nonerpsta != 0)
1754		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1755	if (ic->ic_flags & IEEE80211_F_USEPROT)
1756		erp |= IEEE80211_ERP_USE_PROTECTION;
1757	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1758		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1759	*frm++ = erp;
1760	return frm;
1761}
1762
1763/*
1764 * Add a CFParams element to a frame.
1765 */
1766static uint8_t *
1767ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1768{
1769#define	ADDSHORT(frm, v) do {	\
1770	LE_WRITE_2(frm, v);	\
1771	frm += 2;		\
1772} while (0)
1773	*frm++ = IEEE80211_ELEMID_CFPARMS;
1774	*frm++ = 6;
1775	*frm++ = 0;		/* CFP count */
1776	*frm++ = 2;		/* CFP period */
1777	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1778	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1779	return frm;
1780#undef ADDSHORT
1781}
1782
1783static __inline uint8_t *
1784add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1785{
1786	memcpy(frm, ie->ie_data, ie->ie_len);
1787	return frm + ie->ie_len;
1788}
1789
1790static __inline uint8_t *
1791add_ie(uint8_t *frm, const uint8_t *ie)
1792{
1793	memcpy(frm, ie, 2 + ie[1]);
1794	return frm + 2 + ie[1];
1795}
1796
1797#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1798/*
1799 * Add a WME information element to a frame.
1800 */
1801static uint8_t *
1802ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1803{
1804	static const struct ieee80211_wme_info info = {
1805		.wme_id		= IEEE80211_ELEMID_VENDOR,
1806		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1807		.wme_oui	= { WME_OUI_BYTES },
1808		.wme_type	= WME_OUI_TYPE,
1809		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1810		.wme_version	= WME_VERSION,
1811		.wme_info	= 0,
1812	};
1813	memcpy(frm, &info, sizeof(info));
1814	return frm + sizeof(info);
1815}
1816
1817/*
1818 * Add a WME parameters element to a frame.
1819 */
1820static uint8_t *
1821ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1822{
1823#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1824#define	ADDSHORT(frm, v) do {	\
1825	LE_WRITE_2(frm, v);	\
1826	frm += 2;		\
1827} while (0)
1828	/* NB: this works 'cuz a param has an info at the front */
1829	static const struct ieee80211_wme_info param = {
1830		.wme_id		= IEEE80211_ELEMID_VENDOR,
1831		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1832		.wme_oui	= { WME_OUI_BYTES },
1833		.wme_type	= WME_OUI_TYPE,
1834		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1835		.wme_version	= WME_VERSION,
1836	};
1837	int i;
1838
1839	memcpy(frm, &param, sizeof(param));
1840	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1841	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1842	*frm++ = 0;					/* reserved field */
1843	for (i = 0; i < WME_NUM_AC; i++) {
1844		const struct wmeParams *ac =
1845		       &wme->wme_bssChanParams.cap_wmeParams[i];
1846		*frm++ = SM(i, WME_PARAM_ACI)
1847		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1848		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1849		       ;
1850		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1851		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1852		       ;
1853		ADDSHORT(frm, ac->wmep_txopLimit);
1854	}
1855	return frm;
1856#undef SM
1857#undef ADDSHORT
1858}
1859#undef WME_OUI_BYTES
1860
1861/*
1862 * Add an 11h Power Constraint element to a frame.
1863 */
1864static uint8_t *
1865ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1866{
1867	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1868	/* XXX per-vap tx power limit? */
1869	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1870
1871	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1872	frm[1] = 1;
1873	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1874	return frm + 3;
1875}
1876
1877/*
1878 * Add an 11h Power Capability element to a frame.
1879 */
1880static uint8_t *
1881ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1882{
1883	frm[0] = IEEE80211_ELEMID_PWRCAP;
1884	frm[1] = 2;
1885	frm[2] = c->ic_minpower;
1886	frm[3] = c->ic_maxpower;
1887	return frm + 4;
1888}
1889
1890/*
1891 * Add an 11h Supported Channels element to a frame.
1892 */
1893static uint8_t *
1894ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1895{
1896	static const int ielen = 26;
1897
1898	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1899	frm[1] = ielen;
1900	/* XXX not correct */
1901	memcpy(frm+2, ic->ic_chan_avail, ielen);
1902	return frm + 2 + ielen;
1903}
1904
1905/*
1906 * Add an 11h Quiet time element to a frame.
1907 */
1908static uint8_t *
1909ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1910{
1911	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1912
1913	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1914	quiet->len = 6;
1915	if (vap->iv_quiet_count_value == 1)
1916		vap->iv_quiet_count_value = vap->iv_quiet_count;
1917	else if (vap->iv_quiet_count_value > 1)
1918		vap->iv_quiet_count_value--;
1919
1920	if (vap->iv_quiet_count_value == 0) {
1921		/* value 0 is reserved as per 802.11h standerd */
1922		vap->iv_quiet_count_value = 1;
1923	}
1924
1925	quiet->tbttcount = vap->iv_quiet_count_value;
1926	quiet->period = vap->iv_quiet_period;
1927	quiet->duration = htole16(vap->iv_quiet_duration);
1928	quiet->offset = htole16(vap->iv_quiet_offset);
1929	return frm + sizeof(*quiet);
1930}
1931
1932/*
1933 * Add an 11h Channel Switch Announcement element to a frame.
1934 * Note that we use the per-vap CSA count to adjust the global
1935 * counter so we can use this routine to form probe response
1936 * frames and get the current count.
1937 */
1938static uint8_t *
1939ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1940{
1941	struct ieee80211com *ic = vap->iv_ic;
1942	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1943
1944	csa->csa_ie = IEEE80211_ELEMID_CSA;
1945	csa->csa_len = 3;
1946	csa->csa_mode = 1;		/* XXX force quiet on channel */
1947	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1948	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1949	return frm + sizeof(*csa);
1950}
1951
1952/*
1953 * Add an 11h country information element to a frame.
1954 */
1955static uint8_t *
1956ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1957{
1958
1959	if (ic->ic_countryie == NULL ||
1960	    ic->ic_countryie_chan != ic->ic_bsschan) {
1961		/*
1962		 * Handle lazy construction of ie.  This is done on
1963		 * first use and after a channel change that requires
1964		 * re-calculation.
1965		 */
1966		if (ic->ic_countryie != NULL)
1967			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
1968		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1969		if (ic->ic_countryie == NULL)
1970			return frm;
1971		ic->ic_countryie_chan = ic->ic_bsschan;
1972	}
1973	return add_appie(frm, ic->ic_countryie);
1974}
1975
1976uint8_t *
1977ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1978{
1979	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1980		return (add_ie(frm, vap->iv_wpa_ie));
1981	else {
1982		/* XXX else complain? */
1983		return (frm);
1984	}
1985}
1986
1987uint8_t *
1988ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
1989{
1990	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
1991		return (add_ie(frm, vap->iv_rsn_ie));
1992	else {
1993		/* XXX else complain? */
1994		return (frm);
1995	}
1996}
1997
1998uint8_t *
1999ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2000{
2001	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2002		*frm++ = IEEE80211_ELEMID_QOS;
2003		*frm++ = 1;
2004		*frm++ = 0;
2005	}
2006
2007	return (frm);
2008}
2009
2010/*
2011 * Send a probe request frame with the specified ssid
2012 * and any optional information element data.
