ieee80211_output.c revision 193658
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 193658 2009-06-07 22:06:15Z sam $");
29
30#include "opt_inet.h"
31#include "opt_inet6.h"
32#include "opt_wlan.h"
33
34#include <sys/param.h>
35#include <sys/systm.h>
36#include <sys/mbuf.h>
37#include <sys/kernel.h>
38#include <sys/endian.h>
39
40#include <sys/socket.h>
41
42#include <net/bpf.h>
43#include <net/ethernet.h>
44#include <net/if.h>
45#include <net/if_llc.h>
46#include <net/if_media.h>
47#include <net/if_vlan_var.h>
48
49#include <net80211/ieee80211_var.h>
50#include <net80211/ieee80211_regdomain.h>
51#ifdef IEEE80211_SUPPORT_SUPERG
52#include <net80211/ieee80211_superg.h>
53#endif
54#ifdef IEEE80211_SUPPORT_TDMA
55#include <net80211/ieee80211_tdma.h>
56#endif
57#include <net80211/ieee80211_wds.h>
58
59#ifdef INET
60#include <netinet/in.h>
61#include <netinet/if_ether.h>
62#include <netinet/in_systm.h>
63#include <netinet/ip.h>
64#endif
65#ifdef INET6
66#include <netinet/ip6.h>
67#endif
68
69#include <security/mac/mac_framework.h>
70
71#define	ETHER_HEADER_COPY(dst, src) \
72	memcpy(dst, src, sizeof(struct ether_header))
73
74static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
75	u_int hdrsize, u_int ciphdrsize, u_int mtu);
76static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
77
78#ifdef IEEE80211_DEBUG
79/*
80 * Decide if an outbound management frame should be
81 * printed when debugging is enabled.  This filters some
82 * of the less interesting frames that come frequently
83 * (e.g. beacons).
84 */
85static __inline int
86doprint(struct ieee80211vap *vap, int subtype)
87{
88	switch (subtype) {
89	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
90		return (vap->iv_opmode == IEEE80211_M_IBSS);
91	}
92	return 1;
93}
94#endif
95
96/*
97 * Start method for vap's.  All packets from the stack come
98 * through here.  We handle common processing of the packets
99 * before dispatching them to the underlying device.
100 */
101void
102ieee80211_start(struct ifnet *ifp)
103{
104#define	IS_DWDS(vap) \
105	(vap->iv_opmode == IEEE80211_M_WDS && \
106	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
107	struct ieee80211vap *vap = ifp->if_softc;
108	struct ieee80211com *ic = vap->iv_ic;
109	struct ifnet *parent = ic->ic_ifp;
110	struct ieee80211_node *ni;
111	struct mbuf *m;
112	struct ether_header *eh;
113	int error;
114
115	/* NB: parent must be up and running */
116	if (!IFNET_IS_UP_RUNNING(parent)) {
117		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
118		    "%s: ignore queue, parent %s not up+running\n",
119		    __func__, parent->if_xname);
120		/* XXX stat */
121		return;
122	}
123	if (vap->iv_state == IEEE80211_S_SLEEP) {
124		/*
125		 * In power save, wakeup device for transmit.
126		 */
127		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
128		return;
129	}
130	/*
131	 * No data frames go out unless we're running.
132	 * Note in particular this covers CAC and CSA
133	 * states (though maybe we should check muting
134	 * for CSA).
135	 */
136	if (vap->iv_state != IEEE80211_S_RUN) {
137		IEEE80211_LOCK(ic);
138		/* re-check under the com lock to avoid races */
139		if (vap->iv_state != IEEE80211_S_RUN) {
140			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
141			    "%s: ignore queue, in %s state\n",
142			    __func__, ieee80211_state_name[vap->iv_state]);
143			vap->iv_stats.is_tx_badstate++;
144			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
145			IEEE80211_UNLOCK(ic);
146			return;
147		}
148		IEEE80211_UNLOCK(ic);
149	}
150	for (;;) {
151		IFQ_DEQUEUE(&ifp->if_snd, m);
152		if (m == NULL)
153			break;
154		/*
155		 * Sanitize mbuf flags for net80211 use.  We cannot
156		 * clear M_PWR_SAV because this may be set for frames
157		 * that are re-submitted from the power save queue.
158		 *
159		 * NB: This must be done before ieee80211_classify as
160		 *     it marks EAPOL in frames with M_EAPOL.
161		 */
162		m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
163		/*
164		 * Cancel any background scan.
165		 */
166		if (ic->ic_flags & IEEE80211_F_SCAN)
167			ieee80211_cancel_anyscan(vap);
168		/*
169		 * Find the node for the destination so we can do
170		 * things like power save and fast frames aggregation.
171		 *
172		 * NB: past this point various code assumes the first
173		 *     mbuf has the 802.3 header present (and contiguous).
174		 */
175		ni = NULL;
176		if (m->m_len < sizeof(struct ether_header) &&
177		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
178			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
179			    "discard frame, %s\n", "m_pullup failed");
180			vap->iv_stats.is_tx_nobuf++;	/* XXX */
181			ifp->if_oerrors++;
182			continue;
183		}
184		eh = mtod(m, struct ether_header *);
185		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
186			if (IS_DWDS(vap)) {
187				/*
188				 * Only unicast frames from the above go out
189				 * DWDS vaps; multicast frames are handled by
190				 * dispatching the frame as it comes through
191				 * the AP vap (see below).
192				 */
193				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
194				    eh->ether_dhost, "mcast", "%s", "on DWDS");
195				vap->iv_stats.is_dwds_mcast++;
196				m_freem(m);
197				continue;
198			}
199			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
200				/*
201				 * Spam DWDS vap's w/ multicast traffic.
202				 */
203				/* XXX only if dwds in use? */
204				ieee80211_dwds_mcast(vap, m);
205			}
206		}
207		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
208		if (ni == NULL) {
209			/* NB: ieee80211_find_txnode does stat+msg */
210			ifp->if_oerrors++;
211			m_freem(m);
212			continue;
213		}
214		if (ni->ni_associd == 0 &&
215		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
216			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
217			    eh->ether_dhost, NULL,
218			    "sta not associated (type 0x%04x)",
219			    htons(eh->ether_type));
220			vap->iv_stats.is_tx_notassoc++;
221			ifp->if_oerrors++;
222			m_freem(m);
223			ieee80211_free_node(ni);
224			continue;
225		}
226
227		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
228		    (m->m_flags & M_PWR_SAV) == 0) {
229			/*
230			 * Station in power save mode; pass the frame
231			 * to the 802.11 layer and continue.  We'll get
232			 * the frame back when the time is right.
233			 * XXX lose WDS vap linkage?
234			 */
235			(void) ieee80211_pwrsave(ni, m);
236			ieee80211_free_node(ni);
237			continue;
238		}
239		/* calculate priority so drivers can find the tx queue */
240		if (ieee80211_classify(ni, m)) {
241			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
242			    eh->ether_dhost, NULL,
243			    "%s", "classification failure");
244			vap->iv_stats.is_tx_classify++;
245			ifp->if_oerrors++;
246			m_freem(m);
247			ieee80211_free_node(ni);
248			continue;
249		}
250		/*
251		 * Stash the node pointer.  Note that we do this after
252		 * any call to ieee80211_dwds_mcast because that code
253		 * uses any existing value for rcvif to identify the
254		 * interface it (might have been) received on.
255		 */
256		m->m_pkthdr.rcvif = (void *)ni;
257
258		BPF_MTAP(ifp, m);		/* 802.3 tx */
259
260		/*
261		 * Check if A-MPDU tx aggregation is setup or if we
262		 * should try to enable it.  The sta must be associated
263		 * with HT and A-MPDU enabled for use.  When the policy
264		 * routine decides we should enable A-MPDU we issue an
265		 * ADDBA request and wait for a reply.  The frame being
266		 * encapsulated will go out w/o using A-MPDU, or possibly
267		 * it might be collected by the driver and held/retransmit.
268		 * The default ic_ampdu_enable routine handles staggering
269		 * ADDBA requests in case the receiver NAK's us or we are
270		 * otherwise unable to establish a BA stream.
271		 */
272		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
273		    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
274		    (m->m_flags & M_EAPOL) == 0) {
275			const int ac = M_WME_GETAC(m);
276			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
277
278			ieee80211_txampdu_count_packet(tap);
279			if (IEEE80211_AMPDU_RUNNING(tap)) {
280				/*
281				 * Operational, mark frame for aggregation.
282				 *
283				 * XXX do tx aggregation here
284				 */
285				m->m_flags |= M_AMPDU_MPDU;
286			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
287			    ic->ic_ampdu_enable(ni, tap)) {
288				/*
289				 * Not negotiated yet, request service.
290				 */
291				ieee80211_ampdu_request(ni, tap);
292				/* XXX hold frame for reply? */
293			}
294		}
295#ifdef IEEE80211_SUPPORT_SUPERG
296		else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
297			m = ieee80211_ff_check(ni, m);
298			if (m == NULL) {
299				/* NB: any ni ref held on stageq */
300				continue;
301			}
302		}
303#endif /* IEEE80211_SUPPORT_SUPERG */
304		if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
305			/*
306			 * Encapsulate the packet in prep for transmission.
307			 */
308			m = ieee80211_encap(vap, ni, m);
309			if (m == NULL) {
310				/* NB: stat+msg handled in ieee80211_encap */
311				ieee80211_free_node(ni);
312				continue;
313			}
314		}
315
316		error = parent->if_transmit(parent, m);
317		if (error != 0) {
318			/* NB: IFQ_HANDOFF reclaims mbuf */
319			ieee80211_free_node(ni);
320		} else {
321			ifp->if_opackets++;
322		}
323		ic->ic_lastdata = ticks;
324	}
325#undef IS_DWDS
326}
327
328/*
329 * 802.11 output routine. This is (currently) used only to
330 * connect bpf write calls to the 802.11 layer for injecting
331 * raw 802.11 frames.
332 */
333int
334ieee80211_output(struct ifnet *ifp, struct mbuf *m,
335	struct sockaddr *dst, struct route *ro)
336{
337#define senderr(e) do { error = (e); goto bad;} while (0)
338	struct ieee80211_node *ni = NULL;
339	struct ieee80211vap *vap;
340	struct ieee80211_frame *wh;
341	int error;
342
343	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
344		/*
345		 * Short-circuit requests if the vap is marked OACTIVE
346		 * as this is used when tearing down state to indicate
347		 * the vap may be gone.  This can also happen because a
348		 * packet came down through ieee80211_start before the
349		 * vap entered RUN state in which case it's also ok to
350		 * just drop the frame.  This should not be necessary
351		 * but callers of if_output don't check OACTIVE.
352		 */
353		senderr(ENETDOWN);
354	}
355	vap = ifp->if_softc;
356	/*
357	 * Hand to the 802.3 code if not tagged as
358	 * a raw 802.11 frame.
