ieee80211_output.c revision 248069
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 248069 2013-03-08 20:23:55Z adrian $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/endian.h>
39
40#include <sys/socket.h>
41
42#include <net/bpf.h>
43#include <net/ethernet.h>
44#include <net/if.h>
45#include <net/if_llc.h>
46#include <net/if_media.h>
47#include <net/if_vlan_var.h>
48
49#include <net80211/ieee80211_var.h>
50#include <net80211/ieee80211_regdomain.h>
51#ifdef IEEE80211_SUPPORT_SUPERG
52#include <net80211/ieee80211_superg.h>
53#endif
54#ifdef IEEE80211_SUPPORT_TDMA
55#include <net80211/ieee80211_tdma.h>
56#endif
57#include <net80211/ieee80211_wds.h>
58#include <net80211/ieee80211_mesh.h>
59
60#if defined(INET) || defined(INET6)
61#include <netinet/in.h>
62#endif
63
64#ifdef INET
65#include <netinet/if_ether.h>
66#include <netinet/in_systm.h>
67#include <netinet/ip.h>
68#endif
69#ifdef INET6
70#include <netinet/ip6.h>
71#endif
72
73#include <security/mac/mac_framework.h>
74
75#define	ETHER_HEADER_COPY(dst, src) \
76	memcpy(dst, src, sizeof(struct ether_header))
77
78/* unalligned little endian access */
79#define LE_WRITE_2(p, v) do {				\
80	((uint8_t *)(p))[0] = (v) & 0xff;		\
81	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
82} while (0)
83#define LE_WRITE_4(p, v) do {				\
84	((uint8_t *)(p))[0] = (v) & 0xff;		\
85	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
86	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
87	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
88} while (0)
89
90static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
91	u_int hdrsize, u_int ciphdrsize, u_int mtu);
92static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
93
94#ifdef IEEE80211_DEBUG
95/*
96 * Decide if an outbound management frame should be
97 * printed when debugging is enabled.  This filters some
98 * of the less interesting frames that come frequently
99 * (e.g. beacons).
100 */
101static __inline int
102doprint(struct ieee80211vap *vap, int subtype)
103{
104	switch (subtype) {
105	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
106		return (vap->iv_opmode == IEEE80211_M_IBSS);
107	}
108	return 1;
109}
110#endif
111
112/*
113 * Send the given mbuf through the given vap.
114 *
115 * This consumes the mbuf regardless of whether the transmit
116 * was successful or not.
117 *
118 * This does none of the initial checks that ieee80211_start()
119 * does (eg CAC timeout, interface wakeup) - the caller must
120 * do this first.
121 */
122static int
123ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
124{
125#define	IS_DWDS(vap) \
126	(vap->iv_opmode == IEEE80211_M_WDS && \
127	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
128	struct ieee80211com *ic = vap->iv_ic;
129	struct ifnet *ifp = vap->iv_ifp;
130	struct ieee80211_node *ni;
131	struct ether_header *eh;
132	int error;
133
134	/*
135	 * Cancel any background scan.
136	 */
137	if (ic->ic_flags & IEEE80211_F_SCAN)
138		ieee80211_cancel_anyscan(vap);
139	/*
140	 * Find the node for the destination so we can do
141	 * things like power save and fast frames aggregation.
142	 *
143	 * NB: past this point various code assumes the first
144	 *     mbuf has the 802.3 header present (and contiguous).
145	 */
146	ni = NULL;
147	if (m->m_len < sizeof(struct ether_header) &&
148	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
149		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
150		    "discard frame, %s\n", "m_pullup failed");
151		vap->iv_stats.is_tx_nobuf++;	/* XXX */
152		ifp->if_oerrors++;
153		return (ENOBUFS);
154	}
155	eh = mtod(m, struct ether_header *);
156	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
157		if (IS_DWDS(vap)) {
158			/*
159			 * Only unicast frames from the above go out
160			 * DWDS vaps; multicast frames are handled by
161			 * dispatching the frame as it comes through
162			 * the AP vap (see below).
163			 */
164			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
165			    eh->ether_dhost, "mcast", "%s", "on DWDS");
166			vap->iv_stats.is_dwds_mcast++;
167			m_freem(m);
168			/* XXX better status? */
169			return (ENOBUFS);
170		}
171		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
172			/*
173			 * Spam DWDS vap's w/ multicast traffic.
174			 */
175			/* XXX only if dwds in use? */
176			ieee80211_dwds_mcast(vap, m);
177		}
178	}
179#ifdef IEEE80211_SUPPORT_MESH
180	if (vap->iv_opmode != IEEE80211_M_MBSS) {
181#endif
182		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
183		if (ni == NULL) {
184			/* NB: ieee80211_find_txnode does stat+msg */
185			ifp->if_oerrors++;
186			m_freem(m);
187			/* XXX better status? */
188			return (ENOBUFS);
189		}
190		if (ni->ni_associd == 0 &&
191		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
192			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
193			    eh->ether_dhost, NULL,
194			    "sta not associated (type 0x%04x)",
195			    htons(eh->ether_type));
196			vap->iv_stats.is_tx_notassoc++;
197			ifp->if_oerrors++;
198			m_freem(m);
199			ieee80211_free_node(ni);
200			/* XXX better status? */
201			return (ENOBUFS);
202		}
203#ifdef IEEE80211_SUPPORT_MESH
204	} else {
205		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
206			/*
207			 * Proxy station only if configured.
208			 */
209			if (!ieee80211_mesh_isproxyena(vap)) {
210				IEEE80211_DISCARD_MAC(vap,
211				    IEEE80211_MSG_OUTPUT |
212				    IEEE80211_MSG_MESH,
213				    eh->ether_dhost, NULL,
214				    "%s", "proxy not enabled");
215				vap->iv_stats.is_mesh_notproxy++;
216				ifp->if_oerrors++;
217				m_freem(m);
218				/* XXX better status? */
219				return (ENOBUFS);
220			}
221			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
222			    "forward frame from DS SA(%6D), DA(%6D)\n",
223			    eh->ether_shost, ":",
224			    eh->ether_dhost, ":");
225			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
226		}
227		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
228		if (ni == NULL) {
229			/*
230			 * NB: ieee80211_mesh_discover holds/disposes
231			 * frame (e.g. queueing on path discovery).
232			 */
233			ifp->if_oerrors++;
234			/* XXX better status? */
235			return (ENOBUFS);
236		}
237	}
238#endif
239	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
240	    (m->m_flags & M_PWR_SAV) == 0) {
241		/*
242		 * Station in power save mode; pass the frame
243		 * to the 802.11 layer and continue.  We'll get
244		 * the frame back when the time is right.
245		 * XXX lose WDS vap linkage?
246		 */
247		(void) ieee80211_pwrsave(ni, m);
248		ieee80211_free_node(ni);
249		/* XXX better status? */
250		return (ENOBUFS);
251	}
252	/* calculate priority so drivers can find the tx queue */
253	if (ieee80211_classify(ni, m)) {
254		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
255		    eh->ether_dhost, NULL,
256		    "%s", "classification failure");
257		vap->iv_stats.is_tx_classify++;
258		ifp->if_oerrors++;
259		m_freem(m);
260		ieee80211_free_node(ni);
261		/* XXX better status? */
262		return (ENOBUFS);
263	}
264	/*
265	 * Stash the node pointer.  Note that we do this after
266	 * any call to ieee80211_dwds_mcast because that code
267	 * uses any existing value for rcvif to identify the
268	 * interface it (might have been) received on.
269	 */
270	m->m_pkthdr.rcvif = (void *)ni;
271
272	BPF_MTAP(ifp, m);		/* 802.3 tx */
273
274
275	/*
276	 * Check if A-MPDU tx aggregation is setup or if we
277	 * should try to enable it.  The sta must be associated
278	 * with HT and A-MPDU enabled for use.  When the policy
279	 * routine decides we should enable A-MPDU we issue an
280	 * ADDBA request and wait for a reply.  The frame being
281	 * encapsulated will go out w/o using A-MPDU, or possibly
282	 * it might be collected by the driver and held/retransmit.
283	 * The default ic_ampdu_enable routine handles staggering
284	 * ADDBA requests in case the receiver NAK's us or we are
285	 * otherwise unable to establish a BA stream.
286	 */
287	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
288	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
289	    (m->m_flags & M_EAPOL) == 0) {
290		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
291		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
292
293		ieee80211_txampdu_count_packet(tap);
294		if (IEEE80211_AMPDU_RUNNING(tap)) {
295			/*
296			 * Operational, mark frame for aggregation.
297			 *
298			 * XXX do tx aggregation here
299			 */
300			m->m_flags |= M_AMPDU_MPDU;
301		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
302		    ic->ic_ampdu_enable(ni, tap)) {
303			/*
304			 * Not negotiated yet, request service.
305			 */
306			ieee80211_ampdu_request(ni, tap);
307			/* XXX hold frame for reply? */
308		}
309	}
310
311#ifdef IEEE80211_SUPPORT_SUPERG
312	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
313		m = ieee80211_ff_check(ni, m);
314		if (m == NULL) {
315			/* NB: any ni ref held on stageq */
316			/* XXX better status? */
317			return (ENOBUFS);
318		}
319	}
320#endif /* IEEE80211_SUPPORT_SUPERG */
321
322	/*
323	 * Grab the TX lock - serialise the TX process from this
324	 * point (where TX state is being checked/modified)
325	 * through to driver queue.
326	 */
327	IEEE80211_TX_LOCK(ic);
328
329	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
330		/*
331		 * Encapsulate the packet in prep for transmission.
332		 */
333		m = ieee80211_encap(vap, ni, m);
334		if (m == NULL) {
335			/* NB: stat+msg handled in ieee80211_encap */
336			IEEE80211_TX_UNLOCK(ic);
337			ieee80211_free_node(ni);
338			/* XXX better status? */
339			return (ENOBUFS);
340		}
341	}
342	error = ieee80211_parent_transmit(ic, m);
343
344	/*
345	 * Unlock at this point - no need to hold it across
346	 * ieee80211_free_node() (ie, the comlock)
347	 */
348	IEEE80211_TX_UNLOCK(ic);
349	if (error != 0) {
350		/* NB: IFQ_HANDOFF reclaims mbuf */
351		ieee80211_free_node(ni);
352	} else {
353		ifp->if_opackets++;
354	}
355	ic->ic_lastdata = ticks;
356
357	return (0);
358#undef	IS_DWDS
359}
360
361/*
362 * Start method for vap's.  All packets from the stack come
363 * through here.  We handle common processing of the packets
364 * before dispatching them to the underlying device.
365 */
366void
367ieee80211_start(struct ifnet *ifp)
368{
369	struct ieee80211vap *vap = ifp->if_softc;
370	struct ieee80211com *ic = vap->iv_ic;
371	struct ifnet *parent = ic->ic_ifp;
372	struct mbuf *m;
373
374	/* NB: parent must be up and running */
375	if (!IFNET_IS_UP_RUNNING(parent)) {
376		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
377		    "%s: ignore queue, parent %s not up+running\n",
378		    __func__, parent->if_xname);
379		/* XXX stat */
380		return;
381	}
382	if (vap->iv_state == IEEE80211_S_SLEEP) {
383		/*
384		 * In power save, wakeup device for transmit.
385		 */
386		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
387		return;
388	}
389	/*
390	 * No data frames go out unless we're running.
391	 * Note in particular this covers CAC and CSA
392	 * states (though maybe we should check muting
393	 * for CSA).
394	 */
395	if (vap->iv_state != IEEE80211_S_RUN) {
396		IEEE80211_LOCK(ic);
397		/* re-check under the com lock to avoid races */
398		if (vap->iv_state != IEEE80211_S_RUN) {
399			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
400			    "%s: ignore queue, in %s state\n",
401			    __func__, ieee80211_state_name[vap->iv_state]);
402			vap->iv_stats.is_tx_badstate++;
403			IEEE80211_UNLOCK(ic);
404			IFQ_LOCK(&ifp->if_snd);
405			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
406			IFQ_UNLOCK(&ifp->if_snd);
407			return;
408		}
409		IEEE80211_UNLOCK(ic);
410	}
411
412	for (;;) {
413		IFQ_DEQUEUE(&ifp->if_snd, m);
414		if (m == NULL)
415			break;
416		/*
417		 * Sanitize mbuf flags for net80211 use.  We cannot
418		 * clear M_PWR_SAV or M_MORE_DATA because these may
419		 * be set for frames that are re-submitted from the
420		 * power save queue.
421		 *
422		 * NB: This must be done before ieee80211_classify as
423		 *     it marks EAPOL in frames with M_EAPOL.
424		 */
425		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
426		/*
427		 * Bump to the packet transmission path.
428		 */
429		(void) ieee80211_start_pkt(vap, m);
430		/* mbuf is consumed here */
431	}
432}
433
434/*
435 * 802.11 raw output routine.
436 */
437int
438ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
439    struct mbuf *m, const struct ieee80211_bpf_params *params)
440{
441	struct ieee80211com *ic = vap->iv_ic;
442
443	return (ic->ic_raw_xmit(ni, m, params));
444}
445
446/*
447 * 802.11 output routine. This is (currently) used only to
448 * connect bpf write calls to the 802.11 layer for injecting
449 * raw 802.11 frames.
