ieee80211_output.c revision 246499
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 246499 2013-02-07 21:18:22Z monthadar $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/endian.h>
39
40#include <sys/socket.h>
41
42#include <net/bpf.h>
43#include <net/ethernet.h>
44#include <net/if.h>
45#include <net/if_llc.h>
46#include <net/if_media.h>
47#include <net/if_vlan_var.h>
48
49#include <net80211/ieee80211_var.h>
50#include <net80211/ieee80211_regdomain.h>
51#ifdef IEEE80211_SUPPORT_SUPERG
52#include <net80211/ieee80211_superg.h>
53#endif
54#ifdef IEEE80211_SUPPORT_TDMA
55#include <net80211/ieee80211_tdma.h>
56#endif
57#include <net80211/ieee80211_wds.h>
58#include <net80211/ieee80211_mesh.h>
59
60#if defined(INET) || defined(INET6)
61#include <netinet/in.h>
62#endif
63
64#ifdef INET
65#include <netinet/if_ether.h>
66#include <netinet/in_systm.h>
67#include <netinet/ip.h>
68#endif
69#ifdef INET6
70#include <netinet/ip6.h>
71#endif
72
73#include <security/mac/mac_framework.h>
74
75#define	ETHER_HEADER_COPY(dst, src) \
76	memcpy(dst, src, sizeof(struct ether_header))
77
78/* unalligned little endian access */
79#define LE_WRITE_2(p, v) do {				\
80	((uint8_t *)(p))[0] = (v) & 0xff;		\
81	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
82} while (0)
83#define LE_WRITE_4(p, v) do {				\
84	((uint8_t *)(p))[0] = (v) & 0xff;		\
85	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
86	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
87	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
88} while (0)
89
90static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
91	u_int hdrsize, u_int ciphdrsize, u_int mtu);
92static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
93
94#ifdef IEEE80211_DEBUG
95/*
96 * Decide if an outbound management frame should be
97 * printed when debugging is enabled.  This filters some
98 * of the less interesting frames that come frequently
99 * (e.g. beacons).
100 */
101static __inline int
102doprint(struct ieee80211vap *vap, int subtype)
103{
104	switch (subtype) {
105	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
106		return (vap->iv_opmode == IEEE80211_M_IBSS);
107	}
108	return 1;
109}
110#endif
111
112/*
113 * Start method for vap's.  All packets from the stack come
114 * through here.  We handle common processing of the packets
115 * before dispatching them to the underlying device.
116 */
117void
118ieee80211_start(struct ifnet *ifp)
119{
120#define	IS_DWDS(vap) \
121	(vap->iv_opmode == IEEE80211_M_WDS && \
122	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
123	struct ieee80211vap *vap = ifp->if_softc;
124	struct ieee80211com *ic = vap->iv_ic;
125	struct ifnet *parent = ic->ic_ifp;
126	struct ieee80211_node *ni;
127	struct mbuf *m;
128	struct ether_header *eh;
129	int error;
130
131	/* NB: parent must be up and running */
132	if (!IFNET_IS_UP_RUNNING(parent)) {
133		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
134		    "%s: ignore queue, parent %s not up+running\n",
135		    __func__, parent->if_xname);
136		/* XXX stat */
137		return;
138	}
139	if (vap->iv_state == IEEE80211_S_SLEEP) {
140		/*
141		 * In power save, wakeup device for transmit.
142		 */
143		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
144		return;
145	}
146	/*
147	 * No data frames go out unless we're running.
148	 * Note in particular this covers CAC and CSA
149	 * states (though maybe we should check muting
150	 * for CSA).
151	 */
152	if (vap->iv_state != IEEE80211_S_RUN) {
153		IEEE80211_LOCK(ic);
154		/* re-check under the com lock to avoid races */
155		if (vap->iv_state != IEEE80211_S_RUN) {
156			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
157			    "%s: ignore queue, in %s state\n",
158			    __func__, ieee80211_state_name[vap->iv_state]);
159			vap->iv_stats.is_tx_badstate++;
160			IEEE80211_UNLOCK(ic);
161			IFQ_LOCK(&ifp->if_snd);
162			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
163			IFQ_UNLOCK(&ifp->if_snd);
164			return;
165		}
166		IEEE80211_UNLOCK(ic);
167	}
168	for (;;) {
169		IFQ_DEQUEUE(&ifp->if_snd, m);
170		if (m == NULL)
171			break;
172		/*
173		 * Sanitize mbuf flags for net80211 use.  We cannot
174		 * clear M_PWR_SAV or M_MORE_DATA because these may
175		 * be set for frames that are re-submitted from the
176		 * power save queue.
177		 *
178		 * NB: This must be done before ieee80211_classify as
179		 *     it marks EAPOL in frames with M_EAPOL.
180		 */
181		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
182		/*
183		 * Cancel any background scan.
184		 */
185		if (ic->ic_flags & IEEE80211_F_SCAN)
186			ieee80211_cancel_anyscan(vap);
187		/*
188		 * Find the node for the destination so we can do
189		 * things like power save and fast frames aggregation.
190		 *
191		 * NB: past this point various code assumes the first
192		 *     mbuf has the 802.3 header present (and contiguous).
193		 */
194		ni = NULL;
195		if (m->m_len < sizeof(struct ether_header) &&
196		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
197			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
198			    "discard frame, %s\n", "m_pullup failed");
199			vap->iv_stats.is_tx_nobuf++;	/* XXX */
200			ifp->if_oerrors++;
201			continue;
202		}
203		eh = mtod(m, struct ether_header *);
204		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
205			if (IS_DWDS(vap)) {
206				/*
207				 * Only unicast frames from the above go out
208				 * DWDS vaps; multicast frames are handled by
209				 * dispatching the frame as it comes through
210				 * the AP vap (see below).
211				 */
212				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
213				    eh->ether_dhost, "mcast", "%s", "on DWDS");
214				vap->iv_stats.is_dwds_mcast++;
215				m_freem(m);
216				continue;
217			}
218			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
219				/*
220				 * Spam DWDS vap's w/ multicast traffic.
221				 */
222				/* XXX only if dwds in use? */
223				ieee80211_dwds_mcast(vap, m);
224			}
225		}
226#ifdef IEEE80211_SUPPORT_MESH
227		if (vap->iv_opmode != IEEE80211_M_MBSS) {
228#endif
229			ni = ieee80211_find_txnode(vap, eh->ether_dhost);
230			if (ni == NULL) {
231				/* NB: ieee80211_find_txnode does stat+msg */
232				ifp->if_oerrors++;
233				m_freem(m);
234				continue;
235			}
236			if (ni->ni_associd == 0 &&
237			    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
238				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
239				    eh->ether_dhost, NULL,
240				    "sta not associated (type 0x%04x)",
241				    htons(eh->ether_type));
242				vap->iv_stats.is_tx_notassoc++;
243				ifp->if_oerrors++;
244				m_freem(m);
245				ieee80211_free_node(ni);
246				continue;
247			}
248#ifdef IEEE80211_SUPPORT_MESH
249		} else {
250			if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
251				/*
252				 * Proxy station only if configured.
253				 */
254				if (!ieee80211_mesh_isproxyena(vap)) {
255					IEEE80211_DISCARD_MAC(vap,
256					    IEEE80211_MSG_OUTPUT |
257					    IEEE80211_MSG_MESH,
258					    eh->ether_dhost, NULL,
259					    "%s", "proxy not enabled");
260					vap->iv_stats.is_mesh_notproxy++;
261					ifp->if_oerrors++;
262					m_freem(m);
263					continue;
264				}
265				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
266				    "forward frame from DS SA(%6D), DA(%6D)\n",
267				    eh->ether_dhost, ":",
268				    eh->ether_shost, ":");
269				ieee80211_mesh_proxy_check(vap, eh->ether_shost);
270			}
271			ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
272			if (ni == NULL) {
273				/*
274				 * NB: ieee80211_mesh_discover holds/disposes
275				 * frame (e.g. queueing on path discovery).
276				 */
277				ifp->if_oerrors++;
278				continue;
279			}
280		}
281#endif
282		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
283		    (m->m_flags & M_PWR_SAV) == 0) {
284			/*
285			 * Station in power save mode; pass the frame
286			 * to the 802.11 layer and continue.  We'll get
287			 * the frame back when the time is right.
288			 * XXX lose WDS vap linkage?
289			 */
290			(void) ieee80211_pwrsave(ni, m);
291			ieee80211_free_node(ni);
292			continue;
293		}
294		/* calculate priority so drivers can find the tx queue */
295		if (ieee80211_classify(ni, m)) {
296			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
297			    eh->ether_dhost, NULL,
298			    "%s", "classification failure");
299			vap->iv_stats.is_tx_classify++;
300			ifp->if_oerrors++;
301			m_freem(m);
302			ieee80211_free_node(ni);
303			continue;
304		}
305		/*
306		 * Stash the node pointer.  Note that we do this after
307		 * any call to ieee80211_dwds_mcast because that code
308		 * uses any existing value for rcvif to identify the
309		 * interface it (might have been) received on.
310		 */
311		m->m_pkthdr.rcvif = (void *)ni;
312
313		BPF_MTAP(ifp, m);		/* 802.3 tx */
314
315		/*
316		 * Check if A-MPDU tx aggregation is setup or if we
317		 * should try to enable it.  The sta must be associated
318		 * with HT and A-MPDU enabled for use.  When the policy
319		 * routine decides we should enable A-MPDU we issue an
320		 * ADDBA request and wait for a reply.  The frame being
321		 * encapsulated will go out w/o using A-MPDU, or possibly
322		 * it might be collected by the driver and held/retransmit.
323		 * The default ic_ampdu_enable routine handles staggering
324		 * ADDBA requests in case the receiver NAK's us or we are
325		 * otherwise unable to establish a BA stream.
326		 */
327		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
328		    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
329		    (m->m_flags & M_EAPOL) == 0) {
330			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
331			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
332
333			ieee80211_txampdu_count_packet(tap);
334			if (IEEE80211_AMPDU_RUNNING(tap)) {
335				/*
336				 * Operational, mark frame for aggregation.
337				 *
338				 * XXX do tx aggregation here
339				 */
340				m->m_flags |= M_AMPDU_MPDU;
341			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
342			    ic->ic_ampdu_enable(ni, tap)) {
343				/*
344				 * Not negotiated yet, request service.
345				 */
346				ieee80211_ampdu_request(ni, tap);
347				/* XXX hold frame for reply? */
348			}
349		}
350#ifdef IEEE80211_SUPPORT_SUPERG
351		else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
352			m = ieee80211_ff_check(ni, m);
353			if (m == NULL) {
354				/* NB: any ni ref held on stageq */
355				continue;
356			}
357		}
358#endif /* IEEE80211_SUPPORT_SUPERG */
359		if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
360			/*
361			 * Encapsulate the packet in prep for transmission.
362			 */
363			m = ieee80211_encap(vap, ni, m);
364			if (m == NULL) {
365				/* NB: stat+msg handled in ieee80211_encap */
366				ieee80211_free_node(ni);
367				continue;
368			}
369		}
370		error = parent->if_transmit(parent, m);
371		if (error != 0) {
372			/* NB: IFQ_HANDOFF reclaims mbuf */
373			ieee80211_free_node(ni);
374		} else {
375			ifp->if_opackets++;
376		}
377		ic->ic_lastdata = ticks;
378	}
379#undef IS_DWDS
380}
381
382/*
383 * 802.11 output routine. This is (currently) used only to
384 * connect bpf write calls to the 802.11 layer for injecting
385 * raw 802.11 frames.
386 */
387int
388ieee80211_output(struct ifnet *ifp, struct mbuf *m,
389	struct sockaddr *dst, struct route *ro)
390{
391#define senderr(e) do { error = (e); goto bad;} while (0)
392	struct ieee80211_node *ni = NULL;
393	struct ieee80211vap *vap;
394	struct ieee80211_frame *wh;
395	int error;
396
397	IFQ_LOCK(&ifp->if_snd);
398	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
399		IFQ_UNLOCK(&ifp->if_snd);
400		/*
401		 * Short-circuit requests if the vap is marked OACTIVE
402		 * as this can happen because a packet came down through
403		 * ieee80211_start before the vap entered RUN state in
404		 * which case it's ok to just drop the frame.  This
405		 * should not be necessary but callers of if_output don't
406		 * check OACTIVE.
407		 */
408		senderr(ENETDOWN);
409	}
410	IFQ_UNLOCK(&ifp->if_snd);
411	vap = ifp->if_softc;
412	/*
413	 * Hand to the 802.3 code if not tagged as
414	 * a raw 802.11 frame.
