ieee80211_output.c revision 254956
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 254956 2013-08-27 14:37:13Z adrian $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/endian.h>
39
40#include <sys/socket.h>
41
42#include <net/bpf.h>
43#include <net/ethernet.h>
44#include <net/if.h>
45#include <net/if_llc.h>
46#include <net/if_media.h>
47#include <net/if_vlan_var.h>
48
49#include <net80211/ieee80211_var.h>
50#include <net80211/ieee80211_regdomain.h>
51#ifdef IEEE80211_SUPPORT_SUPERG
52#include <net80211/ieee80211_superg.h>
53#endif
54#ifdef IEEE80211_SUPPORT_TDMA
55#include <net80211/ieee80211_tdma.h>
56#endif
57#include <net80211/ieee80211_wds.h>
58#include <net80211/ieee80211_mesh.h>
59
60#if defined(INET) || defined(INET6)
61#include <netinet/in.h>
62#endif
63
64#ifdef INET
65#include <netinet/if_ether.h>
66#include <netinet/in_systm.h>
67#include <netinet/ip.h>
68#endif
69#ifdef INET6
70#include <netinet/ip6.h>
71#endif
72
73#include <security/mac/mac_framework.h>
74
75#define	ETHER_HEADER_COPY(dst, src) \
76	memcpy(dst, src, sizeof(struct ether_header))
77
78/* unalligned little endian access */
79#define LE_WRITE_2(p, v) do {				\
80	((uint8_t *)(p))[0] = (v) & 0xff;		\
81	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
82} while (0)
83#define LE_WRITE_4(p, v) do {				\
84	((uint8_t *)(p))[0] = (v) & 0xff;		\
85	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
86	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
87	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
88} while (0)
89
90static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
91	u_int hdrsize, u_int ciphdrsize, u_int mtu);
92static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
93
94#ifdef IEEE80211_DEBUG
95/*
96 * Decide if an outbound management frame should be
97 * printed when debugging is enabled.  This filters some
98 * of the less interesting frames that come frequently
99 * (e.g. beacons).
100 */
101static __inline int
102doprint(struct ieee80211vap *vap, int subtype)
103{
104	switch (subtype) {
105	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
106		return (vap->iv_opmode == IEEE80211_M_IBSS);
107	}
108	return 1;
109}
110#endif
111
112/*
113 * Transmit a frame to the given destination on the given VAP.
114 *
115 * It's up to the caller to figure out the details of who this
116 * is going to and resolving the node.
117 *
118 * This routine takes care of queuing it for power save,
119 * A-MPDU state stuff, fast-frames state stuff, encapsulation
120 * if required, then passing it up to the driver layer.
121 *
122 * This routine (for now) consumes the mbuf and frees the node
123 * reference; it ideally will return a TX status which reflects
124 * whether the mbuf was consumed or not, so the caller can
125 * free the mbuf (if appropriate) and the node reference (again,
126 * if appropriate.)
127 */
128int
129ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
130    struct ieee80211_node *ni)
131{
132	struct ieee80211com *ic = vap->iv_ic;
133	struct ifnet *ifp = vap->iv_ifp;
134	int error;
135
136	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
137	    (m->m_flags & M_PWR_SAV) == 0) {
138		/*
139		 * Station in power save mode; pass the frame
140		 * to the 802.11 layer and continue.  We'll get
141		 * the frame back when the time is right.
142		 * XXX lose WDS vap linkage?
143		 */
144		(void) ieee80211_pwrsave(ni, m);
145		ieee80211_free_node(ni);
146		/* XXX better status? */
147		return (ENOBUFS);
148	}
149	/* calculate priority so drivers can find the tx queue */
150	if (ieee80211_classify(ni, m)) {
151		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
152		    ni->ni_macaddr, NULL,
153		    "%s", "classification failure");
154		vap->iv_stats.is_tx_classify++;
155		ifp->if_oerrors++;
156		m_freem(m);
157		ieee80211_free_node(ni);
158		/* XXX better status? */
159		return (ENOBUFS);
160	}
161	/*
162	 * Stash the node pointer.  Note that we do this after
163	 * any call to ieee80211_dwds_mcast because that code
164	 * uses any existing value for rcvif to identify the
165	 * interface it (might have been) received on.
166	 */
167	m->m_pkthdr.rcvif = (void *)ni;
168
169	BPF_MTAP(ifp, m);		/* 802.3 tx */
170
171
172	/*
173	 * Check if A-MPDU tx aggregation is setup or if we
174	 * should try to enable it.  The sta must be associated
175	 * with HT and A-MPDU enabled for use.  When the policy
176	 * routine decides we should enable A-MPDU we issue an
177	 * ADDBA request and wait for a reply.  The frame being
178	 * encapsulated will go out w/o using A-MPDU, or possibly
179	 * it might be collected by the driver and held/retransmit.
180	 * The default ic_ampdu_enable routine handles staggering
181	 * ADDBA requests in case the receiver NAK's us or we are
182	 * otherwise unable to establish a BA stream.
183	 */
184	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
185	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
186	    (m->m_flags & M_EAPOL) == 0) {
187		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
188		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
189
190		ieee80211_txampdu_count_packet(tap);
191		if (IEEE80211_AMPDU_RUNNING(tap)) {
192			/*
193			 * Operational, mark frame for aggregation.
194			 *
195			 * XXX do tx aggregation here
196			 */
197			m->m_flags |= M_AMPDU_MPDU;
198		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
199		    ic->ic_ampdu_enable(ni, tap)) {
200			/*
201			 * Not negotiated yet, request service.
202			 */
203			ieee80211_ampdu_request(ni, tap);
204			/* XXX hold frame for reply? */
205		}
206	}
207
208#ifdef IEEE80211_SUPPORT_SUPERG
209	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
210		m = ieee80211_ff_check(ni, m);
211		if (m == NULL) {
212			/* NB: any ni ref held on stageq */
213			return (0);
214		}
215	}
216#endif /* IEEE80211_SUPPORT_SUPERG */
217
218	/*
219	 * Grab the TX lock - serialise the TX process from this
220	 * point (where TX state is being checked/modified)
221	 * through to driver queue.
222	 */
223	IEEE80211_TX_LOCK(ic);
224
225	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
226		/*
227		 * Encapsulate the packet in prep for transmission.
228		 */
229		m = ieee80211_encap(vap, ni, m);
230		if (m == NULL) {
231			/* NB: stat+msg handled in ieee80211_encap */
232			IEEE80211_TX_UNLOCK(ic);
233			ieee80211_free_node(ni);
234			/* XXX better status? */
235			return (ENOBUFS);
236		}
237	}
238	error = ieee80211_parent_xmitpkt(ic, m);
239
240	/*
241	 * Unlock at this point - no need to hold it across
242	 * ieee80211_free_node() (ie, the comlock)
243	 */
244	IEEE80211_TX_UNLOCK(ic);
245	if (error != 0) {
246		/* NB: IFQ_HANDOFF reclaims mbuf */
247		ieee80211_free_node(ni);
248	} else {
249		ifp->if_opackets++;
250	}
251	ic->ic_lastdata = ticks;
252
253	return (0);
254}
255
256
257
258/*
259 * Send the given mbuf through the given vap.
260 *
261 * This consumes the mbuf regardless of whether the transmit
262 * was successful or not.
263 *
264 * This does none of the initial checks that ieee80211_start()
265 * does (eg CAC timeout, interface wakeup) - the caller must
266 * do this first.
267 */
268static int
269ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
270{
271#define	IS_DWDS(vap) \
272	(vap->iv_opmode == IEEE80211_M_WDS && \
273	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
274	struct ieee80211com *ic = vap->iv_ic;
275	struct ifnet *ifp = vap->iv_ifp;
276	struct ieee80211_node *ni;
277	struct ether_header *eh;
278
279	/*
280	 * Cancel any background scan.
281	 */
282	if (ic->ic_flags & IEEE80211_F_SCAN)
283		ieee80211_cancel_anyscan(vap);
284	/*
285	 * Find the node for the destination so we can do
286	 * things like power save and fast frames aggregation.
287	 *
288	 * NB: past this point various code assumes the first
289	 *     mbuf has the 802.3 header present (and contiguous).
290	 */
291	ni = NULL;
292	if (m->m_len < sizeof(struct ether_header) &&
293	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
294		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
295		    "discard frame, %s\n", "m_pullup failed");
296		vap->iv_stats.is_tx_nobuf++;	/* XXX */
297		ifp->if_oerrors++;
298		return (ENOBUFS);
299	}
300	eh = mtod(m, struct ether_header *);
301	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
302		if (IS_DWDS(vap)) {
303			/*
304			 * Only unicast frames from the above go out
305			 * DWDS vaps; multicast frames are handled by
306			 * dispatching the frame as it comes through
307			 * the AP vap (see below).
308			 */
309			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
310			    eh->ether_dhost, "mcast", "%s", "on DWDS");
311			vap->iv_stats.is_dwds_mcast++;
312			m_freem(m);
313			/* XXX better status? */
314			return (ENOBUFS);
315		}
316		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
317			/*
318			 * Spam DWDS vap's w/ multicast traffic.
319			 */
320			/* XXX only if dwds in use? */
321			ieee80211_dwds_mcast(vap, m);
322		}
323	}
324#ifdef IEEE80211_SUPPORT_MESH
325	if (vap->iv_opmode != IEEE80211_M_MBSS) {
326#endif
327		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
328		if (ni == NULL) {
329			/* NB: ieee80211_find_txnode does stat+msg */
330			ifp->if_oerrors++;
331			m_freem(m);
332			/* XXX better status? */
333			return (ENOBUFS);
334		}
335		if (ni->ni_associd == 0 &&
336		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
337			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
338			    eh->ether_dhost, NULL,
339			    "sta not associated (type 0x%04x)",
340			    htons(eh->ether_type));
341			vap->iv_stats.is_tx_notassoc++;
342			ifp->if_oerrors++;
343			m_freem(m);
344			ieee80211_free_node(ni);
345			/* XXX better status? */
346			return (ENOBUFS);
347		}
348#ifdef IEEE80211_SUPPORT_MESH
349	} else {
350		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
351			/*
352			 * Proxy station only if configured.
353			 */
354			if (!ieee80211_mesh_isproxyena(vap)) {
355				IEEE80211_DISCARD_MAC(vap,
356				    IEEE80211_MSG_OUTPUT |
357				    IEEE80211_MSG_MESH,
358				    eh->ether_dhost, NULL,
359				    "%s", "proxy not enabled");
360				vap->iv_stats.is_mesh_notproxy++;
361				ifp->if_oerrors++;
362				m_freem(m);
363				/* XXX better status? */
364				return (ENOBUFS);
365			}
366			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
367			    "forward frame from DS SA(%6D), DA(%6D)\n",
368			    eh->ether_shost, ":",
369			    eh->ether_dhost, ":");
370			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
371		}
372		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
373		if (ni == NULL) {
374			/*
375			 * NB: ieee80211_mesh_discover holds/disposes
376			 * frame (e.g. queueing on path discovery).
377			 */
378			ifp->if_oerrors++;
379			/* XXX better status? */
380			return (ENOBUFS);
381		}
382	}
383#endif
384
385	/*
386	 * We've resolved the sender, so attempt to transmit it.
387	 */
388	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
389		return (ENOBUFS);
390	return (0);
391#undef	IS_DWDS
392}
393
394/*
395 * Start method for vap's.  All packets from the stack come
396 * through here.  We handle common processing of the packets
397 * before dispatching them to the underlying device.
398 *
399 * if_transmit() requires that the mbuf be consumed by this call
400 * regardless of the return condition.
401 */
402int
403ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
404{
405	struct ieee80211vap *vap = ifp->if_softc;
406	struct ieee80211com *ic = vap->iv_ic;
407	struct ifnet *parent = ic->ic_ifp;
408
409	/* NB: parent must be up and running */
410	if (!IFNET_IS_UP_RUNNING(parent)) {
411		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
412		    "%s: ignore queue, parent %s not up+running\n",
413		    __func__, parent->if_xname);
414		/* XXX stat */
415		m_freem(m);
416		return (EINVAL);
417	}
418	if (vap->iv_state == IEEE80211_S_SLEEP) {
419		/*
420		 * In power save, wakeup device for transmit.
421		 */
422		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
423		m_freem(m);
424		return (0);
425	}
426	/*
427	 * No data frames go out unless we're running.
428	 * Note in particular this covers CAC and CSA
429	 * states (though maybe we should check muting
430	 * for CSA).
431	 */
432	if (vap->iv_state != IEEE80211_S_RUN) {
433		IEEE80211_LOCK(ic);
434		/* re-check under the com lock to avoid races */
435		if (vap->iv_state != IEEE80211_S_RUN) {
436			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
437			    "%s: ignore queue, in %s state\n",
438			    __func__, ieee80211_state_name[vap->iv_state]);
439			vap->iv_stats.is_tx_badstate++;
440			IEEE80211_UNLOCK(ic);
441			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
442			m_freem(m);
443			return (EINVAL);
444		}
445		IEEE80211_UNLOCK(ic);
446	}
447
448	/*
449	 * Sanitize mbuf flags for net80211 use.  We cannot
450	 * clear M_PWR_SAV or M_MORE_DATA because these may
451	 * be set for frames that are re-submitted from the
452	 * power save queue.
453	 *
454	 * NB: This must be done before ieee80211_classify as
455	 *     it marks EAPOL in frames with M_EAPOL.
456	 */
457	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
458
459	/*
460	 * Bump to the packet transmission path.
461	 * The mbuf will be consumed here.
462	 */
463	return (ieee80211_start_pkt(vap, m));
464}
465
466void
467ieee80211_vap_qflush(struct ifnet *ifp)
468{
469
470	/* Empty for now */
471}
472
473/*
474 * 802.11 raw output routine.
