ieee80211_output.c revision 186099
1/*-
2 * Copyright (c) 2001 Atsushi Onoe
3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: head/sys/net80211/ieee80211_output.c 186099 2008-12-15 00:47:24Z sam $");
29
30#include "opt_inet.h"
31#include "opt_wlan.h"
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/mbuf.h>
36#include <sys/kernel.h>
37#include <sys/endian.h>
38
39#include <sys/socket.h>
40
41#include <net/bpf.h>
42#include <net/ethernet.h>
43#include <net/if.h>
44#include <net/if_llc.h>
45#include <net/if_media.h>
46#include <net/if_vlan_var.h>
47
48#include <net80211/ieee80211_var.h>
49#include <net80211/ieee80211_regdomain.h>
50#include <net80211/ieee80211_wds.h>
51
52#ifdef INET
53#include <netinet/in.h>
54#include <netinet/if_ether.h>
55#include <netinet/in_systm.h>
56#include <netinet/ip.h>
57#endif
58
59#define	ETHER_HEADER_COPY(dst, src) \
60	memcpy(dst, src, sizeof(struct ether_header))
61
62static struct mbuf *ieee80211_encap_fastframe(struct ieee80211vap *,
63	struct mbuf *m1, const struct ether_header *eh1,
64	struct mbuf *m2, const struct ether_header *eh2);
65static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
66	u_int hdrsize, u_int ciphdrsize, u_int mtu);
67static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
68
69#ifdef IEEE80211_DEBUG
70/*
71 * Decide if an outbound management frame should be
72 * printed when debugging is enabled.  This filters some
73 * of the less interesting frames that come frequently
74 * (e.g. beacons).
75 */
76static __inline int
77doprint(struct ieee80211vap *vap, int subtype)
78{
79	switch (subtype) {
80	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
81		return (vap->iv_opmode == IEEE80211_M_IBSS);
82	}
83	return 1;
84}
85#endif
86
87/*
88 * Start method for vap's.  All packets from the stack come
89 * through here.  We handle common processing of the packets
90 * before dispatching them to the underlying device.
91 */
92void
93ieee80211_start(struct ifnet *ifp)
94{
95#define	IS_DWDS(vap) \
96	(vap->iv_opmode == IEEE80211_M_WDS && \
97	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
98	struct ieee80211vap *vap = ifp->if_softc;
99	struct ieee80211com *ic = vap->iv_ic;
100	struct ifnet *parent = ic->ic_ifp;
101	struct ieee80211_node *ni;
102	struct mbuf *m;
103	struct ether_header *eh;
104	int error;
105
106	/* NB: parent must be up and running */
107	if (!IFNET_IS_UP_RUNNING(parent)) {
108		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
109		    "%s: ignore queue, parent %s not up+running\n",
110		    __func__, parent->if_xname);
111		/* XXX stat */
112		return;
113	}
114	if (vap->iv_state == IEEE80211_S_SLEEP) {
115		/*
116		 * In power save, wakeup device for transmit.
117		 */
118		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
119		return;
120	}
121	/*
122	 * No data frames go out unless we're running.
123	 * Note in particular this covers CAC and CSA
124	 * states (though maybe we should check muting
125	 * for CSA).
126	 */
127	if (vap->iv_state != IEEE80211_S_RUN) {
128		IEEE80211_LOCK(ic);
129		/* re-check under the com lock to avoid races */
130		if (vap->iv_state != IEEE80211_S_RUN) {
131			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
132			    "%s: ignore queue, in %s state\n",
133			    __func__, ieee80211_state_name[vap->iv_state]);
134			vap->iv_stats.is_tx_badstate++;
135			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
136			IEEE80211_UNLOCK(ic);
137			return;
138		}
139		IEEE80211_UNLOCK(ic);
140	}
141	for (;;) {
142		IFQ_DEQUEUE(&ifp->if_snd, m);
143		if (m == NULL)
144			break;
145		/*
146		 * Sanitize mbuf flags for net80211 use.  We cannot
147		 * clear M_PWR_SAV because this may be set for frames
148		 * that are re-submitted from the power save queue.
149		 *
150		 * NB: This must be done before ieee80211_classify as
151		 *     it marks EAPOL in frames with M_EAPOL.
152		 */
153		m->m_flags &= ~(M_80211_TX - M_PWR_SAV);
154		/*
155		 * Cancel any background scan.
156		 */
157		if (ic->ic_flags & IEEE80211_F_SCAN)
158			ieee80211_cancel_anyscan(vap);
159		/*
160		 * Find the node for the destination so we can do
161		 * things like power save and fast frames aggregation.
162		 *
163		 * NB: past this point various code assumes the first
164		 *     mbuf has the 802.3 header present (and contiguous).
165		 */
166		ni = NULL;
167		if (m->m_len < sizeof(struct ether_header) &&
168		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
169			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
170			    "discard frame, %s\n", "m_pullup failed");
171			vap->iv_stats.is_tx_nobuf++;	/* XXX */
172			ifp->if_oerrors++;
173			continue;
174		}
175		eh = mtod(m, struct ether_header *);
176		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
177			if (IS_DWDS(vap)) {
178				/*
179				 * Only unicast frames from the above go out
180				 * DWDS vaps; multicast frames are handled by
181				 * dispatching the frame as it comes through
182				 * the AP vap (see below).
183				 */
184				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
185				    eh->ether_dhost, "mcast", "%s", "on DWDS");
186				vap->iv_stats.is_dwds_mcast++;
187				m_freem(m);
188				continue;
189			}
190			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
191				/*
192				 * Spam DWDS vap's w/ multicast traffic.