450 */
451int
452ieee80211_output(struct ifnet *ifp, struct mbuf *m,
453	struct sockaddr *dst, struct route *ro)
454{
455#define senderr(e) do { error = (e); goto bad;} while (0)
456	struct ieee80211_node *ni = NULL;
457	struct ieee80211vap *vap;
458	struct ieee80211_frame *wh;
459	struct ieee80211com *ic = NULL;
460	int error;
461	int ret;
462
463	IFQ_LOCK(&ifp->if_snd);
464	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
465		IFQ_UNLOCK(&ifp->if_snd);
466		/*
467		 * Short-circuit requests if the vap is marked OACTIVE
468		 * as this can happen because a packet came down through
469		 * ieee80211_start before the vap entered RUN state in
470		 * which case it's ok to just drop the frame.  This
471		 * should not be necessary but callers of if_output don't
472		 * check OACTIVE.
473		 */
474		senderr(ENETDOWN);
475	}
476	IFQ_UNLOCK(&ifp->if_snd);
477	vap = ifp->if_softc;
478	ic = vap->iv_ic;
479	/*
480	 * Hand to the 802.3 code if not tagged as
481	 * a raw 802.11 frame.
482	 */
483	if (dst->sa_family != AF_IEEE80211)
484		return vap->iv_output(ifp, m, dst, ro);
485#ifdef MAC
486	error = mac_ifnet_check_transmit(ifp, m);
487	if (error)
488		senderr(error);
489#endif
490	if (ifp->if_flags & IFF_MONITOR)
491		senderr(ENETDOWN);
492	if (!IFNET_IS_UP_RUNNING(ifp))
493		senderr(ENETDOWN);
494	if (vap->iv_state == IEEE80211_S_CAC) {
495		IEEE80211_DPRINTF(vap,
496		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
497		    "block %s frame in CAC state\n", "raw data");
498		vap->iv_stats.is_tx_badstate++;
499		senderr(EIO);		/* XXX */
500	} else if (vap->iv_state == IEEE80211_S_SCAN)
501		senderr(EIO);
502	/* XXX bypass bridge, pfil, carp, etc. */
503
504	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
505		senderr(EIO);	/* XXX */
506	wh = mtod(m, struct ieee80211_frame *);
507	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
508	    IEEE80211_FC0_VERSION_0)
509		senderr(EIO);	/* XXX */
510
511	/* locate destination node */
512	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
513	case IEEE80211_FC1_DIR_NODS:
514	case IEEE80211_FC1_DIR_FROMDS:
515		ni = ieee80211_find_txnode(vap, wh->i_addr1);
516		break;
517	case IEEE80211_FC1_DIR_TODS:
518	case IEEE80211_FC1_DIR_DSTODS:
519		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
520			senderr(EIO);	/* XXX */
521		ni = ieee80211_find_txnode(vap, wh->i_addr3);
522		break;
523	default:
524		senderr(EIO);	/* XXX */
525	}
526	if (ni == NULL) {
527		/*
528		 * Permit packets w/ bpf params through regardless
529		 * (see below about sa_len).
530		 */
531		if (dst->sa_len == 0)
532			senderr(EHOSTUNREACH);
533		ni = ieee80211_ref_node(vap->iv_bss);
534	}
535
536	/*
537	 * Sanitize mbuf for net80211 flags leaked from above.
538	 *
539	 * NB: This must be done before ieee80211_classify as
540	 *     it marks EAPOL in frames with M_EAPOL.
541	 */
542	m->m_flags &= ~M_80211_TX;
543
544	/* calculate priority so drivers can find the tx queue */
545	/* XXX assumes an 802.3 frame */
546	if (ieee80211_classify(ni, m))
547		senderr(EIO);		/* XXX */
548
549	ifp->if_opackets++;
550	IEEE80211_NODE_STAT(ni, tx_data);
551	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
552		IEEE80211_NODE_STAT(ni, tx_mcast);
553		m->m_flags |= M_MCAST;
554	} else
555		IEEE80211_NODE_STAT(ni, tx_ucast);
556	/* NB: ieee80211_encap does not include 802.11 header */
557	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
558
559	IEEE80211_TX_LOCK(ic);
560
561	/*
562	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
563	 * present by setting the sa_len field of the sockaddr (yes,
564	 * this is a hack).
565	 * NB: we assume sa_data is suitably aligned to cast.
566	 */
567	ret = ieee80211_raw_output(vap, ni, m,
568	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
569		dst->sa_data : NULL));
570	IEEE80211_TX_UNLOCK(ic);
571	return (ret);
572bad:
573	if (m != NULL)
574		m_freem(m);
575	if (ni != NULL)
576		ieee80211_free_node(ni);
577	ifp->if_oerrors++;
578	return error;
579#undef senderr
580}
581
582/*
583 * Set the direction field and address fields of an outgoing
584 * frame.  Note this should be called early on in constructing
585 * a frame as it sets i_fc[1]; other bits can then be or'd in.
586 */
587void
588ieee80211_send_setup(
589	struct ieee80211_node *ni,
590	struct mbuf *m,
591	int type, int tid,
592	const uint8_t sa[IEEE80211_ADDR_LEN],
593	const uint8_t da[IEEE80211_ADDR_LEN],
594	const uint8_t bssid[IEEE80211_ADDR_LEN])
595{
596#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
597	struct ieee80211vap *vap = ni->ni_vap;
598	struct ieee80211_tx_ampdu *tap;
599	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
600	struct ieee80211com *ic = ni->ni_ic;
601	ieee80211_seq seqno;
602
603	IEEE80211_TX_LOCK_ASSERT(ic);
604
605	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
606	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
607		switch (vap->iv_opmode) {
608		case IEEE80211_M_STA:
609			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
610			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
611			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
612			IEEE80211_ADDR_COPY(wh->i_addr3, da);
613			break;
614		case IEEE80211_M_IBSS:
615		case IEEE80211_M_AHDEMO:
616			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
617			IEEE80211_ADDR_COPY(wh->i_addr1, da);
618			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
619			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
620			break;
621		case IEEE80211_M_HOSTAP:
622			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
623			IEEE80211_ADDR_COPY(wh->i_addr1, da);
624			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
625			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
626			break;
627		case IEEE80211_M_WDS:
628			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
629			IEEE80211_ADDR_COPY(wh->i_addr1, da);
630			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
631			IEEE80211_ADDR_COPY(wh->i_addr3, da);
632			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
633			break;
634		case IEEE80211_M_MBSS:
635#ifdef IEEE80211_SUPPORT_MESH
636			if (IEEE80211_IS_MULTICAST(da)) {
637				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
638				/* XXX next hop */
639				IEEE80211_ADDR_COPY(wh->i_addr1, da);
640				IEEE80211_ADDR_COPY(wh->i_addr2,
641				    vap->iv_myaddr);
642			} else {
643				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
644				IEEE80211_ADDR_COPY(wh->i_addr1, da);
645				IEEE80211_ADDR_COPY(wh->i_addr2,
646				    vap->iv_myaddr);
647				IEEE80211_ADDR_COPY(wh->i_addr3, da);
648				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
649			}
650#endif
651			break;
652		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
653			break;
654		}
655	} else {
656		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
657		IEEE80211_ADDR_COPY(wh->i_addr1, da);
658		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
659#ifdef IEEE80211_SUPPORT_MESH
660		if (vap->iv_opmode == IEEE80211_M_MBSS)
661			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
662		else
663#endif
664			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
665	}
666	*(uint16_t *)&wh->i_dur[0] = 0;
667
668	tap = &ni->ni_tx_ampdu[tid];
669	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
670		m->m_flags |= M_AMPDU_MPDU;
671	else {
672		seqno = ni->ni_txseqs[tid]++;
673		*(uint16_t *)&wh->i_seq[0] =
674		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
675		M_SEQNO_SET(m, seqno);
676	}
677
678	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
679		m->m_flags |= M_MCAST;
680#undef WH4
681}
682
683/*
684 * Send a management frame to the specified node.  The node pointer
685 * must have a reference as the pointer will be passed to the driver
686 * and potentially held for a long time.  If the frame is successfully
687 * dispatched to the driver, then it is responsible for freeing the
688 * reference (and potentially free'ing up any associated storage);
689 * otherwise deal with reclaiming any reference (on error).
690 */
691int
692ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
693	struct ieee80211_bpf_params *params)
694{
695	struct ieee80211vap *vap = ni->ni_vap;
696	struct ieee80211com *ic = ni->ni_ic;
697	struct ieee80211_frame *wh;
698	int ret;
699
700	KASSERT(ni != NULL, ("null node"));
701
702	if (vap->iv_state == IEEE80211_S_CAC) {
703		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
704		    ni, "block %s frame in CAC state",
705			ieee80211_mgt_subtype_name[
706			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
707				IEEE80211_FC0_SUBTYPE_SHIFT]);
708		vap->iv_stats.is_tx_badstate++;
709		ieee80211_free_node(ni);
710		m_freem(m);
711		return EIO;		/* XXX */
712	}
713
714	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
715	if (m == NULL) {
716		ieee80211_free_node(ni);
717		return ENOMEM;
718	}
719
720	IEEE80211_TX_LOCK(ic);
721
722	wh = mtod(m, struct ieee80211_frame *);
723	ieee80211_send_setup(ni, m,
724	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
725	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
726	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
727		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
728		    "encrypting frame (%s)", __func__);
729		wh->i_fc[1] |= IEEE80211_FC1_WEP;
730	}
731	m->m_flags |= M_ENCAP;		/* mark encapsulated */
732
733	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
734	M_WME_SETAC(m, params->ibp_pri);
735
736#ifdef IEEE80211_DEBUG
737	/* avoid printing too many frames */
738	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
739	    ieee80211_msg_dumppkts(vap)) {
740		printf("[%s] send %s on channel %u\n",
741		    ether_sprintf(wh->i_addr1),
742		    ieee80211_mgt_subtype_name[
743			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
744				IEEE80211_FC0_SUBTYPE_SHIFT],
745		    ieee80211_chan2ieee(ic, ic->ic_curchan));
746	}
747#endif
748	IEEE80211_NODE_STAT(ni, tx_mgmt);
749
750	ret = ieee80211_raw_output(vap, ni, m, params);
751	IEEE80211_TX_UNLOCK(ic);
752	return (ret);
753}
754
755/*
756 * Send a null data frame to the specified node.  If the station
757 * is setup for QoS then a QoS Null Data frame is constructed.
758 * If this is a WDS station then a 4-address frame is constructed.
759 *
760 * NB: the caller is assumed to have setup a node reference
761 *     for use; this is necessary to deal with a race condition
762 *     when probing for inactive stations.  Like ieee80211_mgmt_output
763 *     we must cleanup any node reference on error;  however we
764 *     can safely just unref it as we know it will never be the
765 *     last reference to the node.
766 */
767int
768ieee80211_send_nulldata(struct ieee80211_node *ni)
769{
770	struct ieee80211vap *vap = ni->ni_vap;
771	struct ieee80211com *ic = ni->ni_ic;
772	struct mbuf *m;
773	struct ieee80211_frame *wh;
774	int hdrlen;
775	uint8_t *frm;
776	int ret;
777
778	if (vap->iv_state == IEEE80211_S_CAC) {
779		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
780		    ni, "block %s frame in CAC state", "null data");
781		ieee80211_unref_node(&ni);
782		vap->iv_stats.is_tx_badstate++;
783		return EIO;		/* XXX */
784	}
785
786	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
787		hdrlen = sizeof(struct ieee80211_qosframe);
788	else
789		hdrlen = sizeof(struct ieee80211_frame);
790	/* NB: only WDS vap's get 4-address frames */
791	if (vap->iv_opmode == IEEE80211_M_WDS)
792		hdrlen += IEEE80211_ADDR_LEN;
793	if (ic->ic_flags & IEEE80211_F_DATAPAD)
794		hdrlen = roundup(hdrlen, sizeof(uint32_t));
795
796	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
797	if (m == NULL) {
798		/* XXX debug msg */
799		ieee80211_unref_node(&ni);
800		vap->iv_stats.is_tx_nobuf++;
801		return ENOMEM;
802	}
803	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
804	    ("leading space %zd", M_LEADINGSPACE(m)));
805	M_PREPEND(m, hdrlen, M_NOWAIT);
806	if (m == NULL) {
807		/* NB: cannot happen */
808		ieee80211_free_node(ni);
809		return ENOMEM;
810	}
811
812	IEEE80211_TX_LOCK(ic);
813
814	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
815	if (ni->ni_flags & IEEE80211_NODE_QOS) {
816		const int tid = WME_AC_TO_TID(WME_AC_BE);
817		uint8_t *qos;
818
819		ieee80211_send_setup(ni, m,
820		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
821		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
822
823		if (vap->iv_opmode == IEEE80211_M_WDS)
824			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
825		else
826			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
827		qos[0] = tid & IEEE80211_QOS_TID;
828		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
829			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
830		qos[1] = 0;
831	} else {
832		ieee80211_send_setup(ni, m,
833		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
834		    IEEE80211_NONQOS_TID,
835		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
836	}
837	if (vap->iv_opmode != IEEE80211_M_WDS) {
838		/* NB: power management bit is never sent by an AP */
839		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
840		    vap->iv_opmode != IEEE80211_M_HOSTAP)
841			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
842	}
843	m->m_len = m->m_pkthdr.len = hdrlen;
844	m->m_flags |= M_ENCAP;		/* mark encapsulated */
845
846	M_WME_SETAC(m, WME_AC_BE);
847
848	IEEE80211_NODE_STAT(ni, tx_data);
849
850	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
851	    "send %snull data frame on channel %u, pwr mgt %s",
852	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
853	    ieee80211_chan2ieee(ic, ic->ic_curchan),
854	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
855
856	ret = ieee80211_raw_output(vap, ni, m, NULL);
857	IEEE80211_TX_UNLOCK(ic);
858	return (ret);
859}
860
861/*
862 * Assign priority to a frame based on any vlan tag assigned
863 * to the station and/or any Diffserv setting in an IP header.