475 */
476int
477ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
478    struct mbuf *m, const struct ieee80211_bpf_params *params)
479{
480	struct ieee80211com *ic = vap->iv_ic;
481
482	return (ic->ic_raw_xmit(ni, m, params));
483}
484
485/*
486 * 802.11 output routine. This is (currently) used only to
487 * connect bpf write calls to the 802.11 layer for injecting
488 * raw 802.11 frames.
489 */
490#if __FreeBSD_version >= 1000031
491int
492ieee80211_output(struct ifnet *ifp, struct mbuf *m,
493	const struct sockaddr *dst, struct route *ro)
494#else
495int
496ieee80211_output(struct ifnet *ifp, struct mbuf *m,
497	struct sockaddr *dst, struct route *ro)
498#endif
499{
500#define senderr(e) do { error = (e); goto bad;} while (0)
501	struct ieee80211_node *ni = NULL;
502	struct ieee80211vap *vap;
503	struct ieee80211_frame *wh;
504	struct ieee80211com *ic = NULL;
505	int error;
506	int ret;
507
508	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
509		/*
510		 * Short-circuit requests if the vap is marked OACTIVE
511		 * as this can happen because a packet came down through
512		 * ieee80211_start before the vap entered RUN state in
513		 * which case it's ok to just drop the frame.  This
514		 * should not be necessary but callers of if_output don't
515		 * check OACTIVE.
516		 */
517		senderr(ENETDOWN);
518	}
519	vap = ifp->if_softc;
520	ic = vap->iv_ic;
521	/*
522	 * Hand to the 802.3 code if not tagged as
523	 * a raw 802.11 frame.
524	 */
525	if (dst->sa_family != AF_IEEE80211)
526		return vap->iv_output(ifp, m, dst, ro);
527#ifdef MAC
528	error = mac_ifnet_check_transmit(ifp, m);
529	if (error)
530		senderr(error);
531#endif
532	if (ifp->if_flags & IFF_MONITOR)
533		senderr(ENETDOWN);
534	if (!IFNET_IS_UP_RUNNING(ifp))
535		senderr(ENETDOWN);
536	if (vap->iv_state == IEEE80211_S_CAC) {
537		IEEE80211_DPRINTF(vap,
538		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
539		    "block %s frame in CAC state\n", "raw data");
540		vap->iv_stats.is_tx_badstate++;
541		senderr(EIO);		/* XXX */
542	} else if (vap->iv_state == IEEE80211_S_SCAN)
543		senderr(EIO);
544	/* XXX bypass bridge, pfil, carp, etc. */
545
546	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
547		senderr(EIO);	/* XXX */
548	wh = mtod(m, struct ieee80211_frame *);
549	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
550	    IEEE80211_FC0_VERSION_0)
551		senderr(EIO);	/* XXX */
552
553	/* locate destination node */
554	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
555	case IEEE80211_FC1_DIR_NODS:
556	case IEEE80211_FC1_DIR_FROMDS:
557		ni = ieee80211_find_txnode(vap, wh->i_addr1);
558		break;
559	case IEEE80211_FC1_DIR_TODS:
560	case IEEE80211_FC1_DIR_DSTODS:
561		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
562			senderr(EIO);	/* XXX */
563		ni = ieee80211_find_txnode(vap, wh->i_addr3);
564		break;
565	default:
566		senderr(EIO);	/* XXX */
567	}
568	if (ni == NULL) {
569		/*
570		 * Permit packets w/ bpf params through regardless
571		 * (see below about sa_len).
572		 */
573		if (dst->sa_len == 0)
574			senderr(EHOSTUNREACH);
575		ni = ieee80211_ref_node(vap->iv_bss);
576	}
577
578	/*
579	 * Sanitize mbuf for net80211 flags leaked from above.
580	 *
581	 * NB: This must be done before ieee80211_classify as
582	 *     it marks EAPOL in frames with M_EAPOL.
583	 */
584	m->m_flags &= ~M_80211_TX;
585
586	/* calculate priority so drivers can find the tx queue */
587	/* XXX assumes an 802.3 frame */
588	if (ieee80211_classify(ni, m))
589		senderr(EIO);		/* XXX */
590
591	ifp->if_opackets++;
592	IEEE80211_NODE_STAT(ni, tx_data);
593	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
594		IEEE80211_NODE_STAT(ni, tx_mcast);
595		m->m_flags |= M_MCAST;
596	} else
597		IEEE80211_NODE_STAT(ni, tx_ucast);
598	/* NB: ieee80211_encap does not include 802.11 header */
599	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
600
601	IEEE80211_TX_LOCK(ic);
602
603	/*
604	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
605	 * present by setting the sa_len field of the sockaddr (yes,
606	 * this is a hack).
607	 * NB: we assume sa_data is suitably aligned to cast.
608	 */
609	ret = ieee80211_raw_output(vap, ni, m,
610	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
611		dst->sa_data : NULL));
612	IEEE80211_TX_UNLOCK(ic);
613	return (ret);
614bad:
615	if (m != NULL)
616		m_freem(m);
617	if (ni != NULL)
618		ieee80211_free_node(ni);
619	ifp->if_oerrors++;
620	return error;
621#undef senderr
622}
623
624/*
625 * Set the direction field and address fields of an outgoing
626 * frame.  Note this should be called early on in constructing
627 * a frame as it sets i_fc[1]; other bits can then be or'd in.
628 */
629void
630ieee80211_send_setup(
631	struct ieee80211_node *ni,
632	struct mbuf *m,
633	int type, int tid,
634	const uint8_t sa[IEEE80211_ADDR_LEN],
635	const uint8_t da[IEEE80211_ADDR_LEN],
636	const uint8_t bssid[IEEE80211_ADDR_LEN])
637{
638#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
639	struct ieee80211vap *vap = ni->ni_vap;
640	struct ieee80211_tx_ampdu *tap;
641	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
642	ieee80211_seq seqno;
643
644	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
645
646	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
647	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
648		switch (vap->iv_opmode) {
649		case IEEE80211_M_STA:
650			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
651			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
652			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
653			IEEE80211_ADDR_COPY(wh->i_addr3, da);
654			break;
655		case IEEE80211_M_IBSS:
656		case IEEE80211_M_AHDEMO:
657			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
658			IEEE80211_ADDR_COPY(wh->i_addr1, da);
659			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
660			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
661			break;
662		case IEEE80211_M_HOSTAP:
663			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
664			IEEE80211_ADDR_COPY(wh->i_addr1, da);
665			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
666			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
667			break;
668		case IEEE80211_M_WDS:
669			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
670			IEEE80211_ADDR_COPY(wh->i_addr1, da);
671			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
672			IEEE80211_ADDR_COPY(wh->i_addr3, da);
673			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
674			break;
675		case IEEE80211_M_MBSS:
676#ifdef IEEE80211_SUPPORT_MESH
677			if (IEEE80211_IS_MULTICAST(da)) {
678				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
679				/* XXX next hop */
680				IEEE80211_ADDR_COPY(wh->i_addr1, da);
681				IEEE80211_ADDR_COPY(wh->i_addr2,
682				    vap->iv_myaddr);
683			} else {
684				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
685				IEEE80211_ADDR_COPY(wh->i_addr1, da);
686				IEEE80211_ADDR_COPY(wh->i_addr2,
687				    vap->iv_myaddr);
688				IEEE80211_ADDR_COPY(wh->i_addr3, da);
689				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
690			}
691#endif
692			break;
693		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
694			break;
695		}
696	} else {
697		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
698		IEEE80211_ADDR_COPY(wh->i_addr1, da);
699		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
700#ifdef IEEE80211_SUPPORT_MESH
701		if (vap->iv_opmode == IEEE80211_M_MBSS)
702			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
703		else
704#endif
705			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
706	}
707	*(uint16_t *)&wh->i_dur[0] = 0;
708
709	tap = &ni->ni_tx_ampdu[tid];
710	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
711		m->m_flags |= M_AMPDU_MPDU;
712	else {
713		seqno = ni->ni_txseqs[tid]++;
714		*(uint16_t *)&wh->i_seq[0] =
715		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
716		M_SEQNO_SET(m, seqno);
717	}
718
719	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
720		m->m_flags |= M_MCAST;
721#undef WH4
722}
723
724/*
725 * Send a management frame to the specified node.  The node pointer
726 * must have a reference as the pointer will be passed to the driver
727 * and potentially held for a long time.  If the frame is successfully
728 * dispatched to the driver, then it is responsible for freeing the
729 * reference (and potentially free'ing up any associated storage);
730 * otherwise deal with reclaiming any reference (on error).
731 */
732int
733ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
734	struct ieee80211_bpf_params *params)
735{
736	struct ieee80211vap *vap = ni->ni_vap;
737	struct ieee80211com *ic = ni->ni_ic;
738	struct ieee80211_frame *wh;
739	int ret;
740
741	KASSERT(ni != NULL, ("null node"));
742
743	if (vap->iv_state == IEEE80211_S_CAC) {
744		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
745		    ni, "block %s frame in CAC state",
746			ieee80211_mgt_subtype_name[
747			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
748				IEEE80211_FC0_SUBTYPE_SHIFT]);
749		vap->iv_stats.is_tx_badstate++;
750		ieee80211_free_node(ni);
751		m_freem(m);
752		return EIO;		/* XXX */
753	}
754
755	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
756	if (m == NULL) {
757		ieee80211_free_node(ni);
758		return ENOMEM;
759	}
760
761	IEEE80211_TX_LOCK(ic);
762
763	wh = mtod(m, struct ieee80211_frame *);
764	ieee80211_send_setup(ni, m,
765	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
766	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
767	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
768		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
769		    "encrypting frame (%s)", __func__);
770		wh->i_fc[1] |= IEEE80211_FC1_WEP;
771	}
772	m->m_flags |= M_ENCAP;		/* mark encapsulated */
773
774	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
775	M_WME_SETAC(m, params->ibp_pri);
776
777#ifdef IEEE80211_DEBUG
778	/* avoid printing too many frames */
779	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
780	    ieee80211_msg_dumppkts(vap)) {
781		printf("[%s] send %s on channel %u\n",
782		    ether_sprintf(wh->i_addr1),
783		    ieee80211_mgt_subtype_name[
784			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
785				IEEE80211_FC0_SUBTYPE_SHIFT],
786		    ieee80211_chan2ieee(ic, ic->ic_curchan));
787	}
788#endif
789	IEEE80211_NODE_STAT(ni, tx_mgmt);
790
791	ret = ieee80211_raw_output(vap, ni, m, params);
792	IEEE80211_TX_UNLOCK(ic);
793	return (ret);
794}
795
796/*
797 * Send a null data frame to the specified node.  If the station
798 * is setup for QoS then a QoS Null Data frame is constructed.
799 * If this is a WDS station then a 4-address frame is constructed.
800 *
801 * NB: the caller is assumed to have setup a node reference
802 *     for use; this is necessary to deal with a race condition
803 *     when probing for inactive stations.  Like ieee80211_mgmt_output
804 *     we must cleanup any node reference on error;  however we
805 *     can safely just unref it as we know it will never be the
806 *     last reference to the node.
807 */
808int
809ieee80211_send_nulldata(struct ieee80211_node *ni)
810{
811	struct ieee80211vap *vap = ni->ni_vap;
812	struct ieee80211com *ic = ni->ni_ic;
813	struct mbuf *m;
814	struct ieee80211_frame *wh;
815	int hdrlen;
816	uint8_t *frm;
817	int ret;
818
819	if (vap->iv_state == IEEE80211_S_CAC) {
820		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
821		    ni, "block %s frame in CAC state", "null data");
822		ieee80211_unref_node(&ni);
823		vap->iv_stats.is_tx_badstate++;
824		return EIO;		/* XXX */
825	}
826
827	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
828		hdrlen = sizeof(struct ieee80211_qosframe);
829	else
830		hdrlen = sizeof(struct ieee80211_frame);
831	/* NB: only WDS vap's get 4-address frames */
832	if (vap->iv_opmode == IEEE80211_M_WDS)
833		hdrlen += IEEE80211_ADDR_LEN;
834	if (ic->ic_flags & IEEE80211_F_DATAPAD)
835		hdrlen = roundup(hdrlen, sizeof(uint32_t));
836
837	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
838	if (m == NULL) {
839		/* XXX debug msg */
840		ieee80211_unref_node(&ni);
841		vap->iv_stats.is_tx_nobuf++;
842		return ENOMEM;
843	}
844	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
845	    ("leading space %zd", M_LEADINGSPACE(m)));
846	M_PREPEND(m, hdrlen, M_NOWAIT);
847	if (m == NULL) {
848		/* NB: cannot happen */
849		ieee80211_free_node(ni);
850		return ENOMEM;
851	}
852
853	IEEE80211_TX_LOCK(ic);
854
855	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
856	if (ni->ni_flags & IEEE80211_NODE_QOS) {
857		const int tid = WME_AC_TO_TID(WME_AC_BE);
858		uint8_t *qos;
859
860		ieee80211_send_setup(ni, m,
861		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
862		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
863
864		if (vap->iv_opmode == IEEE80211_M_WDS)
865			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
866		else
867			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
868		qos[0] = tid & IEEE80211_QOS_TID;
869		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
870			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
871		qos[1] = 0;
872	} else {
873		ieee80211_send_setup(ni, m,
874		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
875		    IEEE80211_NONQOS_TID,
876		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
877	}
878	if (vap->iv_opmode != IEEE80211_M_WDS) {
879		/* NB: power management bit is never sent by an AP */
880		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
881		    vap->iv_opmode != IEEE80211_M_HOSTAP)
882			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
883	}
884	m->m_len = m->m_pkthdr.len = hdrlen;
885	m->m_flags |= M_ENCAP;		/* mark encapsulated */
886
887	M_WME_SETAC(m, WME_AC_BE);
888
889	IEEE80211_NODE_STAT(ni, tx_data);
890
891	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
892	    "send %snull data frame on channel %u, pwr mgt %s",
893	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
894	    ieee80211_chan2ieee(ic, ic->ic_curchan),
895	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
896
897	ret = ieee80211_raw_output(vap, ni, m, NULL);
898	IEEE80211_TX_UNLOCK(ic);
899	return (ret);
900}
901
902/*
903 * Assign priority to a frame based on any vlan tag assigned
904 * to the station and/or any Diffserv setting in an IP header.