193				 */
194				/* XXX only if dwds in use? */
195				ieee80211_dwds_mcast(vap, m);
196			}
197		}
198		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
199		if (ni == NULL) {
200			/* NB: ieee80211_find_txnode does stat+msg */
201			ifp->if_oerrors++;
202			m_freem(m);
203			continue;
204		}
205		/* XXX AUTH'd */
206		if (ni->ni_associd == 0 &&
207		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
208			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
209			    eh->ether_dhost, NULL,
210			    "sta not associated (type 0x%04x)",
211			    htons(eh->ether_type));
212			vap->iv_stats.is_tx_notassoc++;
213			ifp->if_oerrors++;
214			m_freem(m);
215			ieee80211_free_node(ni);
216			continue;
217		}
218		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
219		    (m->m_flags & M_PWR_SAV) == 0) {
220			/*
221			 * Station in power save mode; pass the frame
222			 * to the 802.11 layer and continue.  We'll get
223			 * the frame back when the time is right.
224			 * XXX lose WDS vap linkage?
225			 */
226			(void) ieee80211_pwrsave(ni, m);
227			ieee80211_free_node(ni);
228			continue;
229		}
230		/* calculate priority so drivers can find the tx queue */
231		if (ieee80211_classify(ni, m)) {
232			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
233			    eh->ether_dhost, NULL,
234			    "%s", "classification failure");
235			vap->iv_stats.is_tx_classify++;
236			ifp->if_oerrors++;
237			m_freem(m);
238			ieee80211_free_node(ni);
239			continue;
240		}
241
242		BPF_MTAP(ifp, m);		/* 802.11 tx path */
243
244		/*
245		 * XXX When ni is associated with a WDS link then
246		 * the vap will be the WDS vap but ni_vap will point
247		 * to the ap vap the station associated to.  Once
248		 * we handoff the packet to the driver the callback
249		 * to ieee80211_encap won't be able to tell if the
250		 * packet should be encapsulated for WDS or not (e.g.
251		 * multicast frames will not be handled correctly).
252		 * We hack this by marking the mbuf so ieee80211_encap
253		 * can do the right thing.
254		 */
255		if (vap->iv_opmode == IEEE80211_M_WDS)
256			m->m_flags |= M_WDS;
257		else
258			m->m_flags &= ~M_WDS;
259
260		/*
261		 * Stash the node pointer and hand the frame off to
262		 * the underlying device.  Note that we do this after
263		 * any call to ieee80211_dwds_mcast because that code
264		 * uses any existing value for rcvif.
265		 */
266		m->m_pkthdr.rcvif = (void *)ni;
267
268		/* XXX defer if_start calls? */
269		error = (parent->if_transmit)(parent, m);
270		if (error != 0) {
271			/* NB: IFQ_HANDOFF reclaims mbuf */
272			ieee80211_free_node(ni);
273		} else {
274			ifp->if_opackets++;
275		}
276		ic->ic_lastdata = ticks;
277	}
278#undef IS_DWDS
279}
280
281/*
282 * 802.11 output routine. This is (currently) used only to
283 * connect bpf write calls to the 802.11 layer for injecting
284 * raw 802.11 frames.  Note we locate the ieee80211com from
285 * the ifnet using a spare field setup at attach time.  This
286 * will go away when the virtual ap support comes in.
287 */
288int
289ieee80211_output(struct ifnet *ifp, struct mbuf *m,
290	struct sockaddr *dst, struct rtentry *rt0)
291{
292#define senderr(e) do { error = (e); goto bad;} while (0)
293	struct ieee80211_node *ni = NULL;
294	struct ieee80211vap *vap;
295	struct ieee80211_frame *wh;
296	int error;
297
298	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
299		/*
300		 * Short-circuit requests if the vap is marked OACTIVE
301		 * as this is used when tearing down state to indicate
302		 * the vap may be gone.  This can also happen because a
303		 * packet came down through ieee80211_start before the
304		 * vap entered RUN state in which case it's also ok to
305		 * just drop the frame.  This should not be necessary
306		 * but callers of if_output don't check OACTIVE.
307		 */
308		senderr(ENETDOWN);
309	}
310	vap = ifp->if_softc;
311	/*
312	 * Hand to the 802.3 code if not tagged as
313	 * a raw 802.11 frame.
314	 */
315	if (dst->sa_family != AF_IEEE80211)
316		return vap->iv_output(ifp, m, dst, rt0);
317#ifdef MAC
318	error = mac_check_ifnet_transmit(ifp, m);
319	if (error)
320		senderr(error);
321#endif
322	if (ifp->if_flags & IFF_MONITOR)
323		senderr(ENETDOWN);
324	if (!IFNET_IS_UP_RUNNING(ifp))
325		senderr(ENETDOWN);
326	if (vap->iv_state == IEEE80211_S_CAC) {
327		IEEE80211_DPRINTF(vap,
328		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
329		    "block %s frame in CAC state\n", "raw data");
330		vap->iv_stats.is_tx_badstate++;
331		senderr(EIO);		/* XXX */
332	}
333	/* XXX bypass bridge, pfil, carp, etc. */
334
335	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
336		senderr(EIO);	/* XXX */
337	wh = mtod(m, struct ieee80211_frame *);
338	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
339	    IEEE80211_FC0_VERSION_0)
340		senderr(EIO);	/* XXX */
341
342	/* locate destination node */
343	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
344	case IEEE80211_FC1_DIR_NODS:
345	case IEEE80211_FC1_DIR_FROMDS:
346		ni = ieee80211_find_txnode(vap, wh->i_addr1);
347		break;
348	case IEEE80211_FC1_DIR_TODS:
349	case IEEE80211_FC1_DIR_DSTODS:
350		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
351			senderr(EIO);	/* XXX */
352		ni = ieee80211_find_txnode(vap, wh->i_addr3);
353		break;
354	default:
355		senderr(EIO);	/* XXX */
356	}
357	if (ni == NULL) {
358		/*
359		 * Permit packets w/ bpf params through regardless
360		 * (see below about sa_len).