864 * Finally, if an ACM policy is setup (in station mode) it's
865 * applied.
866 */
867int
868ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
869{
870	const struct ether_header *eh = mtod(m, struct ether_header *);
871	int v_wme_ac, d_wme_ac, ac;
872
873	/*
874	 * Always promote PAE/EAPOL frames to high priority.
875	 */
876	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
877		/* NB: mark so others don't need to check header */
878		m->m_flags |= M_EAPOL;
879		ac = WME_AC_VO;
880		goto done;
881	}
882	/*
883	 * Non-qos traffic goes to BE.
884	 */
885	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
886		ac = WME_AC_BE;
887		goto done;
888	}
889
890	/*
891	 * If node has a vlan tag then all traffic
892	 * to it must have a matching tag.
893	 */
894	v_wme_ac = 0;
895	if (ni->ni_vlan != 0) {
896		 if ((m->m_flags & M_VLANTAG) == 0) {
897			IEEE80211_NODE_STAT(ni, tx_novlantag);
898			return 1;
899		}
900		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
901		    EVL_VLANOFTAG(ni->ni_vlan)) {
902			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
903			return 1;
904		}
905		/* map vlan priority to AC */
906		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
907	}
908
909	/* XXX m_copydata may be too slow for fast path */
910#ifdef INET
911	if (eh->ether_type == htons(ETHERTYPE_IP)) {
912		uint8_t tos;
913		/*
914		 * IP frame, map the DSCP bits from the TOS field.
915		 */
916		/* NB: ip header may not be in first mbuf */
917		m_copydata(m, sizeof(struct ether_header) +
918		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
919		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
920		d_wme_ac = TID_TO_WME_AC(tos);
921	} else {
922#endif /* INET */
923#ifdef INET6
924	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
925		uint32_t flow;
926		uint8_t tos;
927		/*
928		 * IPv6 frame, map the DSCP bits from the traffic class field.
929		 */
930		m_copydata(m, sizeof(struct ether_header) +
931		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
932		    (caddr_t) &flow);
933		tos = (uint8_t)(ntohl(flow) >> 20);
934		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
935		d_wme_ac = TID_TO_WME_AC(tos);
936	} else {
937#endif /* INET6 */
938		d_wme_ac = WME_AC_BE;
939#ifdef INET6
940	}
941#endif
942#ifdef INET
943	}
944#endif
945	/*
946	 * Use highest priority AC.
947	 */
948	if (v_wme_ac > d_wme_ac)
949		ac = v_wme_ac;
950	else
951		ac = d_wme_ac;
952
953	/*
954	 * Apply ACM policy.
955	 */
956	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
957		static const int acmap[4] = {
958			WME_AC_BK,	/* WME_AC_BE */
959			WME_AC_BK,	/* WME_AC_BK */
960			WME_AC_BE,	/* WME_AC_VI */
961			WME_AC_VI,	/* WME_AC_VO */
962		};
963		struct ieee80211com *ic = ni->ni_ic;
964
965		while (ac != WME_AC_BK &&
966		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
967			ac = acmap[ac];
968	}
969done:
970	M_WME_SETAC(m, ac);
971	return 0;
972}
973
974/*
975 * Insure there is sufficient contiguous space to encapsulate the
976 * 802.11 data frame.  If room isn't already there, arrange for it.
977 * Drivers and cipher modules assume we have done the necessary work
978 * and fail rudely if they don't find the space they need.
979 */
980struct mbuf *
981ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
982	struct ieee80211_key *key, struct mbuf *m)
983{
984#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
985	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
986
987	if (key != NULL) {
988		/* XXX belongs in crypto code? */
989		needed_space += key->wk_cipher->ic_header;
990		/* XXX frags */
991		/*
992		 * When crypto is being done in the host we must insure
993		 * the data are writable for the cipher routines; clone
994		 * a writable mbuf chain.
995		 * XXX handle SWMIC specially
996		 */
997		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
998			m = m_unshare(m, M_NOWAIT);
999			if (m == NULL) {
1000				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1001				    "%s: cannot get writable mbuf\n", __func__);
1002				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1003				return NULL;
1004			}
1005		}
1006	}
1007	/*
1008	 * We know we are called just before stripping an Ethernet
1009	 * header and prepending an LLC header.  This means we know
1010	 * there will be
1011	 *	sizeof(struct ether_header) - sizeof(struct llc)
1012	 * bytes recovered to which we need additional space for the
1013	 * 802.11 header and any crypto header.
1014	 */
1015	/* XXX check trailing space and copy instead? */
1016	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1017		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1018		if (n == NULL) {
1019			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1020			    "%s: cannot expand storage\n", __func__);
1021			vap->iv_stats.is_tx_nobuf++;
1022			m_freem(m);
1023			return NULL;
1024		}
1025		KASSERT(needed_space <= MHLEN,
1026		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
1027		/*
1028		 * Setup new mbuf to have leading space to prepend the
1029		 * 802.11 header and any crypto header bits that are
1030		 * required (the latter are added when the driver calls
1031		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1032		 */
1033		/* NB: must be first 'cuz it clobbers m_data */
1034		m_move_pkthdr(n, m);
1035		n->m_len = 0;			/* NB: m_gethdr does not set */
1036		n->m_data += needed_space;
1037		/*
1038		 * Pull up Ethernet header to create the expected layout.
1039		 * We could use m_pullup but that's overkill (i.e. we don't
1040		 * need the actual data) and it cannot fail so do it inline
1041		 * for speed.
1042		 */
1043		/* NB: struct ether_header is known to be contiguous */
1044		n->m_len += sizeof(struct ether_header);
1045		m->m_len -= sizeof(struct ether_header);
1046		m->m_data += sizeof(struct ether_header);
1047		/*
1048		 * Replace the head of the chain.
1049		 */
1050		n->m_next = m;
1051		m = n;
1052	}
1053	return m;
1054#undef TO_BE_RECLAIMED
1055}
1056
1057/*
1058 * Return the transmit key to use in sending a unicast frame.
1059 * If a unicast key is set we use that.  When no unicast key is set
1060 * we fall back to the default transmit key.
1061 */
1062static __inline struct ieee80211_key *
1063ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1064	struct ieee80211_node *ni)
1065{
1066	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1067		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1068		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1069			return NULL;
1070		return &vap->iv_nw_keys[vap->iv_def_txkey];
1071	} else {
1072		return &ni->ni_ucastkey;
1073	}
1074}
1075
1076/*
1077 * Return the transmit key to use in sending a multicast frame.
1078 * Multicast traffic always uses the group key which is installed as
1079 * the default tx key.
1080 */
1081static __inline struct ieee80211_key *
1082ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1083	struct ieee80211_node *ni)
1084{
1085	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1086	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1087		return NULL;
1088	return &vap->iv_nw_keys[vap->iv_def_txkey];
1089}
1090
1091/*
1092 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1093 * If an error is encountered NULL is returned.  The caller is required
1094 * to provide a node reference and pullup the ethernet header in the
1095 * first mbuf.
1096 *
1097 * NB: Packet is assumed to be processed by ieee80211_classify which
1098 *     marked EAPOL frames w/ M_EAPOL.
1099 */
1100struct mbuf *
1101ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1102    struct mbuf *m)
1103{
1104#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1105#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1106	struct ieee80211com *ic = ni->ni_ic;
1107#ifdef IEEE80211_SUPPORT_MESH
1108	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1109	struct ieee80211_meshcntl_ae10 *mc;
1110	struct ieee80211_mesh_route *rt = NULL;
1111	int dir = -1;
1112#endif
1113	struct ether_header eh;
1114	struct ieee80211_frame *wh;
1115	struct ieee80211_key *key;
1116	struct llc *llc;
1117	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1118	ieee80211_seq seqno;
1119	int meshhdrsize, meshae;
1120	uint8_t *qos;
1121
1122	IEEE80211_TX_LOCK_ASSERT(ic);
1123
1124	/*
1125	 * Copy existing Ethernet header to a safe place.  The
1126	 * rest of the code assumes it's ok to strip it when
1127	 * reorganizing state for the final encapsulation.
1128	 */
1129	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1130	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1131
1132	/*
1133	 * Insure space for additional headers.  First identify
1134	 * transmit key to use in calculating any buffer adjustments
1135	 * required.  This is also used below to do privacy
1136	 * encapsulation work.  Then calculate the 802.11 header
1137	 * size and any padding required by the driver.
1138	 *
1139	 * Note key may be NULL if we fall back to the default
1140	 * transmit key and that is not set.  In that case the
1141	 * buffer may not be expanded as needed by the cipher
1142	 * routines, but they will/should discard it.
1143	 */
1144	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1145		if (vap->iv_opmode == IEEE80211_M_STA ||
1146		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1147		    (vap->iv_opmode == IEEE80211_M_WDS &&
1148		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1149			key = ieee80211_crypto_getucastkey(vap, ni);
1150		else
1151			key = ieee80211_crypto_getmcastkey(vap, ni);
1152		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1153			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1154			    eh.ether_dhost,
1155			    "no default transmit key (%s) deftxkey %u",
1156			    __func__, vap->iv_def_txkey);
1157			vap->iv_stats.is_tx_nodefkey++;
1158			goto bad;
1159		}
1160	} else
1161		key = NULL;
1162	/*
1163	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1164	 * frames so suppress use.  This may be an issue if other
1165	 * ap's require all data frames to be QoS-encapsulated
1166	 * once negotiated in which case we'll need to make this
1167	 * configurable.
1168	 * NB: mesh data frames are QoS.
1169	 */
1170	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1171	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1172	    (m->m_flags & M_EAPOL) == 0;
1173	if (addqos)
1174		hdrsize = sizeof(struct ieee80211_qosframe);
1175	else
1176		hdrsize = sizeof(struct ieee80211_frame);
1177#ifdef IEEE80211_SUPPORT_MESH
1178	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1179		/*
1180		 * Mesh data frames are encapsulated according to the
1181		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1182		 * o Group Addressed data (aka multicast) originating
1183		 *   at the local sta are sent w/ 3-address format and
1184		 *   address extension mode 00
1185		 * o Individually Addressed data (aka unicast) originating
1186		 *   at the local sta are sent w/ 4-address format and
1187		 *   address extension mode 00
1188		 * o Group Addressed data forwarded from a non-mesh sta are
1189		 *   sent w/ 3-address format and address extension mode 01
1190		 * o Individually Address data from another sta are sent
1191		 *   w/ 4-address format and address extension mode 10
1192		 */
1193		is4addr = 0;		/* NB: don't use, disable */
1194		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1195			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1196			KASSERT(rt != NULL, ("route is NULL"));
1197			dir = IEEE80211_FC1_DIR_DSTODS;
1198			hdrsize += IEEE80211_ADDR_LEN;
1199			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1200				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1201				    vap->iv_myaddr)) {
1202					IEEE80211_NOTE_MAC(vap,
1203					    IEEE80211_MSG_MESH,
1204					    eh.ether_dhost,
1205					    "%s", "trying to send to ourself");
1206					goto bad;
1207				}
1208				meshae = IEEE80211_MESH_AE_10;
1209				meshhdrsize =
1210				    sizeof(struct ieee80211_meshcntl_ae10);
1211			} else {
1212				meshae = IEEE80211_MESH_AE_00;
1213				meshhdrsize =
1214				    sizeof(struct ieee80211_meshcntl);
1215			}
1216		} else {
1217			dir = IEEE80211_FC1_DIR_FROMDS;
1218			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1219				/* proxy group */
1220				meshae = IEEE80211_MESH_AE_01;
1221				meshhdrsize =
1222				    sizeof(struct ieee80211_meshcntl_ae01);
1223			} else {
1224				/* group */
1225				meshae = IEEE80211_MESH_AE_00;
1226				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1227			}
1228		}
1229	} else {
1230#endif
1231		/*
1232		 * 4-address frames need to be generated for:
1233		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1234		 * o packets sent through a vap marked for relaying
1235		 *   (e.g. a station operating with dynamic WDS)
1236		 */
1237		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1238		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1239		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1240		if (is4addr)
1241			hdrsize += IEEE80211_ADDR_LEN;
1242		meshhdrsize = meshae = 0;
1243#ifdef IEEE80211_SUPPORT_MESH
1244	}
1245#endif
1246	/*
1247	 * Honor driver DATAPAD requirement.
1248	 */
1249	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1250		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1251	else
1252		hdrspace = hdrsize;
1253
1254	if (__predict_true((m->m_flags & M_FF) == 0)) {
1255		/*
1256		 * Normal frame.
1257		 */
1258		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1259		if (m == NULL) {
1260			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1261			goto bad;
1262		}
1263		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1264		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1265		llc = mtod(m, struct llc *);
1266		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1267		llc->llc_control = LLC_UI;
1268		llc->llc_snap.org_code[0] = 0;
1269		llc->llc_snap.org_code[1] = 0;
1270		llc->llc_snap.org_code[2] = 0;
1271		llc->llc_snap.ether_type = eh.ether_type;
1272	} else {
1273#ifdef IEEE80211_SUPPORT_SUPERG
1274		/*
1275		 * Aggregated frame.