905 * Finally, if an ACM policy is setup (in station mode) it's
906 * applied.
907 */
908int
909ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
910{
911	const struct ether_header *eh = mtod(m, struct ether_header *);
912	int v_wme_ac, d_wme_ac, ac;
913
914	/*
915	 * Always promote PAE/EAPOL frames to high priority.
916	 */
917	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
918		/* NB: mark so others don't need to check header */
919		m->m_flags |= M_EAPOL;
920		ac = WME_AC_VO;
921		goto done;
922	}
923	/*
924	 * Non-qos traffic goes to BE.
925	 */
926	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
927		ac = WME_AC_BE;
928		goto done;
929	}
930
931	/*
932	 * If node has a vlan tag then all traffic
933	 * to it must have a matching tag.
934	 */
935	v_wme_ac = 0;
936	if (ni->ni_vlan != 0) {
937		 if ((m->m_flags & M_VLANTAG) == 0) {
938			IEEE80211_NODE_STAT(ni, tx_novlantag);
939			return 1;
940		}
941		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
942		    EVL_VLANOFTAG(ni->ni_vlan)) {
943			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
944			return 1;
945		}
946		/* map vlan priority to AC */
947		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
948	}
949
950	/* XXX m_copydata may be too slow for fast path */
951#ifdef INET
952	if (eh->ether_type == htons(ETHERTYPE_IP)) {
953		uint8_t tos;
954		/*
955		 * IP frame, map the DSCP bits from the TOS field.
956		 */
957		/* NB: ip header may not be in first mbuf */
958		m_copydata(m, sizeof(struct ether_header) +
959		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
960		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
961		d_wme_ac = TID_TO_WME_AC(tos);
962	} else {
963#endif /* INET */
964#ifdef INET6
965	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
966		uint32_t flow;
967		uint8_t tos;
968		/*
969		 * IPv6 frame, map the DSCP bits from the traffic class field.
970		 */
971		m_copydata(m, sizeof(struct ether_header) +
972		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
973		    (caddr_t) &flow);
974		tos = (uint8_t)(ntohl(flow) >> 20);
975		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
976		d_wme_ac = TID_TO_WME_AC(tos);
977	} else {
978#endif /* INET6 */
979		d_wme_ac = WME_AC_BE;
980#ifdef INET6
981	}
982#endif
983#ifdef INET
984	}
985#endif
986	/*
987	 * Use highest priority AC.
988	 */
989	if (v_wme_ac > d_wme_ac)
990		ac = v_wme_ac;
991	else
992		ac = d_wme_ac;
993
994	/*
995	 * Apply ACM policy.
996	 */
997	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
998		static const int acmap[4] = {
999			WME_AC_BK,	/* WME_AC_BE */
1000			WME_AC_BK,	/* WME_AC_BK */
1001			WME_AC_BE,	/* WME_AC_VI */
1002			WME_AC_VI,	/* WME_AC_VO */
1003		};
1004		struct ieee80211com *ic = ni->ni_ic;
1005
1006		while (ac != WME_AC_BK &&
1007		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1008			ac = acmap[ac];
1009	}
1010done:
1011	M_WME_SETAC(m, ac);
1012	return 0;
1013}
1014
1015/*
1016 * Insure there is sufficient contiguous space to encapsulate the
1017 * 802.11 data frame.  If room isn't already there, arrange for it.
1018 * Drivers and cipher modules assume we have done the necessary work
1019 * and fail rudely if they don't find the space they need.
1020 */
1021struct mbuf *
1022ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1023	struct ieee80211_key *key, struct mbuf *m)
1024{
1025#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1026	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1027
1028	if (key != NULL) {
1029		/* XXX belongs in crypto code? */
1030		needed_space += key->wk_cipher->ic_header;
1031		/* XXX frags */
1032		/*
1033		 * When crypto is being done in the host we must insure
1034		 * the data are writable for the cipher routines; clone
1035		 * a writable mbuf chain.
1036		 * XXX handle SWMIC specially
1037		 */
1038		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1039			m = m_unshare(m, M_NOWAIT);
1040			if (m == NULL) {
1041				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1042				    "%s: cannot get writable mbuf\n", __func__);
1043				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1044				return NULL;
1045			}
1046		}
1047	}
1048	/*
1049	 * We know we are called just before stripping an Ethernet
1050	 * header and prepending an LLC header.  This means we know
1051	 * there will be
1052	 *	sizeof(struct ether_header) - sizeof(struct llc)
1053	 * bytes recovered to which we need additional space for the
1054	 * 802.11 header and any crypto header.
1055	 */
1056	/* XXX check trailing space and copy instead? */
1057	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1058		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1059		if (n == NULL) {
1060			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1061			    "%s: cannot expand storage\n", __func__);
1062			vap->iv_stats.is_tx_nobuf++;
1063			m_freem(m);
1064			return NULL;
1065		}
1066		KASSERT(needed_space <= MHLEN,
1067		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1068		/*
1069		 * Setup new mbuf to have leading space to prepend the
1070		 * 802.11 header and any crypto header bits that are
1071		 * required (the latter are added when the driver calls
1072		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1073		 */
1074		/* NB: must be first 'cuz it clobbers m_data */
1075		m_move_pkthdr(n, m);
1076		n->m_len = 0;			/* NB: m_gethdr does not set */
1077		n->m_data += needed_space;
1078		/*
1079		 * Pull up Ethernet header to create the expected layout.
1080		 * We could use m_pullup but that's overkill (i.e. we don't
1081		 * need the actual data) and it cannot fail so do it inline
1082		 * for speed.
1083		 */
1084		/* NB: struct ether_header is known to be contiguous */
1085		n->m_len += sizeof(struct ether_header);
1086		m->m_len -= sizeof(struct ether_header);
1087		m->m_data += sizeof(struct ether_header);
1088		/*
1089		 * Replace the head of the chain.
1090		 */
1091		n->m_next = m;
1092		m = n;
1093	}
1094	return m;
1095#undef TO_BE_RECLAIMED
1096}
1097
1098/*
1099 * Return the transmit key to use in sending a unicast frame.
1100 * If a unicast key is set we use that.  When no unicast key is set
1101 * we fall back to the default transmit key.
1102 */
1103static __inline struct ieee80211_key *
1104ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1105	struct ieee80211_node *ni)
1106{
1107	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1108		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1109		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1110			return NULL;
1111		return &vap->iv_nw_keys[vap->iv_def_txkey];
1112	} else {
1113		return &ni->ni_ucastkey;
1114	}
1115}
1116
1117/*
1118 * Return the transmit key to use in sending a multicast frame.
1119 * Multicast traffic always uses the group key which is installed as
1120 * the default tx key.
1121 */
1122static __inline struct ieee80211_key *
1123ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1124	struct ieee80211_node *ni)
1125{
1126	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1127	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1128		return NULL;
1129	return &vap->iv_nw_keys[vap->iv_def_txkey];
1130}
1131
1132/*
1133 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1134 * If an error is encountered NULL is returned.  The caller is required
1135 * to provide a node reference and pullup the ethernet header in the
1136 * first mbuf.
1137 *
1138 * NB: Packet is assumed to be processed by ieee80211_classify which
1139 *     marked EAPOL frames w/ M_EAPOL.
1140 */
1141struct mbuf *
1142ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1143    struct mbuf *m)
1144{
1145#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1146#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1147	struct ieee80211com *ic = ni->ni_ic;
1148#ifdef IEEE80211_SUPPORT_MESH
1149	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1150	struct ieee80211_meshcntl_ae10 *mc;
1151	struct ieee80211_mesh_route *rt = NULL;
1152	int dir = -1;
1153#endif
1154	struct ether_header eh;
1155	struct ieee80211_frame *wh;
1156	struct ieee80211_key *key;
1157	struct llc *llc;
1158	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1159	ieee80211_seq seqno;
1160	int meshhdrsize, meshae;
1161	uint8_t *qos;
1162
1163	IEEE80211_TX_LOCK_ASSERT(ic);
1164
1165	/*
1166	 * Copy existing Ethernet header to a safe place.  The
1167	 * rest of the code assumes it's ok to strip it when
1168	 * reorganizing state for the final encapsulation.
1169	 */
1170	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1171	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1172
1173	/*
1174	 * Insure space for additional headers.  First identify
1175	 * transmit key to use in calculating any buffer adjustments
1176	 * required.  This is also used below to do privacy
1177	 * encapsulation work.  Then calculate the 802.11 header
1178	 * size and any padding required by the driver.
1179	 *
1180	 * Note key may be NULL if we fall back to the default
1181	 * transmit key and that is not set.  In that case the
1182	 * buffer may not be expanded as needed by the cipher
1183	 * routines, but they will/should discard it.
1184	 */
1185	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1186		if (vap->iv_opmode == IEEE80211_M_STA ||
1187		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1188		    (vap->iv_opmode == IEEE80211_M_WDS &&
1189		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1190			key = ieee80211_crypto_getucastkey(vap, ni);
1191		else
1192			key = ieee80211_crypto_getmcastkey(vap, ni);
1193		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1194			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1195			    eh.ether_dhost,
1196			    "no default transmit key (%s) deftxkey %u",
1197			    __func__, vap->iv_def_txkey);
1198			vap->iv_stats.is_tx_nodefkey++;
1199			goto bad;
1200		}
1201	} else
1202		key = NULL;
1203	/*
1204	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1205	 * frames so suppress use.  This may be an issue if other
1206	 * ap's require all data frames to be QoS-encapsulated
1207	 * once negotiated in which case we'll need to make this
1208	 * configurable.
1209	 * NB: mesh data frames are QoS.
1210	 */
1211	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1212	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1213	    (m->m_flags & M_EAPOL) == 0;
1214	if (addqos)
1215		hdrsize = sizeof(struct ieee80211_qosframe);
1216	else
1217		hdrsize = sizeof(struct ieee80211_frame);
1218#ifdef IEEE80211_SUPPORT_MESH
1219	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1220		/*
1221		 * Mesh data frames are encapsulated according to the
1222		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1223		 * o Group Addressed data (aka multicast) originating
1224		 *   at the local sta are sent w/ 3-address format and
1225		 *   address extension mode 00
1226		 * o Individually Addressed data (aka unicast) originating
1227		 *   at the local sta are sent w/ 4-address format and
1228		 *   address extension mode 00
1229		 * o Group Addressed data forwarded from a non-mesh sta are
1230		 *   sent w/ 3-address format and address extension mode 01
1231		 * o Individually Address data from another sta are sent
1232		 *   w/ 4-address format and address extension mode 10
1233		 */
1234		is4addr = 0;		/* NB: don't use, disable */
1235		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1236			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1237			KASSERT(rt != NULL, ("route is NULL"));
1238			dir = IEEE80211_FC1_DIR_DSTODS;
1239			hdrsize += IEEE80211_ADDR_LEN;
1240			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1241				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1242				    vap->iv_myaddr)) {
1243					IEEE80211_NOTE_MAC(vap,
1244					    IEEE80211_MSG_MESH,
1245					    eh.ether_dhost,
1246					    "%s", "trying to send to ourself");
1247					goto bad;
1248				}
1249				meshae = IEEE80211_MESH_AE_10;
1250				meshhdrsize =
1251				    sizeof(struct ieee80211_meshcntl_ae10);
1252			} else {
1253				meshae = IEEE80211_MESH_AE_00;
1254				meshhdrsize =
1255				    sizeof(struct ieee80211_meshcntl);
1256			}
1257		} else {
1258			dir = IEEE80211_FC1_DIR_FROMDS;
1259			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1260				/* proxy group */
1261				meshae = IEEE80211_MESH_AE_01;
1262				meshhdrsize =
1263				    sizeof(struct ieee80211_meshcntl_ae01);
1264			} else {
1265				/* group */
1266				meshae = IEEE80211_MESH_AE_00;
1267				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1268			}
1269		}
1270	} else {
1271#endif
1272		/*
1273		 * 4-address frames need to be generated for:
1274		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1275		 * o packets sent through a vap marked for relaying
1276		 *   (e.g. a station operating with dynamic WDS)
1277		 */
1278		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1279		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1280		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1281		if (is4addr)
1282			hdrsize += IEEE80211_ADDR_LEN;
1283		meshhdrsize = meshae = 0;
1284#ifdef IEEE80211_SUPPORT_MESH
1285	}
1286#endif
1287	/*
1288	 * Honor driver DATAPAD requirement.
1289	 */
1290	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1291		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1292	else
1293		hdrspace = hdrsize;
1294
1295	if (__predict_true((m->m_flags & M_FF) == 0)) {
1296		/*
1297		 * Normal frame.
1298		 */
1299		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1300		if (m == NULL) {
1301			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1302			goto bad;
1303		}
1304		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1305		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1306		llc = mtod(m, struct llc *);
1307		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1308		llc->llc_control = LLC_UI;
1309		llc->llc_snap.org_code[0] = 0;
1310		llc->llc_snap.org_code[1] = 0;
1311		llc->llc_snap.org_code[2] = 0;
1312		llc->llc_snap.ether_type = eh.ether_type;
1313	} else {
1314#ifdef IEEE80211_SUPPORT_SUPERG
1315		/*
1316		 * Aggregated frame.