359	 */
360	if (dst->sa_family != AF_IEEE80211)
361		return vap->iv_output(ifp, m, dst, ro);
362#ifdef MAC
363	error = mac_ifnet_check_transmit(ifp, m);
364	if (error)
365		senderr(error);
366#endif
367	if (ifp->if_flags & IFF_MONITOR)
368		senderr(ENETDOWN);
369	if (!IFNET_IS_UP_RUNNING(ifp))
370		senderr(ENETDOWN);
371	if (vap->iv_state == IEEE80211_S_CAC) {
372		IEEE80211_DPRINTF(vap,
373		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
374		    "block %s frame in CAC state\n", "raw data");
375		vap->iv_stats.is_tx_badstate++;
376		senderr(EIO);		/* XXX */
377	}
378	/* XXX bypass bridge, pfil, carp, etc. */
379
380	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
381		senderr(EIO);	/* XXX */
382	wh = mtod(m, struct ieee80211_frame *);
383	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
384	    IEEE80211_FC0_VERSION_0)
385		senderr(EIO);	/* XXX */
386
387	/* locate destination node */
388	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
389	case IEEE80211_FC1_DIR_NODS:
390	case IEEE80211_FC1_DIR_FROMDS:
391		ni = ieee80211_find_txnode(vap, wh->i_addr1);
392		break;
393	case IEEE80211_FC1_DIR_TODS:
394	case IEEE80211_FC1_DIR_DSTODS:
395		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
396			senderr(EIO);	/* XXX */
397		ni = ieee80211_find_txnode(vap, wh->i_addr3);
398		break;
399	default:
400		senderr(EIO);	/* XXX */
401	}
402	if (ni == NULL) {
403		/*
404		 * Permit packets w/ bpf params through regardless
405		 * (see below about sa_len).
406		 */
407		if (dst->sa_len == 0)
408			senderr(EHOSTUNREACH);
409		ni = ieee80211_ref_node(vap->iv_bss);
410	}
411
412	/*
413	 * Sanitize mbuf for net80211 flags leaked from above.
414	 *
415	 * NB: This must be done before ieee80211_classify as
416	 *     it marks EAPOL in frames with M_EAPOL.
417	 */
418	m->m_flags &= ~M_80211_TX;
419
420	/* calculate priority so drivers can find the tx queue */
421	/* XXX assumes an 802.3 frame */
422	if (ieee80211_classify(ni, m))
423		senderr(EIO);		/* XXX */
424
425	IEEE80211_NODE_STAT(ni, tx_data);
426	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
427		IEEE80211_NODE_STAT(ni, tx_mcast);
428		m->m_flags |= M_MCAST;
429	} else
430		IEEE80211_NODE_STAT(ni, tx_ucast);
431	/* NB: ieee80211_encap does not include 802.11 header */
432	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
433
434	/*
435	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
436	 * present by setting the sa_len field of the sockaddr (yes,
437	 * this is a hack).
438	 * NB: we assume sa_data is suitably aligned to cast.
439	 */
440	return vap->iv_ic->ic_raw_xmit(ni, m,
441	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
442		dst->sa_data : NULL));
443bad:
444	if (m != NULL)
445		m_freem(m);
446	if (ni != NULL)
447		ieee80211_free_node(ni);
448	return error;
449#undef senderr
450}
451
452/*
453 * Set the direction field and address fields of an outgoing
454 * frame.  Note this should be called early on in constructing
455 * a frame as it sets i_fc[1]; other bits can then be or'd in.
456 */
457static void
458ieee80211_send_setup(
459	struct ieee80211_node *ni,
460	struct mbuf *m,
461	int type, int tid,
462	const uint8_t sa[IEEE80211_ADDR_LEN],
463	const uint8_t da[IEEE80211_ADDR_LEN],
464	const uint8_t bssid[IEEE80211_ADDR_LEN])
465{
466#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
467	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
468	ieee80211_seq seqno;
469
470	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
471	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
472		struct ieee80211vap *vap = ni->ni_vap;
473
474		switch (vap->iv_opmode) {
475		case IEEE80211_M_STA:
476			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
477			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
478			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
479			IEEE80211_ADDR_COPY(wh->i_addr3, da);
480			break;
481		case IEEE80211_M_IBSS:
482		case IEEE80211_M_AHDEMO:
483			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
484			IEEE80211_ADDR_COPY(wh->i_addr1, da);
485			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
486			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
487			break;
488		case IEEE80211_M_HOSTAP:
489			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
490			IEEE80211_ADDR_COPY(wh->i_addr1, da);
491			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
492			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
493			break;
494		case IEEE80211_M_WDS:
495			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
496			IEEE80211_ADDR_COPY(wh->i_addr1, da);
497			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
498			IEEE80211_ADDR_COPY(wh->i_addr3, da);
499			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
500			break;
501		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
502			break;
503		}
504	} else {
505		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
506		IEEE80211_ADDR_COPY(wh->i_addr1, da);
507		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
508		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
509	}
510	*(uint16_t *)&wh->i_dur[0] = 0;
511
512	seqno = ni->ni_txseqs[tid]++;
513	*(uint16_t *)&wh->i_seq[0] = htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
514	M_SEQNO_SET(m, seqno);
515
516	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
517		m->m_flags |= M_MCAST;
518#undef WH4
519}
520
521/*
522 * Send a management frame to the specified node.  The node pointer
523 * must have a reference as the pointer will be passed to the driver
524 * and potentially held for a long time.  If the frame is successfully
525 * dispatched to the driver, then it is responsible for freeing the
526 * reference (and potentially free'ing up any associated storage);
527 * otherwise deal with reclaiming any reference (on error).
528 */
529int
530ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
531	struct ieee80211_bpf_params *params)
532{
533	struct ieee80211vap *vap = ni->ni_vap;
534	struct ieee80211com *ic = ni->ni_ic;
535	struct ieee80211_frame *wh;
536
537	KASSERT(ni != NULL, ("null node"));
538
539	if (vap->iv_state == IEEE80211_S_CAC) {
540		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
541		    ni, "block %s frame in CAC state",
542			ieee80211_mgt_subtype_name[
543			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
544				IEEE80211_FC0_SUBTYPE_SHIFT]);
545		vap->iv_stats.is_tx_badstate++;
546		ieee80211_free_node(ni);
547		m_freem(m);
548		return EIO;		/* XXX */
549	}
550
551	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
552	if (m == NULL) {
553		ieee80211_free_node(ni);
554		return ENOMEM;
555	}
556
557	wh = mtod(m, struct ieee80211_frame *);
558	ieee80211_send_setup(ni, m,
559	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
560	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
561	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
562		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
563		    "encrypting frame (%s)", __func__);
564		wh->i_fc[1] |= IEEE80211_FC1_WEP;
565	}
566	m->m_flags |= M_ENCAP;		/* mark encapsulated */
567
568	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
569	M_WME_SETAC(m, params->ibp_pri);
570
571#ifdef IEEE80211_DEBUG
572	/* avoid printing too many frames */
573	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
574	    ieee80211_msg_dumppkts(vap)) {
575		printf("[%s] send %s on channel %u\n",
576		    ether_sprintf(wh->i_addr1),
577		    ieee80211_mgt_subtype_name[
578			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
579				IEEE80211_FC0_SUBTYPE_SHIFT],
580		    ieee80211_chan2ieee(ic, ic->ic_curchan));
581	}
582#endif
583	IEEE80211_NODE_STAT(ni, tx_mgmt);
584
585	return ic->ic_raw_xmit(ni, m, params);
586}
587
588/*
589 * Send a null data frame to the specified node.  If the station
590 * is setup for QoS then a QoS Null Data frame is constructed.
591 * If this is a WDS station then a 4-address frame is constructed.
592 *
593 * NB: the caller is assumed to have setup a node reference
594 *     for use; this is necessary to deal with a race condition
595 *     when probing for inactive stations.  Like ieee80211_mgmt_output
596 *     we must cleanup any node reference on error;  however we
597 *     can safely just unref it as we know it will never be the
598 *     last reference to the node.
599 */
600int
601ieee80211_send_nulldata(struct ieee80211_node *ni)
602{
603	struct ieee80211vap *vap = ni->ni_vap;
604	struct ieee80211com *ic = ni->ni_ic;
605	struct mbuf *m;
606	struct ieee80211_frame *wh;
607	int hdrlen;
608	uint8_t *frm;
609
610	if (vap->iv_state == IEEE80211_S_CAC) {
611		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
612		    ni, "block %s frame in CAC state", "null data");
613		ieee80211_unref_node(&ni);
614		vap->iv_stats.is_tx_badstate++;
615		return EIO;		/* XXX */
616	}
617
618	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
619		hdrlen = sizeof(struct ieee80211_qosframe);
620	else
621		hdrlen = sizeof(struct ieee80211_frame);
622	/* NB: only WDS vap's get 4-address frames */
623	if (vap->iv_opmode == IEEE80211_M_WDS)
624		hdrlen += IEEE80211_ADDR_LEN;
625	if (ic->ic_flags & IEEE80211_F_DATAPAD)
626		hdrlen = roundup(hdrlen, sizeof(uint32_t));
627
628	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
629	if (m == NULL) {
630		/* XXX debug msg */
631		ieee80211_unref_node(&ni);
632		vap->iv_stats.is_tx_nobuf++;
633		return ENOMEM;
634	}
635	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
636	    ("leading space %zd", M_LEADINGSPACE(m)));
637	M_PREPEND(m, hdrlen, M_DONTWAIT);
638	if (m == NULL) {
639		/* NB: cannot happen */
640		ieee80211_free_node(ni);
641		return ENOMEM;
642	}
643
644	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
645	if (ni->ni_flags & IEEE80211_NODE_QOS) {
646		const int tid = WME_AC_TO_TID(WME_AC_BE);
647		uint8_t *qos;
648
649		ieee80211_send_setup(ni, m,
650		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
651		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
652
653		if (vap->iv_opmode == IEEE80211_M_WDS)
654			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
655		else
656			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
657		qos[0] = tid & IEEE80211_QOS_TID;
658		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
659			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
660		qos[1] = 0;
661	} else {
662		ieee80211_send_setup(ni, m,
663		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
664		    IEEE80211_NONQOS_TID,
665		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
666	}
667	if (vap->iv_opmode != IEEE80211_M_WDS) {
668		/* NB: power management bit is never sent by an AP */
669		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
670		    vap->iv_opmode != IEEE80211_M_HOSTAP)
671			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
672	}
673	m->m_len = m->m_pkthdr.len = hdrlen;
674	m->m_flags |= M_ENCAP;		/* mark encapsulated */
675
676	M_WME_SETAC(m, WME_AC_BE);
677
678	IEEE80211_NODE_STAT(ni, tx_data);
679
680	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
681	    "send %snull data frame on channel %u, pwr mgt %s",
682	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
683	    ieee80211_chan2ieee(ic, ic->ic_curchan),
684	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
685
686	return ic->ic_raw_xmit(ni, m, NULL);
687}
688
689/*
690 * Assign priority to a frame based on any vlan tag assigned
691 * to the station and/or any Diffserv setting in an IP header.
692 * Finally, if an ACM policy is setup (in station mode) it's
693 * applied.
694 */
695int
696ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
697{
698	const struct ether_header *eh = mtod(m, struct ether_header *);
699	int v_wme_ac, d_wme_ac, ac;
700
701	/*
702	 * Always promote PAE/EAPOL frames to high priority.
703	 */
704	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
705		/* NB: mark so others don't need to check header */
706		m->m_flags |= M_EAPOL;
707		ac = WME_AC_VO;
708		goto done;
709	}
710	/*
711	 * Non-qos traffic goes to BE.
712	 */
713	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
714		ac = WME_AC_BE;
715		goto done;
716	}
717
718	/*
719	 * If node has a vlan tag then all traffic
720	 * to it must have a matching tag.
721	 */
722	v_wme_ac = 0;
723	if (ni->ni_vlan != 0) {
724		 if ((m->m_flags & M_VLANTAG) == 0) {
725			IEEE80211_NODE_STAT(ni, tx_novlantag);
726			return 1;
727		}
728		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
729		    EVL_VLANOFTAG(ni->ni_vlan)) {
730			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
731			return 1;
732		}
733		/* map vlan priority to AC */
734		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
735	}
736
737	/* XXX m_copydata may be too slow for fast path */
738#ifdef INET
739	if (eh->ether_type == htons(ETHERTYPE_IP)) {
740		uint8_t tos;
741		/*
742		 * IP frame, map the DSCP bits from the TOS field.