1276		 */
1277		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1278		if (m == NULL)
1279#endif
1280			goto bad;
1281	}
1282	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1283
1284	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1285	if (m == NULL) {
1286		vap->iv_stats.is_tx_nobuf++;
1287		goto bad;
1288	}
1289	wh = mtod(m, struct ieee80211_frame *);
1290	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1291	*(uint16_t *)wh->i_dur = 0;
1292	qos = NULL;	/* NB: quiet compiler */
1293	if (is4addr) {
1294		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1295		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1296		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1297		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1298		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1299	} else switch (vap->iv_opmode) {
1300	case IEEE80211_M_STA:
1301		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1302		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1303		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1304		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1305		break;
1306	case IEEE80211_M_IBSS:
1307	case IEEE80211_M_AHDEMO:
1308		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1309		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1310		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1311		/*
1312		 * NB: always use the bssid from iv_bss as the
1313		 *     neighbor's may be stale after an ibss merge
1314		 */
1315		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1316		break;
1317	case IEEE80211_M_HOSTAP:
1318		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1319		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1320		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1321		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1322		break;
1323#ifdef IEEE80211_SUPPORT_MESH
1324	case IEEE80211_M_MBSS:
1325		/* NB: offset by hdrspace to deal with DATAPAD */
1326		mc = (struct ieee80211_meshcntl_ae10 *)
1327		     (mtod(m, uint8_t *) + hdrspace);
1328		wh->i_fc[1] = dir;
1329		switch (meshae) {
1330		case IEEE80211_MESH_AE_00:	/* no proxy */
1331			mc->mc_flags = 0;
1332			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1333				IEEE80211_ADDR_COPY(wh->i_addr1,
1334				    ni->ni_macaddr);
1335				IEEE80211_ADDR_COPY(wh->i_addr2,
1336				    vap->iv_myaddr);
1337				IEEE80211_ADDR_COPY(wh->i_addr3,
1338				    eh.ether_dhost);
1339				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1340				    eh.ether_shost);
1341				qos =((struct ieee80211_qosframe_addr4 *)
1342				    wh)->i_qos;
1343			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1344				 /* mcast */
1345				IEEE80211_ADDR_COPY(wh->i_addr1,
1346				    eh.ether_dhost);
1347				IEEE80211_ADDR_COPY(wh->i_addr2,
1348				    vap->iv_myaddr);
1349				IEEE80211_ADDR_COPY(wh->i_addr3,
1350				    eh.ether_shost);
1351				qos = ((struct ieee80211_qosframe *)
1352				    wh)->i_qos;
1353			}
1354			break;
1355		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1356			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1357			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1358			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1359			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1360			mc->mc_flags = 1;
1361			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1362			    eh.ether_shost);
1363			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1364			break;
1365		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1366			KASSERT(rt != NULL, ("route is NULL"));
1367			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1368			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1369			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1370			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1371			mc->mc_flags = IEEE80211_MESH_AE_10;
1372			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1373			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1374			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1375			break;
1376		default:
1377			KASSERT(0, ("meshae %d", meshae));
1378			break;
1379		}
1380		mc->mc_ttl = ms->ms_ttl;
1381		ms->ms_seq++;
1382		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1383		break;
1384#endif
1385	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1386	default:
1387		goto bad;
1388	}
1389	if (m->m_flags & M_MORE_DATA)
1390		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1391	if (addqos) {
1392		int ac, tid;
1393
1394		if (is4addr) {
1395			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1396		/* NB: mesh case handled earlier */
1397		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1398			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1399		ac = M_WME_GETAC(m);
1400		/* map from access class/queue to 11e header priorty value */
1401		tid = WME_AC_TO_TID(ac);
1402		qos[0] = tid & IEEE80211_QOS_TID;
1403		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1404			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1405#ifdef IEEE80211_SUPPORT_MESH
1406		if (vap->iv_opmode == IEEE80211_M_MBSS)
1407			qos[1] = IEEE80211_QOS_MC;
1408		else
1409#endif
1410			qos[1] = 0;
1411		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1412
1413		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1414			/*
1415			 * NB: don't assign a sequence # to potential
1416			 * aggregates; we expect this happens at the
1417			 * point the frame comes off any aggregation q
1418			 * as otherwise we may introduce holes in the
1419			 * BA sequence space and/or make window accouting
1420			 * more difficult.
1421			 *
1422			 * XXX may want to control this with a driver
1423			 * capability; this may also change when we pull
1424			 * aggregation up into net80211
1425			 */
1426			seqno = ni->ni_txseqs[tid]++;
1427			*(uint16_t *)wh->i_seq =
1428			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1429			M_SEQNO_SET(m, seqno);
1430		}
1431	} else {
1432		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1433		*(uint16_t *)wh->i_seq =
1434		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1435		M_SEQNO_SET(m, seqno);
1436	}
1437
1438
1439	/* check if xmit fragmentation is required */
1440	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1441	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1442	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1443	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1444	if (key != NULL) {
1445		/*
1446		 * IEEE 802.1X: send EAPOL frames always in the clear.
1447		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1448		 */
1449		if ((m->m_flags & M_EAPOL) == 0 ||
1450		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1451		     (vap->iv_opmode == IEEE80211_M_STA ?
1452		      !IEEE80211_KEY_UNDEFINED(key) :
1453		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1454			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1455			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1456				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1457				    eh.ether_dhost,
1458				    "%s", "enmic failed, discard frame");
1459				vap->iv_stats.is_crypto_enmicfail++;
1460				goto bad;
1461			}
1462		}
1463	}
1464	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1465	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1466		goto bad;
1467
1468	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1469
1470	IEEE80211_NODE_STAT(ni, tx_data);
1471	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1472		IEEE80211_NODE_STAT(ni, tx_mcast);
1473		m->m_flags |= M_MCAST;
1474	} else
1475		IEEE80211_NODE_STAT(ni, tx_ucast);
1476	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1477
1478	return m;
1479bad:
1480	if (m != NULL)
1481		m_freem(m);
1482	return NULL;
1483#undef WH4
1484#undef MC01
1485}
1486
1487/*
1488 * Fragment the frame according to the specified mtu.
1489 * The size of the 802.11 header (w/o padding) is provided
1490 * so we don't need to recalculate it.  We create a new
1491 * mbuf for each fragment and chain it through m_nextpkt;
1492 * we might be able to optimize this by reusing the original
1493 * packet's mbufs but that is significantly more complicated.
1494 */
1495static int
1496ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1497	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1498{
1499	struct ieee80211_frame *wh, *whf;
1500	struct mbuf *m, *prev, *next;
1501	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1502
1503	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1504	KASSERT(m0->m_pkthdr.len > mtu,
1505		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1506
1507	wh = mtod(m0, struct ieee80211_frame *);
1508	/* NB: mark the first frag; it will be propagated below */
1509	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1510	totalhdrsize = hdrsize + ciphdrsize;
1511	fragno = 1;
1512	off = mtu - ciphdrsize;
1513	remainder = m0->m_pkthdr.len - off;
1514	prev = m0;
1515	do {
1516		fragsize = totalhdrsize + remainder;
1517		if (fragsize > mtu)
1518			fragsize = mtu;
1519		/* XXX fragsize can be >2048! */
1520		KASSERT(fragsize < MCLBYTES,
1521			("fragment size %u too big!", fragsize));
1522		if (fragsize > MHLEN)
1523			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1524		else
1525			m = m_gethdr(M_NOWAIT, MT_DATA);
1526		if (m == NULL)
1527			goto bad;
1528		/* leave room to prepend any cipher header */
1529		m_align(m, fragsize - ciphdrsize);
1530
1531		/*
1532		 * Form the header in the fragment.  Note that since
1533		 * we mark the first fragment with the MORE_FRAG bit
1534		 * it automatically is propagated to each fragment; we
1535		 * need only clear it on the last fragment (done below).
1536		 * NB: frag 1+ dont have Mesh Control field present.
1537		 */
1538		whf = mtod(m, struct ieee80211_frame *);
1539		memcpy(whf, wh, hdrsize);
1540#ifdef IEEE80211_SUPPORT_MESH
1541		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1542			if (IEEE80211_IS_DSTODS(wh))
1543				((struct ieee80211_qosframe_addr4 *)
1544				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1545			else
1546				((struct ieee80211_qosframe *)
1547				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1548		}
1549#endif
1550		*(uint16_t *)&whf->i_seq[0] |= htole16(
1551			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1552				IEEE80211_SEQ_FRAG_SHIFT);
1553		fragno++;
1554
1555		payload = fragsize - totalhdrsize;
1556		/* NB: destination is known to be contiguous */
1557		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1558		m->m_len = hdrsize + payload;
1559		m->m_pkthdr.len = hdrsize + payload;
1560		m->m_flags |= M_FRAG;
1561
1562		/* chain up the fragment */
1563		prev->m_nextpkt = m;
1564		prev = m;
1565
1566		/* deduct fragment just formed */
1567		remainder -= payload;
1568		off += payload;
1569	} while (remainder != 0);
1570
1571	/* set the last fragment */
1572	m->m_flags |= M_LASTFRAG;
1573	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1574
1575	/* strip first mbuf now that everything has been copied */
1576	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1577	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1578
1579	vap->iv_stats.is_tx_fragframes++;
1580	vap->iv_stats.is_tx_frags += fragno-1;
1581
1582	return 1;
1583bad:
1584	/* reclaim fragments but leave original frame for caller to free */
1585	for (m = m0->m_nextpkt; m != NULL; m = next) {
1586		next = m->m_nextpkt;
1587		m->m_nextpkt = NULL;		/* XXX paranoid */
1588		m_freem(m);
1589	}
1590	m0->m_nextpkt = NULL;
1591	return 0;
1592}
1593
1594/*
1595 * Add a supported rates element id to a frame.
1596 */
1597uint8_t *
1598ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1599{
1600	int nrates;
1601
1602	*frm++ = IEEE80211_ELEMID_RATES;
1603	nrates = rs->rs_nrates;
1604	if (nrates > IEEE80211_RATE_SIZE)
1605		nrates = IEEE80211_RATE_SIZE;
1606	*frm++ = nrates;
1607	memcpy(frm, rs->rs_rates, nrates);
1608	return frm + nrates;
1609}
1610
1611/*
1612 * Add an extended supported rates element id to a frame.
1613 */
1614uint8_t *
1615ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1616{
1617	/*
1618	 * Add an extended supported rates element if operating in 11g mode.
1619	 */
1620	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1621		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1622		*frm++ = IEEE80211_ELEMID_XRATES;
1623		*frm++ = nrates;
1624		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1625		frm += nrates;
1626	}
1627	return frm;
1628}
1629
1630/*
1631 * Add an ssid element to a frame.
1632 */
1633static uint8_t *
1634ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1635{
1636	*frm++ = IEEE80211_ELEMID_SSID;
1637	*frm++ = len;
1638	memcpy(frm, ssid, len);
1639	return frm + len;
1640}
1641
1642/*
1643 * Add an erp element to a frame.
1644 */
1645static uint8_t *
1646ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1647{
1648	uint8_t erp;
1649
1650	*frm++ = IEEE80211_ELEMID_ERP;
1651	*frm++ = 1;
1652	erp = 0;
1653	if (ic->ic_nonerpsta != 0)
1654		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1655	if (ic->ic_flags & IEEE80211_F_USEPROT)
1656		erp |= IEEE80211_ERP_USE_PROTECTION;
1657	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1658		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1659	*frm++ = erp;
1660	return frm;
1661}
1662
1663/*
1664 * Add a CFParams element to a frame.
1665 */
1666static uint8_t *
1667ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1668{
1669#define	ADDSHORT(frm, v) do {	\
1670	LE_WRITE_2(frm, v);	\
1671	frm += 2;		\
1672} while (0)
1673	*frm++ = IEEE80211_ELEMID_CFPARMS;
1674	*frm++ = 6;
1675	*frm++ = 0;		/* CFP count */
1676	*frm++ = 2;		/* CFP period */
1677	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1678	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1679	return frm;
1680#undef ADDSHORT
1681}
1682
1683static __inline uint8_t *
1684add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1685{
1686	memcpy(frm, ie->ie_data, ie->ie_len);
1687	return frm + ie->ie_len;
1688}
1689
1690static __inline uint8_t *
1691add_ie(uint8_t *frm, const uint8_t *ie)
1692{
1693	memcpy(frm, ie, 2 + ie[1]);
1694	return frm + 2 + ie[1];
1695}
1696
1697#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1698/*
1699 * Add a WME information element to a frame.
1700 */
1701static uint8_t *
1702ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1703{
1704	static const struct ieee80211_wme_info info = {
1705		.wme_id		= IEEE80211_ELEMID_VENDOR,
1706		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1707		.wme_oui	= { WME_OUI_BYTES },
1708		.wme_type	= WME_OUI_TYPE,
1709		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1710		.wme_version	= WME_VERSION,
1711		.wme_info	= 0,
1712	};
1713	memcpy(frm, &info, sizeof(info));
1714	return frm + sizeof(info);
1715}
1716
1717/*
1718 * Add a WME parameters element to a frame.