415	 */
416	if (dst->sa_family != AF_IEEE80211)
417		return vap->iv_output(ifp, m, dst, ro);
418#ifdef MAC
419	error = mac_ifnet_check_transmit(ifp, m);
420	if (error)
421		senderr(error);
422#endif
423	if (ifp->if_flags & IFF_MONITOR)
424		senderr(ENETDOWN);
425	if (!IFNET_IS_UP_RUNNING(ifp))
426		senderr(ENETDOWN);
427	if (vap->iv_state == IEEE80211_S_CAC) {
428		IEEE80211_DPRINTF(vap,
429		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
430		    "block %s frame in CAC state\n", "raw data");
431		vap->iv_stats.is_tx_badstate++;
432		senderr(EIO);		/* XXX */
433	} else if (vap->iv_state == IEEE80211_S_SCAN)
434		senderr(EIO);
435	/* XXX bypass bridge, pfil, carp, etc. */
436
437	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
438		senderr(EIO);	/* XXX */
439	wh = mtod(m, struct ieee80211_frame *);
440	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
441	    IEEE80211_FC0_VERSION_0)
442		senderr(EIO);	/* XXX */
443
444	/* locate destination node */
445	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
446	case IEEE80211_FC1_DIR_NODS:
447	case IEEE80211_FC1_DIR_FROMDS:
448		ni = ieee80211_find_txnode(vap, wh->i_addr1);
449		break;
450	case IEEE80211_FC1_DIR_TODS:
451	case IEEE80211_FC1_DIR_DSTODS:
452		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
453			senderr(EIO);	/* XXX */
454		ni = ieee80211_find_txnode(vap, wh->i_addr3);
455		break;
456	default:
457		senderr(EIO);	/* XXX */
458	}
459	if (ni == NULL) {
460		/*
461		 * Permit packets w/ bpf params through regardless
462		 * (see below about sa_len).
463		 */
464		if (dst->sa_len == 0)
465			senderr(EHOSTUNREACH);
466		ni = ieee80211_ref_node(vap->iv_bss);
467	}
468
469	/*
470	 * Sanitize mbuf for net80211 flags leaked from above.
471	 *
472	 * NB: This must be done before ieee80211_classify as
473	 *     it marks EAPOL in frames with M_EAPOL.
474	 */
475	m->m_flags &= ~M_80211_TX;
476
477	/* calculate priority so drivers can find the tx queue */
478	/* XXX assumes an 802.3 frame */
479	if (ieee80211_classify(ni, m))
480		senderr(EIO);		/* XXX */
481
482	ifp->if_opackets++;
483	IEEE80211_NODE_STAT(ni, tx_data);
484	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
485		IEEE80211_NODE_STAT(ni, tx_mcast);
486		m->m_flags |= M_MCAST;
487	} else
488		IEEE80211_NODE_STAT(ni, tx_ucast);
489	/* NB: ieee80211_encap does not include 802.11 header */
490	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
491
492	/*
493	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
494	 * present by setting the sa_len field of the sockaddr (yes,
495	 * this is a hack).
496	 * NB: we assume sa_data is suitably aligned to cast.
497	 */
498	return vap->iv_ic->ic_raw_xmit(ni, m,
499	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
500		dst->sa_data : NULL));
501bad:
502	if (m != NULL)
503		m_freem(m);
504	if (ni != NULL)
505		ieee80211_free_node(ni);
506	ifp->if_oerrors++;
507	return error;
508#undef senderr
509}
510
511/*
512 * Set the direction field and address fields of an outgoing
513 * frame.  Note this should be called early on in constructing
514 * a frame as it sets i_fc[1]; other bits can then be or'd in.
515 */
516void
517ieee80211_send_setup(
518	struct ieee80211_node *ni,
519	struct mbuf *m,
520	int type, int tid,
521	const uint8_t sa[IEEE80211_ADDR_LEN],
522	const uint8_t da[IEEE80211_ADDR_LEN],
523	const uint8_t bssid[IEEE80211_ADDR_LEN])
524{
525#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
526	struct ieee80211vap *vap = ni->ni_vap;
527	struct ieee80211_tx_ampdu *tap;
528	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
529	ieee80211_seq seqno;
530
531	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
532	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
533		switch (vap->iv_opmode) {
534		case IEEE80211_M_STA:
535			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
536			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
537			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
538			IEEE80211_ADDR_COPY(wh->i_addr3, da);
539			break;
540		case IEEE80211_M_IBSS:
541		case IEEE80211_M_AHDEMO:
542			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
543			IEEE80211_ADDR_COPY(wh->i_addr1, da);
544			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
545			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
546			break;
547		case IEEE80211_M_HOSTAP:
548			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
549			IEEE80211_ADDR_COPY(wh->i_addr1, da);
550			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
551			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
552			break;
553		case IEEE80211_M_WDS:
554			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
555			IEEE80211_ADDR_COPY(wh->i_addr1, da);
556			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
557			IEEE80211_ADDR_COPY(wh->i_addr3, da);
558			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
559			break;
560		case IEEE80211_M_MBSS:
561#ifdef IEEE80211_SUPPORT_MESH
562			if (IEEE80211_IS_MULTICAST(da)) {
563				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
564				/* XXX next hop */
565				IEEE80211_ADDR_COPY(wh->i_addr1, da);
566				IEEE80211_ADDR_COPY(wh->i_addr2,
567				    vap->iv_myaddr);
568			} else {
569				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
570				IEEE80211_ADDR_COPY(wh->i_addr1, da);
571				IEEE80211_ADDR_COPY(wh->i_addr2,
572				    vap->iv_myaddr);
573				IEEE80211_ADDR_COPY(wh->i_addr3, da);
574				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
575			}
576#endif
577			break;
578		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
579			break;
580		}
581	} else {
582		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
583		IEEE80211_ADDR_COPY(wh->i_addr1, da);
584		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
585#ifdef IEEE80211_SUPPORT_MESH
586		if (vap->iv_opmode == IEEE80211_M_MBSS)
587			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
588		else
589#endif
590			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
591	}
592	*(uint16_t *)&wh->i_dur[0] = 0;
593
594	tap = &ni->ni_tx_ampdu[tid];
595	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
596		m->m_flags |= M_AMPDU_MPDU;
597	else {
598		seqno = ni->ni_txseqs[tid]++;
599		*(uint16_t *)&wh->i_seq[0] =
600		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
601		M_SEQNO_SET(m, seqno);
602	}
603
604	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
605		m->m_flags |= M_MCAST;
606#undef WH4
607}
608
609/*
610 * Send a management frame to the specified node.  The node pointer
611 * must have a reference as the pointer will be passed to the driver
612 * and potentially held for a long time.  If the frame is successfully
613 * dispatched to the driver, then it is responsible for freeing the
614 * reference (and potentially free'ing up any associated storage);
615 * otherwise deal with reclaiming any reference (on error).
616 */
617int
618ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
619	struct ieee80211_bpf_params *params)
620{
621	struct ieee80211vap *vap = ni->ni_vap;
622	struct ieee80211com *ic = ni->ni_ic;
623	struct ieee80211_frame *wh;
624
625	KASSERT(ni != NULL, ("null node"));
626
627	if (vap->iv_state == IEEE80211_S_CAC) {
628		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
629		    ni, "block %s frame in CAC state",
630			ieee80211_mgt_subtype_name[
631			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
632				IEEE80211_FC0_SUBTYPE_SHIFT]);
633		vap->iv_stats.is_tx_badstate++;
634		ieee80211_free_node(ni);
635		m_freem(m);
636		return EIO;		/* XXX */
637	}
638
639	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
640	if (m == NULL) {
641		ieee80211_free_node(ni);
642		return ENOMEM;
643	}
644
645	wh = mtod(m, struct ieee80211_frame *);
646	ieee80211_send_setup(ni, m,
647	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
648	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
649	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
650		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
651		    "encrypting frame (%s)", __func__);
652		wh->i_fc[1] |= IEEE80211_FC1_WEP;
653	}
654	m->m_flags |= M_ENCAP;		/* mark encapsulated */
655
656	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
657	M_WME_SETAC(m, params->ibp_pri);
658
659#ifdef IEEE80211_DEBUG
660	/* avoid printing too many frames */
661	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
662	    ieee80211_msg_dumppkts(vap)) {
663		printf("[%s] send %s on channel %u\n",
664		    ether_sprintf(wh->i_addr1),
665		    ieee80211_mgt_subtype_name[
666			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
667				IEEE80211_FC0_SUBTYPE_SHIFT],
668		    ieee80211_chan2ieee(ic, ic->ic_curchan));
669	}
670#endif
671	IEEE80211_NODE_STAT(ni, tx_mgmt);
672
673	return ic->ic_raw_xmit(ni, m, params);
674}
675
676/*
677 * Send a null data frame to the specified node.  If the station
678 * is setup for QoS then a QoS Null Data frame is constructed.
679 * If this is a WDS station then a 4-address frame is constructed.
680 *
681 * NB: the caller is assumed to have setup a node reference
682 *     for use; this is necessary to deal with a race condition
683 *     when probing for inactive stations.  Like ieee80211_mgmt_output
684 *     we must cleanup any node reference on error;  however we
685 *     can safely just unref it as we know it will never be the
686 *     last reference to the node.
687 */
688int
689ieee80211_send_nulldata(struct ieee80211_node *ni)
690{
691	struct ieee80211vap *vap = ni->ni_vap;
692	struct ieee80211com *ic = ni->ni_ic;
693	struct mbuf *m;
694	struct ieee80211_frame *wh;
695	int hdrlen;
696	uint8_t *frm;
697
698	if (vap->iv_state == IEEE80211_S_CAC) {
699		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
700		    ni, "block %s frame in CAC state", "null data");
701		ieee80211_unref_node(&ni);
702		vap->iv_stats.is_tx_badstate++;
703		return EIO;		/* XXX */
704	}
705
706	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
707		hdrlen = sizeof(struct ieee80211_qosframe);
708	else
709		hdrlen = sizeof(struct ieee80211_frame);
710	/* NB: only WDS vap's get 4-address frames */
711	if (vap->iv_opmode == IEEE80211_M_WDS)
712		hdrlen += IEEE80211_ADDR_LEN;
713	if (ic->ic_flags & IEEE80211_F_DATAPAD)
714		hdrlen = roundup(hdrlen, sizeof(uint32_t));
715
716	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
717	if (m == NULL) {
718		/* XXX debug msg */
719		ieee80211_unref_node(&ni);
720		vap->iv_stats.is_tx_nobuf++;
721		return ENOMEM;
722	}
723	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
724	    ("leading space %zd", M_LEADINGSPACE(m)));
725	M_PREPEND(m, hdrlen, M_NOWAIT);
726	if (m == NULL) {
727		/* NB: cannot happen */
728		ieee80211_free_node(ni);
729		return ENOMEM;
730	}
731
732	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
733	if (ni->ni_flags & IEEE80211_NODE_QOS) {
734		const int tid = WME_AC_TO_TID(WME_AC_BE);
735		uint8_t *qos;
736
737		ieee80211_send_setup(ni, m,
738		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
739		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
740
741		if (vap->iv_opmode == IEEE80211_M_WDS)
742			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
743		else
744			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
745		qos[0] = tid & IEEE80211_QOS_TID;
746		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
747			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
748		qos[1] = 0;
749	} else {
750		ieee80211_send_setup(ni, m,
751		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
752		    IEEE80211_NONQOS_TID,
753		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
754	}
755	if (vap->iv_opmode != IEEE80211_M_WDS) {
756		/* NB: power management bit is never sent by an AP */
757		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
758		    vap->iv_opmode != IEEE80211_M_HOSTAP)
759			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
760	}
761	m->m_len = m->m_pkthdr.len = hdrlen;
762	m->m_flags |= M_ENCAP;		/* mark encapsulated */
763
764	M_WME_SETAC(m, WME_AC_BE);
765
766	IEEE80211_NODE_STAT(ni, tx_data);
767
768	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
769	    "send %snull data frame on channel %u, pwr mgt %s",
770	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
771	    ieee80211_chan2ieee(ic, ic->ic_curchan),
772	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
773
774	return ic->ic_raw_xmit(ni, m, NULL);
775}
776
777/*
778 * Assign priority to a frame based on any vlan tag assigned
779 * to the station and/or any Diffserv setting in an IP header.
780 * Finally, if an ACM policy is setup (in station mode) it's
781 * applied.
782 */
783int
784ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
785{
786	const struct ether_header *eh = mtod(m, struct ether_header *);
787	int v_wme_ac, d_wme_ac, ac;
788
789	/*
790	 * Always promote PAE/EAPOL frames to high priority.
791	 */
792	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
793		/* NB: mark so others don't need to check header */
794		m->m_flags |= M_EAPOL;
795		ac = WME_AC_VO;
796		goto done;
797	}
798	/*
799	 * Non-qos traffic goes to BE.
800	 */
801	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
802		ac = WME_AC_BE;
803		goto done;
804	}
805
806	/*
807	 * If node has a vlan tag then all traffic
808	 * to it must have a matching tag.
809	 */
810	v_wme_ac = 0;
811	if (ni->ni_vlan != 0) {
812		 if ((m->m_flags & M_VLANTAG) == 0) {
813			IEEE80211_NODE_STAT(ni, tx_novlantag);
814			return 1;
815		}
816		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
817		    EVL_VLANOFTAG(ni->ni_vlan)) {
818			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
819			return 1;
820		}
821		/* map vlan priority to AC */
822		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
823	}
824
825	/* XXX m_copydata may be too slow for fast path */
826#ifdef INET
827	if (eh->ether_type == htons(ETHERTYPE_IP)) {
828		uint8_t tos;
829		/*
830		 * IP frame, map the DSCP bits from the TOS field.