361		 */
362		if (dst->sa_len == 0)
363			senderr(EHOSTUNREACH);
364		ni = ieee80211_ref_node(vap->iv_bss);
365	}
366
367	/*
368	 * Sanitize mbuf for net80211 flags leaked from above.
369	 *
370	 * NB: This must be done before ieee80211_classify as
371	 *     it marks EAPOL in frames with M_EAPOL.
372	 */
373	m->m_flags &= ~M_80211_TX;
374
375	/* calculate priority so drivers can find the tx queue */
376	/* XXX assumes an 802.3 frame */
377	if (ieee80211_classify(ni, m))
378		senderr(EIO);		/* XXX */
379
380	BPF_MTAP(ifp, m);
381
382	/*
383	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
384	 * present by setting the sa_len field of the sockaddr (yes,
385	 * this is a hack).
386	 * NB: we assume sa_data is suitably aligned to cast.
387	 */
388	return vap->iv_ic->ic_raw_xmit(ni, m,
389	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
390		dst->sa_data : NULL));
391bad:
392	if (m != NULL)
393		m_freem(m);
394	if (ni != NULL)
395		ieee80211_free_node(ni);
396	return error;
397#undef senderr
398}
399
400/*
401 * Set the direction field and address fields of an outgoing
402 * frame.  Note this should be called early on in constructing
403 * a frame as it sets i_fc[1]; other bits can then be or'd in.
404 */
405static void
406ieee80211_send_setup(
407	struct ieee80211_node *ni,
408	struct ieee80211_frame *wh,
409	int type, int tid,
410	const uint8_t sa[IEEE80211_ADDR_LEN],
411	const uint8_t da[IEEE80211_ADDR_LEN],
412	const uint8_t bssid[IEEE80211_ADDR_LEN])
413{
414#define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
415
416	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
417	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
418		struct ieee80211vap *vap = ni->ni_vap;
419
420		switch (vap->iv_opmode) {
421		case IEEE80211_M_STA:
422			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
423			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
424			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
425			IEEE80211_ADDR_COPY(wh->i_addr3, da);
426			break;
427		case IEEE80211_M_IBSS:
428		case IEEE80211_M_AHDEMO:
429			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
430			IEEE80211_ADDR_COPY(wh->i_addr1, da);
431			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
432			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
433			break;
434		case IEEE80211_M_HOSTAP:
435			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
436			IEEE80211_ADDR_COPY(wh->i_addr1, da);
437			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
438			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
439			break;
440		case IEEE80211_M_WDS:
441			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
442			IEEE80211_ADDR_COPY(wh->i_addr1, da);
443			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
444			IEEE80211_ADDR_COPY(wh->i_addr3, da);
445			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
446			break;
447		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
448			break;
449		}
450	} else {
451		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
452		IEEE80211_ADDR_COPY(wh->i_addr1, da);
453		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
454		IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
455	}
456	*(uint16_t *)&wh->i_dur[0] = 0;
457	*(uint16_t *)&wh->i_seq[0] =
458	    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
459	ni->ni_txseqs[tid]++;
460#undef WH4
461}
462
463/*
464 * Send a management frame to the specified node.  The node pointer
465 * must have a reference as the pointer will be passed to the driver
466 * and potentially held for a long time.  If the frame is successfully
467 * dispatched to the driver, then it is responsible for freeing the
468 * reference (and potentially free'ing up any associated storage);
469 * otherwise deal with reclaiming any reference (on error).
470 */
471int
472ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
473	struct ieee80211_bpf_params *params)
474{
475	struct ieee80211vap *vap = ni->ni_vap;
476	struct ieee80211com *ic = ni->ni_ic;
477	struct ieee80211_frame *wh;
478
479	KASSERT(ni != NULL, ("null node"));
480
481	if (vap->iv_state == IEEE80211_S_CAC) {
482		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
483		    ni, "block %s frame in CAC state",
484			ieee80211_mgt_subtype_name[
485			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
486				IEEE80211_FC0_SUBTYPE_SHIFT]);
487		vap->iv_stats.is_tx_badstate++;
488		ieee80211_free_node(ni);
489		m_freem(m);
490		return EIO;		/* XXX */
491	}
492
493	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
494	if (m == NULL) {
495		ieee80211_free_node(ni);
496		return ENOMEM;
497	}
498
499	wh = mtod(m, struct ieee80211_frame *);
500	ieee80211_send_setup(ni, wh,
501	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
502	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
503	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
504		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
505		    "encrypting frame (%s)", __func__);
506		wh->i_fc[1] |= IEEE80211_FC1_WEP;
507	}
508	m->m_flags |= M_ENCAP;		/* mark encapsulated */
509
510	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
511	M_WME_SETAC(m, params->ibp_pri);
512
513#ifdef IEEE80211_DEBUG
514	/* avoid printing too many frames */
515	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
516	    ieee80211_msg_dumppkts(vap)) {
517		printf("[%s] send %s on channel %u\n",
518		    ether_sprintf(wh->i_addr1),
519		    ieee80211_mgt_subtype_name[
520			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
521				IEEE80211_FC0_SUBTYPE_SHIFT],
522		    ieee80211_chan2ieee(ic, ic->ic_curchan));
523	}
524#endif
525	IEEE80211_NODE_STAT(ni, tx_mgmt);
526
527	return ic->ic_raw_xmit(ni, m, params);
528}
529
530/*
531 * Send a null data frame to the specified node.  If the station
532 * is setup for QoS then a QoS Null Data frame is constructed.
533 * If this is a WDS station then a 4-address frame is constructed.