743		 */
744		/* NB: ip header may not be in first mbuf */
745		m_copydata(m, sizeof(struct ether_header) +
746		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
747		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
748		d_wme_ac = TID_TO_WME_AC(tos);
749	} else {
750#endif /* INET */
751#ifdef INET6
752	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
753		uint32_t flow;
754		uint8_t tos;
755		/*
756		 * IPv6 frame, map the DSCP bits from the TOS field.
757		 */
758		m_copydata(m, sizeof(struct ether_header) +
759		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
760		    (caddr_t) &flow);
761		tos = (uint8_t)(ntohl(flow) >> 20);
762		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
763		d_wme_ac = TID_TO_WME_AC(tos);
764	} else {
765#endif /* INET6 */
766		d_wme_ac = WME_AC_BE;
767#ifdef INET6
768	}
769#endif
770#ifdef INET
771	}
772#endif
773	/*
774	 * Use highest priority AC.
775	 */
776	if (v_wme_ac > d_wme_ac)
777		ac = v_wme_ac;
778	else
779		ac = d_wme_ac;
780
781	/*
782	 * Apply ACM policy.
783	 */
784	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
785		static const int acmap[4] = {
786			WME_AC_BK,	/* WME_AC_BE */
787			WME_AC_BK,	/* WME_AC_BK */
788			WME_AC_BE,	/* WME_AC_VI */
789			WME_AC_VI,	/* WME_AC_VO */
790		};
791		struct ieee80211com *ic = ni->ni_ic;
792
793		while (ac != WME_AC_BK &&
794		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
795			ac = acmap[ac];
796	}
797done:
798	M_WME_SETAC(m, ac);
799	return 0;
800}
801
802/*
803 * Insure there is sufficient contiguous space to encapsulate the
804 * 802.11 data frame.  If room isn't already there, arrange for it.
805 * Drivers and cipher modules assume we have done the necessary work
806 * and fail rudely if they don't find the space they need.
807 */
808struct mbuf *
809ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
810	struct ieee80211_key *key, struct mbuf *m)
811{
812#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
813	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
814
815	if (key != NULL) {
816		/* XXX belongs in crypto code? */
817		needed_space += key->wk_cipher->ic_header;
818		/* XXX frags */
819		/*
820		 * When crypto is being done in the host we must insure
821		 * the data are writable for the cipher routines; clone
822		 * a writable mbuf chain.
823		 * XXX handle SWMIC specially
824		 */
825		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
826			m = m_unshare(m, M_NOWAIT);
827			if (m == NULL) {
828				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
829				    "%s: cannot get writable mbuf\n", __func__);
830				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
831				return NULL;
832			}
833		}
834	}
835	/*
836	 * We know we are called just before stripping an Ethernet
837	 * header and prepending an LLC header.  This means we know
838	 * there will be
839	 *	sizeof(struct ether_header) - sizeof(struct llc)
840	 * bytes recovered to which we need additional space for the
841	 * 802.11 header and any crypto header.
842	 */
843	/* XXX check trailing space and copy instead? */
844	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
845		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
846		if (n == NULL) {
847			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
848			    "%s: cannot expand storage\n", __func__);
849			vap->iv_stats.is_tx_nobuf++;
850			m_freem(m);
851			return NULL;
852		}
853		KASSERT(needed_space <= MHLEN,
854		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
855		/*
856		 * Setup new mbuf to have leading space to prepend the
857		 * 802.11 header and any crypto header bits that are
858		 * required (the latter are added when the driver calls
859		 * back to ieee80211_crypto_encap to do crypto encapsulation).
860		 */
861		/* NB: must be first 'cuz it clobbers m_data */
862		m_move_pkthdr(n, m);
863		n->m_len = 0;			/* NB: m_gethdr does not set */
864		n->m_data += needed_space;
865		/*
866		 * Pull up Ethernet header to create the expected layout.
867		 * We could use m_pullup but that's overkill (i.e. we don't
868		 * need the actual data) and it cannot fail so do it inline
869		 * for speed.
870		 */
871		/* NB: struct ether_header is known to be contiguous */
872		n->m_len += sizeof(struct ether_header);
873		m->m_len -= sizeof(struct ether_header);
874		m->m_data += sizeof(struct ether_header);
875		/*
876		 * Replace the head of the chain.
877		 */
878		n->m_next = m;
879		m = n;
880	}
881	return m;
882#undef TO_BE_RECLAIMED
883}
884
885/*
886 * Return the transmit key to use in sending a unicast frame.
887 * If a unicast key is set we use that.  When no unicast key is set
888 * we fall back to the default transmit key.
889 */
890static __inline struct ieee80211_key *
891ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
892	struct ieee80211_node *ni)
893{
894	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
895		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
896		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
897			return NULL;
898		return &vap->iv_nw_keys[vap->iv_def_txkey];
899	} else {
900		return &ni->ni_ucastkey;
901	}
902}
903
904/*
905 * Return the transmit key to use in sending a multicast frame.
906 * Multicast traffic always uses the group key which is installed as
907 * the default tx key.
908 */
909static __inline struct ieee80211_key *
910ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
911	struct ieee80211_node *ni)
912{
913	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
914	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
915		return NULL;
916	return &vap->iv_nw_keys[vap->iv_def_txkey];
917}
918
919/*
920 * Encapsulate an outbound data frame.  The mbuf chain is updated.
921 * If an error is encountered NULL is returned.  The caller is required
922 * to provide a node reference and pullup the ethernet header in the
923 * first mbuf.
924 *
925 * NB: Packet is assumed to be processed by ieee80211_classify which
926 *     marked EAPOL frames w/ M_EAPOL.
927 */
928struct mbuf *
929ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
930    struct mbuf *m)
931{
932#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
933	struct ieee80211com *ic = ni->ni_ic;
934	struct ether_header eh;
935	struct ieee80211_frame *wh;
936	struct ieee80211_key *key;
937	struct llc *llc;
938	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
939	ieee80211_seq seqno;
940
941	/*
942	 * Copy existing Ethernet header to a safe place.  The
943	 * rest of the code assumes it's ok to strip it when
944	 * reorganizing state for the final encapsulation.
945	 */
946	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
947	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
948
949	/*
950	 * Insure space for additional headers.  First identify
951	 * transmit key to use in calculating any buffer adjustments
952	 * required.  This is also used below to do privacy
953	 * encapsulation work.  Then calculate the 802.11 header
954	 * size and any padding required by the driver.
955	 *
956	 * Note key may be NULL if we fall back to the default
957	 * transmit key and that is not set.  In that case the
958	 * buffer may not be expanded as needed by the cipher
959	 * routines, but they will/should discard it.
960	 */
961	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
962		if (vap->iv_opmode == IEEE80211_M_STA ||
963		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
964		    (vap->iv_opmode == IEEE80211_M_WDS &&
965		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
966			key = ieee80211_crypto_getucastkey(vap, ni);
967		else
968			key = ieee80211_crypto_getmcastkey(vap, ni);
969		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
970			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
971			    eh.ether_dhost,
972			    "no default transmit key (%s) deftxkey %u",
973			    __func__, vap->iv_def_txkey);
974			vap->iv_stats.is_tx_nodefkey++;
975			goto bad;
976		}
977	} else
978		key = NULL;
979	/*
980	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
981	 * frames so suppress use.  This may be an issue if other
982	 * ap's require all data frames to be QoS-encapsulated
983	 * once negotiated in which case we'll need to make this
984	 * configurable.
985	 */
986	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
987		 (m->m_flags & M_EAPOL) == 0;
988	if (addqos)
989		hdrsize = sizeof(struct ieee80211_qosframe);
990	else
991		hdrsize = sizeof(struct ieee80211_frame);
992	/*
993	 * 4-address frames need to be generated for:
994	 * o packets sent through a WDS vap (IEEE80211_M_WDS)
995	 * o packets sent through a vap marked for relaying
996	 *   (e.g. a station operating with dynamic WDS)
997	 */
998	is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
999	    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1000	     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1001	if (is4addr)
1002		hdrsize += IEEE80211_ADDR_LEN;
1003	/*
1004	 * Honor driver DATAPAD requirement.
1005	 */
1006	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1007		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1008	else
1009		hdrspace = hdrsize;
1010
1011	if (__predict_true((m->m_flags & M_FF) == 0)) {
1012		/*
1013		 * Normal frame.
1014		 */
1015		m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
1016		if (m == NULL) {
1017			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1018			goto bad;
1019		}
1020		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1021		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1022		llc = mtod(m, struct llc *);
1023		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1024		llc->llc_control = LLC_UI;
1025		llc->llc_snap.org_code[0] = 0;
1026		llc->llc_snap.org_code[1] = 0;
1027		llc->llc_snap.org_code[2] = 0;
1028		llc->llc_snap.ether_type = eh.ether_type;
1029	} else {
1030#ifdef IEEE80211_SUPPORT_SUPERG
1031		/*
1032		 * Aggregated frame.
1033		 */
1034		m = ieee80211_ff_encap(vap, m, hdrspace, key);
1035		if (m == NULL)
1036#endif
1037			goto bad;
1038	}
1039	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1040
1041	M_PREPEND(m, hdrspace, M_DONTWAIT);
1042	if (m == NULL) {
1043		vap->iv_stats.is_tx_nobuf++;
1044		goto bad;
1045	}
1046	wh = mtod(m, struct ieee80211_frame *);
1047	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1048	*(uint16_t *)wh->i_dur = 0;
1049	if (is4addr) {
1050		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1051		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1052		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1053		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1054		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1055	} else switch (vap->iv_opmode) {
1056	case IEEE80211_M_STA:
1057		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1058		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1059		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1060		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1061		break;
1062	case IEEE80211_M_IBSS:
1063	case IEEE80211_M_AHDEMO:
1064		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1065		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1066		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1067		/*
1068		 * NB: always use the bssid from iv_bss as the
1069		 *     neighbor's may be stale after an ibss merge
1070		 */
1071		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1072		break;
1073	case IEEE80211_M_HOSTAP:
1074		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1075		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1076		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1077		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1078		break;
1079	case IEEE80211_M_MONITOR:
1080	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1081		goto bad;
1082	}
1083	if (m->m_flags & M_MORE_DATA)
1084		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1085	if (addqos) {
1086		uint8_t *qos;
1087		int ac, tid;
1088
1089		if (is4addr) {
1090			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1091		} else
1092			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1093		ac = M_WME_GETAC(m);
1094		/* map from access class/queue to 11e header priorty value */
1095		tid = WME_AC_TO_TID(ac);
1096		qos[0] = tid & IEEE80211_QOS_TID;
1097		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1098			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1099		qos[1] = 0;
1100		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1101
1102		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1103			/*
1104			 * NB: don't assign a sequence # to potential
1105			 * aggregates; we expect this happens at the
1106			 * point the frame comes off any aggregation q
1107			 * as otherwise we may introduce holes in the
1108			 * BA sequence space and/or make window accouting
1109			 * more difficult.
1110			 *
1111			 * XXX may want to control this with a driver
1112			 * capability; this may also change when we pull
1113			 * aggregation up into net80211
1114			 */
1115			seqno = ni->ni_txseqs[tid]++;
1116			*(uint16_t *)wh->i_seq =
1117			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1118			M_SEQNO_SET(m, seqno);
1119		}
1120	} else {
1121		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1122		*(uint16_t *)wh->i_seq =
1123		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1124		M_SEQNO_SET(m, seqno);
1125	}
1126
1127	/* check if xmit fragmentation is required */
1128	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1129	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1130	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1131	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1132	if (key != NULL) {
1133		/*
1134		 * IEEE 802.1X: send EAPOL frames always in the clear.
1135		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1136		 */
1137		if ((m->m_flags & M_EAPOL) == 0 ||
1138		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1139		     (vap->iv_opmode == IEEE80211_M_STA ?