2013 */
2014int
2015ieee80211_send_probereq(struct ieee80211_node *ni,
2016	const uint8_t sa[IEEE80211_ADDR_LEN],
2017	const uint8_t da[IEEE80211_ADDR_LEN],
2018	const uint8_t bssid[IEEE80211_ADDR_LEN],
2019	const uint8_t *ssid, size_t ssidlen)
2020{
2021	struct ieee80211vap *vap = ni->ni_vap;
2022	struct ieee80211com *ic = ni->ni_ic;
2023	const struct ieee80211_txparam *tp;
2024	struct ieee80211_bpf_params params;
2025	struct ieee80211_frame *wh;
2026	const struct ieee80211_rateset *rs;
2027	struct mbuf *m;
2028	uint8_t *frm;
2029	int ret;
2030
2031	if (vap->iv_state == IEEE80211_S_CAC) {
2032		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2033		    "block %s frame in CAC state", "probe request");
2034		vap->iv_stats.is_tx_badstate++;
2035		return EIO;		/* XXX */
2036	}
2037
2038	/*
2039	 * Hold a reference on the node so it doesn't go away until after
2040	 * the xmit is complete all the way in the driver.  On error we
2041	 * will remove our reference.
2042	 */
2043	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2044		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2045		__func__, __LINE__,
2046		ni, ether_sprintf(ni->ni_macaddr),
2047		ieee80211_node_refcnt(ni)+1);
2048	ieee80211_ref_node(ni);
2049
2050	/*
2051	 * prreq frame format
2052	 *	[tlv] ssid
2053	 *	[tlv] supported rates
2054	 *	[tlv] RSN (optional)
2055	 *	[tlv] extended supported rates
2056	 *	[tlv] WPA (optional)
2057	 *	[tlv] user-specified ie's
2058	 */
2059	m = ieee80211_getmgtframe(&frm,
2060		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2061	       	 2 + IEEE80211_NWID_LEN
2062	       + 2 + IEEE80211_RATE_SIZE
2063	       + sizeof(struct ieee80211_ie_wpa)
2064	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2065	       + sizeof(struct ieee80211_ie_wpa)
2066	       + (vap->iv_appie_probereq != NULL ?
2067		   vap->iv_appie_probereq->ie_len : 0)
2068	);
2069	if (m == NULL) {
2070		vap->iv_stats.is_tx_nobuf++;
2071		ieee80211_free_node(ni);
2072		return ENOMEM;
2073	}
2074
2075	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2076	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2077	frm = ieee80211_add_rates(frm, rs);
2078	frm = ieee80211_add_rsn(frm, vap);
2079	frm = ieee80211_add_xrates(frm, rs);
2080	frm = ieee80211_add_wpa(frm, vap);
2081	if (vap->iv_appie_probereq != NULL)
2082		frm = add_appie(frm, vap->iv_appie_probereq);
2083	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2084
2085	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2086	    ("leading space %zd", M_LEADINGSPACE(m)));
2087	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2088	if (m == NULL) {
2089		/* NB: cannot happen */
2090		ieee80211_free_node(ni);
2091		return ENOMEM;
2092	}
2093
2094	IEEE80211_TX_LOCK(ic);
2095	wh = mtod(m, struct ieee80211_frame *);
2096	ieee80211_send_setup(ni, m,
2097	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2098	     IEEE80211_NONQOS_TID, sa, da, bssid);
2099	/* XXX power management? */
2100	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2101
2102	M_WME_SETAC(m, WME_AC_BE);
2103
2104	IEEE80211_NODE_STAT(ni, tx_probereq);
2105	IEEE80211_NODE_STAT(ni, tx_mgmt);
2106
2107	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2108	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2109	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2110	    ssidlen, ssid);
2111
2112	memset(&params, 0, sizeof(params));
2113	params.ibp_pri = M_WME_GETAC(m);
2114	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2115	params.ibp_rate0 = tp->mgmtrate;
2116	if (IEEE80211_IS_MULTICAST(da)) {
2117		params.ibp_flags |= IEEE80211_BPF_NOACK;
2118		params.ibp_try0 = 1;
2119	} else
2120		params.ibp_try0 = tp->maxretry;
2121	params.ibp_power = ni->ni_txpower;
2122	ret = ieee80211_raw_output(vap, ni, m, &params);
2123	IEEE80211_TX_UNLOCK(ic);
2124	return (ret);
2125}
2126
2127/*
2128 * Calculate capability information for mgt frames.
2129 */
2130uint16_t
2131ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2132{
2133	struct ieee80211com *ic = vap->iv_ic;
2134	uint16_t capinfo;
2135
2136	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2137
2138	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2139		capinfo = IEEE80211_CAPINFO_ESS;
2140	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2141		capinfo = IEEE80211_CAPINFO_IBSS;
2142	else
2143		capinfo = 0;
2144	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2145		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2146	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2147	    IEEE80211_IS_CHAN_2GHZ(chan))
2148		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2149	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2150		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2151	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2152		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2153	return capinfo;
2154}
2155
2156/*
2157 * Send a management frame.  The node is for the destination (or ic_bss
2158 * when in station mode).  Nodes other than ic_bss have their reference
2159 * count bumped to reflect our use for an indeterminant time.
2160 */
2161int
2162ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2163{
2164#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2165#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2166	struct ieee80211vap *vap = ni->ni_vap;
2167	struct ieee80211com *ic = ni->ni_ic;
2168	struct ieee80211_node *bss = vap->iv_bss;
2169	struct ieee80211_bpf_params params;
2170	struct mbuf *m;
2171	uint8_t *frm;
2172	uint16_t capinfo;
2173	int has_challenge, is_shared_key, ret, status;
2174
2175	KASSERT(ni != NULL, ("null node"));
2176
2177	/*
2178	 * Hold a reference on the node so it doesn't go away until after
2179	 * the xmit is complete all the way in the driver.  On error we
2180	 * will remove our reference.
2181	 */
2182	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2183		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2184		__func__, __LINE__,
2185		ni, ether_sprintf(ni->ni_macaddr),
2186		ieee80211_node_refcnt(ni)+1);
2187	ieee80211_ref_node(ni);
2188
2189	memset(&params, 0, sizeof(params));
2190	switch (type) {
2191
2192	case IEEE80211_FC0_SUBTYPE_AUTH:
2193		status = arg >> 16;
2194		arg &= 0xffff;
2195		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2196		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2197		    ni->ni_challenge != NULL);
2198
2199		/*
2200		 * Deduce whether we're doing open authentication or
2201		 * shared key authentication.  We do the latter if
2202		 * we're in the middle of a shared key authentication
2203		 * handshake or if we're initiating an authentication
2204		 * request and configured to use shared key.