1719 */
1720static uint8_t *
1721ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1722{
1723#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1724#define	ADDSHORT(frm, v) do {	\
1725	LE_WRITE_2(frm, v);	\
1726	frm += 2;		\
1727} while (0)
1728	/* NB: this works 'cuz a param has an info at the front */
1729	static const struct ieee80211_wme_info param = {
1730		.wme_id		= IEEE80211_ELEMID_VENDOR,
1731		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1732		.wme_oui	= { WME_OUI_BYTES },
1733		.wme_type	= WME_OUI_TYPE,
1734		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1735		.wme_version	= WME_VERSION,
1736	};
1737	int i;
1738
1739	memcpy(frm, &param, sizeof(param));
1740	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1741	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1742	*frm++ = 0;					/* reserved field */
1743	for (i = 0; i < WME_NUM_AC; i++) {
1744		const struct wmeParams *ac =
1745		       &wme->wme_bssChanParams.cap_wmeParams[i];
1746		*frm++ = SM(i, WME_PARAM_ACI)
1747		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1748		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1749		       ;
1750		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1751		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1752		       ;
1753		ADDSHORT(frm, ac->wmep_txopLimit);
1754	}
1755	return frm;
1756#undef SM
1757#undef ADDSHORT
1758}
1759#undef WME_OUI_BYTES
1760
1761/*
1762 * Add an 11h Power Constraint element to a frame.
1763 */
1764static uint8_t *
1765ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1766{
1767	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1768	/* XXX per-vap tx power limit? */
1769	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1770
1771	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1772	frm[1] = 1;
1773	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1774	return frm + 3;
1775}
1776
1777/*
1778 * Add an 11h Power Capability element to a frame.
1779 */
1780static uint8_t *
1781ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1782{
1783	frm[0] = IEEE80211_ELEMID_PWRCAP;
1784	frm[1] = 2;
1785	frm[2] = c->ic_minpower;
1786	frm[3] = c->ic_maxpower;
1787	return frm + 4;
1788}
1789
1790/*
1791 * Add an 11h Supported Channels element to a frame.
1792 */
1793static uint8_t *
1794ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1795{
1796	static const int ielen = 26;
1797
1798	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1799	frm[1] = ielen;
1800	/* XXX not correct */
1801	memcpy(frm+2, ic->ic_chan_avail, ielen);
1802	return frm + 2 + ielen;
1803}
1804
1805/*
1806 * Add an 11h Quiet time element to a frame.
1807 */
1808static uint8_t *
1809ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1810{
1811	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1812
1813	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1814	quiet->len = 6;
1815	if (vap->iv_quiet_count_value == 1)
1816		vap->iv_quiet_count_value = vap->iv_quiet_count;
1817	else if (vap->iv_quiet_count_value > 1)
1818		vap->iv_quiet_count_value--;
1819
1820	if (vap->iv_quiet_count_value == 0) {
1821		/* value 0 is reserved as per 802.11h standerd */
1822		vap->iv_quiet_count_value = 1;
1823	}
1824
1825	quiet->tbttcount = vap->iv_quiet_count_value;
1826	quiet->period = vap->iv_quiet_period;
1827	quiet->duration = htole16(vap->iv_quiet_duration);
1828	quiet->offset = htole16(vap->iv_quiet_offset);
1829	return frm + sizeof(*quiet);
1830}
1831
1832/*
1833 * Add an 11h Channel Switch Announcement element to a frame.
1834 * Note that we use the per-vap CSA count to adjust the global
1835 * counter so we can use this routine to form probe response
1836 * frames and get the current count.
1837 */
1838static uint8_t *
1839ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1840{
1841	struct ieee80211com *ic = vap->iv_ic;
1842	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1843
1844	csa->csa_ie = IEEE80211_ELEMID_CSA;
1845	csa->csa_len = 3;
1846	csa->csa_mode = 1;		/* XXX force quiet on channel */
1847	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1848	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1849	return frm + sizeof(*csa);
1850}
1851
1852/*
1853 * Add an 11h country information element to a frame.
1854 */
1855static uint8_t *
1856ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1857{
1858
1859	if (ic->ic_countryie == NULL ||
1860	    ic->ic_countryie_chan != ic->ic_bsschan) {
1861		/*
1862		 * Handle lazy construction of ie.  This is done on
1863		 * first use and after a channel change that requires
1864		 * re-calculation.
1865		 */
1866		if (ic->ic_countryie != NULL)
1867			free(ic->ic_countryie, M_80211_NODE_IE);
1868		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1869		if (ic->ic_countryie == NULL)
1870			return frm;
1871		ic->ic_countryie_chan = ic->ic_bsschan;
1872	}
1873	return add_appie(frm, ic->ic_countryie);
1874}
1875
1876/*
1877 * Send a probe request frame with the specified ssid
1878 * and any optional information element data.
1879 */
1880int
1881ieee80211_send_probereq(struct ieee80211_node *ni,
1882	const uint8_t sa[IEEE80211_ADDR_LEN],
1883	const uint8_t da[IEEE80211_ADDR_LEN],
1884	const uint8_t bssid[IEEE80211_ADDR_LEN],
1885	const uint8_t *ssid, size_t ssidlen)
1886{
1887	struct ieee80211vap *vap = ni->ni_vap;
1888	struct ieee80211com *ic = ni->ni_ic;
1889	const struct ieee80211_txparam *tp;
1890	struct ieee80211_bpf_params params;
1891	struct ieee80211_frame *wh;
1892	const struct ieee80211_rateset *rs;
1893	struct mbuf *m;
1894	uint8_t *frm;
1895	int ret;
1896
1897	if (vap->iv_state == IEEE80211_S_CAC) {
1898		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1899		    "block %s frame in CAC state", "probe request");
1900		vap->iv_stats.is_tx_badstate++;
1901		return EIO;		/* XXX */
1902	}
1903
1904	/*
1905	 * Hold a reference on the node so it doesn't go away until after
1906	 * the xmit is complete all the way in the driver.  On error we
1907	 * will remove our reference.
1908	 */
1909	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1910		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1911		__func__, __LINE__,
1912		ni, ether_sprintf(ni->ni_macaddr),
1913		ieee80211_node_refcnt(ni)+1);
1914	ieee80211_ref_node(ni);
1915
1916	/*
1917	 * prreq frame format
1918	 *	[tlv] ssid
1919	 *	[tlv] supported rates
1920	 *	[tlv] RSN (optional)
1921	 *	[tlv] extended supported rates
1922	 *	[tlv] WPA (optional)
1923	 *	[tlv] user-specified ie's
1924	 */
1925	m = ieee80211_getmgtframe(&frm,
1926		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1927	       	 2 + IEEE80211_NWID_LEN
1928	       + 2 + IEEE80211_RATE_SIZE
1929	       + sizeof(struct ieee80211_ie_wpa)
1930	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1931	       + sizeof(struct ieee80211_ie_wpa)
1932	       + (vap->iv_appie_probereq != NULL ?
1933		   vap->iv_appie_probereq->ie_len : 0)
1934	);
1935	if (m == NULL) {
1936		vap->iv_stats.is_tx_nobuf++;
1937		ieee80211_free_node(ni);
1938		return ENOMEM;
1939	}
1940
1941	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1942	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1943	frm = ieee80211_add_rates(frm, rs);
1944	if (vap->iv_flags & IEEE80211_F_WPA2) {
1945		if (vap->iv_rsn_ie != NULL)
1946			frm = add_ie(frm, vap->iv_rsn_ie);
1947		/* XXX else complain? */
1948	}
1949	frm = ieee80211_add_xrates(frm, rs);
1950	if (vap->iv_flags & IEEE80211_F_WPA1) {
1951		if (vap->iv_wpa_ie != NULL)
1952			frm = add_ie(frm, vap->iv_wpa_ie);
1953		/* XXX else complain? */
1954	}
1955	if (vap->iv_appie_probereq != NULL)
1956		frm = add_appie(frm, vap->iv_appie_probereq);
1957	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1958
1959	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1960	    ("leading space %zd", M_LEADINGSPACE(m)));
1961	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
1962	if (m == NULL) {
1963		/* NB: cannot happen */
1964		ieee80211_free_node(ni);
1965		return ENOMEM;
1966	}
1967
1968	IEEE80211_TX_LOCK(ic);
1969	wh = mtod(m, struct ieee80211_frame *);
1970	ieee80211_send_setup(ni, m,
1971	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1972	     IEEE80211_NONQOS_TID, sa, da, bssid);
1973	/* XXX power management? */
1974	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1975
1976	M_WME_SETAC(m, WME_AC_BE);
1977
1978	IEEE80211_NODE_STAT(ni, tx_probereq);
1979	IEEE80211_NODE_STAT(ni, tx_mgmt);
1980
1981	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1982	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1983	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1984	    ssidlen, ssid);
1985
1986	memset(&params, 0, sizeof(params));
1987	params.ibp_pri = M_WME_GETAC(m);
1988	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1989	params.ibp_rate0 = tp->mgmtrate;
1990	if (IEEE80211_IS_MULTICAST(da)) {
1991		params.ibp_flags |= IEEE80211_BPF_NOACK;
1992		params.ibp_try0 = 1;
1993	} else
1994		params.ibp_try0 = tp->maxretry;
1995	params.ibp_power = ni->ni_txpower;
1996	ret = ieee80211_raw_output(vap, ni, m, &params);
1997	IEEE80211_TX_UNLOCK(ic);
1998	return (ret);
1999}
2000
2001/*
2002 * Calculate capability information for mgt frames.
2003 */
2004uint16_t
2005ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2006{
2007	struct ieee80211com *ic = vap->iv_ic;
2008	uint16_t capinfo;
2009
2010	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2011
2012	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2013		capinfo = IEEE80211_CAPINFO_ESS;
2014	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2015		capinfo = IEEE80211_CAPINFO_IBSS;
2016	else
2017		capinfo = 0;
2018	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2019		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2020	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2021	    IEEE80211_IS_CHAN_2GHZ(chan))
2022		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2023	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2024		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2025	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2026		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2027	return capinfo;
2028}
2029
2030/*
2031 * Send a management frame.  The node is for the destination (or ic_bss
2032 * when in station mode).  Nodes other than ic_bss have their reference
2033 * count bumped to reflect our use for an indeterminant time.
2034 */
2035int
2036ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2037{
2038#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2039#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2040	struct ieee80211vap *vap = ni->ni_vap;
2041	struct ieee80211com *ic = ni->ni_ic;
2042	struct ieee80211_node *bss = vap->iv_bss;
2043	struct ieee80211_bpf_params params;
2044	struct mbuf *m;
2045	uint8_t *frm;
2046	uint16_t capinfo;
2047	int has_challenge, is_shared_key, ret, status;
2048
2049	KASSERT(ni != NULL, ("null node"));
2050
2051	/*
2052	 * Hold a reference on the node so it doesn't go away until after
2053	 * the xmit is complete all the way in the driver.  On error we
2054	 * will remove our reference.
2055	 */
2056	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2057		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2058		__func__, __LINE__,
2059		ni, ether_sprintf(ni->ni_macaddr),
2060		ieee80211_node_refcnt(ni)+1);
2061	ieee80211_ref_node(ni);
2062
2063	memset(&params, 0, sizeof(params));
2064	switch (type) {
2065
2066	case IEEE80211_FC0_SUBTYPE_AUTH:
2067		status = arg >> 16;
2068		arg &= 0xffff;
2069		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2070		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2071		    ni->ni_challenge != NULL);
2072
2073		/*
2074		 * Deduce whether we're doing open authentication or
2075		 * shared key authentication.  We do the latter if
2076		 * we're in the middle of a shared key authentication
2077		 * handshake or if we're initiating an authentication
2078		 * request and configured to use shared key.
2079		 */
2080		is_shared_key = has_challenge ||
2081		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2082		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2083		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2084
2085		m = ieee80211_getmgtframe(&frm,
2086			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2087			  3 * sizeof(uint16_t)
2088			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2089				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2090		);
2091		if (m == NULL)
2092			senderr(ENOMEM, is_tx_nobuf);
2093
2094		((uint16_t *)frm)[0] =
2095		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2096		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2097		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2098		((uint16_t *)frm)[2] = htole16(status);/* status */
2099
2100		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2101			((uint16_t *)frm)[3] =
2102			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2103			    IEEE80211_ELEMID_CHALLENGE);
2104			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2105			    IEEE80211_CHALLENGE_LEN);
2106			m->m_pkthdr.len = m->m_len =
2107				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2108			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2109				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2110				    "request encrypt frame (%s)", __func__);
2111				/* mark frame for encryption */
2112				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2113			}
2114		} else
2115			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2116
2117		/* XXX not right for shared key */
2118		if (status == IEEE80211_STATUS_SUCCESS)
2119			IEEE80211_NODE_STAT(ni, tx_auth);
2120		else
2121			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2122
2123		if (vap->iv_opmode == IEEE80211_M_STA)
2124			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2125				(void *) vap->iv_state);
2126		break;
2127
2128	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2129		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2130		    "send station deauthenticate (reason %d)", arg);
2131		m = ieee80211_getmgtframe(&frm,
2132			ic->ic_headroom + sizeof(struct ieee80211_frame),
2133			sizeof(uint16_t));
2134		if (m == NULL)
2135			senderr(ENOMEM, is_tx_nobuf);
2136		*(uint16_t *)frm = htole16(arg);	/* reason */
2137		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2138
2139		IEEE80211_NODE_STAT(ni, tx_deauth);
2140		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2141
2142		ieee80211_node_unauthorize(ni);		/* port closed */
2143		break;
2144
2145	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2146	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2147		/*
2148		 * asreq frame format
2149		 *	[2] capability information
2150		 *	[2] listen interval
2151		 *	[6*] current AP address (reassoc only)
2152		 *	[tlv] ssid
2153		 *	[tlv] supported rates
2154		 *	[tlv] extended supported rates
2155		 *	[4] power capability (optional)
2156		 *	[28] supported channels (optional)
2157		 *	[tlv] HT capabilities
2158		 *	[tlv] WME (optional)
2159		 *	[tlv] Vendor OUI HT capabilities (optional)
2160		 *	[tlv] Atheros capabilities (if negotiated)
2161		 *	[tlv] AppIE's (optional)
2162		 */
2163		m = ieee80211_getmgtframe(&frm,
2164			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2165			 sizeof(uint16_t)
2166		       + sizeof(uint16_t)
2167		       + IEEE80211_ADDR_LEN
2168		       + 2 + IEEE80211_NWID_LEN
2169		       + 2 + IEEE80211_RATE_SIZE
2170		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2171		       + 4
2172		       + 2 + 26
2173		       + sizeof(struct ieee80211_wme_info)
2174		       + sizeof(struct ieee80211_ie_htcap)
2175		       + 4 + sizeof(struct ieee80211_ie_htcap)
2176#ifdef IEEE80211_SUPPORT_SUPERG
2177		       + sizeof(struct ieee80211_ath_ie)
2178#endif
2179		       + (vap->iv_appie_wpa != NULL ?