1140		      !IEEE80211_KEY_UNDEFINED(key) :
1141		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1142			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1143			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1144				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1145				    eh.ether_dhost,
1146				    "%s", "enmic failed, discard frame");
1147				vap->iv_stats.is_crypto_enmicfail++;
1148				goto bad;
1149			}
1150		}
1151	}
1152	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1153	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1154		goto bad;
1155
1156	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1157
1158	IEEE80211_NODE_STAT(ni, tx_data);
1159	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1160		IEEE80211_NODE_STAT(ni, tx_mcast);
1161		m->m_flags |= M_MCAST;
1162	} else
1163		IEEE80211_NODE_STAT(ni, tx_ucast);
1164	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1165
1166	return m;
1167bad:
1168	if (m != NULL)
1169		m_freem(m);
1170	return NULL;
1171#undef WH4
1172}
1173
1174/*
1175 * Fragment the frame according to the specified mtu.
1176 * The size of the 802.11 header (w/o padding) is provided
1177 * so we don't need to recalculate it.  We create a new
1178 * mbuf for each fragment and chain it through m_nextpkt;
1179 * we might be able to optimize this by reusing the original
1180 * packet's mbufs but that is significantly more complicated.
1181 */
1182static int
1183ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1184	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1185{
1186	struct ieee80211_frame *wh, *whf;
1187	struct mbuf *m, *prev, *next;
1188	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1189
1190	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1191	KASSERT(m0->m_pkthdr.len > mtu,
1192		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1193
1194	wh = mtod(m0, struct ieee80211_frame *);
1195	/* NB: mark the first frag; it will be propagated below */
1196	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1197	totalhdrsize = hdrsize + ciphdrsize;
1198	fragno = 1;
1199	off = mtu - ciphdrsize;
1200	remainder = m0->m_pkthdr.len - off;
1201	prev = m0;
1202	do {
1203		fragsize = totalhdrsize + remainder;
1204		if (fragsize > mtu)
1205			fragsize = mtu;
1206		/* XXX fragsize can be >2048! */
1207		KASSERT(fragsize < MCLBYTES,
1208			("fragment size %u too big!", fragsize));
1209		if (fragsize > MHLEN)
1210			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1211		else
1212			m = m_gethdr(M_DONTWAIT, MT_DATA);
1213		if (m == NULL)
1214			goto bad;
1215		/* leave room to prepend any cipher header */
1216		m_align(m, fragsize - ciphdrsize);
1217
1218		/*
1219		 * Form the header in the fragment.  Note that since
1220		 * we mark the first fragment with the MORE_FRAG bit
1221		 * it automatically is propagated to each fragment; we
1222		 * need only clear it on the last fragment (done below).
1223		 */
1224		whf = mtod(m, struct ieee80211_frame *);
1225		memcpy(whf, wh, hdrsize);
1226		*(uint16_t *)&whf->i_seq[0] |= htole16(
1227			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1228				IEEE80211_SEQ_FRAG_SHIFT);
1229		fragno++;
1230
1231		payload = fragsize - totalhdrsize;
1232		/* NB: destination is known to be contiguous */
1233		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1234		m->m_len = hdrsize + payload;
1235		m->m_pkthdr.len = hdrsize + payload;
1236		m->m_flags |= M_FRAG;
1237
1238		/* chain up the fragment */
1239		prev->m_nextpkt = m;
1240		prev = m;
1241
1242		/* deduct fragment just formed */
1243		remainder -= payload;
1244		off += payload;
1245	} while (remainder != 0);
1246
1247	/* set the last fragment */
1248	m->m_flags |= M_LASTFRAG;
1249	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1250
1251	/* strip first mbuf now that everything has been copied */
1252	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1253	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1254
1255	vap->iv_stats.is_tx_fragframes++;
1256	vap->iv_stats.is_tx_frags += fragno-1;
1257
1258	return 1;
1259bad:
1260	/* reclaim fragments but leave original frame for caller to free */
1261	for (m = m0->m_nextpkt; m != NULL; m = next) {
1262		next = m->m_nextpkt;
1263		m->m_nextpkt = NULL;		/* XXX paranoid */
1264		m_freem(m);
1265	}
1266	m0->m_nextpkt = NULL;
1267	return 0;
1268}
1269
1270/*
1271 * Add a supported rates element id to a frame.
1272 */
1273static uint8_t *
1274ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1275{
1276	int nrates;
1277
1278	*frm++ = IEEE80211_ELEMID_RATES;
1279	nrates = rs->rs_nrates;
1280	if (nrates > IEEE80211_RATE_SIZE)
1281		nrates = IEEE80211_RATE_SIZE;
1282	*frm++ = nrates;
1283	memcpy(frm, rs->rs_rates, nrates);
1284	return frm + nrates;
1285}
1286
1287/*
1288 * Add an extended supported rates element id to a frame.
1289 */
1290static uint8_t *
1291ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1292{
1293	/*
1294	 * Add an extended supported rates element if operating in 11g mode.
1295	 */
1296	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1297		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1298		*frm++ = IEEE80211_ELEMID_XRATES;
1299		*frm++ = nrates;
1300		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1301		frm += nrates;
1302	}
1303	return frm;
1304}
1305
1306/*
1307 * Add an ssid element to a frame.
1308 */
1309static uint8_t *
1310ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1311{
1312	*frm++ = IEEE80211_ELEMID_SSID;
1313	*frm++ = len;
1314	memcpy(frm, ssid, len);
1315	return frm + len;
1316}
1317
1318/*
1319 * Add an erp element to a frame.
1320 */
1321static uint8_t *
1322ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1323{
1324	uint8_t erp;
1325
1326	*frm++ = IEEE80211_ELEMID_ERP;
1327	*frm++ = 1;
1328	erp = 0;
1329	if (ic->ic_nonerpsta != 0)
1330		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1331	if (ic->ic_flags & IEEE80211_F_USEPROT)
1332		erp |= IEEE80211_ERP_USE_PROTECTION;
1333	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1334		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1335	*frm++ = erp;
1336	return frm;
1337}
1338
1339/*
1340 * Add a CFParams element to a frame.
1341 */
1342static uint8_t *
1343ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1344{
1345#define	ADDSHORT(frm, v) do {			\
1346	frm[0] = (v) & 0xff;			\
1347	frm[1] = (v) >> 8;			\
1348	frm += 2;				\
1349} while (0)
1350	*frm++ = IEEE80211_ELEMID_CFPARMS;
1351	*frm++ = 6;
1352	*frm++ = 0;		/* CFP count */
1353	*frm++ = 2;		/* CFP period */
1354	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1355	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1356	return frm;
1357#undef ADDSHORT
1358}
1359
1360static __inline uint8_t *
1361add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1362{
1363	memcpy(frm, ie->ie_data, ie->ie_len);
1364	return frm + ie->ie_len;
1365}
1366
1367static __inline uint8_t *
1368add_ie(uint8_t *frm, const uint8_t *ie)
1369{
1370	memcpy(frm, ie, 2 + ie[1]);
1371	return frm + 2 + ie[1];
1372}
1373
1374#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1375/*
1376 * Add a WME information element to a frame.
1377 */
1378static uint8_t *
1379ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1380{
1381	static const struct ieee80211_wme_info info = {
1382		.wme_id		= IEEE80211_ELEMID_VENDOR,
1383		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1384		.wme_oui	= { WME_OUI_BYTES },
1385		.wme_type	= WME_OUI_TYPE,
1386		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1387		.wme_version	= WME_VERSION,
1388		.wme_info	= 0,
1389	};
1390	memcpy(frm, &info, sizeof(info));
1391	return frm + sizeof(info);
1392}
1393
1394/*
1395 * Add a WME parameters element to a frame.
1396 */
1397static uint8_t *
1398ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1399{
1400#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1401#define	ADDSHORT(frm, v) do {			\
1402	frm[0] = (v) & 0xff;			\
1403	frm[1] = (v) >> 8;			\
1404	frm += 2;				\
1405} while (0)
1406	/* NB: this works 'cuz a param has an info at the front */
1407	static const struct ieee80211_wme_info param = {
1408		.wme_id		= IEEE80211_ELEMID_VENDOR,
1409		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1410		.wme_oui	= { WME_OUI_BYTES },
1411		.wme_type	= WME_OUI_TYPE,
1412		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1413		.wme_version	= WME_VERSION,
1414	};
1415	int i;
1416
1417	memcpy(frm, &param, sizeof(param));
1418	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1419	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1420	*frm++ = 0;					/* reserved field */
1421	for (i = 0; i < WME_NUM_AC; i++) {
1422		const struct wmeParams *ac =
1423		       &wme->wme_bssChanParams.cap_wmeParams[i];
1424		*frm++ = SM(i, WME_PARAM_ACI)
1425		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1426		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1427		       ;
1428		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1429		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1430		       ;
1431		ADDSHORT(frm, ac->wmep_txopLimit);
1432	}
1433	return frm;
1434#undef SM
1435#undef ADDSHORT
1436}
1437#undef WME_OUI_BYTES
1438
1439/*
1440 * Add an 11h Power Constraint element to a frame.
1441 */
1442static uint8_t *
1443ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1444{
1445	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1446	/* XXX per-vap tx power limit? */
1447	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1448
1449	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1450	frm[1] = 1;
1451	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1452	return frm + 3;
1453}
1454
1455/*
1456 * Add an 11h Power Capability element to a frame.
1457 */
1458static uint8_t *
1459ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1460{
1461	frm[0] = IEEE80211_ELEMID_PWRCAP;
1462	frm[1] = 2;
1463	frm[2] = c->ic_minpower;
1464	frm[3] = c->ic_maxpower;
1465	return frm + 4;
1466}
1467
1468/*
1469 * Add an 11h Supported Channels element to a frame.
1470 */
1471static uint8_t *
1472ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1473{
1474	static const int ielen = 26;
1475
1476	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1477	frm[1] = ielen;
1478	/* XXX not correct */
1479	memcpy(frm+2, ic->ic_chan_avail, ielen);
1480	return frm + 2 + ielen;
1481}
1482
1483/*
1484 * Add an 11h Channel Switch Announcement element to a frame.
1485 * Note that we use the per-vap CSA count to adjust the global
1486 * counter so we can use this routine to form probe response
1487 * frames and get the current count.
1488 */
1489static uint8_t *
1490ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1491{
1492	struct ieee80211com *ic = vap->iv_ic;
1493	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1494
1495	csa->csa_ie = IEEE80211_ELEMID_CSA;
1496	csa->csa_len = 3;
1497	csa->csa_mode = 1;		/* XXX force quiet on channel */
1498	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1499	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1500	return frm + sizeof(*csa);
1501}
1502
1503/*
1504 * Add an 11h country information element to a frame.
1505 */
1506static uint8_t *
1507ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1508{
1509
1510	if (ic->ic_countryie == NULL ||
1511	    ic->ic_countryie_chan != ic->ic_bsschan) {
1512		/*
1513		 * Handle lazy construction of ie.  This is done on
1514		 * first use and after a channel change that requires
1515		 * re-calculation.
1516		 */
1517		if (ic->ic_countryie != NULL)
1518			free(ic->ic_countryie, M_80211_NODE_IE);
1519		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1520		if (ic->ic_countryie == NULL)
1521			return frm;
1522		ic->ic_countryie_chan = ic->ic_bsschan;
1523	}
1524	return add_appie(frm, ic->ic_countryie);
1525}
1526
1527/*
1528 * Send a probe request frame with the specified ssid
1529 * and any optional information element data.