2205		 */
2206		is_shared_key = has_challenge ||
2207		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2208		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2209		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2210
2211		m = ieee80211_getmgtframe(&frm,
2212			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2213			  3 * sizeof(uint16_t)
2214			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2215				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2216		);
2217		if (m == NULL)
2218			senderr(ENOMEM, is_tx_nobuf);
2219
2220		((uint16_t *)frm)[0] =
2221		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2222		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2223		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2224		((uint16_t *)frm)[2] = htole16(status);/* status */
2225
2226		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2227			((uint16_t *)frm)[3] =
2228			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2229			    IEEE80211_ELEMID_CHALLENGE);
2230			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2231			    IEEE80211_CHALLENGE_LEN);
2232			m->m_pkthdr.len = m->m_len =
2233				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2234			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2235				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2236				    "request encrypt frame (%s)", __func__);
2237				/* mark frame for encryption */
2238				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2239			}
2240		} else
2241			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2242
2243		/* XXX not right for shared key */
2244		if (status == IEEE80211_STATUS_SUCCESS)
2245			IEEE80211_NODE_STAT(ni, tx_auth);
2246		else
2247			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2248
2249		if (vap->iv_opmode == IEEE80211_M_STA)
2250			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2251				(void *) vap->iv_state);
2252		break;
2253
2254	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2255		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2256		    "send station deauthenticate (reason %d)", arg);
2257		m = ieee80211_getmgtframe(&frm,
2258			ic->ic_headroom + sizeof(struct ieee80211_frame),
2259			sizeof(uint16_t));
2260		if (m == NULL)
2261			senderr(ENOMEM, is_tx_nobuf);
2262		*(uint16_t *)frm = htole16(arg);	/* reason */
2263		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2264
2265		IEEE80211_NODE_STAT(ni, tx_deauth);
2266		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2267
2268		ieee80211_node_unauthorize(ni);		/* port closed */
2269		break;
2270
2271	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2272	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2273		/*
2274		 * asreq frame format
2275		 *	[2] capability information
2276		 *	[2] listen interval
2277		 *	[6*] current AP address (reassoc only)
2278		 *	[tlv] ssid
2279		 *	[tlv] supported rates
2280		 *	[tlv] extended supported rates
2281		 *	[4] power capability (optional)
2282		 *	[28] supported channels (optional)
2283		 *	[tlv] HT capabilities
2284		 *	[tlv] WME (optional)
2285		 *	[tlv] Vendor OUI HT capabilities (optional)
2286		 *	[tlv] Atheros capabilities (if negotiated)
2287		 *	[tlv] AppIE's (optional)
2288		 */
2289		m = ieee80211_getmgtframe(&frm,
2290			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2291			 sizeof(uint16_t)
2292		       + sizeof(uint16_t)
2293		       + IEEE80211_ADDR_LEN
2294		       + 2 + IEEE80211_NWID_LEN
2295		       + 2 + IEEE80211_RATE_SIZE
2296		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2297		       + 4
2298		       + 2 + 26
2299		       + sizeof(struct ieee80211_wme_info)
2300		       + sizeof(struct ieee80211_ie_htcap)
2301		       + 4 + sizeof(struct ieee80211_ie_htcap)
2302#ifdef IEEE80211_SUPPORT_SUPERG
2303		       + sizeof(struct ieee80211_ath_ie)
2304#endif
2305		       + (vap->iv_appie_wpa != NULL ?
2306				vap->iv_appie_wpa->ie_len : 0)
2307		       + (vap->iv_appie_assocreq != NULL ?
2308				vap->iv_appie_assocreq->ie_len : 0)
2309		);
2310		if (m == NULL)
2311			senderr(ENOMEM, is_tx_nobuf);
2312
2313		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2314		    ("wrong mode %u", vap->iv_opmode));
2315		capinfo = IEEE80211_CAPINFO_ESS;
2316		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2317			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2318		/*
2319		 * NB: Some 11a AP's reject the request when
2320		 *     short premable is set.
2321		 */
2322		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2323		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2324			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2325		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2326		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2327			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2328		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2329		    (vap->iv_flags & IEEE80211_F_DOTH))
2330			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2331		*(uint16_t *)frm = htole16(capinfo);
2332		frm += 2;
2333
2334		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2335		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2336						    bss->ni_intval));
2337		frm += 2;
2338
2339		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2340			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2341			frm += IEEE80211_ADDR_LEN;
2342		}
2343
2344		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2345		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2346		frm = ieee80211_add_rsn(frm, vap);
2347		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2348		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2349			frm = ieee80211_add_powercapability(frm,
2350			    ic->ic_curchan);
2351			frm = ieee80211_add_supportedchannels(frm, ic);
2352		}
2353
2354		/*
2355		 * Check the channel - we may be using an 11n NIC with an
2356		 * 11n capable station, but we're configured to be an 11b
2357		 * channel.
2358		 */
2359		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2360		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2361		    ni->ni_ies.htcap_ie != NULL &&
2362		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2363			frm = ieee80211_add_htcap(frm, ni);
2364		}
2365		frm = ieee80211_add_wpa(frm, vap);
2366		if ((ic->ic_flags & IEEE80211_F_WME) &&
2367		    ni->ni_ies.wme_ie != NULL)
2368			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2369
2370		/*
2371		 * Same deal - only send HT info if we're on an 11n
2372		 * capable channel.
2373		 */
2374		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2375		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2376		    ni->ni_ies.htcap_ie != NULL &&
2377		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2378			frm = ieee80211_add_htcap_vendor(frm, ni);
2379		}
2380#ifdef IEEE80211_SUPPORT_SUPERG
2381		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2382			frm = ieee80211_add_ath(frm,
2383				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2384				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2385				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2386				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2387		}
2388#endif /* IEEE80211_SUPPORT_SUPERG */
2389		if (vap->iv_appie_assocreq != NULL)
2390			frm = add_appie(frm, vap->iv_appie_assocreq);
2391		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2392
2393		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2394			(void *) vap->iv_state);
2395		break;
2396
2397	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2398	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2399		/*
2400		 * asresp frame format
2401		 *	[2] capability information
2402		 *	[2] status
2403		 *	[2] association ID
2404		 *	[tlv] supported rates
2405		 *	[tlv] extended supported rates
2406		 *	[tlv] HT capabilities (standard, if STA enabled)
2407		 *	[tlv] HT information (standard, if STA enabled)
2408		 *	[tlv] WME (if configured and STA enabled)
2409		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2410		 *	[tlv] HT information (vendor OUI, if STA enabled)
2411		 *	[tlv] Atheros capabilities (if STA enabled)
2412		 *	[tlv] AppIE's (optional)
2413		 */
2414		m = ieee80211_getmgtframe(&frm,
2415			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2416			 sizeof(uint16_t)
2417		       + sizeof(uint16_t)
2418		       + sizeof(uint16_t)
2419		       + 2 + IEEE80211_RATE_SIZE
2420		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2421		       + sizeof(struct ieee80211_ie_htcap) + 4
2422		       + sizeof(struct ieee80211_ie_htinfo) + 4
2423		       + sizeof(struct ieee80211_wme_param)
2424#ifdef IEEE80211_SUPPORT_SUPERG
2425		       + sizeof(struct ieee80211_ath_ie)
2426#endif
2427		       + (vap->iv_appie_assocresp != NULL ?