831		 */
832		/* NB: ip header may not be in first mbuf */
833		m_copydata(m, sizeof(struct ether_header) +
834		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
835		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
836		d_wme_ac = TID_TO_WME_AC(tos);
837	} else {
838#endif /* INET */
839#ifdef INET6
840	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
841		uint32_t flow;
842		uint8_t tos;
843		/*
844		 * IPv6 frame, map the DSCP bits from the traffic class field.
845		 */
846		m_copydata(m, sizeof(struct ether_header) +
847		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
848		    (caddr_t) &flow);
849		tos = (uint8_t)(ntohl(flow) >> 20);
850		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
851		d_wme_ac = TID_TO_WME_AC(tos);
852	} else {
853#endif /* INET6 */
854		d_wme_ac = WME_AC_BE;
855#ifdef INET6
856	}
857#endif
858#ifdef INET
859	}
860#endif
861	/*
862	 * Use highest priority AC.
863	 */
864	if (v_wme_ac > d_wme_ac)
865		ac = v_wme_ac;
866	else
867		ac = d_wme_ac;
868
869	/*
870	 * Apply ACM policy.
871	 */
872	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
873		static const int acmap[4] = {
874			WME_AC_BK,	/* WME_AC_BE */
875			WME_AC_BK,	/* WME_AC_BK */
876			WME_AC_BE,	/* WME_AC_VI */
877			WME_AC_VI,	/* WME_AC_VO */
878		};
879		struct ieee80211com *ic = ni->ni_ic;
880
881		while (ac != WME_AC_BK &&
882		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
883			ac = acmap[ac];
884	}
885done:
886	M_WME_SETAC(m, ac);
887	return 0;
888}
889
890/*
891 * Insure there is sufficient contiguous space to encapsulate the
892 * 802.11 data frame.  If room isn't already there, arrange for it.
893 * Drivers and cipher modules assume we have done the necessary work
894 * and fail rudely if they don't find the space they need.
895 */
896struct mbuf *
897ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
898	struct ieee80211_key *key, struct mbuf *m)
899{
900#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
901	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
902
903	if (key != NULL) {
904		/* XXX belongs in crypto code? */
905		needed_space += key->wk_cipher->ic_header;
906		/* XXX frags */
907		/*
908		 * When crypto is being done in the host we must insure
909		 * the data are writable for the cipher routines; clone
910		 * a writable mbuf chain.
911		 * XXX handle SWMIC specially
912		 */
913		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
914			m = m_unshare(m, M_NOWAIT);
915			if (m == NULL) {
916				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
917				    "%s: cannot get writable mbuf\n", __func__);
918				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
919				return NULL;
920			}
921		}
922	}
923	/*
924	 * We know we are called just before stripping an Ethernet
925	 * header and prepending an LLC header.  This means we know
926	 * there will be
927	 *	sizeof(struct ether_header) - sizeof(struct llc)
928	 * bytes recovered to which we need additional space for the
929	 * 802.11 header and any crypto header.
930	 */
931	/* XXX check trailing space and copy instead? */
932	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
933		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
934		if (n == NULL) {
935			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
936			    "%s: cannot expand storage\n", __func__);
937			vap->iv_stats.is_tx_nobuf++;
938			m_freem(m);
939			return NULL;
940		}
941		KASSERT(needed_space <= MHLEN,
942		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
943		/*
944		 * Setup new mbuf to have leading space to prepend the
945		 * 802.11 header and any crypto header bits that are
946		 * required (the latter are added when the driver calls
947		 * back to ieee80211_crypto_encap to do crypto encapsulation).
948		 */
949		/* NB: must be first 'cuz it clobbers m_data */
950		m_move_pkthdr(n, m);
951		n->m_len = 0;			/* NB: m_gethdr does not set */
952		n->m_data += needed_space;
953		/*
954		 * Pull up Ethernet header to create the expected layout.
955		 * We could use m_pullup but that's overkill (i.e. we don't
956		 * need the actual data) and it cannot fail so do it inline
957		 * for speed.
958		 */
959		/* NB: struct ether_header is known to be contiguous */
960		n->m_len += sizeof(struct ether_header);
961		m->m_len -= sizeof(struct ether_header);
962		m->m_data += sizeof(struct ether_header);
963		/*
964		 * Replace the head of the chain.
965		 */
966		n->m_next = m;
967		m = n;
968	}
969	return m;
970#undef TO_BE_RECLAIMED
971}
972
973/*
974 * Return the transmit key to use in sending a unicast frame.
975 * If a unicast key is set we use that.  When no unicast key is set
976 * we fall back to the default transmit key.
977 */
978static __inline struct ieee80211_key *
979ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
980	struct ieee80211_node *ni)
981{
982	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
983		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
984		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
985			return NULL;
986		return &vap->iv_nw_keys[vap->iv_def_txkey];
987	} else {
988		return &ni->ni_ucastkey;
989	}
990}
991
992/*
993 * Return the transmit key to use in sending a multicast frame.
994 * Multicast traffic always uses the group key which is installed as
995 * the default tx key.
996 */
997static __inline struct ieee80211_key *
998ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
999	struct ieee80211_node *ni)
1000{
1001	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1002	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1003		return NULL;
1004	return &vap->iv_nw_keys[vap->iv_def_txkey];
1005}
1006
1007/*
1008 * Encapsulate an outbound data frame.  The mbuf chain is updated.
1009 * If an error is encountered NULL is returned.  The caller is required
1010 * to provide a node reference and pullup the ethernet header in the
1011 * first mbuf.
1012 *
1013 * NB: Packet is assumed to be processed by ieee80211_classify which
1014 *     marked EAPOL frames w/ M_EAPOL.
1015 */
1016struct mbuf *
1017ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1018    struct mbuf *m)
1019{
1020#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1021#define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1022	struct ieee80211com *ic = ni->ni_ic;
1023#ifdef IEEE80211_SUPPORT_MESH
1024	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1025	struct ieee80211_meshcntl_ae10 *mc;
1026	struct ieee80211_mesh_route *rt = NULL;
1027	int dir = -1;
1028#endif
1029	struct ether_header eh;
1030	struct ieee80211_frame *wh;
1031	struct ieee80211_key *key;
1032	struct llc *llc;
1033	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1034	ieee80211_seq seqno;
1035	int meshhdrsize, meshae;
1036	uint8_t *qos;
1037
1038	/*
1039	 * Copy existing Ethernet header to a safe place.  The
1040	 * rest of the code assumes it's ok to strip it when
1041	 * reorganizing state for the final encapsulation.
1042	 */
1043	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1044	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1045
1046	/*
1047	 * Insure space for additional headers.  First identify
1048	 * transmit key to use in calculating any buffer adjustments
1049	 * required.  This is also used below to do privacy
1050	 * encapsulation work.  Then calculate the 802.11 header
1051	 * size and any padding required by the driver.
1052	 *
1053	 * Note key may be NULL if we fall back to the default
1054	 * transmit key and that is not set.  In that case the
1055	 * buffer may not be expanded as needed by the cipher
1056	 * routines, but they will/should discard it.
1057	 */
1058	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1059		if (vap->iv_opmode == IEEE80211_M_STA ||
1060		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1061		    (vap->iv_opmode == IEEE80211_M_WDS &&
1062		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1063			key = ieee80211_crypto_getucastkey(vap, ni);
1064		else
1065			key = ieee80211_crypto_getmcastkey(vap, ni);
1066		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1067			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1068			    eh.ether_dhost,
1069			    "no default transmit key (%s) deftxkey %u",
1070			    __func__, vap->iv_def_txkey);
1071			vap->iv_stats.is_tx_nodefkey++;
1072			goto bad;
1073		}
1074	} else
1075		key = NULL;
1076	/*
1077	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1078	 * frames so suppress use.  This may be an issue if other
1079	 * ap's require all data frames to be QoS-encapsulated
1080	 * once negotiated in which case we'll need to make this
1081	 * configurable.
1082	 * NB: mesh data frames are QoS.
1083	 */
1084	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1085	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1086	    (m->m_flags & M_EAPOL) == 0;
1087	if (addqos)
1088		hdrsize = sizeof(struct ieee80211_qosframe);
1089	else
1090		hdrsize = sizeof(struct ieee80211_frame);
1091#ifdef IEEE80211_SUPPORT_MESH
1092	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1093		/*
1094		 * Mesh data frames are encapsulated according to the
1095		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1096		 * o Group Addressed data (aka multicast) originating
1097		 *   at the local sta are sent w/ 3-address format and
1098		 *   address extension mode 00
1099		 * o Individually Addressed data (aka unicast) originating
1100		 *   at the local sta are sent w/ 4-address format and
1101		 *   address extension mode 00
1102		 * o Group Addressed data forwarded from a non-mesh sta are
1103		 *   sent w/ 3-address format and address extension mode 01
1104		 * o Individually Address data from another sta are sent
1105		 *   w/ 4-address format and address extension mode 10
1106		 */
1107		is4addr = 0;		/* NB: don't use, disable */
1108		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1109			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1110			KASSERT(rt != NULL, ("route is NULL"));
1111			dir = IEEE80211_FC1_DIR_DSTODS;
1112			hdrsize += IEEE80211_ADDR_LEN;
1113			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1114				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1115				    vap->iv_myaddr)) {
1116					IEEE80211_NOTE_MAC(vap,
1117					    IEEE80211_MSG_MESH,
1118					    eh.ether_dhost,
1119					    "%s", "trying to send to ourself");
1120					goto bad;
1121				}
1122				meshae = IEEE80211_MESH_AE_10;
1123				meshhdrsize =
1124				    sizeof(struct ieee80211_meshcntl_ae10);
1125			} else {
1126				meshae = IEEE80211_MESH_AE_00;
1127				meshhdrsize =
1128				    sizeof(struct ieee80211_meshcntl);
1129			}
1130		} else {
1131			dir = IEEE80211_FC1_DIR_FROMDS;
1132			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1133				/* proxy group */
1134				meshae = IEEE80211_MESH_AE_01;
1135				meshhdrsize =
1136				    sizeof(struct ieee80211_meshcntl_ae01);
1137			} else {
1138				/* group */
1139				meshae = IEEE80211_MESH_AE_00;
1140				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1141			}
1142		}
1143	} else {
1144#endif
1145		/*
1146		 * 4-address frames need to be generated for:
1147		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1148		 * o packets sent through a vap marked for relaying
1149		 *   (e.g. a station operating with dynamic WDS)
1150		 */
1151		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1152		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1153		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1154		if (is4addr)
1155			hdrsize += IEEE80211_ADDR_LEN;
1156		meshhdrsize = meshae = 0;
1157#ifdef IEEE80211_SUPPORT_MESH
1158	}
1159#endif
1160	/*
1161	 * Honor driver DATAPAD requirement.
1162	 */
1163	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1164		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1165	else
1166		hdrspace = hdrsize;
1167
1168	if (__predict_true((m->m_flags & M_FF) == 0)) {
1169		/*
1170		 * Normal frame.
1171		 */
1172		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1173		if (m == NULL) {
1174			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1175			goto bad;
1176		}
1177		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1178		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1179		llc = mtod(m, struct llc *);
1180		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1181		llc->llc_control = LLC_UI;
1182		llc->llc_snap.org_code[0] = 0;
1183		llc->llc_snap.org_code[1] = 0;
1184		llc->llc_snap.org_code[2] = 0;
1185		llc->llc_snap.ether_type = eh.ether_type;
1186	} else {
1187#ifdef IEEE80211_SUPPORT_SUPERG
1188		/*
1189		 * Aggregated frame.