1530 */
1531int
1532ieee80211_send_probereq(struct ieee80211_node *ni,
1533	const uint8_t sa[IEEE80211_ADDR_LEN],
1534	const uint8_t da[IEEE80211_ADDR_LEN],
1535	const uint8_t bssid[IEEE80211_ADDR_LEN],
1536	const uint8_t *ssid, size_t ssidlen)
1537{
1538	struct ieee80211vap *vap = ni->ni_vap;
1539	struct ieee80211com *ic = ni->ni_ic;
1540	const struct ieee80211_txparam *tp;
1541	struct ieee80211_bpf_params params;
1542	struct ieee80211_frame *wh;
1543	const struct ieee80211_rateset *rs;
1544	struct mbuf *m;
1545	uint8_t *frm;
1546
1547	if (vap->iv_state == IEEE80211_S_CAC) {
1548		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1549		    "block %s frame in CAC state", "probe request");
1550		vap->iv_stats.is_tx_badstate++;
1551		return EIO;		/* XXX */
1552	}
1553
1554	/*
1555	 * Hold a reference on the node so it doesn't go away until after
1556	 * the xmit is complete all the way in the driver.  On error we
1557	 * will remove our reference.
1558	 */
1559	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1560		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1561		__func__, __LINE__,
1562		ni, ether_sprintf(ni->ni_macaddr),
1563		ieee80211_node_refcnt(ni)+1);
1564	ieee80211_ref_node(ni);
1565
1566	/*
1567	 * prreq frame format
1568	 *	[tlv] ssid
1569	 *	[tlv] supported rates
1570	 *	[tlv] RSN (optional)
1571	 *	[tlv] extended supported rates
1572	 *	[tlv] WPA (optional)
1573	 *	[tlv] user-specified ie's
1574	 */
1575	m = ieee80211_getmgtframe(&frm,
1576		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1577	       	 2 + IEEE80211_NWID_LEN
1578	       + 2 + IEEE80211_RATE_SIZE
1579	       + sizeof(struct ieee80211_ie_wpa)
1580	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1581	       + sizeof(struct ieee80211_ie_wpa)
1582	       + (vap->iv_appie_probereq != NULL ?
1583		   vap->iv_appie_probereq->ie_len : 0)
1584	);
1585	if (m == NULL) {
1586		vap->iv_stats.is_tx_nobuf++;
1587		ieee80211_free_node(ni);
1588		return ENOMEM;
1589	}
1590
1591	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1592	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1593	frm = ieee80211_add_rates(frm, rs);
1594	if (vap->iv_flags & IEEE80211_F_WPA2) {
1595		if (vap->iv_rsn_ie != NULL)
1596			frm = add_ie(frm, vap->iv_rsn_ie);
1597		/* XXX else complain? */
1598	}
1599	frm = ieee80211_add_xrates(frm, rs);
1600	if (vap->iv_flags & IEEE80211_F_WPA1) {
1601		if (vap->iv_wpa_ie != NULL)
1602			frm = add_ie(frm, vap->iv_wpa_ie);
1603		/* XXX else complain? */
1604	}
1605	if (vap->iv_appie_probereq != NULL)
1606		frm = add_appie(frm, vap->iv_appie_probereq);
1607	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1608
1609	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1610	    ("leading space %zd", M_LEADINGSPACE(m)));
1611	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1612	if (m == NULL) {
1613		/* NB: cannot happen */
1614		ieee80211_free_node(ni);
1615		return ENOMEM;
1616	}
1617
1618	wh = mtod(m, struct ieee80211_frame *);
1619	ieee80211_send_setup(ni, m,
1620	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1621	     IEEE80211_NONQOS_TID, sa, da, bssid);
1622	/* XXX power management? */
1623	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1624
1625	M_WME_SETAC(m, WME_AC_BE);
1626
1627	IEEE80211_NODE_STAT(ni, tx_probereq);
1628	IEEE80211_NODE_STAT(ni, tx_mgmt);
1629
1630	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1631	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1632	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1633	    ssidlen, ssid);
1634
1635	memset(&params, 0, sizeof(params));
1636	params.ibp_pri = M_WME_GETAC(m);
1637	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1638	params.ibp_rate0 = tp->mgmtrate;
1639	if (IEEE80211_IS_MULTICAST(da)) {
1640		params.ibp_flags |= IEEE80211_BPF_NOACK;
1641		params.ibp_try0 = 1;
1642	} else
1643		params.ibp_try0 = tp->maxretry;
1644	params.ibp_power = ni->ni_txpower;
1645	return ic->ic_raw_xmit(ni, m, &params);
1646}
1647
1648/*
1649 * Calculate capability information for mgt frames.
1650 */
1651static uint16_t
1652getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1653{
1654	struct ieee80211com *ic = vap->iv_ic;
1655	uint16_t capinfo;
1656
1657	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1658
1659	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1660		capinfo = IEEE80211_CAPINFO_ESS;
1661	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1662		capinfo = IEEE80211_CAPINFO_IBSS;
1663	else
1664		capinfo = 0;
1665	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1666		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1667	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1668	    IEEE80211_IS_CHAN_2GHZ(chan))
1669		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1670	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1671		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1672	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1673		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1674	return capinfo;
1675}
1676
1677/*
1678 * Send a management frame.  The node is for the destination (or ic_bss
1679 * when in station mode).  Nodes other than ic_bss have their reference
1680 * count bumped to reflect our use for an indeterminant time.
1681 */
1682int
1683ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1684{
1685#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1686#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1687	struct ieee80211vap *vap = ni->ni_vap;
1688	struct ieee80211com *ic = ni->ni_ic;
1689	struct ieee80211_node *bss = vap->iv_bss;
1690	struct ieee80211_bpf_params params;
1691	struct mbuf *m;
1692	uint8_t *frm;
1693	uint16_t capinfo;
1694	int has_challenge, is_shared_key, ret, status;
1695
1696	KASSERT(ni != NULL, ("null node"));
1697
1698	/*
1699	 * Hold a reference on the node so it doesn't go away until after
1700	 * the xmit is complete all the way in the driver.  On error we
1701	 * will remove our reference.
1702	 */
1703	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1704		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1705		__func__, __LINE__,
1706		ni, ether_sprintf(ni->ni_macaddr),
1707		ieee80211_node_refcnt(ni)+1);
1708	ieee80211_ref_node(ni);
1709
1710	memset(&params, 0, sizeof(params));
1711	switch (type) {
1712
1713	case IEEE80211_FC0_SUBTYPE_AUTH:
1714		status = arg >> 16;
1715		arg &= 0xffff;
1716		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1717		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1718		    ni->ni_challenge != NULL);
1719
1720		/*
1721		 * Deduce whether we're doing open authentication or
1722		 * shared key authentication.  We do the latter if
1723		 * we're in the middle of a shared key authentication
1724		 * handshake or if we're initiating an authentication
1725		 * request and configured to use shared key.
1726		 */
1727		is_shared_key = has_challenge ||
1728		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1729		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1730		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1731
1732		m = ieee80211_getmgtframe(&frm,
1733			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1734			  3 * sizeof(uint16_t)
1735			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1736				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1737		);
1738		if (m == NULL)
1739			senderr(ENOMEM, is_tx_nobuf);
1740
1741		((uint16_t *)frm)[0] =
1742		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1743		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1744		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1745		((uint16_t *)frm)[2] = htole16(status);/* status */
1746
1747		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1748			((uint16_t *)frm)[3] =
1749			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1750			    IEEE80211_ELEMID_CHALLENGE);
1751			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1752			    IEEE80211_CHALLENGE_LEN);
1753			m->m_pkthdr.len = m->m_len =
1754				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1755			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1756				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1757				    "request encrypt frame (%s)", __func__);
1758				/* mark frame for encryption */
1759				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1760			}
1761		} else
1762			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1763
1764		/* XXX not right for shared key */
1765		if (status == IEEE80211_STATUS_SUCCESS)
1766			IEEE80211_NODE_STAT(ni, tx_auth);
1767		else
1768			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1769
1770		if (vap->iv_opmode == IEEE80211_M_STA)
1771			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1772				(void *) vap->iv_state);
1773		break;
1774
1775	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1776		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1777		    "send station deauthenticate (reason %d)", arg);
1778		m = ieee80211_getmgtframe(&frm,
1779			ic->ic_headroom + sizeof(struct ieee80211_frame),
1780			sizeof(uint16_t));
1781		if (m == NULL)
1782			senderr(ENOMEM, is_tx_nobuf);
1783		*(uint16_t *)frm = htole16(arg);	/* reason */
1784		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1785
1786		IEEE80211_NODE_STAT(ni, tx_deauth);
1787		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1788
1789		ieee80211_node_unauthorize(ni);		/* port closed */
1790		break;
1791
1792	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1793	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1794		/*
1795		 * asreq frame format
1796		 *	[2] capability information
1797		 *	[2] listen interval
1798		 *	[6*] current AP address (reassoc only)
1799		 *	[tlv] ssid
1800		 *	[tlv] supported rates
1801		 *	[tlv] extended supported rates
1802		 *	[4] power capability (optional)
1803		 *	[28] supported channels (optional)
1804		 *	[tlv] HT capabilities
1805		 *	[tlv] WME (optional)
1806		 *	[tlv] Vendor OUI HT capabilities (optional)
1807		 *	[tlv] Atheros capabilities (if negotiated)
1808		 *	[tlv] AppIE's (optional)
1809		 */
1810		m = ieee80211_getmgtframe(&frm,
1811			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1812			 sizeof(uint16_t)
1813		       + sizeof(uint16_t)
1814		       + IEEE80211_ADDR_LEN
1815		       + 2 + IEEE80211_NWID_LEN
1816		       + 2 + IEEE80211_RATE_SIZE
1817		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1818		       + 4
1819		       + 2 + 26
1820		       + sizeof(struct ieee80211_wme_info)
1821		       + sizeof(struct ieee80211_ie_htcap)
1822		       + 4 + sizeof(struct ieee80211_ie_htcap)
1823#ifdef IEEE80211_SUPPORT_SUPERG
1824		       + sizeof(struct ieee80211_ath_ie)
1825#endif
1826		       + (vap->iv_appie_wpa != NULL ?
1827				vap->iv_appie_wpa->ie_len : 0)
1828		       + (vap->iv_appie_assocreq != NULL ?
1829				vap->iv_appie_assocreq->ie_len : 0)
1830		);
1831		if (m == NULL)
1832			senderr(ENOMEM, is_tx_nobuf);
1833
1834		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1835		    ("wrong mode %u", vap->iv_opmode));
1836		capinfo = IEEE80211_CAPINFO_ESS;
1837		if (vap->iv_flags & IEEE80211_F_PRIVACY)
1838			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1839		/*
1840		 * NB: Some 11a AP's reject the request when
1841		 *     short premable is set.