2428				vap->iv_appie_assocresp->ie_len : 0)
2429		);
2430		if (m == NULL)
2431			senderr(ENOMEM, is_tx_nobuf);
2432
2433		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2434		*(uint16_t *)frm = htole16(capinfo);
2435		frm += 2;
2436
2437		*(uint16_t *)frm = htole16(arg);	/* status */
2438		frm += 2;
2439
2440		if (arg == IEEE80211_STATUS_SUCCESS) {
2441			*(uint16_t *)frm = htole16(ni->ni_associd);
2442			IEEE80211_NODE_STAT(ni, tx_assoc);
2443		} else
2444			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2445		frm += 2;
2446
2447		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2448		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2449		/* NB: respond according to what we received */
2450		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2451			frm = ieee80211_add_htcap(frm, ni);
2452			frm = ieee80211_add_htinfo(frm, ni);
2453		}
2454		if ((vap->iv_flags & IEEE80211_F_WME) &&
2455		    ni->ni_ies.wme_ie != NULL)
2456			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2457		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2458			frm = ieee80211_add_htcap_vendor(frm, ni);
2459			frm = ieee80211_add_htinfo_vendor(frm, ni);
2460		}
2461#ifdef IEEE80211_SUPPORT_SUPERG
2462		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2463			frm = ieee80211_add_ath(frm,
2464				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2465				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2466				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2467				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2468#endif /* IEEE80211_SUPPORT_SUPERG */
2469		if (vap->iv_appie_assocresp != NULL)
2470			frm = add_appie(frm, vap->iv_appie_assocresp);
2471		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2472		break;
2473
2474	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2475		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2476		    "send station disassociate (reason %d)", arg);
2477		m = ieee80211_getmgtframe(&frm,
2478			ic->ic_headroom + sizeof(struct ieee80211_frame),
2479			sizeof(uint16_t));
2480		if (m == NULL)
2481			senderr(ENOMEM, is_tx_nobuf);
2482		*(uint16_t *)frm = htole16(arg);	/* reason */
2483		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2484
2485		IEEE80211_NODE_STAT(ni, tx_disassoc);
2486		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2487		break;
2488
2489	default:
2490		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2491		    "invalid mgmt frame type %u", type);
2492		senderr(EINVAL, is_tx_unknownmgt);
2493		/* NOTREACHED */
2494	}
2495
2496	/* NB: force non-ProbeResp frames to the highest queue */
2497	params.ibp_pri = WME_AC_VO;
2498	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2499	/* NB: we know all frames are unicast */
2500	params.ibp_try0 = bss->ni_txparms->maxretry;
2501	params.ibp_power = bss->ni_txpower;
2502	return ieee80211_mgmt_output(ni, m, type, &params);
2503bad:
2504	ieee80211_free_node(ni);
2505	return ret;
2506#undef senderr
2507#undef HTFLAGS
2508}
2509
2510/*
2511 * Return an mbuf with a probe response frame in it.
2512 * Space is left to prepend and 802.11 header at the
2513 * front but it's left to the caller to fill in.
2514 */
2515struct mbuf *
2516ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2517{
2518	struct ieee80211vap *vap = bss->ni_vap;
2519	struct ieee80211com *ic = bss->ni_ic;
2520	const struct ieee80211_rateset *rs;
2521	struct mbuf *m;
2522	uint16_t capinfo;
2523	uint8_t *frm;
2524
2525	/*
2526	 * probe response frame format
2527	 *	[8] time stamp
2528	 *	[2] beacon interval
2529	 *	[2] cabability information
2530	 *	[tlv] ssid
2531	 *	[tlv] supported rates
2532	 *	[tlv] parameter set (FH/DS)
2533	 *	[tlv] parameter set (IBSS)
2534	 *	[tlv] country (optional)
2535	 *	[3] power control (optional)
2536	 *	[5] channel switch announcement (CSA) (optional)
2537	 *	[tlv] extended rate phy (ERP)
2538	 *	[tlv] extended supported rates
2539	 *	[tlv] RSN (optional)
2540	 *	[tlv] HT capabilities
2541	 *	[tlv] HT information
2542	 *	[tlv] WPA (optional)
2543	 *	[tlv] WME (optional)
2544	 *	[tlv] Vendor OUI HT capabilities (optional)
2545	 *	[tlv] Vendor OUI HT information (optional)
2546	 *	[tlv] Atheros capabilities
2547	 *	[tlv] AppIE's (optional)
2548	 *	[tlv] Mesh ID (MBSS)
2549	 *	[tlv] Mesh Conf (MBSS)
2550	 */
2551	m = ieee80211_getmgtframe(&frm,
2552		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2553		 8
2554	       + sizeof(uint16_t)
2555	       + sizeof(uint16_t)
2556	       + 2 + IEEE80211_NWID_LEN
2557	       + 2 + IEEE80211_RATE_SIZE
2558	       + 7	/* max(7,3) */
2559	       + IEEE80211_COUNTRY_MAX_SIZE
2560	       + 3
2561	       + sizeof(struct ieee80211_csa_ie)
2562	       + sizeof(struct ieee80211_quiet_ie)
2563	       + 3
2564	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2565	       + sizeof(struct ieee80211_ie_wpa)
2566	       + sizeof(struct ieee80211_ie_htcap)
2567	       + sizeof(struct ieee80211_ie_htinfo)
2568	       + sizeof(struct ieee80211_ie_wpa)
2569	       + sizeof(struct ieee80211_wme_param)
2570	       + 4 + sizeof(struct ieee80211_ie_htcap)
2571	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2572#ifdef IEEE80211_SUPPORT_SUPERG
2573	       + sizeof(struct ieee80211_ath_ie)
2574#endif
2575#ifdef IEEE80211_SUPPORT_MESH
2576	       + 2 + IEEE80211_MESHID_LEN
2577	       + sizeof(struct ieee80211_meshconf_ie)
2578#endif
2579	       + (vap->iv_appie_proberesp != NULL ?
2580			vap->iv_appie_proberesp->ie_len : 0)
2581	);
2582	if (m == NULL) {
2583		vap->iv_stats.is_tx_nobuf++;
2584		return NULL;
2585	}
2586
2587	memset(frm, 0, 8);	/* timestamp should be filled later */
2588	frm += 8;
2589	*(uint16_t *)frm = htole16(bss->ni_intval);
2590	frm += 2;
2591	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2592	*(uint16_t *)frm = htole16(capinfo);
2593	frm += 2;
2594
2595	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2596	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2597	frm = ieee80211_add_rates(frm, rs);
2598
2599	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2600		*frm++ = IEEE80211_ELEMID_FHPARMS;
2601		*frm++ = 5;
2602		*frm++ = bss->ni_fhdwell & 0x00ff;
2603		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2604		*frm++ = IEEE80211_FH_CHANSET(
2605		    ieee80211_chan2ieee(ic, bss->ni_chan));
2606		*frm++ = IEEE80211_FH_CHANPAT(
2607		    ieee80211_chan2ieee(ic, bss->ni_chan));
2608		*frm++ = bss->ni_fhindex;
2609	} else {
2610		*frm++ = IEEE80211_ELEMID_DSPARMS;
2611		*frm++ = 1;
2612		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2613	}
2614
2615	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2616		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2617		*frm++ = 2;
2618		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2619	}
2620	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2621	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2622		frm = ieee80211_add_countryie(frm, ic);
2623	if (vap->iv_flags & IEEE80211_F_DOTH) {
2624		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2625			frm = ieee80211_add_powerconstraint(frm, vap);
2626		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2627			frm = ieee80211_add_csa(frm, vap);
2628	}
2629	if (vap->iv_flags & IEEE80211_F_DOTH) {
2630		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2631		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2632			if (vap->iv_quiet)
2633				frm = ieee80211_add_quiet(frm, vap);
2634		}
2635	}
2636	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2637		frm = ieee80211_add_erp(frm, ic);
2638	frm = ieee80211_add_xrates(frm, rs);
2639	frm = ieee80211_add_rsn(frm, vap);
2640	/*
2641	 * NB: legacy 11b clients do not get certain ie's.
2642	 *     The caller identifies such clients by passing
2643	 *     a token in legacy to us.  Could expand this to be
2644	 *     any legacy client for stuff like HT ie's.