1190		 */
1191		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1192		if (m == NULL)
1193#endif
1194			goto bad;
1195	}
1196	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1197
1198	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1199	if (m == NULL) {
1200		vap->iv_stats.is_tx_nobuf++;
1201		goto bad;
1202	}
1203	wh = mtod(m, struct ieee80211_frame *);
1204	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1205	*(uint16_t *)wh->i_dur = 0;
1206	qos = NULL;	/* NB: quiet compiler */
1207	if (is4addr) {
1208		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1209		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1210		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1211		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1212		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1213	} else switch (vap->iv_opmode) {
1214	case IEEE80211_M_STA:
1215		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1216		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1217		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1218		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1219		break;
1220	case IEEE80211_M_IBSS:
1221	case IEEE80211_M_AHDEMO:
1222		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1223		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1224		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1225		/*
1226		 * NB: always use the bssid from iv_bss as the
1227		 *     neighbor's may be stale after an ibss merge
1228		 */
1229		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1230		break;
1231	case IEEE80211_M_HOSTAP:
1232		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1233		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1234		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1235		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1236		break;
1237#ifdef IEEE80211_SUPPORT_MESH
1238	case IEEE80211_M_MBSS:
1239		/* NB: offset by hdrspace to deal with DATAPAD */
1240		mc = (struct ieee80211_meshcntl_ae10 *)
1241		     (mtod(m, uint8_t *) + hdrspace);
1242		wh->i_fc[1] = dir;
1243		switch (meshae) {
1244		case IEEE80211_MESH_AE_00:	/* no proxy */
1245			mc->mc_flags = 0;
1246			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1247				IEEE80211_ADDR_COPY(wh->i_addr1,
1248				    ni->ni_macaddr);
1249				IEEE80211_ADDR_COPY(wh->i_addr2,
1250				    vap->iv_myaddr);
1251				IEEE80211_ADDR_COPY(wh->i_addr3,
1252				    eh.ether_dhost);
1253				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1254				    eh.ether_shost);
1255				qos =((struct ieee80211_qosframe_addr4 *)
1256				    wh)->i_qos;
1257			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1258				 /* mcast */
1259				IEEE80211_ADDR_COPY(wh->i_addr1,
1260				    eh.ether_dhost);
1261				IEEE80211_ADDR_COPY(wh->i_addr2,
1262				    vap->iv_myaddr);
1263				IEEE80211_ADDR_COPY(wh->i_addr3,
1264				    eh.ether_shost);
1265				qos = ((struct ieee80211_qosframe *)
1266				    wh)->i_qos;
1267			}
1268			break;
1269		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1270			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1271			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1272			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1273			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1274			mc->mc_flags = 1;
1275			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1276			    eh.ether_shost);
1277			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1278			break;
1279		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1280			KASSERT(rt != NULL, ("route is NULL"));
1281			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1282			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1283			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1284			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1285			mc->mc_flags = IEEE80211_MESH_AE_10;
1286			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1287			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1288			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1289			break;
1290		default:
1291			KASSERT(0, ("meshae %d", meshae));
1292			break;
1293		}
1294		mc->mc_ttl = ms->ms_ttl;
1295		ms->ms_seq++;
1296		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1297		break;
1298#endif
1299	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1300	default:
1301		goto bad;
1302	}
1303	if (m->m_flags & M_MORE_DATA)
1304		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1305	if (addqos) {
1306		int ac, tid;
1307
1308		if (is4addr) {
1309			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1310		/* NB: mesh case handled earlier */
1311		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1312			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1313		ac = M_WME_GETAC(m);
1314		/* map from access class/queue to 11e header priorty value */
1315		tid = WME_AC_TO_TID(ac);
1316		qos[0] = tid & IEEE80211_QOS_TID;
1317		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1318			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1319#ifdef IEEE80211_SUPPORT_MESH
1320		if (vap->iv_opmode == IEEE80211_M_MBSS)
1321			qos[1] = IEEE80211_QOS_MC;
1322		else
1323#endif
1324			qos[1] = 0;
1325		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1326
1327		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1328			/*
1329			 * NB: don't assign a sequence # to potential
1330			 * aggregates; we expect this happens at the
1331			 * point the frame comes off any aggregation q
1332			 * as otherwise we may introduce holes in the
1333			 * BA sequence space and/or make window accouting
1334			 * more difficult.
1335			 *
1336			 * XXX may want to control this with a driver
1337			 * capability; this may also change when we pull
1338			 * aggregation up into net80211
1339			 */
1340			seqno = ni->ni_txseqs[tid]++;
1341			*(uint16_t *)wh->i_seq =
1342			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1343			M_SEQNO_SET(m, seqno);
1344		}
1345	} else {
1346		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1347		*(uint16_t *)wh->i_seq =
1348		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1349		M_SEQNO_SET(m, seqno);
1350	}
1351
1352
1353	/* check if xmit fragmentation is required */
1354	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1355	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1356	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1357	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1358	if (key != NULL) {
1359		/*
1360		 * IEEE 802.1X: send EAPOL frames always in the clear.
1361		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1362		 */
1363		if ((m->m_flags & M_EAPOL) == 0 ||
1364		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1365		     (vap->iv_opmode == IEEE80211_M_STA ?
1366		      !IEEE80211_KEY_UNDEFINED(key) :
1367		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1368			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1369			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1370				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1371				    eh.ether_dhost,
1372				    "%s", "enmic failed, discard frame");
1373				vap->iv_stats.is_crypto_enmicfail++;
1374				goto bad;
1375			}
1376		}
1377	}
1378	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1379	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1380		goto bad;
1381
1382	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1383
1384	IEEE80211_NODE_STAT(ni, tx_data);
1385	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1386		IEEE80211_NODE_STAT(ni, tx_mcast);
1387		m->m_flags |= M_MCAST;
1388	} else
1389		IEEE80211_NODE_STAT(ni, tx_ucast);
1390	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1391
1392	return m;
1393bad:
1394	if (m != NULL)
1395		m_freem(m);
1396	return NULL;
1397#undef WH4
1398#undef MC01
1399}
1400
1401/*
1402 * Fragment the frame according to the specified mtu.
1403 * The size of the 802.11 header (w/o padding) is provided
1404 * so we don't need to recalculate it.  We create a new
1405 * mbuf for each fragment and chain it through m_nextpkt;
1406 * we might be able to optimize this by reusing the original
1407 * packet's mbufs but that is significantly more complicated.
1408 */
1409static int
1410ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1411	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1412{
1413	struct ieee80211_frame *wh, *whf;
1414	struct mbuf *m, *prev, *next;
1415	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1416
1417	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1418	KASSERT(m0->m_pkthdr.len > mtu,
1419		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1420
1421	wh = mtod(m0, struct ieee80211_frame *);
1422	/* NB: mark the first frag; it will be propagated below */
1423	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1424	totalhdrsize = hdrsize + ciphdrsize;
1425	fragno = 1;
1426	off = mtu - ciphdrsize;
1427	remainder = m0->m_pkthdr.len - off;
1428	prev = m0;
1429	do {
1430		fragsize = totalhdrsize + remainder;
1431		if (fragsize > mtu)
1432			fragsize = mtu;
1433		/* XXX fragsize can be >2048! */
1434		KASSERT(fragsize < MCLBYTES,
1435			("fragment size %u too big!", fragsize));
1436		if (fragsize > MHLEN)
1437			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1438		else
1439			m = m_gethdr(M_NOWAIT, MT_DATA);
1440		if (m == NULL)
1441			goto bad;
1442		/* leave room to prepend any cipher header */
1443		m_align(m, fragsize - ciphdrsize);
1444
1445		/*
1446		 * Form the header in the fragment.  Note that since
1447		 * we mark the first fragment with the MORE_FRAG bit
1448		 * it automatically is propagated to each fragment; we
1449		 * need only clear it on the last fragment (done below).
1450		 * NB: frag 1+ dont have Mesh Control field present.
1451		 */
1452		whf = mtod(m, struct ieee80211_frame *);
1453		memcpy(whf, wh, hdrsize);
1454#ifdef IEEE80211_SUPPORT_MESH
1455		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1456			if (IEEE80211_IS_DSTODS(wh))
1457				((struct ieee80211_qosframe_addr4 *)
1458				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1459			else
1460				((struct ieee80211_qosframe *)
1461				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1462		}
1463#endif
1464		*(uint16_t *)&whf->i_seq[0] |= htole16(
1465			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1466				IEEE80211_SEQ_FRAG_SHIFT);
1467		fragno++;
1468
1469		payload = fragsize - totalhdrsize;
1470		/* NB: destination is known to be contiguous */
1471		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1472		m->m_len = hdrsize + payload;
1473		m->m_pkthdr.len = hdrsize + payload;
1474		m->m_flags |= M_FRAG;
1475
1476		/* chain up the fragment */
1477		prev->m_nextpkt = m;
1478		prev = m;
1479
1480		/* deduct fragment just formed */
1481		remainder -= payload;
1482		off += payload;
1483	} while (remainder != 0);
1484
1485	/* set the last fragment */
1486	m->m_flags |= M_LASTFRAG;
1487	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1488
1489	/* strip first mbuf now that everything has been copied */
1490	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1491	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1492
1493	vap->iv_stats.is_tx_fragframes++;
1494	vap->iv_stats.is_tx_frags += fragno-1;
1495
1496	return 1;
1497bad:
1498	/* reclaim fragments but leave original frame for caller to free */
1499	for (m = m0->m_nextpkt; m != NULL; m = next) {
1500		next = m->m_nextpkt;
1501		m->m_nextpkt = NULL;		/* XXX paranoid */
1502		m_freem(m);
1503	}
1504	m0->m_nextpkt = NULL;
1505	return 0;
1506}
1507
1508/*
1509 * Add a supported rates element id to a frame.
1510 */
1511uint8_t *
1512ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1513{
1514	int nrates;
1515
1516	*frm++ = IEEE80211_ELEMID_RATES;
1517	nrates = rs->rs_nrates;
1518	if (nrates > IEEE80211_RATE_SIZE)
1519		nrates = IEEE80211_RATE_SIZE;
1520	*frm++ = nrates;
1521	memcpy(frm, rs->rs_rates, nrates);
1522	return frm + nrates;
1523}
1524
1525/*
1526 * Add an extended supported rates element id to a frame.
1527 */
1528uint8_t *
1529ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1530{
1531	/*
1532	 * Add an extended supported rates element if operating in 11g mode.
1533	 */
1534	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1535		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1536		*frm++ = IEEE80211_ELEMID_XRATES;
1537		*frm++ = nrates;
1538		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1539		frm += nrates;
1540	}
1541	return frm;
1542}
1543
1544/*
1545 * Add an ssid element to a frame.
1546 */
1547static uint8_t *
1548ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1549{
1550	*frm++ = IEEE80211_ELEMID_SSID;
1551	*frm++ = len;
1552	memcpy(frm, ssid, len);
1553	return frm + len;
1554}
1555
1556/*
1557 * Add an erp element to a frame.
1558 */
1559static uint8_t *
1560ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1561{
1562	uint8_t erp;
1563
1564	*frm++ = IEEE80211_ELEMID_ERP;
1565	*frm++ = 1;
1566	erp = 0;
1567	if (ic->ic_nonerpsta != 0)
1568		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1569	if (ic->ic_flags & IEEE80211_F_USEPROT)
1570		erp |= IEEE80211_ERP_USE_PROTECTION;
1571	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1572		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1573	*frm++ = erp;
1574	return frm;
1575}
1576
1577/*
1578 * Add a CFParams element to a frame.
1579 */
1580static uint8_t *
1581ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1582{
1583#define	ADDSHORT(frm, v) do {	\
1584	LE_WRITE_2(frm, v);	\
1585	frm += 2;		\
1586} while (0)
1587	*frm++ = IEEE80211_ELEMID_CFPARMS;
1588	*frm++ = 6;
1589	*frm++ = 0;		/* CFP count */
1590	*frm++ = 2;		/* CFP period */
1591	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1592	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1593	return frm;
1594#undef ADDSHORT
1595}
1596
1597static __inline uint8_t *
1598add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1599{
1600	memcpy(frm, ie->ie_data, ie->ie_len);
1601	return frm + ie->ie_len;
1602}
1603
1604static __inline uint8_t *
1605add_ie(uint8_t *frm, const uint8_t *ie)
1606{
1607	memcpy(frm, ie, 2 + ie[1]);
1608	return frm + 2 + ie[1];
1609}
1610
1611#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1612/*
1613 * Add a WME information element to a frame.
1614 */
1615static uint8_t *
1616ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1617{
1618	static const struct ieee80211_wme_info info = {
1619		.wme_id		= IEEE80211_ELEMID_VENDOR,
1620		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1621		.wme_oui	= { WME_OUI_BYTES },
1622		.wme_type	= WME_OUI_TYPE,
1623		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1624		.wme_version	= WME_VERSION,
1625		.wme_info	= 0,
1626	};
1627	memcpy(frm, &info, sizeof(info));
1628	return frm + sizeof(info);
1629}
1630
1631/*
1632 * Add a WME parameters element to a frame.
1633 */
1634static uint8_t *
1635ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1636{
1637#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1638#define	ADDSHORT(frm, v) do {	\
1639	LE_WRITE_2(frm, v);	\
1640	frm += 2;		\
1641} while (0)
1642	/* NB: this works 'cuz a param has an info at the front */
1643	static const struct ieee80211_wme_info param = {
1644		.wme_id		= IEEE80211_ELEMID_VENDOR,
1645		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1646		.wme_oui	= { WME_OUI_BYTES },
1647		.wme_type	= WME_OUI_TYPE,
1648		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1649		.wme_version	= WME_VERSION,
1650	};
1651	int i;
1652
1653	memcpy(frm, &param, sizeof(param));
1654	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1655	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1656	*frm++ = 0;					/* reserved field */
1657	for (i = 0; i < WME_NUM_AC; i++) {
1658		const struct wmeParams *ac =
1659		       &wme->wme_bssChanParams.cap_wmeParams[i];
1660		*frm++ = SM(i, WME_PARAM_ACI)
1661		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1662		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1663		       ;
1664		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1665		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1666		       ;
1667		ADDSHORT(frm, ac->wmep_txopLimit);
1668	}
1669	return frm;
1670#undef SM
1671#undef ADDSHORT
1672}
1673#undef WME_OUI_BYTES
1674
1675/*
1676 * Add an 11h Power Constraint element to a frame.
1677 */
1678static uint8_t *
1679ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1680{
1681	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1682	/* XXX per-vap tx power limit? */
1683	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1684
1685	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1686	frm[1] = 1;
1687	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1688	return frm + 3;
1689}
1690
1691/*
1692 * Add an 11h Power Capability element to a frame.