534 *
535 * NB: the caller is assumed to have setup a node reference
536 *     for use; this is necessary to deal with a race condition
537 *     when probing for inactive stations.  Like ieee80211_mgmt_output
538 *     we must cleanup any node reference on error;  however we
539 *     can safely just unref it as we know it will never be the
540 *     last reference to the node.
541 */
542int
543ieee80211_send_nulldata(struct ieee80211_node *ni)
544{
545	struct ieee80211vap *vap = ni->ni_vap;
546	struct ieee80211com *ic = ni->ni_ic;
547	struct mbuf *m;
548	struct ieee80211_frame *wh;
549	int hdrlen;
550	uint8_t *frm;
551
552	if (vap->iv_state == IEEE80211_S_CAC) {
553		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
554		    ni, "block %s frame in CAC state", "null data");
555		ieee80211_unref_node(&ni);
556		vap->iv_stats.is_tx_badstate++;
557		return EIO;		/* XXX */
558	}
559
560	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
561		hdrlen = sizeof(struct ieee80211_qosframe);
562	else
563		hdrlen = sizeof(struct ieee80211_frame);
564	/* NB: only WDS vap's get 4-address frames */
565	if (vap->iv_opmode == IEEE80211_M_WDS)
566		hdrlen += IEEE80211_ADDR_LEN;
567	if (ic->ic_flags & IEEE80211_F_DATAPAD)
568		hdrlen = roundup(hdrlen, sizeof(uint32_t));
569
570	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
571	if (m == NULL) {
572		/* XXX debug msg */
573		ieee80211_unref_node(&ni);
574		vap->iv_stats.is_tx_nobuf++;
575		return ENOMEM;
576	}
577	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
578	    ("leading space %zd", M_LEADINGSPACE(m)));
579	M_PREPEND(m, hdrlen, M_DONTWAIT);
580	if (m == NULL) {
581		/* NB: cannot happen */
582		ieee80211_free_node(ni);
583		return ENOMEM;
584	}
585
586	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
587	if (ni->ni_flags & IEEE80211_NODE_QOS) {
588		const int tid = WME_AC_TO_TID(WME_AC_BE);
589		uint8_t *qos;
590
591		ieee80211_send_setup(ni, wh,
592		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
593		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
594
595		if (vap->iv_opmode == IEEE80211_M_WDS)
596			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
597		else
598			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
599		qos[0] = tid & IEEE80211_QOS_TID;
600		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
601			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
602		qos[1] = 0;
603	} else {
604		ieee80211_send_setup(ni, wh,
605		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
606		    IEEE80211_NONQOS_TID,
607		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
608	}
609	if (vap->iv_opmode != IEEE80211_M_WDS) {
610		/* NB: power management bit is never sent by an AP */
611		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
612		    vap->iv_opmode != IEEE80211_M_HOSTAP)
613			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
614	}
615	m->m_len = m->m_pkthdr.len = hdrlen;
616	m->m_flags |= M_ENCAP;		/* mark encapsulated */
617
618	M_WME_SETAC(m, WME_AC_BE);
619
620	IEEE80211_NODE_STAT(ni, tx_data);
621
622	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
623	    "send %snull data frame on channel %u, pwr mgt %s",
624	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
625	    ieee80211_chan2ieee(ic, ic->ic_curchan),
626	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
627
628	return ic->ic_raw_xmit(ni, m, NULL);
629}
630
631/*
632 * Assign priority to a frame based on any vlan tag assigned
633 * to the station and/or any Diffserv setting in an IP header.
634 * Finally, if an ACM policy is setup (in station mode) it's
635 * applied.
636 */
637int
638ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
639{
640	const struct ether_header *eh = mtod(m, struct ether_header *);
641	int v_wme_ac, d_wme_ac, ac;
642
643	/*
644	 * Always promote PAE/EAPOL frames to high priority.
645	 */
646	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
647		/* NB: mark so others don't need to check header */
648		m->m_flags |= M_EAPOL;
649		ac = WME_AC_VO;
650		goto done;
651	}
652	/*
653	 * Non-qos traffic goes to BE.
654	 */
655	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
656		ac = WME_AC_BE;
657		goto done;
658	}
659
660	/*
661	 * If node has a vlan tag then all traffic
662	 * to it must have a matching tag.
663	 */
664	v_wme_ac = 0;
665	if (ni->ni_vlan != 0) {
666		 if ((m->m_flags & M_VLANTAG) == 0) {
667			IEEE80211_NODE_STAT(ni, tx_novlantag);
668			return 1;
669		}
670		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
671		    EVL_VLANOFTAG(ni->ni_vlan)) {
672			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
673			return 1;
674		}
675		/* map vlan priority to AC */
676		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
677	}
678
679#ifdef INET
680	if (eh->ether_type == htons(ETHERTYPE_IP)) {
681		uint8_t tos;
682		/*
683		 * IP frame, map the DSCP bits from the TOS field.
684		 */
685		/* XXX m_copydata may be too slow for fast path */
686		/* NB: ip header may not be in first mbuf */
687		m_copydata(m, sizeof(struct ether_header) +
688		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
689		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
690		d_wme_ac = TID_TO_WME_AC(tos);
691	} else {
692#endif /* INET */
693		d_wme_ac = WME_AC_BE;
694#ifdef INET
695	}
696#endif
697	/*
698	 * Use highest priority AC.
699	 */
700	if (v_wme_ac > d_wme_ac)
701		ac = v_wme_ac;
702	else
703		ac = d_wme_ac;
704
705	/*
706	 * Apply ACM policy.