2645	 */
2646	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2647	    legacy != IEEE80211_SEND_LEGACY_11B) {
2648		frm = ieee80211_add_htcap(frm, bss);
2649		frm = ieee80211_add_htinfo(frm, bss);
2650	}
2651	frm = ieee80211_add_wpa(frm, vap);
2652	if (vap->iv_flags & IEEE80211_F_WME)
2653		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2654	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2655	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2656	    legacy != IEEE80211_SEND_LEGACY_11B) {
2657		frm = ieee80211_add_htcap_vendor(frm, bss);
2658		frm = ieee80211_add_htinfo_vendor(frm, bss);
2659	}
2660#ifdef IEEE80211_SUPPORT_SUPERG
2661	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2662	    legacy != IEEE80211_SEND_LEGACY_11B)
2663		frm = ieee80211_add_athcaps(frm, bss);
2664#endif
2665	if (vap->iv_appie_proberesp != NULL)
2666		frm = add_appie(frm, vap->iv_appie_proberesp);
2667#ifdef IEEE80211_SUPPORT_MESH
2668	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2669		frm = ieee80211_add_meshid(frm, vap);
2670		frm = ieee80211_add_meshconf(frm, vap);
2671	}
2672#endif
2673	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2674
2675	return m;
2676}
2677
2678/*
2679 * Send a probe response frame to the specified mac address.
2680 * This does not go through the normal mgt frame api so we
2681 * can specify the destination address and re-use the bss node
2682 * for the sta reference.
2683 */
2684int
2685ieee80211_send_proberesp(struct ieee80211vap *vap,
2686	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2687{
2688	struct ieee80211_node *bss = vap->iv_bss;
2689	struct ieee80211com *ic = vap->iv_ic;
2690	struct ieee80211_frame *wh;
2691	struct mbuf *m;
2692	int ret;
2693
2694	if (vap->iv_state == IEEE80211_S_CAC) {
2695		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2696		    "block %s frame in CAC state", "probe response");
2697		vap->iv_stats.is_tx_badstate++;
2698		return EIO;		/* XXX */
2699	}
2700
2701	/*
2702	 * Hold a reference on the node so it doesn't go away until after
2703	 * the xmit is complete all the way in the driver.  On error we
2704	 * will remove our reference.
2705	 */
2706	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2707	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2708	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2709	    ieee80211_node_refcnt(bss)+1);
2710	ieee80211_ref_node(bss);
2711
2712	m = ieee80211_alloc_proberesp(bss, legacy);
2713	if (m == NULL) {
2714		ieee80211_free_node(bss);
2715		return ENOMEM;
2716	}
2717
2718	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2719	KASSERT(m != NULL, ("no room for header"));
2720
2721	IEEE80211_TX_LOCK(ic);
2722	wh = mtod(m, struct ieee80211_frame *);
2723	ieee80211_send_setup(bss, m,
2724	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2725	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2726	/* XXX power management? */
2727	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2728
2729	M_WME_SETAC(m, WME_AC_BE);
2730
2731	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2732	    "send probe resp on channel %u to %s%s\n",
2733	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2734	    legacy ? " <legacy>" : "");
2735	IEEE80211_NODE_STAT(bss, tx_mgmt);
2736
2737	ret = ieee80211_raw_output(vap, bss, m, NULL);
2738	IEEE80211_TX_UNLOCK(ic);
2739	return (ret);
2740}
2741
2742/*
2743 * Allocate and build a RTS (Request To Send) control frame.
2744 */
2745struct mbuf *
2746ieee80211_alloc_rts(struct ieee80211com *ic,
2747	const uint8_t ra[IEEE80211_ADDR_LEN],
2748	const uint8_t ta[IEEE80211_ADDR_LEN],
2749	uint16_t dur)
2750{
2751	struct ieee80211_frame_rts *rts;
2752	struct mbuf *m;
2753
2754	/* XXX honor ic_headroom */
2755	m = m_gethdr(M_NOWAIT, MT_DATA);
2756	if (m != NULL) {
2757		rts = mtod(m, struct ieee80211_frame_rts *);
2758		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2759			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2760		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2761		*(u_int16_t *)rts->i_dur = htole16(dur);
2762		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2763		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2764
2765		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2766	}
2767	return m;
2768}
2769
2770/*
2771 * Allocate and build a CTS (Clear To Send) control frame.
2772 */
2773struct mbuf *
2774ieee80211_alloc_cts(struct ieee80211com *ic,
2775	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2776{
2777	struct ieee80211_frame_cts *cts;
2778	struct mbuf *m;
2779
2780	/* XXX honor ic_headroom */
2781	m = m_gethdr(M_NOWAIT, MT_DATA);
2782	if (m != NULL) {
2783		cts = mtod(m, struct ieee80211_frame_cts *);
2784		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2785			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2786		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2787		*(u_int16_t *)cts->i_dur = htole16(dur);
2788		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2789
2790		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2791	}
2792	return m;
2793}
2794
2795static void
2796ieee80211_tx_mgt_timeout(void *arg)
2797{
2798	struct ieee80211vap *vap = arg;
2799
2800	IEEE80211_LOCK(vap->iv_ic);
2801	if (vap->iv_state != IEEE80211_S_INIT &&
2802	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2803		/*
2804		 * NB: it's safe to specify a timeout as the reason here;
2805		 *     it'll only be used in the right state.
2806		 */
2807		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2808			IEEE80211_SCAN_FAIL_TIMEOUT);
2809	}
2810	IEEE80211_UNLOCK(vap->iv_ic);
2811}
2812
2813/*
2814 * This is the callback set on net80211-sourced transmitted
2815 * authentication request frames.
2816 *
2817 * This does a couple of things:
2818 *
2819 * + If the frame transmitted was a success, it schedules a future
2820 *   event which will transition the interface to scan.
2821 *   If a state transition _then_ occurs before that event occurs,
2822 *   said state transition will cancel this callout.
2823 *
2824 * + If the frame transmit was a failure, it immediately schedules
2825 *   the transition back to scan.
2826 */
2827static void
2828ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2829{
2830	struct ieee80211vap *vap = ni->ni_vap;
2831	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2832
2833	/*
2834	 * Frame transmit completed; arrange timer callback.  If
2835	 * transmit was successfuly we wait for response.  Otherwise
2836	 * we arrange an immediate callback instead of doing the
2837	 * callback directly since we don't know what state the driver
2838	 * is in (e.g. what locks it is holding).  This work should
2839	 * not be too time-critical and not happen too often so the
2840	 * added overhead is acceptable.
2841	 *
2842	 * XXX what happens if !acked but response shows up before callback?