1317		 */
1318		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1319		if (m == NULL)
1320#endif
1321			goto bad;
1322	}
1323	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1324
1325	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1326	if (m == NULL) {
1327		vap->iv_stats.is_tx_nobuf++;
1328		goto bad;
1329	}
1330	wh = mtod(m, struct ieee80211_frame *);
1331	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1332	*(uint16_t *)wh->i_dur = 0;
1333	qos = NULL;	/* NB: quiet compiler */
1334	if (is4addr) {
1335		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1336		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1337		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1338		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1339		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1340	} else switch (vap->iv_opmode) {
1341	case IEEE80211_M_STA:
1342		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1343		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1344		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1345		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1346		break;
1347	case IEEE80211_M_IBSS:
1348	case IEEE80211_M_AHDEMO:
1349		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1350		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1351		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1352		/*
1353		 * NB: always use the bssid from iv_bss as the
1354		 *     neighbor's may be stale after an ibss merge
1355		 */
1356		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1357		break;
1358	case IEEE80211_M_HOSTAP:
1359		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1360		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1361		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1362		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1363		break;
1364#ifdef IEEE80211_SUPPORT_MESH
1365	case IEEE80211_M_MBSS:
1366		/* NB: offset by hdrspace to deal with DATAPAD */
1367		mc = (struct ieee80211_meshcntl_ae10 *)
1368		     (mtod(m, uint8_t *) + hdrspace);
1369		wh->i_fc[1] = dir;
1370		switch (meshae) {
1371		case IEEE80211_MESH_AE_00:	/* no proxy */
1372			mc->mc_flags = 0;
1373			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1374				IEEE80211_ADDR_COPY(wh->i_addr1,
1375				    ni->ni_macaddr);
1376				IEEE80211_ADDR_COPY(wh->i_addr2,
1377				    vap->iv_myaddr);
1378				IEEE80211_ADDR_COPY(wh->i_addr3,
1379				    eh.ether_dhost);
1380				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1381				    eh.ether_shost);
1382				qos =((struct ieee80211_qosframe_addr4 *)
1383				    wh)->i_qos;
1384			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1385				 /* mcast */
1386				IEEE80211_ADDR_COPY(wh->i_addr1,
1387				    eh.ether_dhost);
1388				IEEE80211_ADDR_COPY(wh->i_addr2,
1389				    vap->iv_myaddr);
1390				IEEE80211_ADDR_COPY(wh->i_addr3,
1391				    eh.ether_shost);
1392				qos = ((struct ieee80211_qosframe *)
1393				    wh)->i_qos;
1394			}
1395			break;
1396		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1397			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1398			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1399			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1400			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1401			mc->mc_flags = 1;
1402			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1403			    eh.ether_shost);
1404			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1405			break;
1406		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1407			KASSERT(rt != NULL, ("route is NULL"));
1408			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1409			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1410			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1411			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1412			mc->mc_flags = IEEE80211_MESH_AE_10;
1413			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1414			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1415			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1416			break;
1417		default:
1418			KASSERT(0, ("meshae %d", meshae));
1419			break;
1420		}
1421		mc->mc_ttl = ms->ms_ttl;
1422		ms->ms_seq++;
1423		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1424		break;
1425#endif
1426	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1427	default:
1428		goto bad;
1429	}
1430	if (m->m_flags & M_MORE_DATA)
1431		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1432	if (addqos) {
1433		int ac, tid;
1434
1435		if (is4addr) {
1436			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1437		/* NB: mesh case handled earlier */
1438		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1439			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1440		ac = M_WME_GETAC(m);
1441		/* map from access class/queue to 11e header priorty value */
1442		tid = WME_AC_TO_TID(ac);
1443		qos[0] = tid & IEEE80211_QOS_TID;
1444		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1445			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1446#ifdef IEEE80211_SUPPORT_MESH
1447		if (vap->iv_opmode == IEEE80211_M_MBSS)
1448			qos[1] = IEEE80211_QOS_MC;
1449		else
1450#endif
1451			qos[1] = 0;
1452		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1453
1454		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1455			/*
1456			 * NB: don't assign a sequence # to potential
1457			 * aggregates; we expect this happens at the
1458			 * point the frame comes off any aggregation q
1459			 * as otherwise we may introduce holes in the
1460			 * BA sequence space and/or make window accouting
1461			 * more difficult.
1462			 *
1463			 * XXX may want to control this with a driver
1464			 * capability; this may also change when we pull
1465			 * aggregation up into net80211
1466			 */
1467			seqno = ni->ni_txseqs[tid]++;
1468			*(uint16_t *)wh->i_seq =
1469			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1470			M_SEQNO_SET(m, seqno);
1471		}
1472	} else {
1473		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1474		*(uint16_t *)wh->i_seq =
1475		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1476		M_SEQNO_SET(m, seqno);
1477	}
1478
1479
1480	/* check if xmit fragmentation is required */
1481	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1482	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1483	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1484	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1485	if (key != NULL) {
1486		/*
1487		 * IEEE 802.1X: send EAPOL frames always in the clear.
1488		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1489		 */
1490		if ((m->m_flags & M_EAPOL) == 0 ||
1491		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1492		     (vap->iv_opmode == IEEE80211_M_STA ?
1493		      !IEEE80211_KEY_UNDEFINED(key) :
1494		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1495			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1496			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1497				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1498				    eh.ether_dhost,
1499				    "%s", "enmic failed, discard frame");
1500				vap->iv_stats.is_crypto_enmicfail++;
1501				goto bad;
1502			}
1503		}
1504	}
1505	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1506	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1507		goto bad;
1508
1509	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1510
1511	IEEE80211_NODE_STAT(ni, tx_data);
1512	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1513		IEEE80211_NODE_STAT(ni, tx_mcast);
1514		m->m_flags |= M_MCAST;
1515	} else
1516		IEEE80211_NODE_STAT(ni, tx_ucast);
1517	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1518
1519	return m;
1520bad:
1521	if (m != NULL)
1522		m_freem(m);
1523	return NULL;
1524#undef WH4
1525#undef MC01
1526}
1527
1528/*
1529 * Fragment the frame according to the specified mtu.
1530 * The size of the 802.11 header (w/o padding) is provided
1531 * so we don't need to recalculate it.  We create a new
1532 * mbuf for each fragment and chain it through m_nextpkt;
1533 * we might be able to optimize this by reusing the original
1534 * packet's mbufs but that is significantly more complicated.
1535 */
1536static int
1537ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1538	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1539{
1540	struct ieee80211com *ic = vap->iv_ic;
1541	struct ieee80211_frame *wh, *whf;
1542	struct mbuf *m, *prev, *next;
1543	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1544	u_int hdrspace;
1545
1546	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1547	KASSERT(m0->m_pkthdr.len > mtu,
1548		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1549
1550	/*
1551	 * Honor driver DATAPAD requirement.
1552	 */
1553	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1554		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1555	else
1556		hdrspace = hdrsize;
1557
1558	wh = mtod(m0, struct ieee80211_frame *);
1559	/* NB: mark the first frag; it will be propagated below */
1560	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1561	totalhdrsize = hdrspace + ciphdrsize;
1562	fragno = 1;
1563	off = mtu - ciphdrsize;
1564	remainder = m0->m_pkthdr.len - off;
1565	prev = m0;
1566	do {
1567		fragsize = totalhdrsize + remainder;
1568		if (fragsize > mtu)
1569			fragsize = mtu;
1570		/* XXX fragsize can be >2048! */
1571		KASSERT(fragsize < MCLBYTES,
1572			("fragment size %u too big!", fragsize));
1573		if (fragsize > MHLEN)
1574			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1575		else
1576			m = m_gethdr(M_NOWAIT, MT_DATA);
1577		if (m == NULL)
1578			goto bad;
1579		/* leave room to prepend any cipher header */
1580		m_align(m, fragsize - ciphdrsize);
1581
1582		/*
1583		 * Form the header in the fragment.  Note that since
1584		 * we mark the first fragment with the MORE_FRAG bit
1585		 * it automatically is propagated to each fragment; we
1586		 * need only clear it on the last fragment (done below).
1587		 * NB: frag 1+ dont have Mesh Control field present.
1588		 */
1589		whf = mtod(m, struct ieee80211_frame *);
1590		memcpy(whf, wh, hdrsize);
1591#ifdef IEEE80211_SUPPORT_MESH
1592		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1593			if (IEEE80211_IS_DSTODS(wh))
1594				((struct ieee80211_qosframe_addr4 *)
1595				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1596			else
1597				((struct ieee80211_qosframe *)
1598				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1599		}
1600#endif
1601		*(uint16_t *)&whf->i_seq[0] |= htole16(
1602			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1603				IEEE80211_SEQ_FRAG_SHIFT);
1604		fragno++;
1605
1606		payload = fragsize - totalhdrsize;
1607		/* NB: destination is known to be contiguous */
1608
1609		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1610		m->m_len = hdrspace + payload;
1611		m->m_pkthdr.len = hdrspace + payload;
1612		m->m_flags |= M_FRAG;
1613
1614		/* chain up the fragment */
1615		prev->m_nextpkt = m;
1616		prev = m;
1617
1618		/* deduct fragment just formed */
1619		remainder -= payload;
1620		off += payload;
1621	} while (remainder != 0);
1622
1623	/* set the last fragment */
1624	m->m_flags |= M_LASTFRAG;
1625	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1626
1627	/* strip first mbuf now that everything has been copied */
1628	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1629	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1630
1631	vap->iv_stats.is_tx_fragframes++;
1632	vap->iv_stats.is_tx_frags += fragno-1;
1633
1634	return 1;
1635bad:
1636	/* reclaim fragments but leave original frame for caller to free */
1637	for (m = m0->m_nextpkt; m != NULL; m = next) {
1638		next = m->m_nextpkt;
1639		m->m_nextpkt = NULL;		/* XXX paranoid */
1640		m_freem(m);
1641	}
1642	m0->m_nextpkt = NULL;
1643	return 0;
1644}
1645
1646/*
1647 * Add a supported rates element id to a frame.
1648 */
1649uint8_t *
1650ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1651{
1652	int nrates;
1653
1654	*frm++ = IEEE80211_ELEMID_RATES;
1655	nrates = rs->rs_nrates;
1656	if (nrates > IEEE80211_RATE_SIZE)
1657		nrates = IEEE80211_RATE_SIZE;
1658	*frm++ = nrates;
1659	memcpy(frm, rs->rs_rates, nrates);
1660	return frm + nrates;
1661}
1662
1663/*
1664 * Add an extended supported rates element id to a frame.
1665 */
1666uint8_t *
1667ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1668{
1669	/*
1670	 * Add an extended supported rates element if operating in 11g mode.
1671	 */
1672	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1673		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1674		*frm++ = IEEE80211_ELEMID_XRATES;
1675		*frm++ = nrates;
1676		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1677		frm += nrates;
1678	}
1679	return frm;
1680}
1681
1682/*
1683 * Add an ssid element to a frame.
1684 */
1685static uint8_t *
1686ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1687{
1688	*frm++ = IEEE80211_ELEMID_SSID;
1689	*frm++ = len;
1690	memcpy(frm, ssid, len);
1691	return frm + len;
1692}
1693
1694/*
1695 * Add an erp element to a frame.
1696 */
1697static uint8_t *
1698ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1699{
1700	uint8_t erp;
1701
1702	*frm++ = IEEE80211_ELEMID_ERP;
1703	*frm++ = 1;
1704	erp = 0;
1705	if (ic->ic_nonerpsta != 0)
1706		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1707	if (ic->ic_flags & IEEE80211_F_USEPROT)
1708		erp |= IEEE80211_ERP_USE_PROTECTION;
1709	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1710		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1711	*frm++ = erp;
1712	return frm;
1713}
1714
1715/*
1716 * Add a CFParams element to a frame.
1717 */
1718static uint8_t *
1719ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1720{
1721#define	ADDSHORT(frm, v) do {	\
1722	LE_WRITE_2(frm, v);	\
1723	frm += 2;		\
1724} while (0)
1725	*frm++ = IEEE80211_ELEMID_CFPARMS;
1726	*frm++ = 6;
1727	*frm++ = 0;		/* CFP count */
1728	*frm++ = 2;		/* CFP period */
1729	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1730	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1731	return frm;
1732#undef ADDSHORT
1733}
1734
1735static __inline uint8_t *
1736add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1737{
1738	memcpy(frm, ie->ie_data, ie->ie_len);
1739	return frm + ie->ie_len;
1740}
1741
1742static __inline uint8_t *
1743add_ie(uint8_t *frm, const uint8_t *ie)
1744{
1745	memcpy(frm, ie, 2 + ie[1]);
1746	return frm + 2 + ie[1];
1747}
1748
1749#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1750/*
1751 * Add a WME information element to a frame.
1752 */
1753static uint8_t *
1754ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1755{
1756	static const struct ieee80211_wme_info info = {
1757		.wme_id		= IEEE80211_ELEMID_VENDOR,
1758		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1759		.wme_oui	= { WME_OUI_BYTES },
1760		.wme_type	= WME_OUI_TYPE,
1761		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1762		.wme_version	= WME_VERSION,
1763		.wme_info	= 0,
1764	};
1765	memcpy(frm, &info, sizeof(info));
1766	return frm + sizeof(info);
1767}
1768
1769/*
1770 * Add a WME parameters element to a frame.
1771 */
1772static uint8_t *
1773ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1774{
1775#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1776#define	ADDSHORT(frm, v) do {	\
1777	LE_WRITE_2(frm, v);	\
1778	frm += 2;		\
1779} while (0)
1780	/* NB: this works 'cuz a param has an info at the front */
1781	static const struct ieee80211_wme_info param = {
1782		.wme_id		= IEEE80211_ELEMID_VENDOR,
1783		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1784		.wme_oui	= { WME_OUI_BYTES },
1785		.wme_type	= WME_OUI_TYPE,
1786		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1787		.wme_version	= WME_VERSION,
1788	};
1789	int i;
1790
1791	memcpy(frm, &param, sizeof(param));
1792	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1793	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1794	*frm++ = 0;					/* reserved field */
1795	for (i = 0; i < WME_NUM_AC; i++) {
1796		const struct wmeParams *ac =
1797		       &wme->wme_bssChanParams.cap_wmeParams[i];
1798		*frm++ = SM(i, WME_PARAM_ACI)
1799		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1800		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1801		       ;
1802		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1803		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1804		       ;
1805		ADDSHORT(frm, ac->wmep_txopLimit);
1806	}
1807	return frm;
1808#undef SM
1809#undef ADDSHORT
1810}
1811#undef WME_OUI_BYTES
1812
1813/*
1814 * Add an 11h Power Constraint element to a frame.