707	 */
708	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
709		static const int acmap[4] = {
710			WME_AC_BK,	/* WME_AC_BE */
711			WME_AC_BK,	/* WME_AC_BK */
712			WME_AC_BE,	/* WME_AC_VI */
713			WME_AC_VI,	/* WME_AC_VO */
714		};
715		struct ieee80211com *ic = ni->ni_ic;
716
717		while (ac != WME_AC_BK &&
718		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
719			ac = acmap[ac];
720	}
721done:
722	M_WME_SETAC(m, ac);
723	return 0;
724}
725
726/*
727 * Insure there is sufficient contiguous space to encapsulate the
728 * 802.11 data frame.  If room isn't already there, arrange for it.
729 * Drivers and cipher modules assume we have done the necessary work
730 * and fail rudely if they don't find the space they need.
731 */
732static struct mbuf *
733ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
734	struct ieee80211_key *key, struct mbuf *m)
735{
736#define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
737	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
738
739	if (key != NULL) {
740		/* XXX belongs in crypto code? */
741		needed_space += key->wk_cipher->ic_header;
742		/* XXX frags */
743		/*
744		 * When crypto is being done in the host we must insure
745		 * the data are writable for the cipher routines; clone
746		 * a writable mbuf chain.
747		 * XXX handle SWMIC specially
748		 */
749		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
750			m = m_unshare(m, M_NOWAIT);
751			if (m == NULL) {
752				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
753				    "%s: cannot get writable mbuf\n", __func__);
754				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
755				return NULL;
756			}
757		}
758	}
759	/*
760	 * We know we are called just before stripping an Ethernet
761	 * header and prepending an LLC header.  This means we know
762	 * there will be
763	 *	sizeof(struct ether_header) - sizeof(struct llc)
764	 * bytes recovered to which we need additional space for the
765	 * 802.11 header and any crypto header.
766	 */
767	/* XXX check trailing space and copy instead? */
768	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
769		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
770		if (n == NULL) {
771			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
772			    "%s: cannot expand storage\n", __func__);
773			vap->iv_stats.is_tx_nobuf++;
774			m_freem(m);
775			return NULL;
776		}
777		KASSERT(needed_space <= MHLEN,
778		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
779		/*
780		 * Setup new mbuf to have leading space to prepend the
781		 * 802.11 header and any crypto header bits that are
782		 * required (the latter are added when the driver calls
783		 * back to ieee80211_crypto_encap to do crypto encapsulation).
784		 */
785		/* NB: must be first 'cuz it clobbers m_data */
786		m_move_pkthdr(n, m);
787		n->m_len = 0;			/* NB: m_gethdr does not set */
788		n->m_data += needed_space;
789		/*
790		 * Pull up Ethernet header to create the expected layout.
791		 * We could use m_pullup but that's overkill (i.e. we don't
792		 * need the actual data) and it cannot fail so do it inline
793		 * for speed.
794		 */
795		/* NB: struct ether_header is known to be contiguous */
796		n->m_len += sizeof(struct ether_header);
797		m->m_len -= sizeof(struct ether_header);
798		m->m_data += sizeof(struct ether_header);
799		/*
800		 * Replace the head of the chain.
801		 */
802		n->m_next = m;
803		m = n;
804	}
805	return m;
806#undef TO_BE_RECLAIMED
807}
808
809/*
810 * Return the transmit key to use in sending a unicast frame.
811 * If a unicast key is set we use that.  When no unicast key is set
812 * we fall back to the default transmit key.
813 */
814static __inline struct ieee80211_key *
815ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
816	struct ieee80211_node *ni)
817{
818	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
819		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
820		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
821			return NULL;
822		return &vap->iv_nw_keys[vap->iv_def_txkey];
823	} else {
824		return &ni->ni_ucastkey;
825	}
826}
827
828/*
829 * Return the transmit key to use in sending a multicast frame.
830 * Multicast traffic always uses the group key which is installed as
831 * the default tx key.
832 */
833static __inline struct ieee80211_key *
834ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
835	struct ieee80211_node *ni)
836{
837	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
838	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
839		return NULL;
840	return &vap->iv_nw_keys[vap->iv_def_txkey];
841}
842
843/*
844 * Encapsulate an outbound data frame.  The mbuf chain is updated.
845 * If an error is encountered NULL is returned.  The caller is required
846 * to provide a node reference and pullup the ethernet header in the
847 * first mbuf.
848 *
849 * NB: Packet is assumed to be processed by ieee80211_classify which
850 *     marked EAPOL frames w/ M_EAPOL.
851 */
852struct mbuf *
853ieee80211_encap(struct ieee80211_node *ni, struct mbuf *m)
854{
855#define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
856	struct ieee80211vap *vap = ni->ni_vap;
857	struct ieee80211com *ic = ni->ni_ic;
858	struct ether_header eh;
859	struct ieee80211_frame *wh;
860	struct ieee80211_key *key;
861	struct llc *llc;
862	int hdrsize, hdrspace, datalen, addqos, txfrag, isff, is4addr;
863
864	/*
865	 * Copy existing Ethernet header to a safe place.  The
866	 * rest of the code assumes it's ok to strip it when
867	 * reorganizing state for the final encapsulation.
868	 */
869	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
870	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
871
872	/*
873	 * Insure space for additional headers.  First identify
874	 * transmit key to use in calculating any buffer adjustments
875	 * required.  This is also used below to do privacy
876	 * encapsulation work.  Then calculate the 802.11 header
877	 * size and any padding required by the driver.
878	 *
879	 * Note key may be NULL if we fall back to the default
880	 * transmit key and that is not set.  In that case the
881	 * buffer may not be expanded as needed by the cipher
882	 * routines, but they will/should discard it.