2843	 */
2844	if (vap->iv_state == ostate) {
2845		callout_reset(&vap->iv_mgtsend,
2846			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2847			ieee80211_tx_mgt_timeout, vap);
2848	}
2849}
2850
2851static void
2852ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2853	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2854{
2855	struct ieee80211vap *vap = ni->ni_vap;
2856	struct ieee80211com *ic = ni->ni_ic;
2857	struct ieee80211_rateset *rs = &ni->ni_rates;
2858	uint16_t capinfo;
2859
2860	/*
2861	 * beacon frame format
2862	 *	[8] time stamp
2863	 *	[2] beacon interval
2864	 *	[2] cabability information
2865	 *	[tlv] ssid
2866	 *	[tlv] supported rates
2867	 *	[3] parameter set (DS)
2868	 *	[8] CF parameter set (optional)
2869	 *	[tlv] parameter set (IBSS/TIM)
2870	 *	[tlv] country (optional)
2871	 *	[3] power control (optional)
2872	 *	[5] channel switch announcement (CSA) (optional)
2873	 *	[tlv] extended rate phy (ERP)
2874	 *	[tlv] extended supported rates
2875	 *	[tlv] RSN parameters
2876	 *	[tlv] HT capabilities
2877	 *	[tlv] HT information
2878	 * XXX Vendor-specific OIDs (e.g. Atheros)
2879	 *	[tlv] WPA parameters
2880	 *	[tlv] WME parameters
2881	 *	[tlv] Vendor OUI HT capabilities (optional)
2882	 *	[tlv] Vendor OUI HT information (optional)
2883	 *	[tlv] Atheros capabilities (optional)
2884	 *	[tlv] TDMA parameters (optional)
2885	 *	[tlv] Mesh ID (MBSS)
2886	 *	[tlv] Mesh Conf (MBSS)
2887	 *	[tlv] application data (optional)
2888	 */
2889
2890	memset(bo, 0, sizeof(*bo));
2891
2892	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2893	frm += 8;
2894	*(uint16_t *)frm = htole16(ni->ni_intval);
2895	frm += 2;
2896	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2897	bo->bo_caps = (uint16_t *)frm;
2898	*(uint16_t *)frm = htole16(capinfo);
2899	frm += 2;
2900	*frm++ = IEEE80211_ELEMID_SSID;
2901	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2902		*frm++ = ni->ni_esslen;
2903		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2904		frm += ni->ni_esslen;
2905	} else
2906		*frm++ = 0;
2907	frm = ieee80211_add_rates(frm, rs);
2908	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2909		*frm++ = IEEE80211_ELEMID_DSPARMS;
2910		*frm++ = 1;
2911		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2912	}
2913	if (ic->ic_flags & IEEE80211_F_PCF) {
2914		bo->bo_cfp = frm;
2915		frm = ieee80211_add_cfparms(frm, ic);
2916	}
2917	bo->bo_tim = frm;
2918	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2919		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2920		*frm++ = 2;
2921		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2922		bo->bo_tim_len = 0;
2923	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2924	    vap->iv_opmode == IEEE80211_M_MBSS) {
2925		/* TIM IE is the same for Mesh and Hostap */
2926		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2927
2928		tie->tim_ie = IEEE80211_ELEMID_TIM;
2929		tie->tim_len = 4;	/* length */
2930		tie->tim_count = 0;	/* DTIM count */
2931		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2932		tie->tim_bitctl = 0;	/* bitmap control */
2933		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2934		frm += sizeof(struct ieee80211_tim_ie);
2935		bo->bo_tim_len = 1;
2936	}
2937	bo->bo_tim_trailer = frm;
2938	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2939	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2940		frm = ieee80211_add_countryie(frm, ic);
2941	if (vap->iv_flags & IEEE80211_F_DOTH) {
2942		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2943			frm = ieee80211_add_powerconstraint(frm, vap);
2944		bo->bo_csa = frm;
2945		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2946			frm = ieee80211_add_csa(frm, vap);
2947	} else
2948		bo->bo_csa = frm;
2949
2950	if (vap->iv_flags & IEEE80211_F_DOTH) {
2951		bo->bo_quiet = frm;
2952		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2953		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2954			if (vap->iv_quiet)
2955				frm = ieee80211_add_quiet(frm,vap);
2956		}
2957	} else
2958		bo->bo_quiet = frm;
2959
2960	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2961		bo->bo_erp = frm;
2962		frm = ieee80211_add_erp(frm, ic);
2963	}
2964	frm = ieee80211_add_xrates(frm, rs);
2965	frm = ieee80211_add_rsn(frm, vap);
2966	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2967		frm = ieee80211_add_htcap(frm, ni);
2968		bo->bo_htinfo = frm;
2969		frm = ieee80211_add_htinfo(frm, ni);
2970	}
2971	frm = ieee80211_add_wpa(frm, vap);
2972	if (vap->iv_flags & IEEE80211_F_WME) {
2973		bo->bo_wme = frm;
2974		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2975	}
2976	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2977	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2978		frm = ieee80211_add_htcap_vendor(frm, ni);
2979		frm = ieee80211_add_htinfo_vendor(frm, ni);
2980	}
2981#ifdef IEEE80211_SUPPORT_SUPERG
2982	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2983		bo->bo_ath = frm;
2984		frm = ieee80211_add_athcaps(frm, ni);
2985	}
2986#endif
2987#ifdef IEEE80211_SUPPORT_TDMA
2988	if (vap->iv_caps & IEEE80211_C_TDMA) {
2989		bo->bo_tdma = frm;
2990		frm = ieee80211_add_tdma(frm, vap);
2991	}
2992#endif
2993	if (vap->iv_appie_beacon != NULL) {
2994		bo->bo_appie = frm;
2995		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2996		frm = add_appie(frm, vap->iv_appie_beacon);
2997	}
2998#ifdef IEEE80211_SUPPORT_MESH
2999	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3000		frm = ieee80211_add_meshid(frm, vap);
3001		bo->bo_meshconf = frm;
3002		frm = ieee80211_add_meshconf(frm, vap);
3003	}
3004#endif
3005	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3006	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3007	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3008}
3009
3010/*
3011 * Allocate a beacon frame and fillin the appropriate bits.
3012 */
3013struct mbuf *
3014ieee80211_beacon_alloc(struct ieee80211_node *ni,
3015	struct ieee80211_beacon_offsets *bo)
3016{
3017	struct ieee80211vap *vap = ni->ni_vap;
3018	struct ieee80211com *ic = ni->ni_ic;
3019	struct ifnet *ifp = vap->iv_ifp;
3020	struct ieee80211_frame *wh;
3021	struct mbuf *m;
3022	int pktlen;
3023	uint8_t *frm;
3024
3025	/*
3026	 * beacon frame format
3027	 *	[8] time stamp
3028	 *	[2] beacon interval
3029	 *	[2] cabability information
3030	 *	[tlv] ssid
3031	 *	[tlv] supported rates
3032	 *	[3] parameter set (DS)
3033	 *	[8] CF parameter set (optional)
3034	 *	[tlv] parameter set (IBSS/TIM)
3035	 *	[tlv] country (optional)
3036	 *	[3] power control (optional)
3037	 *	[5] channel switch announcement (CSA) (optional)
3038	 *	[tlv] extended rate phy (ERP)
3039	 *	[tlv] extended supported rates
3040	 *	[tlv] RSN parameters
3041	 *	[tlv] HT capabilities
3042	 *	[tlv] HT information
3043	 *	[tlv] Vendor OUI HT capabilities (optional)
3044	 *	[tlv] Vendor OUI HT information (optional)
3045	 * XXX Vendor-specific OIDs (e.g. Atheros)
3046	 *	[tlv] WPA parameters
3047	 *	[tlv] WME parameters
3048	 *	[tlv] TDMA parameters (optional)
3049	 *	[tlv] Mesh ID (MBSS)
3050	 *	[tlv] Mesh Conf (MBSS)
3051	 *	[tlv] application data (optional)
3052	 * NB: we allocate the max space required for the TIM bitmap.
3053	 * XXX how big is this?