1815 */
1816static uint8_t *
1817ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1818{
1819	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1820	/* XXX per-vap tx power limit? */
1821	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1822
1823	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1824	frm[1] = 1;
1825	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1826	return frm + 3;
1827}
1828
1829/*
1830 * Add an 11h Power Capability element to a frame.
1831 */
1832static uint8_t *
1833ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1834{
1835	frm[0] = IEEE80211_ELEMID_PWRCAP;
1836	frm[1] = 2;
1837	frm[2] = c->ic_minpower;
1838	frm[3] = c->ic_maxpower;
1839	return frm + 4;
1840}
1841
1842/*
1843 * Add an 11h Supported Channels element to a frame.
1844 */
1845static uint8_t *
1846ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1847{
1848	static const int ielen = 26;
1849
1850	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1851	frm[1] = ielen;
1852	/* XXX not correct */
1853	memcpy(frm+2, ic->ic_chan_avail, ielen);
1854	return frm + 2 + ielen;
1855}
1856
1857/*
1858 * Add an 11h Quiet time element to a frame.
1859 */
1860static uint8_t *
1861ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1862{
1863	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1864
1865	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1866	quiet->len = 6;
1867	if (vap->iv_quiet_count_value == 1)
1868		vap->iv_quiet_count_value = vap->iv_quiet_count;
1869	else if (vap->iv_quiet_count_value > 1)
1870		vap->iv_quiet_count_value--;
1871
1872	if (vap->iv_quiet_count_value == 0) {
1873		/* value 0 is reserved as per 802.11h standerd */
1874		vap->iv_quiet_count_value = 1;
1875	}
1876
1877	quiet->tbttcount = vap->iv_quiet_count_value;
1878	quiet->period = vap->iv_quiet_period;
1879	quiet->duration = htole16(vap->iv_quiet_duration);
1880	quiet->offset = htole16(vap->iv_quiet_offset);
1881	return frm + sizeof(*quiet);
1882}
1883
1884/*
1885 * Add an 11h Channel Switch Announcement element to a frame.
1886 * Note that we use the per-vap CSA count to adjust the global
1887 * counter so we can use this routine to form probe response
1888 * frames and get the current count.
1889 */
1890static uint8_t *
1891ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1892{
1893	struct ieee80211com *ic = vap->iv_ic;
1894	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1895
1896	csa->csa_ie = IEEE80211_ELEMID_CSA;
1897	csa->csa_len = 3;
1898	csa->csa_mode = 1;		/* XXX force quiet on channel */
1899	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1900	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1901	return frm + sizeof(*csa);
1902}
1903
1904/*
1905 * Add an 11h country information element to a frame.
1906 */
1907static uint8_t *
1908ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1909{
1910
1911	if (ic->ic_countryie == NULL ||
1912	    ic->ic_countryie_chan != ic->ic_bsschan) {
1913		/*
1914		 * Handle lazy construction of ie.  This is done on
1915		 * first use and after a channel change that requires
1916		 * re-calculation.
1917		 */
1918		if (ic->ic_countryie != NULL)
1919			free(ic->ic_countryie, M_80211_NODE_IE);
1920		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1921		if (ic->ic_countryie == NULL)
1922			return frm;
1923		ic->ic_countryie_chan = ic->ic_bsschan;
1924	}
1925	return add_appie(frm, ic->ic_countryie);
1926}
1927
1928uint8_t *
1929ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1930{
1931	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1932		return (add_ie(frm, vap->iv_wpa_ie));
1933	else {
1934		/* XXX else complain? */
1935		return (frm);
1936	}
1937}
1938
1939uint8_t *
1940ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
1941{
1942	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
1943		return (add_ie(frm, vap->iv_rsn_ie));
1944	else {
1945		/* XXX else complain? */
1946		return (frm);
1947	}
1948}
1949
1950uint8_t *
1951ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
1952{
1953	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1954		*frm++ = IEEE80211_ELEMID_QOS;
1955		*frm++ = 1;
1956		*frm++ = 0;
1957	}
1958
1959	return (frm);
1960}
1961
1962/*
1963 * Send a probe request frame with the specified ssid
1964 * and any optional information element data.
1965 */
1966int
1967ieee80211_send_probereq(struct ieee80211_node *ni,
1968	const uint8_t sa[IEEE80211_ADDR_LEN],
1969	const uint8_t da[IEEE80211_ADDR_LEN],
1970	const uint8_t bssid[IEEE80211_ADDR_LEN],
1971	const uint8_t *ssid, size_t ssidlen)
1972{
1973	struct ieee80211vap *vap = ni->ni_vap;
1974	struct ieee80211com *ic = ni->ni_ic;
1975	const struct ieee80211_txparam *tp;
1976	struct ieee80211_bpf_params params;
1977	struct ieee80211_frame *wh;
1978	const struct ieee80211_rateset *rs;
1979	struct mbuf *m;
1980	uint8_t *frm;
1981	int ret;
1982
1983	if (vap->iv_state == IEEE80211_S_CAC) {
1984		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1985		    "block %s frame in CAC state", "probe request");
1986		vap->iv_stats.is_tx_badstate++;
1987		return EIO;		/* XXX */
1988	}
1989
1990	/*
1991	 * Hold a reference on the node so it doesn't go away until after
1992	 * the xmit is complete all the way in the driver.  On error we
1993	 * will remove our reference.
1994	 */
1995	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1996		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1997		__func__, __LINE__,
1998		ni, ether_sprintf(ni->ni_macaddr),
1999		ieee80211_node_refcnt(ni)+1);
2000	ieee80211_ref_node(ni);
2001
2002	/*
2003	 * prreq frame format
2004	 *	[tlv] ssid
2005	 *	[tlv] supported rates
2006	 *	[tlv] RSN (optional)
2007	 *	[tlv] extended supported rates
2008	 *	[tlv] WPA (optional)
2009	 *	[tlv] user-specified ie's
2010	 */
2011	m = ieee80211_getmgtframe(&frm,
2012		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2013	       	 2 + IEEE80211_NWID_LEN
2014	       + 2 + IEEE80211_RATE_SIZE
2015	       + sizeof(struct ieee80211_ie_wpa)
2016	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2017	       + sizeof(struct ieee80211_ie_wpa)
2018	       + (vap->iv_appie_probereq != NULL ?
2019		   vap->iv_appie_probereq->ie_len : 0)
2020	);
2021	if (m == NULL) {
2022		vap->iv_stats.is_tx_nobuf++;
2023		ieee80211_free_node(ni);
2024		return ENOMEM;
2025	}
2026
2027	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2028	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2029	frm = ieee80211_add_rates(frm, rs);
2030	frm = ieee80211_add_rsn(frm, vap);
2031	frm = ieee80211_add_xrates(frm, rs);
2032	frm = ieee80211_add_wpa(frm, vap);
2033	if (vap->iv_appie_probereq != NULL)
2034		frm = add_appie(frm, vap->iv_appie_probereq);
2035	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2036
2037	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2038	    ("leading space %zd", M_LEADINGSPACE(m)));
2039	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2040	if (m == NULL) {
2041		/* NB: cannot happen */
2042		ieee80211_free_node(ni);
2043		return ENOMEM;
2044	}
2045
2046	IEEE80211_TX_LOCK(ic);
2047	wh = mtod(m, struct ieee80211_frame *);
2048	ieee80211_send_setup(ni, m,
2049	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2050	     IEEE80211_NONQOS_TID, sa, da, bssid);
2051	/* XXX power management? */
2052	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2053
2054	M_WME_SETAC(m, WME_AC_BE);
2055
2056	IEEE80211_NODE_STAT(ni, tx_probereq);
2057	IEEE80211_NODE_STAT(ni, tx_mgmt);
2058
2059	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2060	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2061	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2062	    ssidlen, ssid);
2063
2064	memset(&params, 0, sizeof(params));
2065	params.ibp_pri = M_WME_GETAC(m);
2066	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2067	params.ibp_rate0 = tp->mgmtrate;
2068	if (IEEE80211_IS_MULTICAST(da)) {
2069		params.ibp_flags |= IEEE80211_BPF_NOACK;
2070		params.ibp_try0 = 1;
2071	} else
2072		params.ibp_try0 = tp->maxretry;
2073	params.ibp_power = ni->ni_txpower;
2074	ret = ieee80211_raw_output(vap, ni, m, &params);
2075	IEEE80211_TX_UNLOCK(ic);
2076	return (ret);
2077}
2078
2079/*
2080 * Calculate capability information for mgt frames.
2081 */
2082uint16_t
2083ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2084{
2085	struct ieee80211com *ic = vap->iv_ic;
2086	uint16_t capinfo;
2087
2088	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2089
2090	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2091		capinfo = IEEE80211_CAPINFO_ESS;
2092	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2093		capinfo = IEEE80211_CAPINFO_IBSS;
2094	else
2095		capinfo = 0;
2096	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2097		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2098	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2099	    IEEE80211_IS_CHAN_2GHZ(chan))
2100		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2101	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2102		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2103	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2104		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2105	return capinfo;
2106}
2107
2108/*
2109 * Send a management frame.  The node is for the destination (or ic_bss
2110 * when in station mode).  Nodes other than ic_bss have their reference
2111 * count bumped to reflect our use for an indeterminant time.
2112 */
2113int
2114ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2115{
2116#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2117#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2118	struct ieee80211vap *vap = ni->ni_vap;
2119	struct ieee80211com *ic = ni->ni_ic;
2120	struct ieee80211_node *bss = vap->iv_bss;
2121	struct ieee80211_bpf_params params;
2122	struct mbuf *m;
2123	uint8_t *frm;
2124	uint16_t capinfo;
2125	int has_challenge, is_shared_key, ret, status;
2126
2127	KASSERT(ni != NULL, ("null node"));
2128
2129	/*
2130	 * Hold a reference on the node so it doesn't go away until after
2131	 * the xmit is complete all the way in the driver.  On error we
2132	 * will remove our reference.
2133	 */
2134	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2135		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2136		__func__, __LINE__,
2137		ni, ether_sprintf(ni->ni_macaddr),
2138		ieee80211_node_refcnt(ni)+1);
2139	ieee80211_ref_node(ni);
2140
2141	memset(&params, 0, sizeof(params));
2142	switch (type) {
2143
2144	case IEEE80211_FC0_SUBTYPE_AUTH:
2145		status = arg >> 16;
2146		arg &= 0xffff;
2147		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2148		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2149		    ni->ni_challenge != NULL);
2150
2151		/*
2152		 * Deduce whether we're doing open authentication or
2153		 * shared key authentication.  We do the latter if
2154		 * we're in the middle of a shared key authentication
2155		 * handshake or if we're initiating an authentication
2156		 * request and configured to use shared key.
2157		 */
2158		is_shared_key = has_challenge ||
2159		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2160		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2161		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2162
2163		m = ieee80211_getmgtframe(&frm,
2164			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2165			  3 * sizeof(uint16_t)
2166			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2167				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2168		);
2169		if (m == NULL)
2170			senderr(ENOMEM, is_tx_nobuf);
2171
2172		((uint16_t *)frm)[0] =
2173		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2174		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2175		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2176		((uint16_t *)frm)[2] = htole16(status);/* status */
2177
2178		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2179			((uint16_t *)frm)[3] =
2180			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2181			    IEEE80211_ELEMID_CHALLENGE);
2182			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2183			    IEEE80211_CHALLENGE_LEN);
2184			m->m_pkthdr.len = m->m_len =
2185				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2186			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2187				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2188				    "request encrypt frame (%s)", __func__);
2189				/* mark frame for encryption */
2190				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2191			}
2192		} else
2193			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2194
2195		/* XXX not right for shared key */
2196		if (status == IEEE80211_STATUS_SUCCESS)
2197			IEEE80211_NODE_STAT(ni, tx_auth);
2198		else
2199			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2200
2201		if (vap->iv_opmode == IEEE80211_M_STA)
2202			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2203				(void *) vap->iv_state);
2204		break;
2205
2206	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2207		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2208		    "send station deauthenticate (reason %d)", arg);
2209		m = ieee80211_getmgtframe(&frm,
2210			ic->ic_headroom + sizeof(struct ieee80211_frame),
2211			sizeof(uint16_t));
2212		if (m == NULL)
2213			senderr(ENOMEM, is_tx_nobuf);
2214		*(uint16_t *)frm = htole16(arg);	/* reason */
2215		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2216
2217		IEEE80211_NODE_STAT(ni, tx_deauth);
2218		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2219
2220		ieee80211_node_unauthorize(ni);		/* port closed */
2221		break;
2222
2223	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2224	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2225		/*
2226		 * asreq frame format
2227		 *	[2] capability information
2228		 *	[2] listen interval
2229		 *	[6*] current AP address (reassoc only)
2230		 *	[tlv] ssid
2231		 *	[tlv] supported rates
2232		 *	[tlv] extended supported rates
2233		 *	[4] power capability (optional)
2234		 *	[28] supported channels (optional)
2235		 *	[tlv] HT capabilities
2236		 *	[tlv] WME (optional)
2237		 *	[tlv] Vendor OUI HT capabilities (optional)
2238		 *	[tlv] Atheros capabilities (if negotiated)
2239		 *	[tlv] AppIE's (optional)
2240		 */
2241		m = ieee80211_getmgtframe(&frm,
2242			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2243			 sizeof(uint16_t)
2244		       + sizeof(uint16_t)
2245		       + IEEE80211_ADDR_LEN
2246		       + 2 + IEEE80211_NWID_LEN
2247		       + 2 + IEEE80211_RATE_SIZE
2248		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2249		       + 4
2250		       + 2 + 26
2251		       + sizeof(struct ieee80211_wme_info)
2252		       + sizeof(struct ieee80211_ie_htcap)
2253		       + 4 + sizeof(struct ieee80211_ie_htcap)
2254#ifdef IEEE80211_SUPPORT_SUPERG
2255		       + sizeof(struct ieee80211_ath_ie)
2256#endif
2257		       + (vap->iv_appie_wpa != NULL ?