1693 */
1694static uint8_t *
1695ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1696{
1697	frm[0] = IEEE80211_ELEMID_PWRCAP;
1698	frm[1] = 2;
1699	frm[2] = c->ic_minpower;
1700	frm[3] = c->ic_maxpower;
1701	return frm + 4;
1702}
1703
1704/*
1705 * Add an 11h Supported Channels element to a frame.
1706 */
1707static uint8_t *
1708ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1709{
1710	static const int ielen = 26;
1711
1712	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1713	frm[1] = ielen;
1714	/* XXX not correct */
1715	memcpy(frm+2, ic->ic_chan_avail, ielen);
1716	return frm + 2 + ielen;
1717}
1718
1719/*
1720 * Add an 11h Quiet time element to a frame.
1721 */
1722static uint8_t *
1723ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1724{
1725	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1726
1727	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1728	quiet->len = 6;
1729	if (vap->iv_quiet_count_value == 1)
1730		vap->iv_quiet_count_value = vap->iv_quiet_count;
1731	else if (vap->iv_quiet_count_value > 1)
1732		vap->iv_quiet_count_value--;
1733
1734	if (vap->iv_quiet_count_value == 0) {
1735		/* value 0 is reserved as per 802.11h standerd */
1736		vap->iv_quiet_count_value = 1;
1737	}
1738
1739	quiet->tbttcount = vap->iv_quiet_count_value;
1740	quiet->period = vap->iv_quiet_period;
1741	quiet->duration = htole16(vap->iv_quiet_duration);
1742	quiet->offset = htole16(vap->iv_quiet_offset);
1743	return frm + sizeof(*quiet);
1744}
1745
1746/*
1747 * Add an 11h Channel Switch Announcement element to a frame.
1748 * Note that we use the per-vap CSA count to adjust the global
1749 * counter so we can use this routine to form probe response
1750 * frames and get the current count.
1751 */
1752static uint8_t *
1753ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1754{
1755	struct ieee80211com *ic = vap->iv_ic;
1756	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1757
1758	csa->csa_ie = IEEE80211_ELEMID_CSA;
1759	csa->csa_len = 3;
1760	csa->csa_mode = 1;		/* XXX force quiet on channel */
1761	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1762	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1763	return frm + sizeof(*csa);
1764}
1765
1766/*
1767 * Add an 11h country information element to a frame.
1768 */
1769static uint8_t *
1770ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1771{
1772
1773	if (ic->ic_countryie == NULL ||
1774	    ic->ic_countryie_chan != ic->ic_bsschan) {
1775		/*
1776		 * Handle lazy construction of ie.  This is done on
1777		 * first use and after a channel change that requires
1778		 * re-calculation.
1779		 */
1780		if (ic->ic_countryie != NULL)
1781			free(ic->ic_countryie, M_80211_NODE_IE);
1782		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1783		if (ic->ic_countryie == NULL)
1784			return frm;
1785		ic->ic_countryie_chan = ic->ic_bsschan;
1786	}
1787	return add_appie(frm, ic->ic_countryie);
1788}
1789
1790/*
1791 * Send a probe request frame with the specified ssid
1792 * and any optional information element data.
1793 */
1794int
1795ieee80211_send_probereq(struct ieee80211_node *ni,
1796	const uint8_t sa[IEEE80211_ADDR_LEN],
1797	const uint8_t da[IEEE80211_ADDR_LEN],
1798	const uint8_t bssid[IEEE80211_ADDR_LEN],
1799	const uint8_t *ssid, size_t ssidlen)
1800{
1801	struct ieee80211vap *vap = ni->ni_vap;
1802	struct ieee80211com *ic = ni->ni_ic;
1803	const struct ieee80211_txparam *tp;
1804	struct ieee80211_bpf_params params;
1805	struct ieee80211_frame *wh;
1806	const struct ieee80211_rateset *rs;
1807	struct mbuf *m;
1808	uint8_t *frm;
1809
1810	if (vap->iv_state == IEEE80211_S_CAC) {
1811		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1812		    "block %s frame in CAC state", "probe request");
1813		vap->iv_stats.is_tx_badstate++;
1814		return EIO;		/* XXX */
1815	}
1816
1817	/*
1818	 * Hold a reference on the node so it doesn't go away until after
1819	 * the xmit is complete all the way in the driver.  On error we
1820	 * will remove our reference.
1821	 */
1822	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1823		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1824		__func__, __LINE__,
1825		ni, ether_sprintf(ni->ni_macaddr),
1826		ieee80211_node_refcnt(ni)+1);
1827	ieee80211_ref_node(ni);
1828
1829	/*
1830	 * prreq frame format
1831	 *	[tlv] ssid
1832	 *	[tlv] supported rates
1833	 *	[tlv] RSN (optional)
1834	 *	[tlv] extended supported rates
1835	 *	[tlv] WPA (optional)
1836	 *	[tlv] user-specified ie's
1837	 */
1838	m = ieee80211_getmgtframe(&frm,
1839		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1840	       	 2 + IEEE80211_NWID_LEN
1841	       + 2 + IEEE80211_RATE_SIZE
1842	       + sizeof(struct ieee80211_ie_wpa)
1843	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1844	       + sizeof(struct ieee80211_ie_wpa)
1845	       + (vap->iv_appie_probereq != NULL ?
1846		   vap->iv_appie_probereq->ie_len : 0)
1847	);
1848	if (m == NULL) {
1849		vap->iv_stats.is_tx_nobuf++;
1850		ieee80211_free_node(ni);
1851		return ENOMEM;
1852	}
1853
1854	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1855	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1856	frm = ieee80211_add_rates(frm, rs);
1857	if (vap->iv_flags & IEEE80211_F_WPA2) {
1858		if (vap->iv_rsn_ie != NULL)
1859			frm = add_ie(frm, vap->iv_rsn_ie);
1860		/* XXX else complain? */
1861	}
1862	frm = ieee80211_add_xrates(frm, rs);
1863	if (vap->iv_flags & IEEE80211_F_WPA1) {
1864		if (vap->iv_wpa_ie != NULL)
1865			frm = add_ie(frm, vap->iv_wpa_ie);
1866		/* XXX else complain? */
1867	}
1868	if (vap->iv_appie_probereq != NULL)
1869		frm = add_appie(frm, vap->iv_appie_probereq);
1870	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1871
1872	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1873	    ("leading space %zd", M_LEADINGSPACE(m)));
1874	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
1875	if (m == NULL) {
1876		/* NB: cannot happen */
1877		ieee80211_free_node(ni);
1878		return ENOMEM;
1879	}
1880
1881	wh = mtod(m, struct ieee80211_frame *);
1882	ieee80211_send_setup(ni, m,
1883	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1884	     IEEE80211_NONQOS_TID, sa, da, bssid);
1885	/* XXX power management? */
1886	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1887
1888	M_WME_SETAC(m, WME_AC_BE);
1889
1890	IEEE80211_NODE_STAT(ni, tx_probereq);
1891	IEEE80211_NODE_STAT(ni, tx_mgmt);
1892
1893	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1894	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1895	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1896	    ssidlen, ssid);
1897
1898	memset(&params, 0, sizeof(params));
1899	params.ibp_pri = M_WME_GETAC(m);
1900	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1901	params.ibp_rate0 = tp->mgmtrate;
1902	if (IEEE80211_IS_MULTICAST(da)) {
1903		params.ibp_flags |= IEEE80211_BPF_NOACK;
1904		params.ibp_try0 = 1;
1905	} else
1906		params.ibp_try0 = tp->maxretry;
1907	params.ibp_power = ni->ni_txpower;
1908	return ic->ic_raw_xmit(ni, m, &params);
1909}
1910
1911/*
1912 * Calculate capability information for mgt frames.
1913 */
1914uint16_t
1915ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1916{
1917	struct ieee80211com *ic = vap->iv_ic;
1918	uint16_t capinfo;
1919
1920	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1921
1922	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1923		capinfo = IEEE80211_CAPINFO_ESS;
1924	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1925		capinfo = IEEE80211_CAPINFO_IBSS;
1926	else
1927		capinfo = 0;
1928	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1929		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1930	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1931	    IEEE80211_IS_CHAN_2GHZ(chan))
1932		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1933	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1934		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1935	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1936		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1937	return capinfo;
1938}
1939
1940/*
1941 * Send a management frame.  The node is for the destination (or ic_bss
1942 * when in station mode).  Nodes other than ic_bss have their reference
1943 * count bumped to reflect our use for an indeterminant time.
1944 */
1945int
1946ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1947{
1948#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1949#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1950	struct ieee80211vap *vap = ni->ni_vap;
1951	struct ieee80211com *ic = ni->ni_ic;
1952	struct ieee80211_node *bss = vap->iv_bss;
1953	struct ieee80211_bpf_params params;
1954	struct mbuf *m;
1955	uint8_t *frm;
1956	uint16_t capinfo;
1957	int has_challenge, is_shared_key, ret, status;
1958
1959	KASSERT(ni != NULL, ("null node"));
1960
1961	/*
1962	 * Hold a reference on the node so it doesn't go away until after
1963	 * the xmit is complete all the way in the driver.  On error we
1964	 * will remove our reference.
1965	 */
1966	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1967		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1968		__func__, __LINE__,
1969		ni, ether_sprintf(ni->ni_macaddr),
1970		ieee80211_node_refcnt(ni)+1);
1971	ieee80211_ref_node(ni);
1972
1973	memset(&params, 0, sizeof(params));
1974	switch (type) {
1975
1976	case IEEE80211_FC0_SUBTYPE_AUTH:
1977		status = arg >> 16;
1978		arg &= 0xffff;
1979		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1980		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1981		    ni->ni_challenge != NULL);
1982
1983		/*
1984		 * Deduce whether we're doing open authentication or
1985		 * shared key authentication.  We do the latter if
1986		 * we're in the middle of a shared key authentication
1987		 * handshake or if we're initiating an authentication
1988		 * request and configured to use shared key.
1989		 */
1990		is_shared_key = has_challenge ||
1991		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1992		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1993		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1994
1995		m = ieee80211_getmgtframe(&frm,
1996			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1997			  3 * sizeof(uint16_t)
1998			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1999				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2000		);
2001		if (m == NULL)
2002			senderr(ENOMEM, is_tx_nobuf);
2003
2004		((uint16_t *)frm)[0] =
2005		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2006		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2007		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2008		((uint16_t *)frm)[2] = htole16(status);/* status */
2009
2010		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2011			((uint16_t *)frm)[3] =
2012			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2013			    IEEE80211_ELEMID_CHALLENGE);
2014			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2015			    IEEE80211_CHALLENGE_LEN);
2016			m->m_pkthdr.len = m->m_len =
2017				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2018			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2019				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2020				    "request encrypt frame (%s)", __func__);
2021				/* mark frame for encryption */
2022				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2023			}
2024		} else
2025			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2026
2027		/* XXX not right for shared key */
2028		if (status == IEEE80211_STATUS_SUCCESS)
2029			IEEE80211_NODE_STAT(ni, tx_auth);
2030		else
2031			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2032
2033		if (vap->iv_opmode == IEEE80211_M_STA)
2034			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2035				(void *) vap->iv_state);
2036		break;
2037
2038	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2039		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2040		    "send station deauthenticate (reason %d)", arg);
2041		m = ieee80211_getmgtframe(&frm,
2042			ic->ic_headroom + sizeof(struct ieee80211_frame),
2043			sizeof(uint16_t));
2044		if (m == NULL)
2045			senderr(ENOMEM, is_tx_nobuf);
2046		*(uint16_t *)frm = htole16(arg);	/* reason */
2047		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2048
2049		IEEE80211_NODE_STAT(ni, tx_deauth);
2050		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2051
2052		ieee80211_node_unauthorize(ni);		/* port closed */
2053		break;
2054
2055	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2056	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2057		/*
2058		 * asreq frame format
2059		 *	[2] capability information
2060		 *	[2] listen interval
2061		 *	[6*] current AP address (reassoc only)
2062		 *	[tlv] ssid
2063		 *	[tlv] supported rates
2064		 *	[tlv] extended supported rates
2065		 *	[4] power capability (optional)
2066		 *	[28] supported channels (optional)
2067		 *	[tlv] HT capabilities
2068		 *	[tlv] WME (optional)
2069		 *	[tlv] Vendor OUI HT capabilities (optional)
2070		 *	[tlv] Atheros capabilities (if negotiated)
2071		 *	[tlv] AppIE's (optional)
2072		 */
2073		m = ieee80211_getmgtframe(&frm,
2074			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2075			 sizeof(uint16_t)
2076		       + sizeof(uint16_t)
2077		       + IEEE80211_ADDR_LEN
2078		       + 2 + IEEE80211_NWID_LEN
2079		       + 2 + IEEE80211_RATE_SIZE
2080		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2081		       + 4
2082		       + 2 + 26
2083		       + sizeof(struct ieee80211_wme_info)
2084		       + sizeof(struct ieee80211_ie_htcap)
2085		       + 4 + sizeof(struct ieee80211_ie_htcap)
2086#ifdef IEEE80211_SUPPORT_SUPERG
2087		       + sizeof(struct ieee80211_ath_ie)
2088#endif
2089		       + (vap->iv_appie_wpa != NULL ?