3054	 */
3055	pktlen =   8					/* time stamp */
3056		 + sizeof(uint16_t)			/* beacon interval */
3057		 + sizeof(uint16_t)			/* capabilities */
3058		 + 2 + ni->ni_esslen			/* ssid */
3059	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3060	         + 2 + 1				/* DS parameters */
3061		 + 2 + 6				/* CF parameters */
3062		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3063		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3064		 + 2 + 1				/* power control */
3065		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3066		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3067		 + 2 + 1				/* ERP */
3068	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3069		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3070			2*sizeof(struct ieee80211_ie_wpa) : 0)
3071		 /* XXX conditional? */
3072		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3073		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3074		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3075			sizeof(struct ieee80211_wme_param) : 0)
3076#ifdef IEEE80211_SUPPORT_SUPERG
3077		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3078#endif
3079#ifdef IEEE80211_SUPPORT_TDMA
3080		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3081			sizeof(struct ieee80211_tdma_param) : 0)
3082#endif
3083#ifdef IEEE80211_SUPPORT_MESH
3084		 + 2 + ni->ni_meshidlen
3085		 + sizeof(struct ieee80211_meshconf_ie)
3086#endif
3087		 + IEEE80211_MAX_APPIE
3088		 ;
3089	m = ieee80211_getmgtframe(&frm,
3090		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3091	if (m == NULL) {
3092		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3093			"%s: cannot get buf; size %u\n", __func__, pktlen);
3094		vap->iv_stats.is_tx_nobuf++;
3095		return NULL;
3096	}
3097	ieee80211_beacon_construct(m, frm, bo, ni);
3098
3099	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3100	KASSERT(m != NULL, ("no space for 802.11 header?"));
3101	wh = mtod(m, struct ieee80211_frame *);
3102	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3103	    IEEE80211_FC0_SUBTYPE_BEACON;
3104	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3105	*(uint16_t *)wh->i_dur = 0;
3106	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3107	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3108	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3109	*(uint16_t *)wh->i_seq = 0;
3110
3111	return m;
3112}
3113
3114/*
3115 * Update the dynamic parts of a beacon frame based on the current state.
3116 */
3117int
3118ieee80211_beacon_update(struct ieee80211_node *ni,
3119	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
3120{
3121	struct ieee80211vap *vap = ni->ni_vap;
3122	struct ieee80211com *ic = ni->ni_ic;
3123	int len_changed = 0;
3124	uint16_t capinfo;
3125	struct ieee80211_frame *wh;
3126	ieee80211_seq seqno;
3127
3128	IEEE80211_LOCK(ic);
3129	/*
3130	 * Handle 11h channel change when we've reached the count.
3131	 * We must recalculate the beacon frame contents to account
3132	 * for the new channel.  Note we do this only for the first
3133	 * vap that reaches this point; subsequent vaps just update
3134	 * their beacon state to reflect the recalculated channel.
3135	 */
3136	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3137	    vap->iv_csa_count == ic->ic_csa_count) {
3138		vap->iv_csa_count = 0;
3139		/*
3140		 * Effect channel change before reconstructing the beacon
3141		 * frame contents as many places reference ni_chan.
3142		 */
3143		if (ic->ic_csa_newchan != NULL)
3144			ieee80211_csa_completeswitch(ic);
3145		/*
3146		 * NB: ieee80211_beacon_construct clears all pending
3147		 * updates in bo_flags so we don't need to explicitly
3148		 * clear IEEE80211_BEACON_CSA.
3149		 */
3150		ieee80211_beacon_construct(m,
3151		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
3152
3153		/* XXX do WME aggressive mode processing? */
3154		IEEE80211_UNLOCK(ic);
3155		return 1;		/* just assume length changed */
3156	}
3157
3158	wh = mtod(m, struct ieee80211_frame *);
3159	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3160	*(uint16_t *)&wh->i_seq[0] =
3161		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3162	M_SEQNO_SET(m, seqno);
3163
3164	/* XXX faster to recalculate entirely or just changes? */
3165	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3166	*bo->bo_caps = htole16(capinfo);
3167
3168	if (vap->iv_flags & IEEE80211_F_WME) {
3169		struct ieee80211_wme_state *wme = &ic->ic_wme;
3170
3171		/*
3172		 * Check for agressive mode change.  When there is
3173		 * significant high priority traffic in the BSS
3174		 * throttle back BE traffic by using conservative
3175		 * parameters.  Otherwise BE uses agressive params
3176		 * to optimize performance of legacy/non-QoS traffic.
3177		 */
3178		if (wme->wme_flags & WME_F_AGGRMODE) {
3179			if (wme->wme_hipri_traffic >
3180			    wme->wme_hipri_switch_thresh) {
3181				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3182				    "%s: traffic %u, disable aggressive mode\n",
3183				    __func__, wme->wme_hipri_traffic);
3184				wme->wme_flags &= ~WME_F_AGGRMODE;
3185				ieee80211_wme_updateparams_locked(vap);
3186				wme->wme_hipri_traffic =
3187					wme->wme_hipri_switch_hysteresis;
3188			} else
3189				wme->wme_hipri_traffic = 0;
3190		} else {
3191			if (wme->wme_hipri_traffic <=
3192			    wme->wme_hipri_switch_thresh) {
3193				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3194				    "%s: traffic %u, enable aggressive mode\n",
3195				    __func__, wme->wme_hipri_traffic);
3196				wme->wme_flags |= WME_F_AGGRMODE;
3197				ieee80211_wme_updateparams_locked(vap);
3198				wme->wme_hipri_traffic = 0;
3199			} else
3200				wme->wme_hipri_traffic =
3201					wme->wme_hipri_switch_hysteresis;
3202		}
3203		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3204			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3205			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3206		}
3207	}
3208
3209	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3210		ieee80211_ht_update_beacon(vap, bo);
3211		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3212	}
3213#ifdef IEEE80211_SUPPORT_TDMA
3214	if (vap->iv_caps & IEEE80211_C_TDMA) {
3215		/*
3216		 * NB: the beacon is potentially updated every TBTT.
3217		 */
3218		ieee80211_tdma_update_beacon(vap, bo);
3219	}
3220#endif
3221#ifdef IEEE80211_SUPPORT_MESH
3222	if (vap->iv_opmode == IEEE80211_M_MBSS)
3223		ieee80211_mesh_update_beacon(vap, bo);
3224#endif
3225
3226	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3227	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3228		struct ieee80211_tim_ie *tie =
3229			(struct ieee80211_tim_ie *) bo->bo_tim;
3230		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3231			u_int timlen, timoff, i;
3232			/*
3233			 * ATIM/DTIM needs updating.  If it fits in the
3234			 * current space allocated then just copy in the
3235			 * new bits.  Otherwise we need to move any trailing
3236			 * data to make room.  Note that we know there is
3237			 * contiguous space because ieee80211_beacon_allocate
3238			 * insures there is space in the mbuf to write a
3239			 * maximal-size virtual bitmap (based on iv_max_aid).
3240			 */
3241			/*
3242			 * Calculate the bitmap size and offset, copy any
3243			 * trailer out of the way, and then copy in the
3244			 * new bitmap and update the information element.
3245			 * Note that the tim bitmap must contain at least
3246			 * one byte and any offset must be even.