1842		 */
1843		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1844		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1845			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1846		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
1847		    (ic->ic_caps & IEEE80211_C_SHSLOT))
1848			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1849		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
1850		    (vap->iv_flags & IEEE80211_F_DOTH))
1851			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1852		*(uint16_t *)frm = htole16(capinfo);
1853		frm += 2;
1854
1855		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
1856		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
1857						    bss->ni_intval));
1858		frm += 2;
1859
1860		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
1861			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
1862			frm += IEEE80211_ADDR_LEN;
1863		}
1864
1865		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
1866		frm = ieee80211_add_rates(frm, &ni->ni_rates);
1867		if (vap->iv_flags & IEEE80211_F_WPA2) {
1868			if (vap->iv_rsn_ie != NULL)
1869				frm = add_ie(frm, vap->iv_rsn_ie);
1870			/* XXX else complain? */
1871		}
1872		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1873		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
1874			frm = ieee80211_add_powercapability(frm,
1875			    ic->ic_curchan);
1876			frm = ieee80211_add_supportedchannels(frm, ic);
1877		}
1878		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
1879		    ni->ni_ies.htcap_ie != NULL &&
1880		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
1881			frm = ieee80211_add_htcap(frm, ni);
1882		if (vap->iv_flags & IEEE80211_F_WPA1) {
1883			if (vap->iv_wpa_ie != NULL)
1884				frm = add_ie(frm, vap->iv_wpa_ie);
1885			/* XXX else complain */
1886		}
1887		if ((ic->ic_flags & IEEE80211_F_WME) &&
1888		    ni->ni_ies.wme_ie != NULL)
1889			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
1890		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
1891		    ni->ni_ies.htcap_ie != NULL &&
1892		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
1893			frm = ieee80211_add_htcap_vendor(frm, ni);
1894#ifdef IEEE80211_SUPPORT_SUPERG
1895		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
1896			frm = ieee80211_add_ath(frm,
1897				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
1898				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
1899				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
1900				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
1901		}
1902#endif /* IEEE80211_SUPPORT_SUPERG */
1903		if (vap->iv_appie_assocreq != NULL)
1904			frm = add_appie(frm, vap->iv_appie_assocreq);
1905		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1906
1907		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1908			(void *) vap->iv_state);
1909		break;
1910
1911	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
1912	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
1913		/*
1914		 * asresp frame format
1915		 *	[2] capability information
1916		 *	[2] status
1917		 *	[2] association ID
1918		 *	[tlv] supported rates
1919		 *	[tlv] extended supported rates
1920		 *	[tlv] HT capabilities (standard, if STA enabled)
1921		 *	[tlv] HT information (standard, if STA enabled)
1922		 *	[tlv] WME (if configured and STA enabled)
1923		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
1924		 *	[tlv] HT information (vendor OUI, if STA enabled)
1925		 *	[tlv] Atheros capabilities (if STA enabled)
1926		 *	[tlv] AppIE's (optional)
1927		 */
1928		m = ieee80211_getmgtframe(&frm,
1929			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1930			 sizeof(uint16_t)
1931		       + sizeof(uint16_t)
1932		       + sizeof(uint16_t)
1933		       + 2 + IEEE80211_RATE_SIZE
1934		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1935		       + sizeof(struct ieee80211_ie_htcap) + 4
1936		       + sizeof(struct ieee80211_ie_htinfo) + 4
1937		       + sizeof(struct ieee80211_wme_param)
1938#ifdef IEEE80211_SUPPORT_SUPERG
1939		       + sizeof(struct ieee80211_ath_ie)
1940#endif
1941		       + (vap->iv_appie_assocresp != NULL ?
1942				vap->iv_appie_assocresp->ie_len : 0)
1943		);
1944		if (m == NULL)
1945			senderr(ENOMEM, is_tx_nobuf);
1946
1947		capinfo = getcapinfo(vap, bss->ni_chan);
1948		*(uint16_t *)frm = htole16(capinfo);
1949		frm += 2;
1950
1951		*(uint16_t *)frm = htole16(arg);	/* status */
1952		frm += 2;
1953
1954		if (arg == IEEE80211_STATUS_SUCCESS) {
1955			*(uint16_t *)frm = htole16(ni->ni_associd);
1956			IEEE80211_NODE_STAT(ni, tx_assoc);
1957		} else
1958			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
1959		frm += 2;
1960
1961		frm = ieee80211_add_rates(frm, &ni->ni_rates);
1962		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
1963		/* NB: respond according to what we received */
1964		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
1965			frm = ieee80211_add_htcap(frm, ni);
1966			frm = ieee80211_add_htinfo(frm, ni);
1967		}
1968		if ((vap->iv_flags & IEEE80211_F_WME) &&
1969		    ni->ni_ies.wme_ie != NULL)
1970			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
1971		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
1972			frm = ieee80211_add_htcap_vendor(frm, ni);
1973			frm = ieee80211_add_htinfo_vendor(frm, ni);
1974		}
1975#ifdef IEEE80211_SUPPORT_SUPERG
1976		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
1977			frm = ieee80211_add_ath(frm,
1978				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
1979				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
1980				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
1981				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
1982#endif /* IEEE80211_SUPPORT_SUPERG */
1983		if (vap->iv_appie_assocresp != NULL)
1984			frm = add_appie(frm, vap->iv_appie_assocresp);
1985		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1986		break;
1987
1988	case IEEE80211_FC0_SUBTYPE_DISASSOC:
1989		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
1990		    "send station disassociate (reason %d)", arg);
1991		m = ieee80211_getmgtframe(&frm,
1992			ic->ic_headroom + sizeof(struct ieee80211_frame),
1993			sizeof(uint16_t));
1994		if (m == NULL)
1995			senderr(ENOMEM, is_tx_nobuf);
1996		*(uint16_t *)frm = htole16(arg);	/* reason */
1997		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1998
1999		IEEE80211_NODE_STAT(ni, tx_disassoc);
2000		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2001		break;
2002
2003	default:
2004		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2005		    "invalid mgmt frame type %u", type);
2006		senderr(EINVAL, is_tx_unknownmgt);
2007		/* NOTREACHED */
2008	}
2009
2010	/* NB: force non-ProbeResp frames to the highest queue */
2011	params.ibp_pri = WME_AC_VO;
2012	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2013	/* NB: we know all frames are unicast */
2014	params.ibp_try0 = bss->ni_txparms->maxretry;
2015	params.ibp_power = bss->ni_txpower;
2016	return ieee80211_mgmt_output(ni, m, type, &params);
2017bad:
2018	ieee80211_free_node(ni);
2019	return ret;
2020#undef senderr
2021#undef HTFLAGS
2022}
2023
2024/*
2025 * Return an mbuf with a probe response frame in it.
2026 * Space is left to prepend and 802.11 header at the
2027 * front but it's left to the caller to fill in.
2028 */
2029struct mbuf *
2030ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2031{
2032	struct ieee80211vap *vap = bss->ni_vap;
2033	struct ieee80211com *ic = bss->ni_ic;
2034	const struct ieee80211_rateset *rs;
2035	struct mbuf *m;
2036	uint16_t capinfo;
2037	uint8_t *frm;
2038
2039	/*
2040	 * probe response frame format
2041	 *	[8] time stamp
2042	 *	[2] beacon interval
2043	 *	[2] cabability information
2044	 *	[tlv] ssid
2045	 *	[tlv] supported rates
2046	 *	[tlv] parameter set (FH/DS)
2047	 *	[tlv] parameter set (IBSS)
2048	 *	[tlv] country (optional)
2049	 *	[3] power control (optional)
2050	 *	[5] channel switch announcement (CSA) (optional)
2051	 *	[tlv] extended rate phy (ERP)
2052	 *	[tlv] extended supported rates
2053	 *	[tlv] RSN (optional)
2054	 *	[tlv] HT capabilities
2055	 *	[tlv] HT information
2056	 *	[tlv] WPA (optional)
2057	 *	[tlv] WME (optional)
2058	 *	[tlv] Vendor OUI HT capabilities (optional)
2059	 *	[tlv] Vendor OUI HT information (optional)
2060	 *	[tlv] Atheros capabilities
2061	 *	[tlv] AppIE's (optional)
2062	 */
2063	m = ieee80211_getmgtframe(&frm,
2064		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2065		 8
2066	       + sizeof(uint16_t)
2067	       + sizeof(uint16_t)
2068	       + 2 + IEEE80211_NWID_LEN
2069	       + 2 + IEEE80211_RATE_SIZE
2070	       + 7	/* max(7,3) */
2071	       + IEEE80211_COUNTRY_MAX_SIZE
2072	       + 3
2073	       + sizeof(struct ieee80211_csa_ie)
2074	       + 3
2075	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2076	       + sizeof(struct ieee80211_ie_wpa)
2077	       + sizeof(struct ieee80211_ie_htcap)
2078	       + sizeof(struct ieee80211_ie_htinfo)
2079	       + sizeof(struct ieee80211_ie_wpa)
2080	       + sizeof(struct ieee80211_wme_param)
2081	       + 4 + sizeof(struct ieee80211_ie_htcap)
2082	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2083#ifdef IEEE80211_SUPPORT_SUPERG
2084	       + sizeof(struct ieee80211_ath_ie)
2085#endif
2086	       + (vap->iv_appie_proberesp != NULL ?
2087			vap->iv_appie_proberesp->ie_len : 0)
2088	);
2089	if (m == NULL) {
2090		vap->iv_stats.is_tx_nobuf++;
2091		return NULL;
2092	}
2093
2094	memset(frm, 0, 8);	/* timestamp should be filled later */
2095	frm += 8;
2096	*(uint16_t *)frm = htole16(bss->ni_intval);
2097	frm += 2;
2098	capinfo = getcapinfo(vap, bss->ni_chan);
2099	*(uint16_t *)frm = htole16(capinfo);
2100	frm += 2;
2101
2102	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2103	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2104	frm = ieee80211_add_rates(frm, rs);
2105
2106	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2107		*frm++ = IEEE80211_ELEMID_FHPARMS;
2108		*frm++ = 5;
2109		*frm++ = bss->ni_fhdwell & 0x00ff;
2110		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2111		*frm++ = IEEE80211_FH_CHANSET(
2112		    ieee80211_chan2ieee(ic, bss->ni_chan));
2113		*frm++ = IEEE80211_FH_CHANPAT(
2114		    ieee80211_chan2ieee(ic, bss->ni_chan));
2115		*frm++ = bss->ni_fhindex;
2116	} else {
2117		*frm++ = IEEE80211_ELEMID_DSPARMS;
2118		*frm++ = 1;
2119		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2120	}
2121
2122	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2123		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2124		*frm++ = 2;
2125		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2126	}
2127	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2128	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2129		frm = ieee80211_add_countryie(frm, ic);
2130	if (vap->iv_flags & IEEE80211_F_DOTH) {
2131		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2132			frm = ieee80211_add_powerconstraint(frm, vap);
2133		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2134			frm = ieee80211_add_csa(frm, vap);
2135	}
2136	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2137		frm = ieee80211_add_erp(frm, ic);
2138	frm = ieee80211_add_xrates(frm, rs);
2139	if (vap->iv_flags & IEEE80211_F_WPA2) {
2140		if (vap->iv_rsn_ie != NULL)
2141			frm = add_ie(frm, vap->iv_rsn_ie);
2142		/* XXX else complain? */
2143	}
2144	/*
2145	 * NB: legacy 11b clients do not get certain ie's.
2146	 *     The caller identifies such clients by passing
2147	 *     a token in legacy to us.  Could expand this to be
2148	 *     any legacy client for stuff like HT ie's.
2149	 */
2150	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2151	    legacy != IEEE80211_SEND_LEGACY_11B) {
2152		frm = ieee80211_add_htcap(frm, bss);
2153		frm = ieee80211_add_htinfo(frm, bss);
2154	}
2155	if (vap->iv_flags & IEEE80211_F_WPA1) {
2156		if (vap->iv_wpa_ie != NULL)
2157			frm = add_ie(frm, vap->iv_wpa_ie);
2158		/* XXX else complain? */
2159	}
2160	if (vap->iv_flags & IEEE80211_F_WME)
2161		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2162	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2163	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2164	    legacy != IEEE80211_SEND_LEGACY_11B) {
2165		frm = ieee80211_add_htcap_vendor(frm, bss);
2166		frm = ieee80211_add_htinfo_vendor(frm, bss);
2167	}
2168#ifdef IEEE80211_SUPPORT_SUPERG
2169	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2170	    legacy != IEEE80211_SEND_LEGACY_11B)
2171		frm = ieee80211_add_athcaps(frm, bss);
2172#endif
2173	if (vap->iv_appie_proberesp != NULL)
2174		frm = add_appie(frm, vap->iv_appie_proberesp);
2175	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2176
2177	return m;
2178}
2179
2180/*
2181 * Send a probe response frame to the specified mac address.