883	 */
884	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
885		if (vap->iv_opmode == IEEE80211_M_STA ||
886		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
887		    (vap->iv_opmode == IEEE80211_M_WDS &&
888		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
889			key = ieee80211_crypto_getucastkey(vap, ni);
890		else
891			key = ieee80211_crypto_getmcastkey(vap, ni);
892		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
893			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
894			    eh.ether_dhost,
895			    "no default transmit key (%s) deftxkey %u",
896			    __func__, vap->iv_def_txkey);
897			vap->iv_stats.is_tx_nodefkey++;
898			goto bad;
899		}
900	} else
901		key = NULL;
902	/*
903	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
904	 * frames so suppress use.  This may be an issue if other
905	 * ap's require all data frames to be QoS-encapsulated
906	 * once negotiated in which case we'll need to make this
907	 * configurable.
908	 */
909	addqos = (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) &&
910		 (m->m_flags & M_EAPOL) == 0;
911	if (addqos)
912		hdrsize = sizeof(struct ieee80211_qosframe);
913	else
914		hdrsize = sizeof(struct ieee80211_frame);
915	/*
916	 * 4-address frames need to be generated for:
917	 * o packets sent through a WDS vap (M_WDS || IEEE80211_M_WDS)
918	 * o packets relayed by a station operating with dynamic WDS
919	 *   (IEEE80211_M_STA+IEEE80211_F_DWDS and src address)
920	 */
921	is4addr = (m->m_flags & M_WDS) ||
922	    vap->iv_opmode == IEEE80211_M_WDS ||	/* XXX redundant? */
923	    (vap->iv_opmode == IEEE80211_M_STA &&
924	     (vap->iv_flags & IEEE80211_F_DWDS) &&
925	     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
926	if (is4addr)
927		hdrsize += IEEE80211_ADDR_LEN;
928	/*
929	 * Honor driver DATAPAD requirement.
930	 */
931	if (ic->ic_flags & IEEE80211_F_DATAPAD)
932		hdrspace = roundup(hdrsize, sizeof(uint32_t));
933	else
934		hdrspace = hdrsize;
935
936	if ((isff = m->m_flags & M_FF) != 0) {
937		struct mbuf *m2;
938		struct ether_header eh2;
939
940		/*
941		 * Fast frame encapsulation.  There must be two packets
942		 * chained with m_nextpkt.  We do header adjustment for
943		 * each, add the tunnel encapsulation, and then concatenate
944		 * the mbuf chains to form a single frame for transmission.
945		 */
946		m2 = m->m_nextpkt;
947		if (m2 == NULL) {
948			IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
949				"%s: only one frame\n", __func__);
950			goto bad;
951		}
952		m->m_nextpkt = NULL;
953		/*
954		 * Include fast frame headers in adjusting header
955		 * layout; this allocates space according to what
956		 * ieee80211_encap_fastframe will do.
957		 */
958		m = ieee80211_mbuf_adjust(vap,
959			hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 2 +
960			    sizeof(struct ether_header),
961			key, m);
962		if (m == NULL) {
963			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
964			m_freem(m2);
965			goto bad;
966		}
967		/*
968		 * Copy second frame's Ethernet header out of line
969		 * and adjust for encapsulation headers.  Note that
970		 * we make room for padding in case there isn't room
971		 * at the end of first frame.
972		 */
973		KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!"));
974		ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t));
975		m2 = ieee80211_mbuf_adjust(vap,
976			ATH_FF_MAX_HDR_PAD + sizeof(struct ether_header),
977			NULL, m2);
978		if (m2 == NULL) {
979			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
980			goto bad;
981		}
982		m = ieee80211_encap_fastframe(vap, m, &eh, m2, &eh2);
983		if (m == NULL)
984			goto bad;
985	} else {
986		/*
987		 * Normal frame.
988		 */
989		m = ieee80211_mbuf_adjust(vap, hdrspace, key, m);
990		if (m == NULL) {
991			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
992			goto bad;
993		}
994		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
995		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
996		llc = mtod(m, struct llc *);
997		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
998		llc->llc_control = LLC_UI;
999		llc->llc_snap.org_code[0] = 0;
1000		llc->llc_snap.org_code[1] = 0;
1001		llc->llc_snap.org_code[2] = 0;
1002		llc->llc_snap.ether_type = eh.ether_type;
1003	}
1004	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1005
1006	M_PREPEND(m, hdrspace, M_DONTWAIT);
1007	if (m == NULL) {
1008		vap->iv_stats.is_tx_nobuf++;
1009		goto bad;
1010	}
1011	wh = mtod(m, struct ieee80211_frame *);
1012	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1013	*(uint16_t *)wh->i_dur = 0;
1014	if (is4addr) {
1015		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1016		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1017		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1018		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1019		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1020	} else switch (vap->iv_opmode) {
1021	case IEEE80211_M_STA:
1022		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1023		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1024		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1025		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1026		break;
1027	case IEEE80211_M_IBSS:
1028	case IEEE80211_M_AHDEMO:
1029		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1030		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1031		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1032		/*
1033		 * NB: always use the bssid from iv_bss as the
1034		 *     neighbor's may be stale after an ibss merge
1035		 */
1036		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1037		break;
1038	case IEEE80211_M_HOSTAP:
1039		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1040		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1041		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1042		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1043		break;
1044	case IEEE80211_M_MONITOR:
1045	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1046		goto bad;
1047	}
1048	if (m->m_flags & M_MORE_DATA)
1049		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1050	if (addqos) {
1051		uint8_t *qos;
1052		int ac, tid;
1053
1054		if (is4addr) {
1055			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1056		} else
1057			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1058		ac = M_WME_GETAC(m);
1059		/* map from access class/queue to 11e header priorty value */
1060		tid = WME_AC_TO_TID(ac);
1061		qos[0] = tid & IEEE80211_QOS_TID;
1062		/*
1063		 * Check if A-MPDU tx aggregation is setup or if we
1064		 * should try to enable it.  The sta must be associated
1065		 * with HT and A-MPDU enabled for use.  When the policy
1066		 * routine decides we should enable A-MPDU we issue an
1067		 * ADDBA request and wait for a reply.  The frame being
1068		 * encapsulated will go out w/o using A-MPDU, or possibly
1069		 * it might be collected by the driver and held/retransmit.