2180				vap->iv_appie_wpa->ie_len : 0)
2181		       + (vap->iv_appie_assocreq != NULL ?
2182				vap->iv_appie_assocreq->ie_len : 0)
2183		);
2184		if (m == NULL)
2185			senderr(ENOMEM, is_tx_nobuf);
2186
2187		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2188		    ("wrong mode %u", vap->iv_opmode));
2189		capinfo = IEEE80211_CAPINFO_ESS;
2190		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2191			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2192		/*
2193		 * NB: Some 11a AP's reject the request when
2194		 *     short premable is set.
2195		 */
2196		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2197		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2198			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2199		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2200		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2201			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2202		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2203		    (vap->iv_flags & IEEE80211_F_DOTH))
2204			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2205		*(uint16_t *)frm = htole16(capinfo);
2206		frm += 2;
2207
2208		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2209		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2210						    bss->ni_intval));
2211		frm += 2;
2212
2213		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2214			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2215			frm += IEEE80211_ADDR_LEN;
2216		}
2217
2218		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2219		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2220		if (vap->iv_flags & IEEE80211_F_WPA2) {
2221			if (vap->iv_rsn_ie != NULL)
2222				frm = add_ie(frm, vap->iv_rsn_ie);
2223			/* XXX else complain? */
2224		}
2225		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2226		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2227			frm = ieee80211_add_powercapability(frm,
2228			    ic->ic_curchan);
2229			frm = ieee80211_add_supportedchannels(frm, ic);
2230		}
2231		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2232		    ni->ni_ies.htcap_ie != NULL &&
2233		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2234			frm = ieee80211_add_htcap(frm, ni);
2235		if (vap->iv_flags & IEEE80211_F_WPA1) {
2236			if (vap->iv_wpa_ie != NULL)
2237				frm = add_ie(frm, vap->iv_wpa_ie);
2238			/* XXX else complain */
2239		}
2240		if ((ic->ic_flags & IEEE80211_F_WME) &&
2241		    ni->ni_ies.wme_ie != NULL)
2242			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2243		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2244		    ni->ni_ies.htcap_ie != NULL &&
2245		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2246			frm = ieee80211_add_htcap_vendor(frm, ni);
2247#ifdef IEEE80211_SUPPORT_SUPERG
2248		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2249			frm = ieee80211_add_ath(frm,
2250				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2251				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2252				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2253				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2254		}
2255#endif /* IEEE80211_SUPPORT_SUPERG */
2256		if (vap->iv_appie_assocreq != NULL)
2257			frm = add_appie(frm, vap->iv_appie_assocreq);
2258		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2259
2260		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2261			(void *) vap->iv_state);
2262		break;
2263
2264	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2265	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2266		/*
2267		 * asresp frame format
2268		 *	[2] capability information
2269		 *	[2] status
2270		 *	[2] association ID
2271		 *	[tlv] supported rates
2272		 *	[tlv] extended supported rates
2273		 *	[tlv] HT capabilities (standard, if STA enabled)
2274		 *	[tlv] HT information (standard, if STA enabled)
2275		 *	[tlv] WME (if configured and STA enabled)
2276		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2277		 *	[tlv] HT information (vendor OUI, if STA enabled)
2278		 *	[tlv] Atheros capabilities (if STA enabled)
2279		 *	[tlv] AppIE's (optional)
2280		 */
2281		m = ieee80211_getmgtframe(&frm,
2282			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2283			 sizeof(uint16_t)
2284		       + sizeof(uint16_t)
2285		       + sizeof(uint16_t)
2286		       + 2 + IEEE80211_RATE_SIZE
2287		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2288		       + sizeof(struct ieee80211_ie_htcap) + 4
2289		       + sizeof(struct ieee80211_ie_htinfo) + 4
2290		       + sizeof(struct ieee80211_wme_param)
2291#ifdef IEEE80211_SUPPORT_SUPERG
2292		       + sizeof(struct ieee80211_ath_ie)
2293#endif
2294		       + (vap->iv_appie_assocresp != NULL ?
2295				vap->iv_appie_assocresp->ie_len : 0)
2296		);
2297		if (m == NULL)
2298			senderr(ENOMEM, is_tx_nobuf);
2299
2300		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2301		*(uint16_t *)frm = htole16(capinfo);
2302		frm += 2;
2303
2304		*(uint16_t *)frm = htole16(arg);	/* status */
2305		frm += 2;
2306
2307		if (arg == IEEE80211_STATUS_SUCCESS) {
2308			*(uint16_t *)frm = htole16(ni->ni_associd);
2309			IEEE80211_NODE_STAT(ni, tx_assoc);
2310		} else
2311			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2312		frm += 2;
2313
2314		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2315		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2316		/* NB: respond according to what we received */
2317		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2318			frm = ieee80211_add_htcap(frm, ni);
2319			frm = ieee80211_add_htinfo(frm, ni);
2320		}
2321		if ((vap->iv_flags & IEEE80211_F_WME) &&
2322		    ni->ni_ies.wme_ie != NULL)
2323			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2324		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2325			frm = ieee80211_add_htcap_vendor(frm, ni);
2326			frm = ieee80211_add_htinfo_vendor(frm, ni);
2327		}
2328#ifdef IEEE80211_SUPPORT_SUPERG
2329		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2330			frm = ieee80211_add_ath(frm,
2331				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2332				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2333				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2334				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2335#endif /* IEEE80211_SUPPORT_SUPERG */
2336		if (vap->iv_appie_assocresp != NULL)
2337			frm = add_appie(frm, vap->iv_appie_assocresp);
2338		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2339		break;
2340
2341	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2342		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2343		    "send station disassociate (reason %d)", arg);
2344		m = ieee80211_getmgtframe(&frm,
2345			ic->ic_headroom + sizeof(struct ieee80211_frame),
2346			sizeof(uint16_t));
2347		if (m == NULL)
2348			senderr(ENOMEM, is_tx_nobuf);
2349		*(uint16_t *)frm = htole16(arg);	/* reason */
2350		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2351
2352		IEEE80211_NODE_STAT(ni, tx_disassoc);
2353		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2354		break;
2355
2356	default:
2357		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2358		    "invalid mgmt frame type %u", type);
2359		senderr(EINVAL, is_tx_unknownmgt);
2360		/* NOTREACHED */
2361	}
2362
2363	/* NB: force non-ProbeResp frames to the highest queue */
2364	params.ibp_pri = WME_AC_VO;
2365	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2366	/* NB: we know all frames are unicast */
2367	params.ibp_try0 = bss->ni_txparms->maxretry;
2368	params.ibp_power = bss->ni_txpower;
2369	return ieee80211_mgmt_output(ni, m, type, &params);
2370bad:
2371	ieee80211_free_node(ni);
2372	return ret;
2373#undef senderr
2374#undef HTFLAGS
2375}
2376
2377/*
2378 * Return an mbuf with a probe response frame in it.
2379 * Space is left to prepend and 802.11 header at the
2380 * front but it's left to the caller to fill in.
2381 */
2382struct mbuf *
2383ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2384{
2385	struct ieee80211vap *vap = bss->ni_vap;
2386	struct ieee80211com *ic = bss->ni_ic;
2387	const struct ieee80211_rateset *rs;
2388	struct mbuf *m;
2389	uint16_t capinfo;
2390	uint8_t *frm;
2391
2392	/*
2393	 * probe response frame format
2394	 *	[8] time stamp
2395	 *	[2] beacon interval
2396	 *	[2] cabability information
2397	 *	[tlv] ssid
2398	 *	[tlv] supported rates
2399	 *	[tlv] parameter set (FH/DS)
2400	 *	[tlv] parameter set (IBSS)
2401	 *	[tlv] country (optional)
2402	 *	[3] power control (optional)
2403	 *	[5] channel switch announcement (CSA) (optional)
2404	 *	[tlv] extended rate phy (ERP)
2405	 *	[tlv] extended supported rates
2406	 *	[tlv] RSN (optional)
2407	 *	[tlv] HT capabilities
2408	 *	[tlv] HT information
2409	 *	[tlv] WPA (optional)
2410	 *	[tlv] WME (optional)
2411	 *	[tlv] Vendor OUI HT capabilities (optional)
2412	 *	[tlv] Vendor OUI HT information (optional)
2413	 *	[tlv] Atheros capabilities
2414	 *	[tlv] AppIE's (optional)
2415	 *	[tlv] Mesh ID (MBSS)
2416	 *	[tlv] Mesh Conf (MBSS)
2417	 */
2418	m = ieee80211_getmgtframe(&frm,
2419		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2420		 8
2421	       + sizeof(uint16_t)
2422	       + sizeof(uint16_t)
2423	       + 2 + IEEE80211_NWID_LEN
2424	       + 2 + IEEE80211_RATE_SIZE
2425	       + 7	/* max(7,3) */
2426	       + IEEE80211_COUNTRY_MAX_SIZE
2427	       + 3
2428	       + sizeof(struct ieee80211_csa_ie)
2429	       + sizeof(struct ieee80211_quiet_ie)
2430	       + 3
2431	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2432	       + sizeof(struct ieee80211_ie_wpa)
2433	       + sizeof(struct ieee80211_ie_htcap)
2434	       + sizeof(struct ieee80211_ie_htinfo)
2435	       + sizeof(struct ieee80211_ie_wpa)
2436	       + sizeof(struct ieee80211_wme_param)
2437	       + 4 + sizeof(struct ieee80211_ie_htcap)
2438	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2439#ifdef IEEE80211_SUPPORT_SUPERG
2440	       + sizeof(struct ieee80211_ath_ie)
2441#endif
2442#ifdef IEEE80211_SUPPORT_MESH
2443	       + 2 + IEEE80211_MESHID_LEN
2444	       + sizeof(struct ieee80211_meshconf_ie)
2445#endif
2446	       + (vap->iv_appie_proberesp != NULL ?
2447			vap->iv_appie_proberesp->ie_len : 0)
2448	);
2449	if (m == NULL) {
2450		vap->iv_stats.is_tx_nobuf++;
2451		return NULL;
2452	}
2453
2454	memset(frm, 0, 8);	/* timestamp should be filled later */
2455	frm += 8;
2456	*(uint16_t *)frm = htole16(bss->ni_intval);
2457	frm += 2;
2458	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2459	*(uint16_t *)frm = htole16(capinfo);
2460	frm += 2;
2461
2462	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2463	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2464	frm = ieee80211_add_rates(frm, rs);
2465
2466	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2467		*frm++ = IEEE80211_ELEMID_FHPARMS;
2468		*frm++ = 5;
2469		*frm++ = bss->ni_fhdwell & 0x00ff;
2470		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2471		*frm++ = IEEE80211_FH_CHANSET(
2472		    ieee80211_chan2ieee(ic, bss->ni_chan));
2473		*frm++ = IEEE80211_FH_CHANPAT(
2474		    ieee80211_chan2ieee(ic, bss->ni_chan));
2475		*frm++ = bss->ni_fhindex;
2476	} else {
2477		*frm++ = IEEE80211_ELEMID_DSPARMS;
2478		*frm++ = 1;
2479		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2480	}
2481
2482	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2483		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2484		*frm++ = 2;
2485		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2486	}
2487	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2488	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2489		frm = ieee80211_add_countryie(frm, ic);
2490	if (vap->iv_flags & IEEE80211_F_DOTH) {
2491		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2492			frm = ieee80211_add_powerconstraint(frm, vap);
2493		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2494			frm = ieee80211_add_csa(frm, vap);
2495	}
2496	if (vap->iv_flags & IEEE80211_F_DOTH) {
2497		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2498		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2499			if (vap->iv_quiet)
2500				frm = ieee80211_add_quiet(frm, vap);
2501		}
2502	}
2503	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2504		frm = ieee80211_add_erp(frm, ic);
2505	frm = ieee80211_add_xrates(frm, rs);
2506	if (vap->iv_flags & IEEE80211_F_WPA2) {
2507		if (vap->iv_rsn_ie != NULL)
2508			frm = add_ie(frm, vap->iv_rsn_ie);
2509		/* XXX else complain? */
2510	}
2511	/*
2512	 * NB: legacy 11b clients do not get certain ie's.
2513	 *     The caller identifies such clients by passing
2514	 *     a token in legacy to us.  Could expand this to be
2515	 *     any legacy client for stuff like HT ie's.