2090				vap->iv_appie_wpa->ie_len : 0)
2091		       + (vap->iv_appie_assocreq != NULL ?
2092				vap->iv_appie_assocreq->ie_len : 0)
2093		);
2094		if (m == NULL)
2095			senderr(ENOMEM, is_tx_nobuf);
2096
2097		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2098		    ("wrong mode %u", vap->iv_opmode));
2099		capinfo = IEEE80211_CAPINFO_ESS;
2100		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2101			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2102		/*
2103		 * NB: Some 11a AP's reject the request when
2104		 *     short premable is set.
2105		 */
2106		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2107		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2108			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2109		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2110		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2111			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2112		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2113		    (vap->iv_flags & IEEE80211_F_DOTH))
2114			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2115		*(uint16_t *)frm = htole16(capinfo);
2116		frm += 2;
2117
2118		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2119		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2120						    bss->ni_intval));
2121		frm += 2;
2122
2123		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2124			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2125			frm += IEEE80211_ADDR_LEN;
2126		}
2127
2128		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2129		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2130		if (vap->iv_flags & IEEE80211_F_WPA2) {
2131			if (vap->iv_rsn_ie != NULL)
2132				frm = add_ie(frm, vap->iv_rsn_ie);
2133			/* XXX else complain? */
2134		}
2135		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2136		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2137			frm = ieee80211_add_powercapability(frm,
2138			    ic->ic_curchan);
2139			frm = ieee80211_add_supportedchannels(frm, ic);
2140		}
2141		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2142		    ni->ni_ies.htcap_ie != NULL &&
2143		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2144			frm = ieee80211_add_htcap(frm, ni);
2145		if (vap->iv_flags & IEEE80211_F_WPA1) {
2146			if (vap->iv_wpa_ie != NULL)
2147				frm = add_ie(frm, vap->iv_wpa_ie);
2148			/* XXX else complain */
2149		}
2150		if ((ic->ic_flags & IEEE80211_F_WME) &&
2151		    ni->ni_ies.wme_ie != NULL)
2152			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2153		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2154		    ni->ni_ies.htcap_ie != NULL &&
2155		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2156			frm = ieee80211_add_htcap_vendor(frm, ni);
2157#ifdef IEEE80211_SUPPORT_SUPERG
2158		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2159			frm = ieee80211_add_ath(frm,
2160				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2161				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2162				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2163				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2164		}
2165#endif /* IEEE80211_SUPPORT_SUPERG */
2166		if (vap->iv_appie_assocreq != NULL)
2167			frm = add_appie(frm, vap->iv_appie_assocreq);
2168		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2169
2170		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2171			(void *) vap->iv_state);
2172		break;
2173
2174	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2175	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2176		/*
2177		 * asresp frame format
2178		 *	[2] capability information
2179		 *	[2] status
2180		 *	[2] association ID
2181		 *	[tlv] supported rates
2182		 *	[tlv] extended supported rates
2183		 *	[tlv] HT capabilities (standard, if STA enabled)
2184		 *	[tlv] HT information (standard, if STA enabled)
2185		 *	[tlv] WME (if configured and STA enabled)
2186		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2187		 *	[tlv] HT information (vendor OUI, if STA enabled)
2188		 *	[tlv] Atheros capabilities (if STA enabled)
2189		 *	[tlv] AppIE's (optional)
2190		 */
2191		m = ieee80211_getmgtframe(&frm,
2192			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2193			 sizeof(uint16_t)
2194		       + sizeof(uint16_t)
2195		       + sizeof(uint16_t)
2196		       + 2 + IEEE80211_RATE_SIZE
2197		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2198		       + sizeof(struct ieee80211_ie_htcap) + 4
2199		       + sizeof(struct ieee80211_ie_htinfo) + 4
2200		       + sizeof(struct ieee80211_wme_param)
2201#ifdef IEEE80211_SUPPORT_SUPERG
2202		       + sizeof(struct ieee80211_ath_ie)
2203#endif
2204		       + (vap->iv_appie_assocresp != NULL ?
2205				vap->iv_appie_assocresp->ie_len : 0)
2206		);
2207		if (m == NULL)
2208			senderr(ENOMEM, is_tx_nobuf);
2209
2210		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2211		*(uint16_t *)frm = htole16(capinfo);
2212		frm += 2;
2213
2214		*(uint16_t *)frm = htole16(arg);	/* status */
2215		frm += 2;
2216
2217		if (arg == IEEE80211_STATUS_SUCCESS) {
2218			*(uint16_t *)frm = htole16(ni->ni_associd);
2219			IEEE80211_NODE_STAT(ni, tx_assoc);
2220		} else
2221			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2222		frm += 2;
2223
2224		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2225		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2226		/* NB: respond according to what we received */
2227		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2228			frm = ieee80211_add_htcap(frm, ni);
2229			frm = ieee80211_add_htinfo(frm, ni);
2230		}
2231		if ((vap->iv_flags & IEEE80211_F_WME) &&
2232		    ni->ni_ies.wme_ie != NULL)
2233			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2234		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2235			frm = ieee80211_add_htcap_vendor(frm, ni);
2236			frm = ieee80211_add_htinfo_vendor(frm, ni);
2237		}
2238#ifdef IEEE80211_SUPPORT_SUPERG
2239		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2240			frm = ieee80211_add_ath(frm,
2241				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2242				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2243				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2244				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2245#endif /* IEEE80211_SUPPORT_SUPERG */
2246		if (vap->iv_appie_assocresp != NULL)
2247			frm = add_appie(frm, vap->iv_appie_assocresp);
2248		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2249		break;
2250
2251	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2252		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2253		    "send station disassociate (reason %d)", arg);
2254		m = ieee80211_getmgtframe(&frm,
2255			ic->ic_headroom + sizeof(struct ieee80211_frame),
2256			sizeof(uint16_t));
2257		if (m == NULL)
2258			senderr(ENOMEM, is_tx_nobuf);
2259		*(uint16_t *)frm = htole16(arg);	/* reason */
2260		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2261
2262		IEEE80211_NODE_STAT(ni, tx_disassoc);
2263		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2264		break;
2265
2266	default:
2267		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2268		    "invalid mgmt frame type %u", type);
2269		senderr(EINVAL, is_tx_unknownmgt);
2270		/* NOTREACHED */
2271	}
2272
2273	/* NB: force non-ProbeResp frames to the highest queue */
2274	params.ibp_pri = WME_AC_VO;
2275	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2276	/* NB: we know all frames are unicast */
2277	params.ibp_try0 = bss->ni_txparms->maxretry;
2278	params.ibp_power = bss->ni_txpower;
2279	return ieee80211_mgmt_output(ni, m, type, &params);
2280bad:
2281	ieee80211_free_node(ni);
2282	return ret;
2283#undef senderr
2284#undef HTFLAGS
2285}
2286
2287/*
2288 * Return an mbuf with a probe response frame in it.
2289 * Space is left to prepend and 802.11 header at the
2290 * front but it's left to the caller to fill in.
2291 */
2292struct mbuf *
2293ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2294{
2295	struct ieee80211vap *vap = bss->ni_vap;
2296	struct ieee80211com *ic = bss->ni_ic;
2297	const struct ieee80211_rateset *rs;
2298	struct mbuf *m;
2299	uint16_t capinfo;
2300	uint8_t *frm;
2301
2302	/*
2303	 * probe response frame format
2304	 *	[8] time stamp
2305	 *	[2] beacon interval
2306	 *	[2] cabability information
2307	 *	[tlv] ssid
2308	 *	[tlv] supported rates
2309	 *	[tlv] parameter set (FH/DS)
2310	 *	[tlv] parameter set (IBSS)
2311	 *	[tlv] country (optional)
2312	 *	[3] power control (optional)
2313	 *	[5] channel switch announcement (CSA) (optional)
2314	 *	[tlv] extended rate phy (ERP)
2315	 *	[tlv] extended supported rates
2316	 *	[tlv] RSN (optional)
2317	 *	[tlv] HT capabilities
2318	 *	[tlv] HT information
2319	 *	[tlv] WPA (optional)
2320	 *	[tlv] WME (optional)
2321	 *	[tlv] Vendor OUI HT capabilities (optional)
2322	 *	[tlv] Vendor OUI HT information (optional)
2323	 *	[tlv] Atheros capabilities
2324	 *	[tlv] AppIE's (optional)
2325	 *	[tlv] Mesh ID (MBSS)
2326	 *	[tlv] Mesh Conf (MBSS)
2327	 */
2328	m = ieee80211_getmgtframe(&frm,
2329		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2330		 8
2331	       + sizeof(uint16_t)
2332	       + sizeof(uint16_t)
2333	       + 2 + IEEE80211_NWID_LEN
2334	       + 2 + IEEE80211_RATE_SIZE
2335	       + 7	/* max(7,3) */
2336	       + IEEE80211_COUNTRY_MAX_SIZE
2337	       + 3
2338	       + sizeof(struct ieee80211_csa_ie)
2339	       + sizeof(struct ieee80211_quiet_ie)
2340	       + 3
2341	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2342	       + sizeof(struct ieee80211_ie_wpa)
2343	       + sizeof(struct ieee80211_ie_htcap)
2344	       + sizeof(struct ieee80211_ie_htinfo)
2345	       + sizeof(struct ieee80211_ie_wpa)
2346	       + sizeof(struct ieee80211_wme_param)
2347	       + 4 + sizeof(struct ieee80211_ie_htcap)
2348	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2349#ifdef IEEE80211_SUPPORT_SUPERG
2350	       + sizeof(struct ieee80211_ath_ie)
2351#endif
2352#ifdef IEEE80211_SUPPORT_MESH
2353	       + 2 + IEEE80211_MESHID_LEN
2354	       + sizeof(struct ieee80211_meshconf_ie)
2355#endif
2356	       + (vap->iv_appie_proberesp != NULL ?
2357			vap->iv_appie_proberesp->ie_len : 0)
2358	);
2359	if (m == NULL) {
2360		vap->iv_stats.is_tx_nobuf++;
2361		return NULL;
2362	}
2363
2364	memset(frm, 0, 8);	/* timestamp should be filled later */
2365	frm += 8;
2366	*(uint16_t *)frm = htole16(bss->ni_intval);
2367	frm += 2;
2368	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2369	*(uint16_t *)frm = htole16(capinfo);
2370	frm += 2;
2371
2372	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2373	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2374	frm = ieee80211_add_rates(frm, rs);
2375
2376	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2377		*frm++ = IEEE80211_ELEMID_FHPARMS;
2378		*frm++ = 5;
2379		*frm++ = bss->ni_fhdwell & 0x00ff;
2380		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2381		*frm++ = IEEE80211_FH_CHANSET(
2382		    ieee80211_chan2ieee(ic, bss->ni_chan));
2383		*frm++ = IEEE80211_FH_CHANPAT(
2384		    ieee80211_chan2ieee(ic, bss->ni_chan));
2385		*frm++ = bss->ni_fhindex;
2386	} else {
2387		*frm++ = IEEE80211_ELEMID_DSPARMS;
2388		*frm++ = 1;
2389		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2390	}
2391
2392	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2393		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2394		*frm++ = 2;
2395		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2396	}
2397	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2398	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2399		frm = ieee80211_add_countryie(frm, ic);
2400	if (vap->iv_flags & IEEE80211_F_DOTH) {
2401		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2402			frm = ieee80211_add_powerconstraint(frm, vap);
2403		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2404			frm = ieee80211_add_csa(frm, vap);
2405	}
2406	if (vap->iv_flags & IEEE80211_F_DOTH) {
2407		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2408		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2409			if (vap->iv_quiet)
2410				frm = ieee80211_add_quiet(frm, vap);
2411		}
2412	}
2413	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2414		frm = ieee80211_add_erp(frm, ic);
2415	frm = ieee80211_add_xrates(frm, rs);
2416	if (vap->iv_flags & IEEE80211_F_WPA2) {
2417		if (vap->iv_rsn_ie != NULL)
2418			frm = add_ie(frm, vap->iv_rsn_ie);
2419		/* XXX else complain? */
2420	}
2421	/*
2422	 * NB: legacy 11b clients do not get certain ie's.
2423	 *     The caller identifies such clients by passing
2424	 *     a token in legacy to us.  Could expand this to be
2425	 *     any legacy client for stuff like HT ie's.