2258				vap->iv_appie_wpa->ie_len : 0)
2259		       + (vap->iv_appie_assocreq != NULL ?
2260				vap->iv_appie_assocreq->ie_len : 0)
2261		);
2262		if (m == NULL)
2263			senderr(ENOMEM, is_tx_nobuf);
2264
2265		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2266		    ("wrong mode %u", vap->iv_opmode));
2267		capinfo = IEEE80211_CAPINFO_ESS;
2268		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2269			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2270		/*
2271		 * NB: Some 11a AP's reject the request when
2272		 *     short premable is set.
2273		 */
2274		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2275		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2276			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2277		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2278		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2279			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2280		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2281		    (vap->iv_flags & IEEE80211_F_DOTH))
2282			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2283		*(uint16_t *)frm = htole16(capinfo);
2284		frm += 2;
2285
2286		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2287		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2288						    bss->ni_intval));
2289		frm += 2;
2290
2291		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2292			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2293			frm += IEEE80211_ADDR_LEN;
2294		}
2295
2296		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2297		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2298		frm = ieee80211_add_rsn(frm, vap);
2299		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2300		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2301			frm = ieee80211_add_powercapability(frm,
2302			    ic->ic_curchan);
2303			frm = ieee80211_add_supportedchannels(frm, ic);
2304		}
2305		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2306		    ni->ni_ies.htcap_ie != NULL &&
2307		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2308			frm = ieee80211_add_htcap(frm, ni);
2309		frm = ieee80211_add_wpa(frm, vap);
2310		if ((ic->ic_flags & IEEE80211_F_WME) &&
2311		    ni->ni_ies.wme_ie != NULL)
2312			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2313		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2314		    ni->ni_ies.htcap_ie != NULL &&
2315		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2316			frm = ieee80211_add_htcap_vendor(frm, ni);
2317#ifdef IEEE80211_SUPPORT_SUPERG
2318		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2319			frm = ieee80211_add_ath(frm,
2320				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2321				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2322				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2323				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2324		}
2325#endif /* IEEE80211_SUPPORT_SUPERG */
2326		if (vap->iv_appie_assocreq != NULL)
2327			frm = add_appie(frm, vap->iv_appie_assocreq);
2328		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2329
2330		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2331			(void *) vap->iv_state);
2332		break;
2333
2334	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2335	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2336		/*
2337		 * asresp frame format
2338		 *	[2] capability information
2339		 *	[2] status
2340		 *	[2] association ID
2341		 *	[tlv] supported rates
2342		 *	[tlv] extended supported rates
2343		 *	[tlv] HT capabilities (standard, if STA enabled)
2344		 *	[tlv] HT information (standard, if STA enabled)
2345		 *	[tlv] WME (if configured and STA enabled)
2346		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2347		 *	[tlv] HT information (vendor OUI, if STA enabled)
2348		 *	[tlv] Atheros capabilities (if STA enabled)
2349		 *	[tlv] AppIE's (optional)
2350		 */
2351		m = ieee80211_getmgtframe(&frm,
2352			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2353			 sizeof(uint16_t)
2354		       + sizeof(uint16_t)
2355		       + sizeof(uint16_t)
2356		       + 2 + IEEE80211_RATE_SIZE
2357		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2358		       + sizeof(struct ieee80211_ie_htcap) + 4
2359		       + sizeof(struct ieee80211_ie_htinfo) + 4
2360		       + sizeof(struct ieee80211_wme_param)
2361#ifdef IEEE80211_SUPPORT_SUPERG
2362		       + sizeof(struct ieee80211_ath_ie)
2363#endif
2364		       + (vap->iv_appie_assocresp != NULL ?
2365				vap->iv_appie_assocresp->ie_len : 0)
2366		);
2367		if (m == NULL)
2368			senderr(ENOMEM, is_tx_nobuf);
2369
2370		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2371		*(uint16_t *)frm = htole16(capinfo);
2372		frm += 2;
2373
2374		*(uint16_t *)frm = htole16(arg);	/* status */
2375		frm += 2;
2376
2377		if (arg == IEEE80211_STATUS_SUCCESS) {
2378			*(uint16_t *)frm = htole16(ni->ni_associd);
2379			IEEE80211_NODE_STAT(ni, tx_assoc);
2380		} else
2381			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2382		frm += 2;
2383
2384		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2385		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2386		/* NB: respond according to what we received */
2387		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2388			frm = ieee80211_add_htcap(frm, ni);
2389			frm = ieee80211_add_htinfo(frm, ni);
2390		}
2391		if ((vap->iv_flags & IEEE80211_F_WME) &&
2392		    ni->ni_ies.wme_ie != NULL)
2393			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2394		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2395			frm = ieee80211_add_htcap_vendor(frm, ni);
2396			frm = ieee80211_add_htinfo_vendor(frm, ni);
2397		}
2398#ifdef IEEE80211_SUPPORT_SUPERG
2399		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2400			frm = ieee80211_add_ath(frm,
2401				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2402				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2403				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2404				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2405#endif /* IEEE80211_SUPPORT_SUPERG */
2406		if (vap->iv_appie_assocresp != NULL)
2407			frm = add_appie(frm, vap->iv_appie_assocresp);
2408		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2409		break;
2410
2411	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2412		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2413		    "send station disassociate (reason %d)", arg);
2414		m = ieee80211_getmgtframe(&frm,
2415			ic->ic_headroom + sizeof(struct ieee80211_frame),
2416			sizeof(uint16_t));
2417		if (m == NULL)
2418			senderr(ENOMEM, is_tx_nobuf);
2419		*(uint16_t *)frm = htole16(arg);	/* reason */
2420		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2421
2422		IEEE80211_NODE_STAT(ni, tx_disassoc);
2423		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2424		break;
2425
2426	default:
2427		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2428		    "invalid mgmt frame type %u", type);
2429		senderr(EINVAL, is_tx_unknownmgt);
2430		/* NOTREACHED */
2431	}
2432
2433	/* NB: force non-ProbeResp frames to the highest queue */
2434	params.ibp_pri = WME_AC_VO;
2435	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2436	/* NB: we know all frames are unicast */
2437	params.ibp_try0 = bss->ni_txparms->maxretry;
2438	params.ibp_power = bss->ni_txpower;
2439	return ieee80211_mgmt_output(ni, m, type, &params);
2440bad:
2441	ieee80211_free_node(ni);
2442	return ret;
2443#undef senderr
2444#undef HTFLAGS
2445}
2446
2447/*
2448 * Return an mbuf with a probe response frame in it.
2449 * Space is left to prepend and 802.11 header at the
2450 * front but it's left to the caller to fill in.
2451 */
2452struct mbuf *
2453ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2454{
2455	struct ieee80211vap *vap = bss->ni_vap;
2456	struct ieee80211com *ic = bss->ni_ic;
2457	const struct ieee80211_rateset *rs;
2458	struct mbuf *m;
2459	uint16_t capinfo;
2460	uint8_t *frm;
2461
2462	/*
2463	 * probe response frame format
2464	 *	[8] time stamp
2465	 *	[2] beacon interval
2466	 *	[2] cabability information
2467	 *	[tlv] ssid
2468	 *	[tlv] supported rates
2469	 *	[tlv] parameter set (FH/DS)
2470	 *	[tlv] parameter set (IBSS)
2471	 *	[tlv] country (optional)
2472	 *	[3] power control (optional)
2473	 *	[5] channel switch announcement (CSA) (optional)
2474	 *	[tlv] extended rate phy (ERP)
2475	 *	[tlv] extended supported rates
2476	 *	[tlv] RSN (optional)
2477	 *	[tlv] HT capabilities
2478	 *	[tlv] HT information
2479	 *	[tlv] WPA (optional)
2480	 *	[tlv] WME (optional)
2481	 *	[tlv] Vendor OUI HT capabilities (optional)
2482	 *	[tlv] Vendor OUI HT information (optional)
2483	 *	[tlv] Atheros capabilities
2484	 *	[tlv] AppIE's (optional)
2485	 *	[tlv] Mesh ID (MBSS)
2486	 *	[tlv] Mesh Conf (MBSS)
2487	 */
2488	m = ieee80211_getmgtframe(&frm,
2489		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2490		 8
2491	       + sizeof(uint16_t)
2492	       + sizeof(uint16_t)
2493	       + 2 + IEEE80211_NWID_LEN
2494	       + 2 + IEEE80211_RATE_SIZE
2495	       + 7	/* max(7,3) */
2496	       + IEEE80211_COUNTRY_MAX_SIZE
2497	       + 3
2498	       + sizeof(struct ieee80211_csa_ie)
2499	       + sizeof(struct ieee80211_quiet_ie)
2500	       + 3
2501	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2502	       + sizeof(struct ieee80211_ie_wpa)
2503	       + sizeof(struct ieee80211_ie_htcap)
2504	       + sizeof(struct ieee80211_ie_htinfo)
2505	       + sizeof(struct ieee80211_ie_wpa)
2506	       + sizeof(struct ieee80211_wme_param)
2507	       + 4 + sizeof(struct ieee80211_ie_htcap)
2508	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2509#ifdef IEEE80211_SUPPORT_SUPERG
2510	       + sizeof(struct ieee80211_ath_ie)
2511#endif
2512#ifdef IEEE80211_SUPPORT_MESH
2513	       + 2 + IEEE80211_MESHID_LEN
2514	       + sizeof(struct ieee80211_meshconf_ie)
2515#endif
2516	       + (vap->iv_appie_proberesp != NULL ?
2517			vap->iv_appie_proberesp->ie_len : 0)
2518	);
2519	if (m == NULL) {
2520		vap->iv_stats.is_tx_nobuf++;
2521		return NULL;
2522	}
2523
2524	memset(frm, 0, 8);	/* timestamp should be filled later */
2525	frm += 8;
2526	*(uint16_t *)frm = htole16(bss->ni_intval);
2527	frm += 2;
2528	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2529	*(uint16_t *)frm = htole16(capinfo);
2530	frm += 2;
2531
2532	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2533	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2534	frm = ieee80211_add_rates(frm, rs);
2535
2536	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2537		*frm++ = IEEE80211_ELEMID_FHPARMS;
2538		*frm++ = 5;
2539		*frm++ = bss->ni_fhdwell & 0x00ff;
2540		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2541		*frm++ = IEEE80211_FH_CHANSET(
2542		    ieee80211_chan2ieee(ic, bss->ni_chan));
2543		*frm++ = IEEE80211_FH_CHANPAT(
2544		    ieee80211_chan2ieee(ic, bss->ni_chan));
2545		*frm++ = bss->ni_fhindex;
2546	} else {
2547		*frm++ = IEEE80211_ELEMID_DSPARMS;
2548		*frm++ = 1;
2549		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2550	}
2551
2552	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2553		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2554		*frm++ = 2;
2555		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2556	}
2557	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2558	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2559		frm = ieee80211_add_countryie(frm, ic);
2560	if (vap->iv_flags & IEEE80211_F_DOTH) {
2561		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2562			frm = ieee80211_add_powerconstraint(frm, vap);
2563		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2564			frm = ieee80211_add_csa(frm, vap);
2565	}
2566	if (vap->iv_flags & IEEE80211_F_DOTH) {
2567		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2568		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2569			if (vap->iv_quiet)
2570				frm = ieee80211_add_quiet(frm, vap);
2571		}
2572	}
2573	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2574		frm = ieee80211_add_erp(frm, ic);
2575	frm = ieee80211_add_xrates(frm, rs);
2576	frm = ieee80211_add_rsn(frm, vap);
2577	/*
2578	 * NB: legacy 11b clients do not get certain ie's.
2579	 *     The caller identifies such clients by passing
2580	 *     a token in legacy to us.  Could expand this to be
2581	 *     any legacy client for stuff like HT ie's.
2582	 */
2583	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2584	    legacy != IEEE80211_SEND_LEGACY_11B) {
2585		frm = ieee80211_add_htcap(frm, bss);
2586		frm = ieee80211_add_htinfo(frm, bss);
2587	}
2588	frm = ieee80211_add_wpa(frm, vap);
2589	if (vap->iv_flags & IEEE80211_F_WME)
2590		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2591	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2592	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2593	    legacy != IEEE80211_SEND_LEGACY_11B) {
2594		frm = ieee80211_add_htcap_vendor(frm, bss);
2595		frm = ieee80211_add_htinfo_vendor(frm, bss);
2596	}
2597#ifdef IEEE80211_SUPPORT_SUPERG
2598	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2599	    legacy != IEEE80211_SEND_LEGACY_11B)
2600		frm = ieee80211_add_athcaps(frm, bss);
2601#endif
2602	if (vap->iv_appie_proberesp != NULL)
2603		frm = add_appie(frm, vap->iv_appie_proberesp);
2604#ifdef IEEE80211_SUPPORT_MESH
2605	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2606		frm = ieee80211_add_meshid(frm, vap);
2607		frm = ieee80211_add_meshconf(frm, vap);
2608	}
2609#endif
2610	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2611
2612	return m;
2613}
2614
2615/*
2616 * Send a probe response frame to the specified mac address.