1070		 * The default ic_ampdu_enable routine handles staggering
1071		 * ADDBA requests in case the receiver NAK's us or we are
1072		 * otherwise unable to establish a BA stream.
1073		 */
1074		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
1075		    (vap->iv_flags_ext & IEEE80211_FEXT_AMPDU_TX)) {
1076			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[ac];
1077
1078			ieee80211_txampdu_count_packet(tap);
1079			if (IEEE80211_AMPDU_RUNNING(tap)) {
1080				/*
1081				 * Operational, mark frame for aggregation.
1082				 *
1083				 * NB: We support only immediate BA's for
1084				 * AMPDU which means we set the QoS control
1085				 * field to "normal ack" (0) to get "implicit
1086				 * block ack" behaviour.
1087				 */
1088				m->m_flags |= M_AMPDU_MPDU;
1089			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
1090			    ic->ic_ampdu_enable(ni, tap)) {
1091				/*
1092				 * Not negotiated yet, request service.
1093				 */
1094				ieee80211_ampdu_request(ni, tap);
1095			}
1096		}
1097		/* XXX works even when BA marked above */
1098		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1099			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1100		qos[1] = 0;
1101		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1102
1103		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1104			/*
1105			 * NB: don't assign a sequence # to potential
1106			 * aggregates; we expect this happens at the
1107			 * point the frame comes off any aggregation q
1108			 * as otherwise we may introduce holes in the
1109			 * BA sequence space and/or make window accouting
1110			 * more difficult.
1111			 *
1112			 * XXX may want to control this with a driver
1113			 * capability; this may also change when we pull
1114			 * aggregation up into net80211
1115			 */
1116			*(uint16_t *)wh->i_seq =
1117			    htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT);
1118			ni->ni_txseqs[tid]++;
1119		}
1120	} else {
1121		*(uint16_t *)wh->i_seq =
1122		    htole16(ni->ni_txseqs[IEEE80211_NONQOS_TID] << IEEE80211_SEQ_SEQ_SHIFT);
1123		ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1124	}
1125	/* check if xmit fragmentation is required */
1126	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1127	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1128	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1129	    !isff);		/* NB: don't fragment ff's */
1130	if (key != NULL) {
1131		/*
1132		 * IEEE 802.1X: send EAPOL frames always in the clear.
1133		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1134		 */
1135		if ((m->m_flags & M_EAPOL) == 0 ||
1136		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1137		     (vap->iv_opmode == IEEE80211_M_STA ?
1138		      !IEEE80211_KEY_UNDEFINED(key) :
1139		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1140			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1141			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1142				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1143				    eh.ether_dhost,
1144				    "%s", "enmic failed, discard frame");
1145				vap->iv_stats.is_crypto_enmicfail++;
1146				goto bad;
1147			}
1148		}
1149	}
1150	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1151	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1152		goto bad;
1153
1154	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1155
1156	IEEE80211_NODE_STAT(ni, tx_data);
1157	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1158		IEEE80211_NODE_STAT(ni, tx_mcast);
1159	else
1160		IEEE80211_NODE_STAT(ni, tx_ucast);
1161	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1162
1163	/* XXX fragmented frames not handled */
1164	if (bpf_peers_present(vap->iv_rawbpf))
1165		bpf_mtap(vap->iv_rawbpf, m);
1166
1167	return m;
1168bad:
1169	if (m != NULL)
1170		m_freem(m);
1171	return NULL;
1172#undef WH4
1173}
1174
1175/*
1176 * Do Ethernet-LLC encapsulation for each payload in a fast frame
1177 * tunnel encapsulation.  The frame is assumed to have an Ethernet
1178 * header at the front that must be stripped before prepending the
1179 * LLC followed by the Ethernet header passed in (with an Ethernet
1180 * type that specifies the payload size).
1181 */
1182static struct mbuf *
1183ieee80211_encap1(struct ieee80211vap *vap, struct mbuf *m,
1184	const struct ether_header *eh)
1185{
1186	struct llc *llc;
1187	uint16_t payload;
1188
1189	/* XXX optimize by combining m_adj+M_PREPEND */
1190	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1191	llc = mtod(m, struct llc *);
1192	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1193	llc->llc_control = LLC_UI;
1194	llc->llc_snap.org_code[0] = 0;
1195	llc->llc_snap.org_code[1] = 0;
1196	llc->llc_snap.org_code[2] = 0;
1197	llc->llc_snap.ether_type = eh->ether_type;
1198	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
1199
1200	M_PREPEND(m, sizeof(struct ether_header), M_DONTWAIT);
1201	if (m == NULL) {		/* XXX cannot happen */
1202		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1203			"%s: no space for ether_header\n", __func__);
1204		vap->iv_stats.is_tx_nobuf++;
1205		return NULL;
1206	}
1207	ETHER_HEADER_COPY(mtod(m, void *), eh);
1208	mtod(m, struct ether_header *)->ether_type = htons(payload);
1209	return m;
1210}
1211
1212/*
1213 * Do fast frame tunnel encapsulation.  The two frames and
1214 * Ethernet headers are supplied.  The caller is assumed to
1215 * have arrange for space in the mbuf chains for encapsulating
1216 * headers (to avoid major mbuf fragmentation).
1217 *
1218 * The encapsulated frame is returned or NULL if there is a
1219 * problem (should not happen).