2426	 */
2427	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2428	    legacy != IEEE80211_SEND_LEGACY_11B) {
2429		frm = ieee80211_add_htcap(frm, bss);
2430		frm = ieee80211_add_htinfo(frm, bss);
2431	}
2432	if (vap->iv_flags & IEEE80211_F_WPA1) {
2433		if (vap->iv_wpa_ie != NULL)
2434			frm = add_ie(frm, vap->iv_wpa_ie);
2435		/* XXX else complain? */
2436	}
2437	if (vap->iv_flags & IEEE80211_F_WME)
2438		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2439	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2440	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2441	    legacy != IEEE80211_SEND_LEGACY_11B) {
2442		frm = ieee80211_add_htcap_vendor(frm, bss);
2443		frm = ieee80211_add_htinfo_vendor(frm, bss);
2444	}
2445#ifdef IEEE80211_SUPPORT_SUPERG
2446	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2447	    legacy != IEEE80211_SEND_LEGACY_11B)
2448		frm = ieee80211_add_athcaps(frm, bss);
2449#endif
2450	if (vap->iv_appie_proberesp != NULL)
2451		frm = add_appie(frm, vap->iv_appie_proberesp);
2452#ifdef IEEE80211_SUPPORT_MESH
2453	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2454		frm = ieee80211_add_meshid(frm, vap);
2455		frm = ieee80211_add_meshconf(frm, vap);
2456	}
2457#endif
2458	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2459
2460	return m;
2461}
2462
2463/*
2464 * Send a probe response frame to the specified mac address.
2465 * This does not go through the normal mgt frame api so we
2466 * can specify the destination address and re-use the bss node
2467 * for the sta reference.
2468 */
2469int
2470ieee80211_send_proberesp(struct ieee80211vap *vap,
2471	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2472{
2473	struct ieee80211_node *bss = vap->iv_bss;
2474	struct ieee80211com *ic = vap->iv_ic;
2475	struct ieee80211_frame *wh;
2476	struct mbuf *m;
2477
2478	if (vap->iv_state == IEEE80211_S_CAC) {
2479		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2480		    "block %s frame in CAC state", "probe response");
2481		vap->iv_stats.is_tx_badstate++;
2482		return EIO;		/* XXX */
2483	}
2484
2485	/*
2486	 * Hold a reference on the node so it doesn't go away until after
2487	 * the xmit is complete all the way in the driver.  On error we
2488	 * will remove our reference.
2489	 */
2490	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2491	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2492	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2493	    ieee80211_node_refcnt(bss)+1);
2494	ieee80211_ref_node(bss);
2495
2496	m = ieee80211_alloc_proberesp(bss, legacy);
2497	if (m == NULL) {
2498		ieee80211_free_node(bss);
2499		return ENOMEM;
2500	}
2501
2502	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2503	KASSERT(m != NULL, ("no room for header"));
2504
2505	wh = mtod(m, struct ieee80211_frame *);
2506	ieee80211_send_setup(bss, m,
2507	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2508	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2509	/* XXX power management? */
2510	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2511
2512	M_WME_SETAC(m, WME_AC_BE);
2513
2514	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2515	    "send probe resp on channel %u to %s%s\n",
2516	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2517	    legacy ? " <legacy>" : "");
2518	IEEE80211_NODE_STAT(bss, tx_mgmt);
2519
2520	return ic->ic_raw_xmit(bss, m, NULL);
2521}
2522
2523/*
2524 * Allocate and build a RTS (Request To Send) control frame.
2525 */
2526struct mbuf *
2527ieee80211_alloc_rts(struct ieee80211com *ic,
2528	const uint8_t ra[IEEE80211_ADDR_LEN],
2529	const uint8_t ta[IEEE80211_ADDR_LEN],
2530	uint16_t dur)
2531{
2532	struct ieee80211_frame_rts *rts;
2533	struct mbuf *m;
2534
2535	/* XXX honor ic_headroom */
2536	m = m_gethdr(M_NOWAIT, MT_DATA);
2537	if (m != NULL) {
2538		rts = mtod(m, struct ieee80211_frame_rts *);
2539		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2540			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2541		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2542		*(u_int16_t *)rts->i_dur = htole16(dur);
2543		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2544		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2545
2546		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2547	}
2548	return m;
2549}
2550
2551/*
2552 * Allocate and build a CTS (Clear To Send) control frame.
2553 */
2554struct mbuf *
2555ieee80211_alloc_cts(struct ieee80211com *ic,
2556	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2557{
2558	struct ieee80211_frame_cts *cts;
2559	struct mbuf *m;
2560
2561	/* XXX honor ic_headroom */
2562	m = m_gethdr(M_NOWAIT, MT_DATA);
2563	if (m != NULL) {
2564		cts = mtod(m, struct ieee80211_frame_cts *);
2565		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2566			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2567		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2568		*(u_int16_t *)cts->i_dur = htole16(dur);
2569		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2570
2571		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2572	}
2573	return m;
2574}
2575
2576static void
2577ieee80211_tx_mgt_timeout(void *arg)
2578{
2579	struct ieee80211_node *ni = arg;
2580	struct ieee80211vap *vap = ni->ni_vap;
2581
2582	if (vap->iv_state != IEEE80211_S_INIT &&
2583	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2584		/*
2585		 * NB: it's safe to specify a timeout as the reason here;
2586		 *     it'll only be used in the right state.
2587		 */
2588		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2589			IEEE80211_SCAN_FAIL_TIMEOUT);
2590	}
2591}
2592
2593static void
2594ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2595{
2596	struct ieee80211vap *vap = ni->ni_vap;
2597	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2598
2599	/*
2600	 * Frame transmit completed; arrange timer callback.  If
2601	 * transmit was successfuly we wait for response.  Otherwise
2602	 * we arrange an immediate callback instead of doing the
2603	 * callback directly since we don't know what state the driver
2604	 * is in (e.g. what locks it is holding).  This work should
2605	 * not be too time-critical and not happen too often so the
2606	 * added overhead is acceptable.
2607	 *
2608	 * XXX what happens if !acked but response shows up before callback?
2609	 */
2610	if (vap->iv_state == ostate)
2611		callout_reset(&vap->iv_mgtsend,
2612			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2613			ieee80211_tx_mgt_timeout, ni);
2614}
2615
2616static void
2617ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2618	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2619{
2620	struct ieee80211vap *vap = ni->ni_vap;
2621	struct ieee80211com *ic = ni->ni_ic;
2622	struct ieee80211_rateset *rs = &ni->ni_rates;
2623	uint16_t capinfo;
2624
2625	/*
2626	 * beacon frame format
2627	 *	[8] time stamp
2628	 *	[2] beacon interval
2629	 *	[2] cabability information
2630	 *	[tlv] ssid
2631	 *	[tlv] supported rates
2632	 *	[3] parameter set (DS)
2633	 *	[8] CF parameter set (optional)
2634	 *	[tlv] parameter set (IBSS/TIM)
2635	 *	[tlv] country (optional)
2636	 *	[3] power control (optional)
2637	 *	[5] channel switch announcement (CSA) (optional)
2638	 *	[tlv] extended rate phy (ERP)
2639	 *	[tlv] extended supported rates
2640	 *	[tlv] RSN parameters
2641	 *	[tlv] HT capabilities
2642	 *	[tlv] HT information
2643	 * XXX Vendor-specific OIDs (e.g. Atheros)
2644	 *	[tlv] WPA parameters
2645	 *	[tlv] WME parameters
2646	 *	[tlv] Vendor OUI HT capabilities (optional)
2647	 *	[tlv] Vendor OUI HT information (optional)
2648	 *	[tlv] Atheros capabilities (optional)
2649	 *	[tlv] TDMA parameters (optional)
2650	 *	[tlv] Mesh ID (MBSS)
2651	 *	[tlv] Mesh Conf (MBSS)
2652	 *	[tlv] application data (optional)
2653	 */
2654
2655	memset(bo, 0, sizeof(*bo));
2656
2657	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2658	frm += 8;
2659	*(uint16_t *)frm = htole16(ni->ni_intval);
2660	frm += 2;
2661	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2662	bo->bo_caps = (uint16_t *)frm;
2663	*(uint16_t *)frm = htole16(capinfo);
2664	frm += 2;
2665	*frm++ = IEEE80211_ELEMID_SSID;
2666	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2667		*frm++ = ni->ni_esslen;
2668		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2669		frm += ni->ni_esslen;
2670	} else
2671		*frm++ = 0;
2672	frm = ieee80211_add_rates(frm, rs);
2673	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2674		*frm++ = IEEE80211_ELEMID_DSPARMS;
2675		*frm++ = 1;
2676		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2677	}
2678	if (ic->ic_flags & IEEE80211_F_PCF) {
2679		bo->bo_cfp = frm;
2680		frm = ieee80211_add_cfparms(frm, ic);
2681	}
2682	bo->bo_tim = frm;
2683	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2684		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2685		*frm++ = 2;
2686		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2687		bo->bo_tim_len = 0;
2688	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2689	    vap->iv_opmode == IEEE80211_M_MBSS) {
2690		/* TIM IE is the same for Mesh and Hostap */
2691		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2692
2693		tie->tim_ie = IEEE80211_ELEMID_TIM;
2694		tie->tim_len = 4;	/* length */
2695		tie->tim_count = 0;	/* DTIM count */
2696		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2697		tie->tim_bitctl = 0;	/* bitmap control */
2698		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2699		frm += sizeof(struct ieee80211_tim_ie);
2700		bo->bo_tim_len = 1;
2701	}
2702	bo->bo_tim_trailer = frm;
2703	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2704	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2705		frm = ieee80211_add_countryie(frm, ic);
2706	if (vap->iv_flags & IEEE80211_F_DOTH) {
2707		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2708			frm = ieee80211_add_powerconstraint(frm, vap);
2709		bo->bo_csa = frm;
2710		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2711			frm = ieee80211_add_csa(frm, vap);
2712	} else
2713		bo->bo_csa = frm;
2714
2715	if (vap->iv_flags & IEEE80211_F_DOTH) {
2716		bo->bo_quiet = frm;
2717		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2718		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2719			if (vap->iv_quiet)
2720				frm = ieee80211_add_quiet(frm,vap);
2721		}
2722	} else
2723		bo->bo_quiet = frm;
2724
2725	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2726		bo->bo_erp = frm;
2727		frm = ieee80211_add_erp(frm, ic);
2728	}
2729	frm = ieee80211_add_xrates(frm, rs);
2730	if (vap->iv_flags & IEEE80211_F_WPA2) {
2731		if (vap->iv_rsn_ie != NULL)
2732			frm = add_ie(frm, vap->iv_rsn_ie);
2733		/* XXX else complain */
2734	}
2735	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2736		frm = ieee80211_add_htcap(frm, ni);
2737		bo->bo_htinfo = frm;
2738		frm = ieee80211_add_htinfo(frm, ni);
2739	}
2740	if (vap->iv_flags & IEEE80211_F_WPA1) {
2741		if (vap->iv_wpa_ie != NULL)
2742			frm = add_ie(frm, vap->iv_wpa_ie);
2743		/* XXX else complain */
2744	}
2745	if (vap->iv_flags & IEEE80211_F_WME) {
2746		bo->bo_wme = frm;
2747		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2748	}
2749	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2750	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2751		frm = ieee80211_add_htcap_vendor(frm, ni);
2752		frm = ieee80211_add_htinfo_vendor(frm, ni);
2753	}
2754#ifdef IEEE80211_SUPPORT_SUPERG
2755	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2756		bo->bo_ath = frm;
2757		frm = ieee80211_add_athcaps(frm, ni);
2758	}
2759#endif
2760#ifdef IEEE80211_SUPPORT_TDMA
2761	if (vap->iv_caps & IEEE80211_C_TDMA) {
2762		bo->bo_tdma = frm;
2763		frm = ieee80211_add_tdma(frm, vap);
2764	}
2765#endif
2766	if (vap->iv_appie_beacon != NULL) {
2767		bo->bo_appie = frm;
2768		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2769		frm = add_appie(frm, vap->iv_appie_beacon);
2770	}
2771#ifdef IEEE80211_SUPPORT_MESH
2772	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2773		frm = ieee80211_add_meshid(frm, vap);
2774		bo->bo_meshconf = frm;
2775		frm = ieee80211_add_meshconf(frm, vap);
2776	}
2777#endif
2778	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2779	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2780	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2781}
2782
2783/*
2784 * Allocate a beacon frame and fillin the appropriate bits.
2785 */
2786struct mbuf *
2787ieee80211_beacon_alloc(struct ieee80211_node *ni,
2788	struct ieee80211_beacon_offsets *bo)
2789{
2790	struct ieee80211vap *vap = ni->ni_vap;
2791	struct ieee80211com *ic = ni->ni_ic;
2792	struct ifnet *ifp = vap->iv_ifp;
2793	struct ieee80211_frame *wh;
2794	struct mbuf *m;
2795	int pktlen;
2796	uint8_t *frm;
2797
2798	/*
2799	 * beacon frame format
2800	 *	[8] time stamp
2801	 *	[2] beacon interval
2802	 *	[2] cabability information
2803	 *	[tlv] ssid
2804	 *	[tlv] supported rates
2805	 *	[3] parameter set (DS)
2806	 *	[8] CF parameter set (optional)
2807	 *	[tlv] parameter set (IBSS/TIM)
2808	 *	[tlv] country (optional)
2809	 *	[3] power control (optional)
2810	 *	[5] channel switch announcement (CSA) (optional)
2811	 *	[tlv] extended rate phy (ERP)
2812	 *	[tlv] extended supported rates
2813	 *	[tlv] RSN parameters
2814	 *	[tlv] HT capabilities
2815	 *	[tlv] HT information
2816	 *	[tlv] Vendor OUI HT capabilities (optional)
2817	 *	[tlv] Vendor OUI HT information (optional)
2818	 * XXX Vendor-specific OIDs (e.g. Atheros)
2819	 *	[tlv] WPA parameters
2820	 *	[tlv] WME parameters
2821	 *	[tlv] TDMA parameters (optional)
2822	 *	[tlv] Mesh ID (MBSS)
2823	 *	[tlv] Mesh Conf (MBSS)
2824	 *	[tlv] application data (optional)
2825	 * NB: we allocate the max space required for the TIM bitmap.