2516	 */
2517	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2518	    legacy != IEEE80211_SEND_LEGACY_11B) {
2519		frm = ieee80211_add_htcap(frm, bss);
2520		frm = ieee80211_add_htinfo(frm, bss);
2521	}
2522	if (vap->iv_flags & IEEE80211_F_WPA1) {
2523		if (vap->iv_wpa_ie != NULL)
2524			frm = add_ie(frm, vap->iv_wpa_ie);
2525		/* XXX else complain? */
2526	}
2527	if (vap->iv_flags & IEEE80211_F_WME)
2528		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2529	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2530	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2531	    legacy != IEEE80211_SEND_LEGACY_11B) {
2532		frm = ieee80211_add_htcap_vendor(frm, bss);
2533		frm = ieee80211_add_htinfo_vendor(frm, bss);
2534	}
2535#ifdef IEEE80211_SUPPORT_SUPERG
2536	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2537	    legacy != IEEE80211_SEND_LEGACY_11B)
2538		frm = ieee80211_add_athcaps(frm, bss);
2539#endif
2540	if (vap->iv_appie_proberesp != NULL)
2541		frm = add_appie(frm, vap->iv_appie_proberesp);
2542#ifdef IEEE80211_SUPPORT_MESH
2543	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2544		frm = ieee80211_add_meshid(frm, vap);
2545		frm = ieee80211_add_meshconf(frm, vap);
2546	}
2547#endif
2548	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2549
2550	return m;
2551}
2552
2553/*
2554 * Send a probe response frame to the specified mac address.
2555 * This does not go through the normal mgt frame api so we
2556 * can specify the destination address and re-use the bss node
2557 * for the sta reference.
2558 */
2559int
2560ieee80211_send_proberesp(struct ieee80211vap *vap,
2561	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2562{
2563	struct ieee80211_node *bss = vap->iv_bss;
2564	struct ieee80211com *ic = vap->iv_ic;
2565	struct ieee80211_frame *wh;
2566	struct mbuf *m;
2567	int ret;
2568
2569	if (vap->iv_state == IEEE80211_S_CAC) {
2570		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2571		    "block %s frame in CAC state", "probe response");
2572		vap->iv_stats.is_tx_badstate++;
2573		return EIO;		/* XXX */
2574	}
2575
2576	/*
2577	 * Hold a reference on the node so it doesn't go away until after
2578	 * the xmit is complete all the way in the driver.  On error we
2579	 * will remove our reference.
2580	 */
2581	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2582	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2583	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2584	    ieee80211_node_refcnt(bss)+1);
2585	ieee80211_ref_node(bss);
2586
2587	m = ieee80211_alloc_proberesp(bss, legacy);
2588	if (m == NULL) {
2589		ieee80211_free_node(bss);
2590		return ENOMEM;
2591	}
2592
2593	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2594	KASSERT(m != NULL, ("no room for header"));
2595
2596	IEEE80211_TX_LOCK(ic);
2597	wh = mtod(m, struct ieee80211_frame *);
2598	ieee80211_send_setup(bss, m,
2599	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2600	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2601	/* XXX power management? */
2602	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2603
2604	M_WME_SETAC(m, WME_AC_BE);
2605
2606	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2607	    "send probe resp on channel %u to %s%s\n",
2608	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2609	    legacy ? " <legacy>" : "");
2610	IEEE80211_NODE_STAT(bss, tx_mgmt);
2611
2612	ret = ieee80211_raw_output(vap, bss, m, NULL);
2613	IEEE80211_TX_UNLOCK(ic);
2614	return (ret);
2615}
2616
2617/*
2618 * Allocate and build a RTS (Request To Send) control frame.
2619 */
2620struct mbuf *
2621ieee80211_alloc_rts(struct ieee80211com *ic,
2622	const uint8_t ra[IEEE80211_ADDR_LEN],
2623	const uint8_t ta[IEEE80211_ADDR_LEN],
2624	uint16_t dur)
2625{
2626	struct ieee80211_frame_rts *rts;
2627	struct mbuf *m;
2628
2629	/* XXX honor ic_headroom */
2630	m = m_gethdr(M_NOWAIT, MT_DATA);
2631	if (m != NULL) {
2632		rts = mtod(m, struct ieee80211_frame_rts *);
2633		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2634			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2635		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2636		*(u_int16_t *)rts->i_dur = htole16(dur);
2637		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2638		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2639
2640		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2641	}
2642	return m;
2643}
2644
2645/*
2646 * Allocate and build a CTS (Clear To Send) control frame.
2647 */
2648struct mbuf *
2649ieee80211_alloc_cts(struct ieee80211com *ic,
2650	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2651{
2652	struct ieee80211_frame_cts *cts;
2653	struct mbuf *m;
2654
2655	/* XXX honor ic_headroom */
2656	m = m_gethdr(M_NOWAIT, MT_DATA);
2657	if (m != NULL) {
2658		cts = mtod(m, struct ieee80211_frame_cts *);
2659		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2660			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2661		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2662		*(u_int16_t *)cts->i_dur = htole16(dur);
2663		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2664
2665		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2666	}
2667	return m;
2668}
2669
2670static void
2671ieee80211_tx_mgt_timeout(void *arg)
2672{
2673	struct ieee80211_node *ni = arg;
2674	struct ieee80211vap *vap = ni->ni_vap;
2675
2676	if (vap->iv_state != IEEE80211_S_INIT &&
2677	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2678		/*
2679		 * NB: it's safe to specify a timeout as the reason here;
2680		 *     it'll only be used in the right state.
2681		 */
2682		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2683			IEEE80211_SCAN_FAIL_TIMEOUT);
2684	}
2685}
2686
2687static void
2688ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2689{
2690	struct ieee80211vap *vap = ni->ni_vap;
2691	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2692
2693	/*
2694	 * Frame transmit completed; arrange timer callback.  If
2695	 * transmit was successfuly we wait for response.  Otherwise
2696	 * we arrange an immediate callback instead of doing the
2697	 * callback directly since we don't know what state the driver
2698	 * is in (e.g. what locks it is holding).  This work should
2699	 * not be too time-critical and not happen too often so the
2700	 * added overhead is acceptable.
2701	 *
2702	 * XXX what happens if !acked but response shows up before callback?
2703	 */
2704	if (vap->iv_state == ostate)
2705		callout_reset(&vap->iv_mgtsend,
2706			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2707			ieee80211_tx_mgt_timeout, ni);
2708}
2709
2710static void
2711ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2712	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2713{
2714	struct ieee80211vap *vap = ni->ni_vap;
2715	struct ieee80211com *ic = ni->ni_ic;
2716	struct ieee80211_rateset *rs = &ni->ni_rates;
2717	uint16_t capinfo;
2718
2719	/*
2720	 * beacon frame format
2721	 *	[8] time stamp
2722	 *	[2] beacon interval
2723	 *	[2] cabability information
2724	 *	[tlv] ssid
2725	 *	[tlv] supported rates
2726	 *	[3] parameter set (DS)
2727	 *	[8] CF parameter set (optional)
2728	 *	[tlv] parameter set (IBSS/TIM)
2729	 *	[tlv] country (optional)
2730	 *	[3] power control (optional)
2731	 *	[5] channel switch announcement (CSA) (optional)
2732	 *	[tlv] extended rate phy (ERP)
2733	 *	[tlv] extended supported rates
2734	 *	[tlv] RSN parameters
2735	 *	[tlv] HT capabilities
2736	 *	[tlv] HT information
2737	 * XXX Vendor-specific OIDs (e.g. Atheros)
2738	 *	[tlv] WPA parameters
2739	 *	[tlv] WME parameters
2740	 *	[tlv] Vendor OUI HT capabilities (optional)
2741	 *	[tlv] Vendor OUI HT information (optional)
2742	 *	[tlv] Atheros capabilities (optional)
2743	 *	[tlv] TDMA parameters (optional)
2744	 *	[tlv] Mesh ID (MBSS)
2745	 *	[tlv] Mesh Conf (MBSS)
2746	 *	[tlv] application data (optional)
2747	 */
2748
2749	memset(bo, 0, sizeof(*bo));
2750
2751	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2752	frm += 8;
2753	*(uint16_t *)frm = htole16(ni->ni_intval);
2754	frm += 2;
2755	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2756	bo->bo_caps = (uint16_t *)frm;
2757	*(uint16_t *)frm = htole16(capinfo);
2758	frm += 2;
2759	*frm++ = IEEE80211_ELEMID_SSID;
2760	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2761		*frm++ = ni->ni_esslen;
2762		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2763		frm += ni->ni_esslen;
2764	} else
2765		*frm++ = 0;
2766	frm = ieee80211_add_rates(frm, rs);
2767	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2768		*frm++ = IEEE80211_ELEMID_DSPARMS;
2769		*frm++ = 1;
2770		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2771	}
2772	if (ic->ic_flags & IEEE80211_F_PCF) {
2773		bo->bo_cfp = frm;
2774		frm = ieee80211_add_cfparms(frm, ic);
2775	}
2776	bo->bo_tim = frm;
2777	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2778		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2779		*frm++ = 2;
2780		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2781		bo->bo_tim_len = 0;
2782	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2783	    vap->iv_opmode == IEEE80211_M_MBSS) {
2784		/* TIM IE is the same for Mesh and Hostap */
2785		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2786
2787		tie->tim_ie = IEEE80211_ELEMID_TIM;
2788		tie->tim_len = 4;	/* length */
2789		tie->tim_count = 0;	/* DTIM count */
2790		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2791		tie->tim_bitctl = 0;	/* bitmap control */
2792		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2793		frm += sizeof(struct ieee80211_tim_ie);
2794		bo->bo_tim_len = 1;
2795	}
2796	bo->bo_tim_trailer = frm;
2797	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2798	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2799		frm = ieee80211_add_countryie(frm, ic);
2800	if (vap->iv_flags & IEEE80211_F_DOTH) {
2801		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2802			frm = ieee80211_add_powerconstraint(frm, vap);
2803		bo->bo_csa = frm;
2804		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2805			frm = ieee80211_add_csa(frm, vap);
2806	} else
2807		bo->bo_csa = frm;
2808
2809	if (vap->iv_flags & IEEE80211_F_DOTH) {
2810		bo->bo_quiet = frm;
2811		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2812		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2813			if (vap->iv_quiet)
2814				frm = ieee80211_add_quiet(frm,vap);
2815		}
2816	} else
2817		bo->bo_quiet = frm;
2818
2819	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2820		bo->bo_erp = frm;
2821		frm = ieee80211_add_erp(frm, ic);
2822	}
2823	frm = ieee80211_add_xrates(frm, rs);
2824	if (vap->iv_flags & IEEE80211_F_WPA2) {
2825		if (vap->iv_rsn_ie != NULL)
2826			frm = add_ie(frm, vap->iv_rsn_ie);
2827		/* XXX else complain */
2828	}
2829	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2830		frm = ieee80211_add_htcap(frm, ni);
2831		bo->bo_htinfo = frm;
2832		frm = ieee80211_add_htinfo(frm, ni);
2833	}
2834	if (vap->iv_flags & IEEE80211_F_WPA1) {
2835		if (vap->iv_wpa_ie != NULL)
2836			frm = add_ie(frm, vap->iv_wpa_ie);
2837		/* XXX else complain */
2838	}
2839	if (vap->iv_flags & IEEE80211_F_WME) {
2840		bo->bo_wme = frm;
2841		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2842	}
2843	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2844	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2845		frm = ieee80211_add_htcap_vendor(frm, ni);
2846		frm = ieee80211_add_htinfo_vendor(frm, ni);
2847	}
2848#ifdef IEEE80211_SUPPORT_SUPERG
2849	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2850		bo->bo_ath = frm;
2851		frm = ieee80211_add_athcaps(frm, ni);
2852	}
2853#endif
2854#ifdef IEEE80211_SUPPORT_TDMA
2855	if (vap->iv_caps & IEEE80211_C_TDMA) {
2856		bo->bo_tdma = frm;
2857		frm = ieee80211_add_tdma(frm, vap);
2858	}
2859#endif
2860	if (vap->iv_appie_beacon != NULL) {
2861		bo->bo_appie = frm;
2862		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2863		frm = add_appie(frm, vap->iv_appie_beacon);
2864	}
2865#ifdef IEEE80211_SUPPORT_MESH
2866	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2867		frm = ieee80211_add_meshid(frm, vap);
2868		bo->bo_meshconf = frm;
2869		frm = ieee80211_add_meshconf(frm, vap);
2870	}
2871#endif
2872	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2873	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2874	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2875}
2876
2877/*
2878 * Allocate a beacon frame and fillin the appropriate bits.
2879 */
2880struct mbuf *
2881ieee80211_beacon_alloc(struct ieee80211_node *ni,
2882	struct ieee80211_beacon_offsets *bo)
2883{
2884	struct ieee80211vap *vap = ni->ni_vap;
2885	struct ieee80211com *ic = ni->ni_ic;
2886	struct ifnet *ifp = vap->iv_ifp;
2887	struct ieee80211_frame *wh;
2888	struct mbuf *m;
2889	int pktlen;
2890	uint8_t *frm;
2891
2892	/*
2893	 * beacon frame format
2894	 *	[8] time stamp
2895	 *	[2] beacon interval
2896	 *	[2] cabability information
2897	 *	[tlv] ssid
2898	 *	[tlv] supported rates
2899	 *	[3] parameter set (DS)
2900	 *	[8] CF parameter set (optional)
2901	 *	[tlv] parameter set (IBSS/TIM)
2902	 *	[tlv] country (optional)
2903	 *	[3] power control (optional)
2904	 *	[5] channel switch announcement (CSA) (optional)
2905	 *	[tlv] extended rate phy (ERP)
2906	 *	[tlv] extended supported rates
2907	 *	[tlv] RSN parameters
2908	 *	[tlv] HT capabilities
2909	 *	[tlv] HT information
2910	 *	[tlv] Vendor OUI HT capabilities (optional)
2911	 *	[tlv] Vendor OUI HT information (optional)
2912	 * XXX Vendor-specific OIDs (e.g. Atheros)
2913	 *	[tlv] WPA parameters
2914	 *	[tlv] WME parameters
2915	 *	[tlv] TDMA parameters (optional)
2916	 *	[tlv] Mesh ID (MBSS)
2917	 *	[tlv] Mesh Conf (MBSS)
2918	 *	[tlv] application data (optional)
2919	 * NB: we allocate the max space required for the TIM bitmap.