2182 * This does not go through the normal mgt frame api so we
2183 * can specify the destination address and re-use the bss node
2184 * for the sta reference.
2185 */
2186int
2187ieee80211_send_proberesp(struct ieee80211vap *vap,
2188	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2189{
2190	struct ieee80211_node *bss = vap->iv_bss;
2191	struct ieee80211com *ic = vap->iv_ic;
2192	struct ieee80211_frame *wh;
2193	struct mbuf *m;
2194
2195	if (vap->iv_state == IEEE80211_S_CAC) {
2196		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2197		    "block %s frame in CAC state", "probe response");
2198		vap->iv_stats.is_tx_badstate++;
2199		return EIO;		/* XXX */
2200	}
2201
2202	/*
2203	 * Hold a reference on the node so it doesn't go away until after
2204	 * the xmit is complete all the way in the driver.  On error we
2205	 * will remove our reference.
2206	 */
2207	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2208	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2209	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2210	    ieee80211_node_refcnt(bss)+1);
2211	ieee80211_ref_node(bss);
2212
2213	m = ieee80211_alloc_proberesp(bss, legacy);
2214	if (m == NULL) {
2215		ieee80211_free_node(bss);
2216		return ENOMEM;
2217	}
2218
2219	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2220	KASSERT(m != NULL, ("no room for header"));
2221
2222	wh = mtod(m, struct ieee80211_frame *);
2223	ieee80211_send_setup(bss, m,
2224	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2225	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2226	/* XXX power management? */
2227	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2228
2229	M_WME_SETAC(m, WME_AC_BE);
2230
2231	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2232	    "send probe resp on channel %u to %s%s\n",
2233	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2234	    legacy ? " <legacy>" : "");
2235	IEEE80211_NODE_STAT(bss, tx_mgmt);
2236
2237	return ic->ic_raw_xmit(bss, m, NULL);
2238}
2239
2240/*
2241 * Allocate and build a RTS (Request To Send) control frame.
2242 */
2243struct mbuf *
2244ieee80211_alloc_rts(struct ieee80211com *ic,
2245	const uint8_t ra[IEEE80211_ADDR_LEN],
2246	const uint8_t ta[IEEE80211_ADDR_LEN],
2247	uint16_t dur)
2248{
2249	struct ieee80211_frame_rts *rts;
2250	struct mbuf *m;
2251
2252	/* XXX honor ic_headroom */
2253	m = m_gethdr(M_DONTWAIT, MT_DATA);
2254	if (m != NULL) {
2255		rts = mtod(m, struct ieee80211_frame_rts *);
2256		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2257			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2258		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2259		*(u_int16_t *)rts->i_dur = htole16(dur);
2260		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2261		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2262
2263		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2264	}
2265	return m;
2266}
2267
2268/*
2269 * Allocate and build a CTS (Clear To Send) control frame.
2270 */
2271struct mbuf *
2272ieee80211_alloc_cts(struct ieee80211com *ic,
2273	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2274{
2275	struct ieee80211_frame_cts *cts;
2276	struct mbuf *m;
2277
2278	/* XXX honor ic_headroom */
2279	m = m_gethdr(M_DONTWAIT, MT_DATA);
2280	if (m != NULL) {
2281		cts = mtod(m, struct ieee80211_frame_cts *);
2282		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2283			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2284		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2285		*(u_int16_t *)cts->i_dur = htole16(dur);
2286		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2287
2288		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2289	}
2290	return m;
2291}
2292
2293static void
2294ieee80211_tx_mgt_timeout(void *arg)
2295{
2296	struct ieee80211_node *ni = arg;
2297	struct ieee80211vap *vap = ni->ni_vap;
2298
2299	if (vap->iv_state != IEEE80211_S_INIT &&
2300	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2301		/*
2302		 * NB: it's safe to specify a timeout as the reason here;
2303		 *     it'll only be used in the right state.
2304		 */
2305		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2306			IEEE80211_SCAN_FAIL_TIMEOUT);
2307	}
2308}
2309
2310static void
2311ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2312{
2313	struct ieee80211vap *vap = ni->ni_vap;
2314	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2315
2316	/*
2317	 * Frame transmit completed; arrange timer callback.  If
2318	 * transmit was successfuly we wait for response.  Otherwise
2319	 * we arrange an immediate callback instead of doing the
2320	 * callback directly since we don't know what state the driver
2321	 * is in (e.g. what locks it is holding).  This work should
2322	 * not be too time-critical and not happen too often so the
2323	 * added overhead is acceptable.
2324	 *
2325	 * XXX what happens if !acked but response shows up before callback?
2326	 */
2327	if (vap->iv_state == ostate)
2328		callout_reset(&vap->iv_mgtsend,
2329			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2330			ieee80211_tx_mgt_timeout, ni);
2331}
2332
2333static void
2334ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2335	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2336{
2337	struct ieee80211vap *vap = ni->ni_vap;
2338	struct ieee80211com *ic = ni->ni_ic;
2339	struct ieee80211_rateset *rs = &ni->ni_rates;
2340	uint16_t capinfo;
2341
2342	/*
2343	 * beacon frame format
2344	 *	[8] time stamp
2345	 *	[2] beacon interval
2346	 *	[2] cabability information
2347	 *	[tlv] ssid
2348	 *	[tlv] supported rates
2349	 *	[3] parameter set (DS)
2350	 *	[8] CF parameter set (optional)
2351	 *	[tlv] parameter set (IBSS/TIM)
2352	 *	[tlv] country (optional)
2353	 *	[3] power control (optional)
2354	 *	[5] channel switch announcement (CSA) (optional)
2355	 *	[tlv] extended rate phy (ERP)
2356	 *	[tlv] extended supported rates
2357	 *	[tlv] RSN parameters
2358	 *	[tlv] HT capabilities
2359	 *	[tlv] HT information
2360	 * XXX Vendor-specific OIDs (e.g. Atheros)
2361	 *	[tlv] WPA parameters
2362	 *	[tlv] WME parameters
2363	 *	[tlv] Vendor OUI HT capabilities (optional)
2364	 *	[tlv] Vendor OUI HT information (optional)
2365	 *	[tlv] Atheros capabilities (optional)
2366	 *	[tlv] TDMA parameters (optional)
2367	 *	[tlv] application data (optional)
2368	 */
2369
2370	memset(bo, 0, sizeof(*bo));
2371
2372	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2373	frm += 8;
2374	*(uint16_t *)frm = htole16(ni->ni_intval);
2375	frm += 2;
2376	capinfo = getcapinfo(vap, ni->ni_chan);
2377	bo->bo_caps = (uint16_t *)frm;
2378	*(uint16_t *)frm = htole16(capinfo);
2379	frm += 2;
2380	*frm++ = IEEE80211_ELEMID_SSID;
2381	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2382		*frm++ = ni->ni_esslen;
2383		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2384		frm += ni->ni_esslen;
2385	} else
2386		*frm++ = 0;
2387	frm = ieee80211_add_rates(frm, rs);
2388	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2389		*frm++ = IEEE80211_ELEMID_DSPARMS;
2390		*frm++ = 1;
2391		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2392	}
2393	if (ic->ic_flags & IEEE80211_F_PCF) {
2394		bo->bo_cfp = frm;
2395		frm = ieee80211_add_cfparms(frm, ic);
2396	}
2397	bo->bo_tim = frm;
2398	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2399		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2400		*frm++ = 2;
2401		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2402		bo->bo_tim_len = 0;
2403	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2404		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2405
2406		tie->tim_ie = IEEE80211_ELEMID_TIM;
2407		tie->tim_len = 4;	/* length */
2408		tie->tim_count = 0;	/* DTIM count */
2409		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2410		tie->tim_bitctl = 0;	/* bitmap control */
2411		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2412		frm += sizeof(struct ieee80211_tim_ie);
2413		bo->bo_tim_len = 1;
2414	}
2415	bo->bo_tim_trailer = frm;
2416	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2417	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2418		frm = ieee80211_add_countryie(frm, ic);
2419	if (vap->iv_flags & IEEE80211_F_DOTH) {
2420		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2421			frm = ieee80211_add_powerconstraint(frm, vap);
2422		bo->bo_csa = frm;
2423		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2424			frm = ieee80211_add_csa(frm, vap);
2425	} else
2426		bo->bo_csa = frm;
2427	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2428		bo->bo_erp = frm;
2429		frm = ieee80211_add_erp(frm, ic);
2430	}
2431	frm = ieee80211_add_xrates(frm, rs);
2432	if (vap->iv_flags & IEEE80211_F_WPA2) {
2433		if (vap->iv_rsn_ie != NULL)
2434			frm = add_ie(frm, vap->iv_rsn_ie);
2435		/* XXX else complain */
2436	}
2437	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2438		frm = ieee80211_add_htcap(frm, ni);
2439		bo->bo_htinfo = frm;
2440		frm = ieee80211_add_htinfo(frm, ni);
2441	}
2442	if (vap->iv_flags & IEEE80211_F_WPA1) {
2443		if (vap->iv_wpa_ie != NULL)
2444			frm = add_ie(frm, vap->iv_wpa_ie);
2445		/* XXX else complain */
2446	}
2447	if (vap->iv_flags & IEEE80211_F_WME) {
2448		bo->bo_wme = frm;
2449		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2450	}
2451	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2452	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2453		frm = ieee80211_add_htcap_vendor(frm, ni);
2454		frm = ieee80211_add_htinfo_vendor(frm, ni);
2455	}
2456#ifdef IEEE80211_SUPPORT_SUPERG
2457	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2458		bo->bo_ath = frm;
2459		frm = ieee80211_add_athcaps(frm, ni);
2460	}
2461#endif
2462#ifdef IEEE80211_SUPPORT_TDMA
2463	if (vap->iv_caps & IEEE80211_C_TDMA) {
2464		bo->bo_tdma = frm;
2465		frm = ieee80211_add_tdma(frm, vap);
2466	}
2467#endif
2468	if (vap->iv_appie_beacon != NULL) {
2469		bo->bo_appie = frm;
2470		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2471		frm = add_appie(frm, vap->iv_appie_beacon);
2472	}
2473	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2474	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2475	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2476}
2477
2478/*
2479 * Allocate a beacon frame and fillin the appropriate bits.
2480 */
2481struct mbuf *
2482ieee80211_beacon_alloc(struct ieee80211_node *ni,
2483	struct ieee80211_beacon_offsets *bo)
2484{
2485	struct ieee80211vap *vap = ni->ni_vap;
2486	struct ieee80211com *ic = ni->ni_ic;
2487	struct ifnet *ifp = vap->iv_ifp;
2488	struct ieee80211_frame *wh;
2489	struct mbuf *m;
2490	int pktlen;
2491	uint8_t *frm;
2492
2493	/*
2494	 * beacon frame format
2495	 *	[8] time stamp
2496	 *	[2] beacon interval
2497	 *	[2] cabability information
2498	 *	[tlv] ssid
2499	 *	[tlv] supported rates
2500	 *	[3] parameter set (DS)
2501	 *	[8] CF parameter set (optional)
2502	 *	[tlv] parameter set (IBSS/TIM)
2503	 *	[tlv] country (optional)
2504	 *	[3] power control (optional)
2505	 *	[5] channel switch announcement (CSA) (optional)
2506	 *	[tlv] extended rate phy (ERP)
2507	 *	[tlv] extended supported rates
2508	 *	[tlv] RSN parameters
2509	 *	[tlv] HT capabilities
2510	 *	[tlv] HT information
2511	 *	[tlv] Vendor OUI HT capabilities (optional)
2512	 *	[tlv] Vendor OUI HT information (optional)
2513	 * XXX Vendor-specific OIDs (e.g. Atheros)
2514	 *	[tlv] WPA parameters
2515	 *	[tlv] WME parameters
2516	 *	[tlv] TDMA parameters (optional)
2517	 *	[tlv] application data (optional)
2518	 * NB: we allocate the max space required for the TIM bitmap.