3247			 */
3248			if (vap->iv_ps_pending != 0) {
3249				timoff = 128;		/* impossibly large */
3250				for (i = 0; i < vap->iv_tim_len; i++)
3251					if (vap->iv_tim_bitmap[i]) {
3252						timoff = i &~ 1;
3253						break;
3254					}
3255				KASSERT(timoff != 128, ("tim bitmap empty!"));
3256				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3257					if (vap->iv_tim_bitmap[i])
3258						break;
3259				timlen = 1 + (i - timoff);
3260			} else {
3261				timoff = 0;
3262				timlen = 1;
3263			}
3264			if (timlen != bo->bo_tim_len) {
3265				/* copy up/down trailer */
3266				int adjust = tie->tim_bitmap+timlen
3267					   - bo->bo_tim_trailer;
3268				ovbcopy(bo->bo_tim_trailer,
3269				    bo->bo_tim_trailer+adjust,
3270				    bo->bo_tim_trailer_len);
3271				bo->bo_tim_trailer += adjust;
3272				bo->bo_erp += adjust;
3273				bo->bo_htinfo += adjust;
3274#ifdef IEEE80211_SUPPORT_SUPERG
3275				bo->bo_ath += adjust;
3276#endif
3277#ifdef IEEE80211_SUPPORT_TDMA
3278				bo->bo_tdma += adjust;
3279#endif
3280#ifdef IEEE80211_SUPPORT_MESH
3281				bo->bo_meshconf += adjust;
3282#endif
3283				bo->bo_appie += adjust;
3284				bo->bo_wme += adjust;
3285				bo->bo_csa += adjust;
3286				bo->bo_quiet += adjust;
3287				bo->bo_tim_len = timlen;
3288
3289				/* update information element */
3290				tie->tim_len = 3 + timlen;
3291				tie->tim_bitctl = timoff;
3292				len_changed = 1;
3293			}
3294			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3295				bo->bo_tim_len);
3296
3297			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3298
3299			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3300				"%s: TIM updated, pending %u, off %u, len %u\n",
3301				__func__, vap->iv_ps_pending, timoff, timlen);
3302		}
3303		/* count down DTIM period */
3304		if (tie->tim_count == 0)
3305			tie->tim_count = tie->tim_period - 1;
3306		else
3307			tie->tim_count--;
3308		/* update state for buffered multicast frames on DTIM */
3309		if (mcast && tie->tim_count == 0)
3310			tie->tim_bitctl |= 1;
3311		else
3312			tie->tim_bitctl &= ~1;
3313		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3314			struct ieee80211_csa_ie *csa =
3315			    (struct ieee80211_csa_ie *) bo->bo_csa;
3316
3317			/*
3318			 * Insert or update CSA ie.  If we're just starting
3319			 * to count down to the channel switch then we need
3320			 * to insert the CSA ie.  Otherwise we just need to
3321			 * drop the count.  The actual change happens above
3322			 * when the vap's count reaches the target count.
3323			 */
3324			if (vap->iv_csa_count == 0) {
3325				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3326				bo->bo_erp += sizeof(*csa);
3327				bo->bo_htinfo += sizeof(*csa);
3328				bo->bo_wme += sizeof(*csa);
3329#ifdef IEEE80211_SUPPORT_SUPERG
3330				bo->bo_ath += sizeof(*csa);
3331#endif
3332#ifdef IEEE80211_SUPPORT_TDMA
3333				bo->bo_tdma += sizeof(*csa);
3334#endif
3335#ifdef IEEE80211_SUPPORT_MESH
3336				bo->bo_meshconf += sizeof(*csa);
3337#endif
3338				bo->bo_appie += sizeof(*csa);
3339				bo->bo_csa_trailer_len += sizeof(*csa);
3340				bo->bo_quiet += sizeof(*csa);
3341				bo->bo_tim_trailer_len += sizeof(*csa);
3342				m->m_len += sizeof(*csa);
3343				m->m_pkthdr.len += sizeof(*csa);
3344
3345				ieee80211_add_csa(bo->bo_csa, vap);
3346			} else
3347				csa->csa_count--;
3348			vap->iv_csa_count++;
3349			/* NB: don't clear IEEE80211_BEACON_CSA */
3350		}
3351		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3352		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3353			if (vap->iv_quiet)
3354				ieee80211_add_quiet(bo->bo_quiet, vap);
3355		}
3356		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3357			/*
3358			 * ERP element needs updating.
3359			 */
3360			(void) ieee80211_add_erp(bo->bo_erp, ic);
3361			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3362		}
3363#ifdef IEEE80211_SUPPORT_SUPERG
3364		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3365			ieee80211_add_athcaps(bo->bo_ath, ni);
3366			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3367		}
3368#endif
3369	}
3370	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3371		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3372		int aielen;
3373		uint8_t *frm;
3374
3375		aielen = 0;
3376		if (aie != NULL)
3377			aielen += aie->ie_len;
3378		if (aielen != bo->bo_appie_len) {
3379			/* copy up/down trailer */
3380			int adjust = aielen - bo->bo_appie_len;
3381			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3382				bo->bo_tim_trailer_len);
3383			bo->bo_tim_trailer += adjust;
3384			bo->bo_appie += adjust;
3385			bo->bo_appie_len = aielen;
3386
3387			len_changed = 1;
3388		}
3389		frm = bo->bo_appie;
3390		if (aie != NULL)
3391			frm  = add_appie(frm, aie);
3392		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3393	}
3394	IEEE80211_UNLOCK(ic);
3395
3396	return len_changed;
3397}
3398
3399/*
3400 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3401 * tunnel encapsulation.  The frame is assumed to have an Ethernet
3402 * header at the front that must be stripped before prepending the
3403 * LLC followed by the Ethernet header passed in (with an Ethernet
3404 * type that specifies the payload size).
3405 */
3406struct mbuf *
3407ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3408	const struct ether_header *eh)
3409{
3410	struct llc *llc;
3411	uint16_t payload;
3412
3413	/* XXX optimize by combining m_adj+M_PREPEND */
3414	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3415	llc = mtod(m, struct llc *);
3416	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3417	llc->llc_control = LLC_UI;
3418	llc->llc_snap.org_code[0] = 0;
3419	llc->llc_snap.org_code[1] = 0;
3420	llc->llc_snap.org_code[2] = 0;
3421	llc->llc_snap.ether_type = eh->ether_type;
3422	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3423
3424	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3425	if (m == NULL) {		/* XXX cannot happen */
3426		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3427			"%s: no space for ether_header\n", __func__);
3428		vap->iv_stats.is_tx_nobuf++;
3429		return NULL;
3430	}
3431	ETHER_HEADER_COPY(mtod(m, void *), eh);
3432	mtod(m, struct ether_header *)->ether_type = htons(payload);
3433	return m;
3434}
3435
3436/*
3437 * Complete an mbuf transmission.
3438 *
3439 * For now, this simply processes a completed frame after the
3440 * driver has completed it's transmission and/or retransmission.
3441 * It assumes the frame is an 802.11 encapsulated frame.
3442 *
3443 * Later on it will grow to become the exit path for a given frame
3444 * from the driver and, depending upon how it's been encapsulated
3445 * and already transmitted, it may end up doing A-MPDU retransmission,
3446 * power save requeuing, etc.
3447 *
3448 * In order for the above to work, the driver entry point to this
3449 * must not hold any driver locks.  Thus, the driver needs to delay
3450 * any actual mbuf completion until it can release said locks.
3451 *
3452 * This frees the mbuf and if the mbuf has a node reference,
3453 * the node reference will be freed.
3454 */
3455void
3456ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3457{
3458
3459	if (ni != NULL) {
3460		if (m->m_flags & M_TXCB)
3461			ieee80211_process_callback(ni, m, status);
3462		ieee80211_free_node(ni);
3463	}
3464	m_freem(m);
3465}
3466