2920	 * XXX how big is this?
2921	 */
2922	pktlen =   8					/* time stamp */
2923		 + sizeof(uint16_t)			/* beacon interval */
2924		 + sizeof(uint16_t)			/* capabilities */
2925		 + 2 + ni->ni_esslen			/* ssid */
2926	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2927	         + 2 + 1				/* DS parameters */
2928		 + 2 + 6				/* CF parameters */
2929		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2930		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2931		 + 2 + 1				/* power control */
2932		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
2933		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
2934		 + 2 + 1				/* ERP */
2935	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2936		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2937			2*sizeof(struct ieee80211_ie_wpa) : 0)
2938		 /* XXX conditional? */
2939		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2940		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2941		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2942			sizeof(struct ieee80211_wme_param) : 0)
2943#ifdef IEEE80211_SUPPORT_SUPERG
2944		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2945#endif
2946#ifdef IEEE80211_SUPPORT_TDMA
2947		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2948			sizeof(struct ieee80211_tdma_param) : 0)
2949#endif
2950#ifdef IEEE80211_SUPPORT_MESH
2951		 + 2 + ni->ni_meshidlen
2952		 + sizeof(struct ieee80211_meshconf_ie)
2953#endif
2954		 + IEEE80211_MAX_APPIE
2955		 ;
2956	m = ieee80211_getmgtframe(&frm,
2957		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2958	if (m == NULL) {
2959		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2960			"%s: cannot get buf; size %u\n", __func__, pktlen);
2961		vap->iv_stats.is_tx_nobuf++;
2962		return NULL;
2963	}
2964	ieee80211_beacon_construct(m, frm, bo, ni);
2965
2966	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2967	KASSERT(m != NULL, ("no space for 802.11 header?"));
2968	wh = mtod(m, struct ieee80211_frame *);
2969	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2970	    IEEE80211_FC0_SUBTYPE_BEACON;
2971	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2972	*(uint16_t *)wh->i_dur = 0;
2973	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2974	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2975	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2976	*(uint16_t *)wh->i_seq = 0;
2977
2978	return m;
2979}
2980
2981/*
2982 * Update the dynamic parts of a beacon frame based on the current state.
2983 */
2984int
2985ieee80211_beacon_update(struct ieee80211_node *ni,
2986	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2987{
2988	struct ieee80211vap *vap = ni->ni_vap;
2989	struct ieee80211com *ic = ni->ni_ic;
2990	int len_changed = 0;
2991	uint16_t capinfo;
2992	struct ieee80211_frame *wh;
2993	ieee80211_seq seqno;
2994
2995	IEEE80211_LOCK(ic);
2996	/*
2997	 * Handle 11h channel change when we've reached the count.
2998	 * We must recalculate the beacon frame contents to account
2999	 * for the new channel.  Note we do this only for the first
3000	 * vap that reaches this point; subsequent vaps just update
3001	 * their beacon state to reflect the recalculated channel.
3002	 */
3003	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3004	    vap->iv_csa_count == ic->ic_csa_count) {
3005		vap->iv_csa_count = 0;
3006		/*
3007		 * Effect channel change before reconstructing the beacon
3008		 * frame contents as many places reference ni_chan.
3009		 */
3010		if (ic->ic_csa_newchan != NULL)
3011			ieee80211_csa_completeswitch(ic);
3012		/*
3013		 * NB: ieee80211_beacon_construct clears all pending
3014		 * updates in bo_flags so we don't need to explicitly
3015		 * clear IEEE80211_BEACON_CSA.
3016		 */
3017		ieee80211_beacon_construct(m,
3018		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
3019
3020		/* XXX do WME aggressive mode processing? */
3021		IEEE80211_UNLOCK(ic);
3022		return 1;		/* just assume length changed */
3023	}
3024
3025	wh = mtod(m, struct ieee80211_frame *);
3026	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3027	*(uint16_t *)&wh->i_seq[0] =
3028		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3029	M_SEQNO_SET(m, seqno);
3030
3031	/* XXX faster to recalculate entirely or just changes? */
3032	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3033	*bo->bo_caps = htole16(capinfo);
3034
3035	if (vap->iv_flags & IEEE80211_F_WME) {
3036		struct ieee80211_wme_state *wme = &ic->ic_wme;
3037
3038		/*
3039		 * Check for agressive mode change.  When there is
3040		 * significant high priority traffic in the BSS
3041		 * throttle back BE traffic by using conservative
3042		 * parameters.  Otherwise BE uses agressive params
3043		 * to optimize performance of legacy/non-QoS traffic.
3044		 */
3045		if (wme->wme_flags & WME_F_AGGRMODE) {
3046			if (wme->wme_hipri_traffic >
3047			    wme->wme_hipri_switch_thresh) {
3048				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3049				    "%s: traffic %u, disable aggressive mode\n",
3050				    __func__, wme->wme_hipri_traffic);
3051				wme->wme_flags &= ~WME_F_AGGRMODE;
3052				ieee80211_wme_updateparams_locked(vap);
3053				wme->wme_hipri_traffic =
3054					wme->wme_hipri_switch_hysteresis;
3055			} else
3056				wme->wme_hipri_traffic = 0;
3057		} else {
3058			if (wme->wme_hipri_traffic <=
3059			    wme->wme_hipri_switch_thresh) {
3060				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3061				    "%s: traffic %u, enable aggressive mode\n",
3062				    __func__, wme->wme_hipri_traffic);
3063				wme->wme_flags |= WME_F_AGGRMODE;
3064				ieee80211_wme_updateparams_locked(vap);
3065				wme->wme_hipri_traffic = 0;
3066			} else
3067				wme->wme_hipri_traffic =
3068					wme->wme_hipri_switch_hysteresis;
3069		}
3070		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3071			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3072			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3073		}
3074	}
3075
3076	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3077		ieee80211_ht_update_beacon(vap, bo);
3078		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3079	}
3080#ifdef IEEE80211_SUPPORT_TDMA
3081	if (vap->iv_caps & IEEE80211_C_TDMA) {
3082		/*
3083		 * NB: the beacon is potentially updated every TBTT.
3084		 */
3085		ieee80211_tdma_update_beacon(vap, bo);
3086	}
3087#endif
3088#ifdef IEEE80211_SUPPORT_MESH
3089	if (vap->iv_opmode == IEEE80211_M_MBSS)
3090		ieee80211_mesh_update_beacon(vap, bo);
3091#endif
3092
3093	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3094	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3095		struct ieee80211_tim_ie *tie =
3096			(struct ieee80211_tim_ie *) bo->bo_tim;
3097		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3098			u_int timlen, timoff, i;
3099			/*
3100			 * ATIM/DTIM needs updating.  If it fits in the
3101			 * current space allocated then just copy in the
3102			 * new bits.  Otherwise we need to move any trailing
3103			 * data to make room.  Note that we know there is
3104			 * contiguous space because ieee80211_beacon_allocate
3105			 * insures there is space in the mbuf to write a
3106			 * maximal-size virtual bitmap (based on iv_max_aid).
3107			 */
3108			/*
3109			 * Calculate the bitmap size and offset, copy any
3110			 * trailer out of the way, and then copy in the
3111			 * new bitmap and update the information element.
3112			 * Note that the tim bitmap must contain at least
3113			 * one byte and any offset must be even.
3114			 */
3115			if (vap->iv_ps_pending != 0) {
3116				timoff = 128;		/* impossibly large */
3117				for (i = 0; i < vap->iv_tim_len; i++)
3118					if (vap->iv_tim_bitmap[i]) {
3119						timoff = i &~ 1;
3120						break;
3121					}
3122				KASSERT(timoff != 128, ("tim bitmap empty!"));
3123				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3124					if (vap->iv_tim_bitmap[i])
3125						break;
3126				timlen = 1 + (i - timoff);
3127			} else {
3128				timoff = 0;
3129				timlen = 1;
3130			}
3131			if (timlen != bo->bo_tim_len) {
3132				/* copy up/down trailer */
3133				int adjust = tie->tim_bitmap+timlen
3134					   - bo->bo_tim_trailer;
3135				ovbcopy(bo->bo_tim_trailer,
3136				    bo->bo_tim_trailer+adjust,
3137				    bo->bo_tim_trailer_len);
3138				bo->bo_tim_trailer += adjust;
3139				bo->bo_erp += adjust;
3140				bo->bo_htinfo += adjust;
3141#ifdef IEEE80211_SUPPORT_SUPERG
3142				bo->bo_ath += adjust;
3143#endif
3144#ifdef IEEE80211_SUPPORT_TDMA
3145				bo->bo_tdma += adjust;
3146#endif
3147#ifdef IEEE80211_SUPPORT_MESH
3148				bo->bo_meshconf += adjust;
3149#endif
3150				bo->bo_appie += adjust;
3151				bo->bo_wme += adjust;
3152				bo->bo_csa += adjust;
3153				bo->bo_quiet += adjust;
3154				bo->bo_tim_len = timlen;
3155
3156				/* update information element */
3157				tie->tim_len = 3 + timlen;
3158				tie->tim_bitctl = timoff;
3159				len_changed = 1;
3160			}
3161			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3162				bo->bo_tim_len);
3163
3164			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3165
3166			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3167				"%s: TIM updated, pending %u, off %u, len %u\n",
3168				__func__, vap->iv_ps_pending, timoff, timlen);
3169		}
3170		/* count down DTIM period */
3171		if (tie->tim_count == 0)
3172			tie->tim_count = tie->tim_period - 1;
3173		else
3174			tie->tim_count--;
3175		/* update state for buffered multicast frames on DTIM */
3176		if (mcast && tie->tim_count == 0)
3177			tie->tim_bitctl |= 1;
3178		else
3179			tie->tim_bitctl &= ~1;
3180		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3181			struct ieee80211_csa_ie *csa =
3182			    (struct ieee80211_csa_ie *) bo->bo_csa;
3183
3184			/*
3185			 * Insert or update CSA ie.  If we're just starting
3186			 * to count down to the channel switch then we need
3187			 * to insert the CSA ie.  Otherwise we just need to
3188			 * drop the count.  The actual change happens above
3189			 * when the vap's count reaches the target count.
3190			 */
3191			if (vap->iv_csa_count == 0) {
3192				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3193				bo->bo_erp += sizeof(*csa);
3194				bo->bo_htinfo += sizeof(*csa);
3195				bo->bo_wme += sizeof(*csa);
3196#ifdef IEEE80211_SUPPORT_SUPERG
3197				bo->bo_ath += sizeof(*csa);
3198#endif
3199#ifdef IEEE80211_SUPPORT_TDMA
3200				bo->bo_tdma += sizeof(*csa);
3201#endif
3202#ifdef IEEE80211_SUPPORT_MESH
3203				bo->bo_meshconf += sizeof(*csa);
3204#endif
3205				bo->bo_appie += sizeof(*csa);
3206				bo->bo_csa_trailer_len += sizeof(*csa);
3207				bo->bo_quiet += sizeof(*csa);
3208				bo->bo_tim_trailer_len += sizeof(*csa);
3209				m->m_len += sizeof(*csa);
3210				m->m_pkthdr.len += sizeof(*csa);
3211
3212				ieee80211_add_csa(bo->bo_csa, vap);
3213			} else
3214				csa->csa_count--;
3215			vap->iv_csa_count++;
3216			/* NB: don't clear IEEE80211_BEACON_CSA */
3217		}
3218		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3219		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3220			if (vap->iv_quiet)
3221				ieee80211_add_quiet(bo->bo_quiet, vap);
3222		}
3223		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3224			/*
3225			 * ERP element needs updating.
3226			 */
3227			(void) ieee80211_add_erp(bo->bo_erp, ic);
3228			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3229		}
3230#ifdef IEEE80211_SUPPORT_SUPERG
3231		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3232			ieee80211_add_athcaps(bo->bo_ath, ni);
3233			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3234		}
3235#endif
3236	}
3237	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3238		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3239		int aielen;
3240		uint8_t *frm;
3241
3242		aielen = 0;
3243		if (aie != NULL)
3244			aielen += aie->ie_len;
3245		if (aielen != bo->bo_appie_len) {
3246			/* copy up/down trailer */
3247			int adjust = aielen - bo->bo_appie_len;
3248			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3249				bo->bo_tim_trailer_len);
3250			bo->bo_tim_trailer += adjust;
3251			bo->bo_appie += adjust;
3252			bo->bo_appie_len = aielen;
3253
3254			len_changed = 1;
3255		}
3256		frm = bo->bo_appie;
3257		if (aie != NULL)
3258			frm  = add_appie(frm, aie);
3259		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3260	}
3261	IEEE80211_UNLOCK(ic);
3262
3263	return len_changed;
3264}
3265