2617 * This does not go through the normal mgt frame api so we
2618 * can specify the destination address and re-use the bss node
2619 * for the sta reference.
2620 */
2621int
2622ieee80211_send_proberesp(struct ieee80211vap *vap,
2623	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2624{
2625	struct ieee80211_node *bss = vap->iv_bss;
2626	struct ieee80211com *ic = vap->iv_ic;
2627	struct ieee80211_frame *wh;
2628	struct mbuf *m;
2629	int ret;
2630
2631	if (vap->iv_state == IEEE80211_S_CAC) {
2632		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2633		    "block %s frame in CAC state", "probe response");
2634		vap->iv_stats.is_tx_badstate++;
2635		return EIO;		/* XXX */
2636	}
2637
2638	/*
2639	 * Hold a reference on the node so it doesn't go away until after
2640	 * the xmit is complete all the way in the driver.  On error we
2641	 * will remove our reference.
2642	 */
2643	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2644	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2645	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2646	    ieee80211_node_refcnt(bss)+1);
2647	ieee80211_ref_node(bss);
2648
2649	m = ieee80211_alloc_proberesp(bss, legacy);
2650	if (m == NULL) {
2651		ieee80211_free_node(bss);
2652		return ENOMEM;
2653	}
2654
2655	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2656	KASSERT(m != NULL, ("no room for header"));
2657
2658	IEEE80211_TX_LOCK(ic);
2659	wh = mtod(m, struct ieee80211_frame *);
2660	ieee80211_send_setup(bss, m,
2661	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2662	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2663	/* XXX power management? */
2664	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2665
2666	M_WME_SETAC(m, WME_AC_BE);
2667
2668	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2669	    "send probe resp on channel %u to %s%s\n",
2670	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2671	    legacy ? " <legacy>" : "");
2672	IEEE80211_NODE_STAT(bss, tx_mgmt);
2673
2674	ret = ieee80211_raw_output(vap, bss, m, NULL);
2675	IEEE80211_TX_UNLOCK(ic);
2676	return (ret);
2677}
2678
2679/*
2680 * Allocate and build a RTS (Request To Send) control frame.
2681 */
2682struct mbuf *
2683ieee80211_alloc_rts(struct ieee80211com *ic,
2684	const uint8_t ra[IEEE80211_ADDR_LEN],
2685	const uint8_t ta[IEEE80211_ADDR_LEN],
2686	uint16_t dur)
2687{
2688	struct ieee80211_frame_rts *rts;
2689	struct mbuf *m;
2690
2691	/* XXX honor ic_headroom */
2692	m = m_gethdr(M_NOWAIT, MT_DATA);
2693	if (m != NULL) {
2694		rts = mtod(m, struct ieee80211_frame_rts *);
2695		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2696			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2697		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2698		*(u_int16_t *)rts->i_dur = htole16(dur);
2699		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2700		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2701
2702		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2703	}
2704	return m;
2705}
2706
2707/*
2708 * Allocate and build a CTS (Clear To Send) control frame.
2709 */
2710struct mbuf *
2711ieee80211_alloc_cts(struct ieee80211com *ic,
2712	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2713{
2714	struct ieee80211_frame_cts *cts;
2715	struct mbuf *m;
2716
2717	/* XXX honor ic_headroom */
2718	m = m_gethdr(M_NOWAIT, MT_DATA);
2719	if (m != NULL) {
2720		cts = mtod(m, struct ieee80211_frame_cts *);
2721		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2722			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2723		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2724		*(u_int16_t *)cts->i_dur = htole16(dur);
2725		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2726
2727		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2728	}
2729	return m;
2730}
2731
2732static void
2733ieee80211_tx_mgt_timeout(void *arg)
2734{
2735	struct ieee80211_node *ni = arg;
2736	struct ieee80211vap *vap = ni->ni_vap;
2737
2738	if (vap->iv_state != IEEE80211_S_INIT &&
2739	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2740		/*
2741		 * NB: it's safe to specify a timeout as the reason here;
2742		 *     it'll only be used in the right state.
2743		 */
2744		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2745			IEEE80211_SCAN_FAIL_TIMEOUT);
2746	}
2747}
2748
2749static void
2750ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2751{
2752	struct ieee80211vap *vap = ni->ni_vap;
2753	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2754
2755	/*
2756	 * Frame transmit completed; arrange timer callback.  If
2757	 * transmit was successfuly we wait for response.  Otherwise
2758	 * we arrange an immediate callback instead of doing the
2759	 * callback directly since we don't know what state the driver
2760	 * is in (e.g. what locks it is holding).  This work should
2761	 * not be too time-critical and not happen too often so the
2762	 * added overhead is acceptable.
2763	 *
2764	 * XXX what happens if !acked but response shows up before callback?
2765	 */
2766	if (vap->iv_state == ostate)
2767		callout_reset(&vap->iv_mgtsend,
2768			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2769			ieee80211_tx_mgt_timeout, ni);
2770}
2771
2772static void
2773ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2774	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2775{
2776	struct ieee80211vap *vap = ni->ni_vap;
2777	struct ieee80211com *ic = ni->ni_ic;
2778	struct ieee80211_rateset *rs = &ni->ni_rates;
2779	uint16_t capinfo;
2780
2781	/*
2782	 * beacon frame format
2783	 *	[8] time stamp
2784	 *	[2] beacon interval
2785	 *	[2] cabability information
2786	 *	[tlv] ssid
2787	 *	[tlv] supported rates
2788	 *	[3] parameter set (DS)
2789	 *	[8] CF parameter set (optional)
2790	 *	[tlv] parameter set (IBSS/TIM)
2791	 *	[tlv] country (optional)
2792	 *	[3] power control (optional)
2793	 *	[5] channel switch announcement (CSA) (optional)
2794	 *	[tlv] extended rate phy (ERP)
2795	 *	[tlv] extended supported rates
2796	 *	[tlv] RSN parameters
2797	 *	[tlv] HT capabilities
2798	 *	[tlv] HT information
2799	 * XXX Vendor-specific OIDs (e.g. Atheros)
2800	 *	[tlv] WPA parameters
2801	 *	[tlv] WME parameters
2802	 *	[tlv] Vendor OUI HT capabilities (optional)
2803	 *	[tlv] Vendor OUI HT information (optional)
2804	 *	[tlv] Atheros capabilities (optional)
2805	 *	[tlv] TDMA parameters (optional)
2806	 *	[tlv] Mesh ID (MBSS)
2807	 *	[tlv] Mesh Conf (MBSS)
2808	 *	[tlv] application data (optional)
2809	 */
2810
2811	memset(bo, 0, sizeof(*bo));
2812
2813	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2814	frm += 8;
2815	*(uint16_t *)frm = htole16(ni->ni_intval);
2816	frm += 2;
2817	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2818	bo->bo_caps = (uint16_t *)frm;
2819	*(uint16_t *)frm = htole16(capinfo);
2820	frm += 2;
2821	*frm++ = IEEE80211_ELEMID_SSID;
2822	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2823		*frm++ = ni->ni_esslen;
2824		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2825		frm += ni->ni_esslen;
2826	} else
2827		*frm++ = 0;
2828	frm = ieee80211_add_rates(frm, rs);
2829	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2830		*frm++ = IEEE80211_ELEMID_DSPARMS;
2831		*frm++ = 1;
2832		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2833	}
2834	if (ic->ic_flags & IEEE80211_F_PCF) {
2835		bo->bo_cfp = frm;
2836		frm = ieee80211_add_cfparms(frm, ic);
2837	}
2838	bo->bo_tim = frm;
2839	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2840		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2841		*frm++ = 2;
2842		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2843		bo->bo_tim_len = 0;
2844	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2845	    vap->iv_opmode == IEEE80211_M_MBSS) {
2846		/* TIM IE is the same for Mesh and Hostap */
2847		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2848
2849		tie->tim_ie = IEEE80211_ELEMID_TIM;
2850		tie->tim_len = 4;	/* length */
2851		tie->tim_count = 0;	/* DTIM count */
2852		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2853		tie->tim_bitctl = 0;	/* bitmap control */
2854		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2855		frm += sizeof(struct ieee80211_tim_ie);
2856		bo->bo_tim_len = 1;
2857	}
2858	bo->bo_tim_trailer = frm;
2859	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2860	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2861		frm = ieee80211_add_countryie(frm, ic);
2862	if (vap->iv_flags & IEEE80211_F_DOTH) {
2863		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2864			frm = ieee80211_add_powerconstraint(frm, vap);
2865		bo->bo_csa = frm;
2866		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2867			frm = ieee80211_add_csa(frm, vap);
2868	} else
2869		bo->bo_csa = frm;
2870
2871	if (vap->iv_flags & IEEE80211_F_DOTH) {
2872		bo->bo_quiet = frm;
2873		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2874		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2875			if (vap->iv_quiet)
2876				frm = ieee80211_add_quiet(frm,vap);
2877		}
2878	} else
2879		bo->bo_quiet = frm;
2880
2881	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2882		bo->bo_erp = frm;
2883		frm = ieee80211_add_erp(frm, ic);
2884	}
2885	frm = ieee80211_add_xrates(frm, rs);
2886	frm = ieee80211_add_rsn(frm, vap);
2887	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2888		frm = ieee80211_add_htcap(frm, ni);
2889		bo->bo_htinfo = frm;
2890		frm = ieee80211_add_htinfo(frm, ni);
2891	}
2892	frm = ieee80211_add_wpa(frm, vap);
2893	if (vap->iv_flags & IEEE80211_F_WME) {
2894		bo->bo_wme = frm;
2895		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2896	}
2897	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2898	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2899		frm = ieee80211_add_htcap_vendor(frm, ni);
2900		frm = ieee80211_add_htinfo_vendor(frm, ni);
2901	}
2902#ifdef IEEE80211_SUPPORT_SUPERG
2903	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2904		bo->bo_ath = frm;
2905		frm = ieee80211_add_athcaps(frm, ni);
2906	}
2907#endif
2908#ifdef IEEE80211_SUPPORT_TDMA
2909	if (vap->iv_caps & IEEE80211_C_TDMA) {
2910		bo->bo_tdma = frm;
2911		frm = ieee80211_add_tdma(frm, vap);
2912	}
2913#endif
2914	if (vap->iv_appie_beacon != NULL) {
2915		bo->bo_appie = frm;
2916		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2917		frm = add_appie(frm, vap->iv_appie_beacon);
2918	}
2919#ifdef IEEE80211_SUPPORT_MESH
2920	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2921		frm = ieee80211_add_meshid(frm, vap);
2922		bo->bo_meshconf = frm;
2923		frm = ieee80211_add_meshconf(frm, vap);
2924	}
2925#endif
2926	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2927	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2928	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2929}
2930
2931/*
2932 * Allocate a beacon frame and fillin the appropriate bits.
2933 */
2934struct mbuf *
2935ieee80211_beacon_alloc(struct ieee80211_node *ni,
2936	struct ieee80211_beacon_offsets *bo)
2937{
2938	struct ieee80211vap *vap = ni->ni_vap;
2939	struct ieee80211com *ic = ni->ni_ic;
2940	struct ifnet *ifp = vap->iv_ifp;
2941	struct ieee80211_frame *wh;
2942	struct mbuf *m;
2943	int pktlen;
2944	uint8_t *frm;
2945
2946	/*
2947	 * beacon frame format
2948	 *	[8] time stamp
2949	 *	[2] beacon interval
2950	 *	[2] cabability information
2951	 *	[tlv] ssid
2952	 *	[tlv] supported rates
2953	 *	[3] parameter set (DS)
2954	 *	[8] CF parameter set (optional)
2955	 *	[tlv] parameter set (IBSS/TIM)
2956	 *	[tlv] country (optional)
2957	 *	[3] power control (optional)
2958	 *	[5] channel switch announcement (CSA) (optional)
2959	 *	[tlv] extended rate phy (ERP)
2960	 *	[tlv] extended supported rates
2961	 *	[tlv] RSN parameters
2962	 *	[tlv] HT capabilities
2963	 *	[tlv] HT information
2964	 *	[tlv] Vendor OUI HT capabilities (optional)
2965	 *	[tlv] Vendor OUI HT information (optional)
2966	 * XXX Vendor-specific OIDs (e.g. Atheros)
2967	 *	[tlv] WPA parameters
2968	 *	[tlv] WME parameters
2969	 *	[tlv] TDMA parameters (optional)
2970	 *	[tlv] Mesh ID (MBSS)
2971	 *	[tlv] Mesh Conf (MBSS)
2972	 *	[tlv] application data (optional)
2973	 * NB: we allocate the max space required for the TIM bitmap.
2974	 * XXX how big is this?
2975	 */
2976	pktlen =   8					/* time stamp */
2977		 + sizeof(uint16_t)			/* beacon interval */
2978		 + sizeof(uint16_t)			/* capabilities */
2979		 + 2 + ni->ni_esslen			/* ssid */
2980	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2981	         + 2 + 1				/* DS parameters */
2982		 + 2 + 6				/* CF parameters */
2983		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2984		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2985		 + 2 + 1				/* power control */
2986		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
2987		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
2988		 + 2 + 1				/* ERP */
2989	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2990		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2991			2*sizeof(struct ieee80211_ie_wpa) : 0)
2992		 /* XXX conditional? */
2993		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2994		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2995		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2996			sizeof(struct ieee80211_wme_param) : 0)
2997#ifdef IEEE80211_SUPPORT_SUPERG
2998		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2999#endif
3000#ifdef IEEE80211_SUPPORT_TDMA
3001		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3002			sizeof(struct ieee80211_tdma_param) : 0)
3003#endif
3004#ifdef IEEE80211_SUPPORT_MESH
3005		 + 2 + ni->ni_meshidlen
3006		 + sizeof(struct ieee80211_meshconf_ie)
3007#endif
3008		 + IEEE80211_MAX_APPIE
3009		 ;
3010	m = ieee80211_getmgtframe(&frm,
3011		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3012	if (m == NULL) {
3013		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3014			"%s: cannot get buf; size %u\n", __func__, pktlen);
3015		vap->iv_stats.is_tx_nobuf++;
3016		return NULL;
3017	}
3018	ieee80211_beacon_construct(m, frm, bo, ni);
3019
3020	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3021	KASSERT(m != NULL, ("no space for 802.11 header?"));
3022	wh = mtod(m, struct ieee80211_frame *);
3023	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3024	    IEEE80211_FC0_SUBTYPE_BEACON;
3025	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3026	*(uint16_t *)wh->i_dur = 0;
3027	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3028	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3029	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3030	*(uint16_t *)wh->i_seq = 0;
3031
3032	return m;
3033}
3034
3035/*
3036 * Update the dynamic parts of a beacon frame based on the current state.