2519	 * XXX how big is this?
2520	 */
2521	pktlen =   8					/* time stamp */
2522		 + sizeof(uint16_t)			/* beacon interval */
2523		 + sizeof(uint16_t)			/* capabilities */
2524		 + 2 + ni->ni_esslen			/* ssid */
2525	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2526	         + 2 + 1				/* DS parameters */
2527		 + 2 + 6				/* CF parameters */
2528		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2529		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2530		 + 2 + 1				/* power control */
2531	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2532		 + 2 + 1				/* ERP */
2533	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2534		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2535			2*sizeof(struct ieee80211_ie_wpa) : 0)
2536		 /* XXX conditional? */
2537		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2538		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2539		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2540			sizeof(struct ieee80211_wme_param) : 0)
2541#ifdef IEEE80211_SUPPORT_SUPERG
2542		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2543#endif
2544#ifdef IEEE80211_SUPPORT_TDMA
2545		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2546			sizeof(struct ieee80211_tdma_param) : 0)
2547#endif
2548		 + IEEE80211_MAX_APPIE
2549		 ;
2550	m = ieee80211_getmgtframe(&frm,
2551		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2552	if (m == NULL) {
2553		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2554			"%s: cannot get buf; size %u\n", __func__, pktlen);
2555		vap->iv_stats.is_tx_nobuf++;
2556		return NULL;
2557	}
2558	ieee80211_beacon_construct(m, frm, bo, ni);
2559
2560	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2561	KASSERT(m != NULL, ("no space for 802.11 header?"));
2562	wh = mtod(m, struct ieee80211_frame *);
2563	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2564	    IEEE80211_FC0_SUBTYPE_BEACON;
2565	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2566	*(uint16_t *)wh->i_dur = 0;
2567	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2568	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2569	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2570	*(uint16_t *)wh->i_seq = 0;
2571
2572	return m;
2573}
2574
2575/*
2576 * Update the dynamic parts of a beacon frame based on the current state.
2577 */
2578int
2579ieee80211_beacon_update(struct ieee80211_node *ni,
2580	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2581{
2582	struct ieee80211vap *vap = ni->ni_vap;
2583	struct ieee80211com *ic = ni->ni_ic;
2584	int len_changed = 0;
2585	uint16_t capinfo;
2586
2587	IEEE80211_LOCK(ic);
2588	/*
2589	 * Handle 11h channel change when we've reached the count.
2590	 * We must recalculate the beacon frame contents to account
2591	 * for the new channel.  Note we do this only for the first
2592	 * vap that reaches this point; subsequent vaps just update
2593	 * their beacon state to reflect the recalculated channel.
2594	 */
2595	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2596	    vap->iv_csa_count == ic->ic_csa_count) {
2597		vap->iv_csa_count = 0;
2598		/*
2599		 * Effect channel change before reconstructing the beacon
2600		 * frame contents as many places reference ni_chan.
2601		 */
2602		if (ic->ic_csa_newchan != NULL)
2603			ieee80211_csa_completeswitch(ic);
2604		/*
2605		 * NB: ieee80211_beacon_construct clears all pending
2606		 * updates in bo_flags so we don't need to explicitly
2607		 * clear IEEE80211_BEACON_CSA.
2608		 */
2609		ieee80211_beacon_construct(m,
2610		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2611
2612		/* XXX do WME aggressive mode processing? */
2613		IEEE80211_UNLOCK(ic);
2614		return 1;		/* just assume length changed */
2615	}
2616
2617	/* XXX faster to recalculate entirely or just changes? */
2618	capinfo = getcapinfo(vap, ni->ni_chan);
2619	*bo->bo_caps = htole16(capinfo);
2620
2621	if (vap->iv_flags & IEEE80211_F_WME) {
2622		struct ieee80211_wme_state *wme = &ic->ic_wme;
2623
2624		/*
2625		 * Check for agressive mode change.  When there is
2626		 * significant high priority traffic in the BSS
2627		 * throttle back BE traffic by using conservative
2628		 * parameters.  Otherwise BE uses agressive params
2629		 * to optimize performance of legacy/non-QoS traffic.
2630		 */
2631		if (wme->wme_flags & WME_F_AGGRMODE) {
2632			if (wme->wme_hipri_traffic >
2633			    wme->wme_hipri_switch_thresh) {
2634				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2635				    "%s: traffic %u, disable aggressive mode\n",
2636				    __func__, wme->wme_hipri_traffic);
2637				wme->wme_flags &= ~WME_F_AGGRMODE;
2638				ieee80211_wme_updateparams_locked(vap);
2639				wme->wme_hipri_traffic =
2640					wme->wme_hipri_switch_hysteresis;
2641			} else
2642				wme->wme_hipri_traffic = 0;
2643		} else {
2644			if (wme->wme_hipri_traffic <=
2645			    wme->wme_hipri_switch_thresh) {
2646				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2647				    "%s: traffic %u, enable aggressive mode\n",
2648				    __func__, wme->wme_hipri_traffic);
2649				wme->wme_flags |= WME_F_AGGRMODE;
2650				ieee80211_wme_updateparams_locked(vap);
2651				wme->wme_hipri_traffic = 0;
2652			} else
2653				wme->wme_hipri_traffic =
2654					wme->wme_hipri_switch_hysteresis;
2655		}
2656		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2657			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2658			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2659		}
2660	}
2661
2662	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2663		ieee80211_ht_update_beacon(vap, bo);
2664		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2665	}
2666#ifdef IEEE80211_SUPPORT_TDMA
2667	if (vap->iv_caps & IEEE80211_C_TDMA) {
2668		/*
2669		 * NB: the beacon is potentially updated every TBTT.
2670		 */
2671		ieee80211_tdma_update_beacon(vap, bo);
2672	}
2673#endif
2674	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
2675		struct ieee80211_tim_ie *tie =
2676			(struct ieee80211_tim_ie *) bo->bo_tim;
2677		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2678			u_int timlen, timoff, i;
2679			/*
2680			 * ATIM/DTIM needs updating.  If it fits in the
2681			 * current space allocated then just copy in the
2682			 * new bits.  Otherwise we need to move any trailing
2683			 * data to make room.  Note that we know there is
2684			 * contiguous space because ieee80211_beacon_allocate
2685			 * insures there is space in the mbuf to write a
2686			 * maximal-size virtual bitmap (based on iv_max_aid).
2687			 */
2688			/*
2689			 * Calculate the bitmap size and offset, copy any
2690			 * trailer out of the way, and then copy in the
2691			 * new bitmap and update the information element.
2692			 * Note that the tim bitmap must contain at least
2693			 * one byte and any offset must be even.
2694			 */
2695			if (vap->iv_ps_pending != 0) {
2696				timoff = 128;		/* impossibly large */
2697				for (i = 0; i < vap->iv_tim_len; i++)
2698					if (vap->iv_tim_bitmap[i]) {
2699						timoff = i &~ 1;
2700						break;
2701					}
2702				KASSERT(timoff != 128, ("tim bitmap empty!"));
2703				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2704					if (vap->iv_tim_bitmap[i])
2705						break;
2706				timlen = 1 + (i - timoff);
2707			} else {
2708				timoff = 0;
2709				timlen = 1;
2710			}
2711			if (timlen != bo->bo_tim_len) {
2712				/* copy up/down trailer */
2713				int adjust = tie->tim_bitmap+timlen
2714					   - bo->bo_tim_trailer;
2715				ovbcopy(bo->bo_tim_trailer,
2716				    bo->bo_tim_trailer+adjust,
2717				    bo->bo_tim_trailer_len);
2718				bo->bo_tim_trailer += adjust;
2719				bo->bo_erp += adjust;
2720				bo->bo_htinfo += adjust;
2721#ifdef IEEE80211_SUPERG_SUPPORT
2722				bo->bo_ath += adjust;
2723#endif
2724#ifdef IEEE80211_TDMA_SUPPORT
2725				bo->bo_tdma += adjust;
2726#endif
2727				bo->bo_appie += adjust;
2728				bo->bo_wme += adjust;
2729				bo->bo_csa += adjust;
2730				bo->bo_tim_len = timlen;
2731
2732				/* update information element */
2733				tie->tim_len = 3 + timlen;
2734				tie->tim_bitctl = timoff;
2735				len_changed = 1;
2736			}
2737			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2738				bo->bo_tim_len);
2739
2740			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2741
2742			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2743				"%s: TIM updated, pending %u, off %u, len %u\n",
2744				__func__, vap->iv_ps_pending, timoff, timlen);
2745		}
2746		/* count down DTIM period */
2747		if (tie->tim_count == 0)
2748			tie->tim_count = tie->tim_period - 1;
2749		else
2750			tie->tim_count--;
2751		/* update state for buffered multicast frames on DTIM */
2752		if (mcast && tie->tim_count == 0)
2753			tie->tim_bitctl |= 1;
2754		else
2755			tie->tim_bitctl &= ~1;
2756		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2757			struct ieee80211_csa_ie *csa =
2758			    (struct ieee80211_csa_ie *) bo->bo_csa;
2759
2760			/*
2761			 * Insert or update CSA ie.  If we're just starting
2762			 * to count down to the channel switch then we need
2763			 * to insert the CSA ie.  Otherwise we just need to
2764			 * drop the count.  The actual change happens above
2765			 * when the vap's count reaches the target count.
2766			 */
2767			if (vap->iv_csa_count == 0) {
2768				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2769				bo->bo_erp += sizeof(*csa);
2770				bo->bo_htinfo += sizeof(*csa);
2771				bo->bo_wme += sizeof(*csa);
2772#ifdef IEEE80211_SUPERG_SUPPORT
2773				bo->bo_ath += sizeof(*csa);
2774#endif
2775#ifdef IEEE80211_TDMA_SUPPORT
2776				bo->bo_tdma += sizeof(*csa);
2777#endif
2778				bo->bo_appie += sizeof(*csa);
2779				bo->bo_csa_trailer_len += sizeof(*csa);
2780				bo->bo_tim_trailer_len += sizeof(*csa);
2781				m->m_len += sizeof(*csa);
2782				m->m_pkthdr.len += sizeof(*csa);
2783
2784				ieee80211_add_csa(bo->bo_csa, vap);
2785			} else
2786				csa->csa_count--;
2787			vap->iv_csa_count++;
2788			/* NB: don't clear IEEE80211_BEACON_CSA */
2789		}
2790		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2791			/*
2792			 * ERP element needs updating.
2793			 */
2794			(void) ieee80211_add_erp(bo->bo_erp, ic);
2795			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2796		}
2797#ifdef IEEE80211_SUPPORT_SUPERG
2798		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
2799			ieee80211_add_athcaps(bo->bo_ath, ni);
2800			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
2801		}
2802#endif
2803	}
2804	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2805		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2806		int aielen;
2807		uint8_t *frm;
2808
2809		aielen = 0;
2810		if (aie != NULL)
2811			aielen += aie->ie_len;
2812		if (aielen != bo->bo_appie_len) {
2813			/* copy up/down trailer */
2814			int adjust = aielen - bo->bo_appie_len;
2815			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2816				bo->bo_tim_trailer_len);
2817			bo->bo_tim_trailer += adjust;
2818			bo->bo_appie += adjust;
2819			bo->bo_appie_len = aielen;
2820
2821			len_changed = 1;
2822		}
2823		frm = bo->bo_appie;
2824		if (aie != NULL)
2825			frm  = add_appie(frm, aie);
2826		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2827	}
2828	IEEE80211_UNLOCK(ic);
2829
2830	return len_changed;
2831}
2832