2826	 * XXX how big is this?
2827	 */
2828	pktlen =   8					/* time stamp */
2829		 + sizeof(uint16_t)			/* beacon interval */
2830		 + sizeof(uint16_t)			/* capabilities */
2831		 + 2 + ni->ni_esslen			/* ssid */
2832	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2833	         + 2 + 1				/* DS parameters */
2834		 + 2 + 6				/* CF parameters */
2835		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2836		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2837		 + 2 + 1				/* power control */
2838		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
2839		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
2840		 + 2 + 1				/* ERP */
2841	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2842		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2843			2*sizeof(struct ieee80211_ie_wpa) : 0)
2844		 /* XXX conditional? */
2845		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2846		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2847		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2848			sizeof(struct ieee80211_wme_param) : 0)
2849#ifdef IEEE80211_SUPPORT_SUPERG
2850		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2851#endif
2852#ifdef IEEE80211_SUPPORT_TDMA
2853		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2854			sizeof(struct ieee80211_tdma_param) : 0)
2855#endif
2856#ifdef IEEE80211_SUPPORT_MESH
2857		 + 2 + ni->ni_meshidlen
2858		 + sizeof(struct ieee80211_meshconf_ie)
2859#endif
2860		 + IEEE80211_MAX_APPIE
2861		 ;
2862	m = ieee80211_getmgtframe(&frm,
2863		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2864	if (m == NULL) {
2865		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2866			"%s: cannot get buf; size %u\n", __func__, pktlen);
2867		vap->iv_stats.is_tx_nobuf++;
2868		return NULL;
2869	}
2870	ieee80211_beacon_construct(m, frm, bo, ni);
2871
2872	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2873	KASSERT(m != NULL, ("no space for 802.11 header?"));
2874	wh = mtod(m, struct ieee80211_frame *);
2875	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2876	    IEEE80211_FC0_SUBTYPE_BEACON;
2877	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2878	*(uint16_t *)wh->i_dur = 0;
2879	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2880	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2881	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2882	*(uint16_t *)wh->i_seq = 0;
2883
2884	return m;
2885}
2886
2887/*
2888 * Update the dynamic parts of a beacon frame based on the current state.
2889 */
2890int
2891ieee80211_beacon_update(struct ieee80211_node *ni,
2892	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2893{
2894	struct ieee80211vap *vap = ni->ni_vap;
2895	struct ieee80211com *ic = ni->ni_ic;
2896	int len_changed = 0;
2897	uint16_t capinfo;
2898	struct ieee80211_frame *wh;
2899	ieee80211_seq seqno;
2900
2901	IEEE80211_LOCK(ic);
2902	/*
2903	 * Handle 11h channel change when we've reached the count.
2904	 * We must recalculate the beacon frame contents to account
2905	 * for the new channel.  Note we do this only for the first
2906	 * vap that reaches this point; subsequent vaps just update
2907	 * their beacon state to reflect the recalculated channel.
2908	 */
2909	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2910	    vap->iv_csa_count == ic->ic_csa_count) {
2911		vap->iv_csa_count = 0;
2912		/*
2913		 * Effect channel change before reconstructing the beacon
2914		 * frame contents as many places reference ni_chan.
2915		 */
2916		if (ic->ic_csa_newchan != NULL)
2917			ieee80211_csa_completeswitch(ic);
2918		/*
2919		 * NB: ieee80211_beacon_construct clears all pending
2920		 * updates in bo_flags so we don't need to explicitly
2921		 * clear IEEE80211_BEACON_CSA.
2922		 */
2923		ieee80211_beacon_construct(m,
2924		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2925
2926		/* XXX do WME aggressive mode processing? */
2927		IEEE80211_UNLOCK(ic);
2928		return 1;		/* just assume length changed */
2929	}
2930
2931	wh = mtod(m, struct ieee80211_frame *);
2932	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
2933	*(uint16_t *)&wh->i_seq[0] =
2934		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2935	M_SEQNO_SET(m, seqno);
2936
2937	/* XXX faster to recalculate entirely or just changes? */
2938	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2939	*bo->bo_caps = htole16(capinfo);
2940
2941	if (vap->iv_flags & IEEE80211_F_WME) {
2942		struct ieee80211_wme_state *wme = &ic->ic_wme;
2943
2944		/*
2945		 * Check for agressive mode change.  When there is
2946		 * significant high priority traffic in the BSS
2947		 * throttle back BE traffic by using conservative
2948		 * parameters.  Otherwise BE uses agressive params
2949		 * to optimize performance of legacy/non-QoS traffic.
2950		 */
2951		if (wme->wme_flags & WME_F_AGGRMODE) {
2952			if (wme->wme_hipri_traffic >
2953			    wme->wme_hipri_switch_thresh) {
2954				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2955				    "%s: traffic %u, disable aggressive mode\n",
2956				    __func__, wme->wme_hipri_traffic);
2957				wme->wme_flags &= ~WME_F_AGGRMODE;
2958				ieee80211_wme_updateparams_locked(vap);
2959				wme->wme_hipri_traffic =
2960					wme->wme_hipri_switch_hysteresis;
2961			} else
2962				wme->wme_hipri_traffic = 0;
2963		} else {
2964			if (wme->wme_hipri_traffic <=
2965			    wme->wme_hipri_switch_thresh) {
2966				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2967				    "%s: traffic %u, enable aggressive mode\n",
2968				    __func__, wme->wme_hipri_traffic);
2969				wme->wme_flags |= WME_F_AGGRMODE;
2970				ieee80211_wme_updateparams_locked(vap);
2971				wme->wme_hipri_traffic = 0;
2972			} else
2973				wme->wme_hipri_traffic =
2974					wme->wme_hipri_switch_hysteresis;
2975		}
2976		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2977			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2978			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2979		}
2980	}
2981
2982	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2983		ieee80211_ht_update_beacon(vap, bo);
2984		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2985	}
2986#ifdef IEEE80211_SUPPORT_TDMA
2987	if (vap->iv_caps & IEEE80211_C_TDMA) {
2988		/*
2989		 * NB: the beacon is potentially updated every TBTT.
2990		 */
2991		ieee80211_tdma_update_beacon(vap, bo);
2992	}
2993#endif
2994#ifdef IEEE80211_SUPPORT_MESH
2995	if (vap->iv_opmode == IEEE80211_M_MBSS)
2996		ieee80211_mesh_update_beacon(vap, bo);
2997#endif
2998
2999	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3000	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3001		struct ieee80211_tim_ie *tie =
3002			(struct ieee80211_tim_ie *) bo->bo_tim;
3003		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3004			u_int timlen, timoff, i;
3005			/*
3006			 * ATIM/DTIM needs updating.  If it fits in the
3007			 * current space allocated then just copy in the
3008			 * new bits.  Otherwise we need to move any trailing
3009			 * data to make room.  Note that we know there is
3010			 * contiguous space because ieee80211_beacon_allocate
3011			 * insures there is space in the mbuf to write a
3012			 * maximal-size virtual bitmap (based on iv_max_aid).
3013			 */
3014			/*
3015			 * Calculate the bitmap size and offset, copy any
3016			 * trailer out of the way, and then copy in the
3017			 * new bitmap and update the information element.
3018			 * Note that the tim bitmap must contain at least
3019			 * one byte and any offset must be even.
3020			 */
3021			if (vap->iv_ps_pending != 0) {
3022				timoff = 128;		/* impossibly large */
3023				for (i = 0; i < vap->iv_tim_len; i++)
3024					if (vap->iv_tim_bitmap[i]) {
3025						timoff = i &~ 1;
3026						break;
3027					}
3028				KASSERT(timoff != 128, ("tim bitmap empty!"));
3029				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3030					if (vap->iv_tim_bitmap[i])
3031						break;
3032				timlen = 1 + (i - timoff);
3033			} else {
3034				timoff = 0;
3035				timlen = 1;
3036			}
3037			if (timlen != bo->bo_tim_len) {
3038				/* copy up/down trailer */
3039				int adjust = tie->tim_bitmap+timlen
3040					   - bo->bo_tim_trailer;
3041				ovbcopy(bo->bo_tim_trailer,
3042				    bo->bo_tim_trailer+adjust,
3043				    bo->bo_tim_trailer_len);
3044				bo->bo_tim_trailer += adjust;
3045				bo->bo_erp += adjust;
3046				bo->bo_htinfo += adjust;
3047#ifdef IEEE80211_SUPPORT_SUPERG
3048				bo->bo_ath += adjust;
3049#endif
3050#ifdef IEEE80211_SUPPORT_TDMA
3051				bo->bo_tdma += adjust;
3052#endif
3053#ifdef IEEE80211_SUPPORT_MESH
3054				bo->bo_meshconf += adjust;
3055#endif
3056				bo->bo_appie += adjust;
3057				bo->bo_wme += adjust;
3058				bo->bo_csa += adjust;
3059				bo->bo_quiet += adjust;
3060				bo->bo_tim_len = timlen;
3061
3062				/* update information element */
3063				tie->tim_len = 3 + timlen;
3064				tie->tim_bitctl = timoff;
3065				len_changed = 1;
3066			}
3067			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3068				bo->bo_tim_len);
3069
3070			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3071
3072			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3073				"%s: TIM updated, pending %u, off %u, len %u\n",
3074				__func__, vap->iv_ps_pending, timoff, timlen);
3075		}
3076		/* count down DTIM period */
3077		if (tie->tim_count == 0)
3078			tie->tim_count = tie->tim_period - 1;
3079		else
3080			tie->tim_count--;
3081		/* update state for buffered multicast frames on DTIM */
3082		if (mcast && tie->tim_count == 0)
3083			tie->tim_bitctl |= 1;
3084		else
3085			tie->tim_bitctl &= ~1;
3086		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3087			struct ieee80211_csa_ie *csa =
3088			    (struct ieee80211_csa_ie *) bo->bo_csa;
3089
3090			/*
3091			 * Insert or update CSA ie.  If we're just starting
3092			 * to count down to the channel switch then we need
3093			 * to insert the CSA ie.  Otherwise we just need to
3094			 * drop the count.  The actual change happens above
3095			 * when the vap's count reaches the target count.
3096			 */
3097			if (vap->iv_csa_count == 0) {
3098				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3099				bo->bo_erp += sizeof(*csa);
3100				bo->bo_htinfo += sizeof(*csa);
3101				bo->bo_wme += sizeof(*csa);
3102#ifdef IEEE80211_SUPPORT_SUPERG
3103				bo->bo_ath += sizeof(*csa);
3104#endif
3105#ifdef IEEE80211_SUPPORT_TDMA
3106				bo->bo_tdma += sizeof(*csa);
3107#endif
3108#ifdef IEEE80211_SUPPORT_MESH
3109				bo->bo_meshconf += sizeof(*csa);
3110#endif
3111				bo->bo_appie += sizeof(*csa);
3112				bo->bo_csa_trailer_len += sizeof(*csa);
3113				bo->bo_quiet += sizeof(*csa);
3114				bo->bo_tim_trailer_len += sizeof(*csa);
3115				m->m_len += sizeof(*csa);
3116				m->m_pkthdr.len += sizeof(*csa);
3117
3118				ieee80211_add_csa(bo->bo_csa, vap);
3119			} else
3120				csa->csa_count--;
3121			vap->iv_csa_count++;
3122			/* NB: don't clear IEEE80211_BEACON_CSA */
3123		}
3124		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3125		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3126			if (vap->iv_quiet)
3127				ieee80211_add_quiet(bo->bo_quiet, vap);
3128		}
3129		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3130			/*
3131			 * ERP element needs updating.
3132			 */
3133			(void) ieee80211_add_erp(bo->bo_erp, ic);
3134			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3135		}
3136#ifdef IEEE80211_SUPPORT_SUPERG
3137		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3138			ieee80211_add_athcaps(bo->bo_ath, ni);
3139			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3140		}
3141#endif
3142	}
3143	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3144		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3145		int aielen;
3146		uint8_t *frm;
3147
3148		aielen = 0;
3149		if (aie != NULL)
3150			aielen += aie->ie_len;
3151		if (aielen != bo->bo_appie_len) {
3152			/* copy up/down trailer */
3153			int adjust = aielen - bo->bo_appie_len;
3154			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3155				bo->bo_tim_trailer_len);
3156			bo->bo_tim_trailer += adjust;
3157			bo->bo_appie += adjust;
3158			bo->bo_appie_len = aielen;
3159
3160			len_changed = 1;
3161		}
3162		frm = bo->bo_appie;
3163		if (aie != NULL)
3164			frm  = add_appie(frm, aie);
3165		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3166	}
3167	IEEE80211_UNLOCK(ic);
3168
3169	return len_changed;
3170}
3171