3037 */
3038int
3039ieee80211_beacon_update(struct ieee80211_node *ni,
3040	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
3041{
3042	struct ieee80211vap *vap = ni->ni_vap;
3043	struct ieee80211com *ic = ni->ni_ic;
3044	int len_changed = 0;
3045	uint16_t capinfo;
3046	struct ieee80211_frame *wh;
3047	ieee80211_seq seqno;
3048
3049	IEEE80211_LOCK(ic);
3050	/*
3051	 * Handle 11h channel change when we've reached the count.
3052	 * We must recalculate the beacon frame contents to account
3053	 * for the new channel.  Note we do this only for the first
3054	 * vap that reaches this point; subsequent vaps just update
3055	 * their beacon state to reflect the recalculated channel.
3056	 */
3057	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3058	    vap->iv_csa_count == ic->ic_csa_count) {
3059		vap->iv_csa_count = 0;
3060		/*
3061		 * Effect channel change before reconstructing the beacon
3062		 * frame contents as many places reference ni_chan.
3063		 */
3064		if (ic->ic_csa_newchan != NULL)
3065			ieee80211_csa_completeswitch(ic);
3066		/*
3067		 * NB: ieee80211_beacon_construct clears all pending
3068		 * updates in bo_flags so we don't need to explicitly
3069		 * clear IEEE80211_BEACON_CSA.
3070		 */
3071		ieee80211_beacon_construct(m,
3072		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
3073
3074		/* XXX do WME aggressive mode processing? */
3075		IEEE80211_UNLOCK(ic);
3076		return 1;		/* just assume length changed */
3077	}
3078
3079	wh = mtod(m, struct ieee80211_frame *);
3080	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3081	*(uint16_t *)&wh->i_seq[0] =
3082		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3083	M_SEQNO_SET(m, seqno);
3084
3085	/* XXX faster to recalculate entirely or just changes? */
3086	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3087	*bo->bo_caps = htole16(capinfo);
3088
3089	if (vap->iv_flags & IEEE80211_F_WME) {
3090		struct ieee80211_wme_state *wme = &ic->ic_wme;
3091
3092		/*
3093		 * Check for agressive mode change.  When there is
3094		 * significant high priority traffic in the BSS
3095		 * throttle back BE traffic by using conservative
3096		 * parameters.  Otherwise BE uses agressive params
3097		 * to optimize performance of legacy/non-QoS traffic.
3098		 */
3099		if (wme->wme_flags & WME_F_AGGRMODE) {
3100			if (wme->wme_hipri_traffic >
3101			    wme->wme_hipri_switch_thresh) {
3102				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3103				    "%s: traffic %u, disable aggressive mode\n",
3104				    __func__, wme->wme_hipri_traffic);
3105				wme->wme_flags &= ~WME_F_AGGRMODE;
3106				ieee80211_wme_updateparams_locked(vap);
3107				wme->wme_hipri_traffic =
3108					wme->wme_hipri_switch_hysteresis;
3109			} else
3110				wme->wme_hipri_traffic = 0;
3111		} else {
3112			if (wme->wme_hipri_traffic <=
3113			    wme->wme_hipri_switch_thresh) {
3114				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3115				    "%s: traffic %u, enable aggressive mode\n",
3116				    __func__, wme->wme_hipri_traffic);
3117				wme->wme_flags |= WME_F_AGGRMODE;
3118				ieee80211_wme_updateparams_locked(vap);
3119				wme->wme_hipri_traffic = 0;
3120			} else
3121				wme->wme_hipri_traffic =
3122					wme->wme_hipri_switch_hysteresis;
3123		}
3124		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3125			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3126			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3127		}
3128	}
3129
3130	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3131		ieee80211_ht_update_beacon(vap, bo);
3132		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3133	}
3134#ifdef IEEE80211_SUPPORT_TDMA
3135	if (vap->iv_caps & IEEE80211_C_TDMA) {
3136		/*
3137		 * NB: the beacon is potentially updated every TBTT.
3138		 */
3139		ieee80211_tdma_update_beacon(vap, bo);
3140	}
3141#endif
3142#ifdef IEEE80211_SUPPORT_MESH
3143	if (vap->iv_opmode == IEEE80211_M_MBSS)
3144		ieee80211_mesh_update_beacon(vap, bo);
3145#endif
3146
3147	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3148	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3149		struct ieee80211_tim_ie *tie =
3150			(struct ieee80211_tim_ie *) bo->bo_tim;
3151		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3152			u_int timlen, timoff, i;
3153			/*
3154			 * ATIM/DTIM needs updating.  If it fits in the
3155			 * current space allocated then just copy in the
3156			 * new bits.  Otherwise we need to move any trailing
3157			 * data to make room.  Note that we know there is
3158			 * contiguous space because ieee80211_beacon_allocate
3159			 * insures there is space in the mbuf to write a
3160			 * maximal-size virtual bitmap (based on iv_max_aid).
3161			 */
3162			/*
3163			 * Calculate the bitmap size and offset, copy any
3164			 * trailer out of the way, and then copy in the
3165			 * new bitmap and update the information element.
3166			 * Note that the tim bitmap must contain at least
3167			 * one byte and any offset must be even.
3168			 */
3169			if (vap->iv_ps_pending != 0) {
3170				timoff = 128;		/* impossibly large */
3171				for (i = 0; i < vap->iv_tim_len; i++)
3172					if (vap->iv_tim_bitmap[i]) {
3173						timoff = i &~ 1;
3174						break;
3175					}
3176				KASSERT(timoff != 128, ("tim bitmap empty!"));
3177				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3178					if (vap->iv_tim_bitmap[i])
3179						break;
3180				timlen = 1 + (i - timoff);
3181			} else {
3182				timoff = 0;
3183				timlen = 1;
3184			}
3185			if (timlen != bo->bo_tim_len) {
3186				/* copy up/down trailer */
3187				int adjust = tie->tim_bitmap+timlen
3188					   - bo->bo_tim_trailer;
3189				ovbcopy(bo->bo_tim_trailer,
3190				    bo->bo_tim_trailer+adjust,
3191				    bo->bo_tim_trailer_len);
3192				bo->bo_tim_trailer += adjust;
3193				bo->bo_erp += adjust;
3194				bo->bo_htinfo += adjust;
3195#ifdef IEEE80211_SUPPORT_SUPERG
3196				bo->bo_ath += adjust;
3197#endif
3198#ifdef IEEE80211_SUPPORT_TDMA
3199				bo->bo_tdma += adjust;
3200#endif
3201#ifdef IEEE80211_SUPPORT_MESH
3202				bo->bo_meshconf += adjust;
3203#endif
3204				bo->bo_appie += adjust;
3205				bo->bo_wme += adjust;
3206				bo->bo_csa += adjust;
3207				bo->bo_quiet += adjust;
3208				bo->bo_tim_len = timlen;
3209
3210				/* update information element */
3211				tie->tim_len = 3 + timlen;
3212				tie->tim_bitctl = timoff;
3213				len_changed = 1;
3214			}
3215			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3216				bo->bo_tim_len);
3217
3218			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3219
3220			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3221				"%s: TIM updated, pending %u, off %u, len %u\n",
3222				__func__, vap->iv_ps_pending, timoff, timlen);
3223		}
3224		/* count down DTIM period */
3225		if (tie->tim_count == 0)
3226			tie->tim_count = tie->tim_period - 1;
3227		else
3228			tie->tim_count--;
3229		/* update state for buffered multicast frames on DTIM */
3230		if (mcast && tie->tim_count == 0)
3231			tie->tim_bitctl |= 1;
3232		else
3233			tie->tim_bitctl &= ~1;
3234		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3235			struct ieee80211_csa_ie *csa =
3236			    (struct ieee80211_csa_ie *) bo->bo_csa;
3237
3238			/*
3239			 * Insert or update CSA ie.  If we're just starting
3240			 * to count down to the channel switch then we need
3241			 * to insert the CSA ie.  Otherwise we just need to
3242			 * drop the count.  The actual change happens above
3243			 * when the vap's count reaches the target count.
3244			 */
3245			if (vap->iv_csa_count == 0) {
3246				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3247				bo->bo_erp += sizeof(*csa);
3248				bo->bo_htinfo += sizeof(*csa);
3249				bo->bo_wme += sizeof(*csa);
3250#ifdef IEEE80211_SUPPORT_SUPERG
3251				bo->bo_ath += sizeof(*csa);
3252#endif
3253#ifdef IEEE80211_SUPPORT_TDMA
3254				bo->bo_tdma += sizeof(*csa);
3255#endif
3256#ifdef IEEE80211_SUPPORT_MESH
3257				bo->bo_meshconf += sizeof(*csa);
3258#endif
3259				bo->bo_appie += sizeof(*csa);
3260				bo->bo_csa_trailer_len += sizeof(*csa);
3261				bo->bo_quiet += sizeof(*csa);
3262				bo->bo_tim_trailer_len += sizeof(*csa);
3263				m->m_len += sizeof(*csa);
3264				m->m_pkthdr.len += sizeof(*csa);
3265
3266				ieee80211_add_csa(bo->bo_csa, vap);
3267			} else
3268				csa->csa_count--;
3269			vap->iv_csa_count++;
3270			/* NB: don't clear IEEE80211_BEACON_CSA */
3271		}
3272		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3273		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3274			if (vap->iv_quiet)
3275				ieee80211_add_quiet(bo->bo_quiet, vap);
3276		}
3277		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3278			/*
3279			 * ERP element needs updating.
3280			 */
3281			(void) ieee80211_add_erp(bo->bo_erp, ic);
3282			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3283		}
3284#ifdef IEEE80211_SUPPORT_SUPERG
3285		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3286			ieee80211_add_athcaps(bo->bo_ath, ni);
3287			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3288		}
3289#endif
3290	}
3291	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3292		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3293		int aielen;
3294		uint8_t *frm;
3295
3296		aielen = 0;
3297		if (aie != NULL)
3298			aielen += aie->ie_len;
3299		if (aielen != bo->bo_appie_len) {
3300			/* copy up/down trailer */
3301			int adjust = aielen - bo->bo_appie_len;
3302			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3303				bo->bo_tim_trailer_len);
3304			bo->bo_tim_trailer += adjust;
3305			bo->bo_appie += adjust;
3306			bo->bo_appie_len = aielen;
3307
3308			len_changed = 1;
3309		}
3310		frm = bo->bo_appie;
3311		if (aie != NULL)
3312			frm  = add_appie(frm, aie);
3313		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3314	}
3315	IEEE80211_UNLOCK(ic);
3316
3317	return len_changed;
3318}
3319
3320/*
3321 * Do Ethernet-LLC encapsulation for each payload in a fast frame
3322 * tunnel encapsulation.  The frame is assumed to have an Ethernet
3323 * header at the front that must be stripped before prepending the
3324 * LLC followed by the Ethernet header passed in (with an Ethernet
3325 * type that specifies the payload size).
3326 */
3327struct mbuf *
3328ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3329	const struct ether_header *eh)
3330{
3331	struct llc *llc;
3332	uint16_t payload;
3333
3334	/* XXX optimize by combining m_adj+M_PREPEND */
3335	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3336	llc = mtod(m, struct llc *);
3337	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3338	llc->llc_control = LLC_UI;
3339	llc->llc_snap.org_code[0] = 0;
3340	llc->llc_snap.org_code[1] = 0;
3341	llc->llc_snap.org_code[2] = 0;
3342	llc->llc_snap.ether_type = eh->ether_type;
3343	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3344
3345	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3346	if (m == NULL) {		/* XXX cannot happen */
3347		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3348			"%s: no space for ether_header\n", __func__);
3349		vap->iv_stats.is_tx_nobuf++;
3350		return NULL;
3351	}
3352	ETHER_HEADER_COPY(mtod(m, void *), eh);
3353	mtod(m, struct ether_header *)->ether_type = htons(payload);
3354	return m;
3355}
3356
3357/*
3358 * Complete an mbuf transmission.
3359 *
3360 * For now, this simply processes a completed frame after the
3361 * driver has completed it's transmission and/or retransmission.
3362 * It assumes the frame is an 802.11 encapsulated frame.
3363 *
3364 * Later on it will grow to become the exit path for a given frame
3365 * from the driver and, depending upon how it's been encapsulated
3366 * and already transmitted, it may end up doing A-MPDU retransmission,
3367 * power save requeuing, etc.
3368 *
3369 * In order for the above to work, the driver entry point to this
3370 * must not hold any driver locks.  Thus, the driver needs to delay
3371 * any actual mbuf completion until it can release said locks.
3372 *
3373 * This frees the mbuf and if the mbuf has a node reference,
3374 * the node reference will be freed.
3375 */
3376void
3377ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3378{
3379
3380	if (ni != NULL) {
3381		if (m->m_flags & M_TXCB)
3382			ieee80211_process_callback(ni, m, status);
3383		ieee80211_free_node(ni);
3384	}
3385	m_freem(m);
3386}
3387