1220 */
1221static struct mbuf *
1222ieee80211_encap_fastframe(struct ieee80211vap *vap,
1223	struct mbuf *m1, const struct ether_header *eh1,
1224	struct mbuf *m2, const struct ether_header *eh2)
1225{
1226	struct llc *llc;
1227	struct mbuf *m;
1228	int pad;
1229
1230	/*
1231	 * First, each frame gets a standard encapsulation.
1232	 */
1233	m1 = ieee80211_encap1(vap, m1, eh1);
1234	if (m1 == NULL) {
1235		m_freem(m2);
1236		return NULL;
1237	}
1238	m2 = ieee80211_encap1(vap, m2, eh2);
1239	if (m2 == NULL) {
1240		m_freem(m1);
1241		return NULL;
1242	}
1243
1244	/*
1245	 * Pad leading frame to a 4-byte boundary.  If there
1246	 * is space at the end of the first frame, put it
1247	 * there; otherwise prepend to the front of the second
1248	 * frame.  We know doing the second will always work
1249	 * because we reserve space above.  We prefer appending
1250	 * as this typically has better DMA alignment properties.
1251	 */
1252	for (m = m1; m->m_next != NULL; m = m->m_next)
1253		;
1254	pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len;
1255	if (pad) {
1256		if (M_TRAILINGSPACE(m) < pad) {		/* prepend to second */
1257			m2->m_data -= pad;
1258			m2->m_len += pad;
1259			m2->m_pkthdr.len += pad;
1260		} else {				/* append to first */
1261			m->m_len += pad;
1262			m1->m_pkthdr.len += pad;
1263		}
1264	}
1265
1266	/*
1267	 * Now, stick 'em together and prepend the tunnel headers;
1268	 * first the Atheros tunnel header (all zero for now) and
1269	 * then a special fast frame LLC.
1270	 *
1271	 * XXX optimize by prepending together
1272	 */
1273	m->m_next = m2;			/* NB: last mbuf from above */
1274	m1->m_pkthdr.len += m2->m_pkthdr.len;
1275	M_PREPEND(m1, sizeof(uint32_t)+2, M_DONTWAIT);
1276	if (m1 == NULL) {		/* XXX cannot happen */
1277		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1278			"%s: no space for tunnel header\n", __func__);
1279		vap->iv_stats.is_tx_nobuf++;
1280		return NULL;
1281	}
1282	memset(mtod(m1, void *), 0, sizeof(uint32_t)+2);
1283
1284	M_PREPEND(m1, sizeof(struct llc), M_DONTWAIT);
1285	if (m1 == NULL) {		/* XXX cannot happen */
1286		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
1287			"%s: no space for llc header\n", __func__);
1288		vap->iv_stats.is_tx_nobuf++;
1289		return NULL;
1290	}
1291	llc = mtod(m1, struct llc *);
1292	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1293	llc->llc_control = LLC_UI;
1294	llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0;
1295	llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1;
1296	llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2;
1297	llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE);
1298
1299	vap->iv_stats.is_ff_encap++;
1300
1301	return m1;
1302}
1303
1304/*
1305 * Fragment the frame according to the specified mtu.
1306 * The size of the 802.11 header (w/o padding) is provided
1307 * so we don't need to recalculate it.  We create a new
1308 * mbuf for each fragment and chain it through m_nextpkt;
1309 * we might be able to optimize this by reusing the original
1310 * packet's mbufs but that is significantly more complicated.
1311 */
1312static int
1313ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1314	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1315{
1316	struct ieee80211_frame *wh, *whf;
1317	struct mbuf *m, *prev, *next;
1318	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1319
1320	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1321	KASSERT(m0->m_pkthdr.len > mtu,
1322		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1323
1324	wh = mtod(m0, struct ieee80211_frame *);
1325	/* NB: mark the first frag; it will be propagated below */
1326	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1327	totalhdrsize = hdrsize + ciphdrsize;
1328	fragno = 1;
1329	off = mtu - ciphdrsize;
1330	remainder = m0->m_pkthdr.len - off;
1331	prev = m0;
1332	do {
1333		fragsize = totalhdrsize + remainder;
1334		if (fragsize > mtu)
1335			fragsize = mtu;
1336		/* XXX fragsize can be >2048! */
1337		KASSERT(fragsize < MCLBYTES,
1338			("fragment size %u too big!", fragsize));
1339		if (fragsize > MHLEN)
1340			m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1341		else
1342			m = m_gethdr(M_DONTWAIT, MT_DATA);
1343		if (m == NULL)
1344			goto bad;
1345		/* leave room to prepend any cipher header */
1346		m_align(m, fragsize - ciphdrsize);
1347
1348		/*
1349		 * Form the header in the fragment.  Note that since
1350		 * we mark the first fragment with the MORE_FRAG bit
1351		 * it automatically is propagated to each fragment; we
1352		 * need only clear it on the last fragment (done below).
1353		 */
1354		whf = mtod(m, struct ieee80211_frame *);
1355		memcpy(whf, wh, hdrsize);
1356		*(uint16_t *)&whf->i_seq[0] |= htole16(
1357			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1358				IEEE80211_SEQ_FRAG_SHIFT);
1359		fragno++;
1360
1361		payload = fragsize - totalhdrsize;
1362		/* NB: destination is known to be contiguous */
1363		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1364		m->m_len = hdrsize + payload;
1365		m->m_pkthdr.len = hdrsize + payload;
1366		m->m_flags |= M_FRAG;
1367
1368		/* chain up the fragment */
1369		prev->m_nextpkt = m;
1370		prev = m;
1371
1372		/* deduct fragment just formed */
1373		remainder -= payload;
1374		off += payload;
1375	} while (remainder != 0);
1376	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1377
1378	/* strip first mbuf now that everything has been copied */
1379	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1380	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1381
1382	vap->iv_stats.is_tx_fragframes++;
1383	vap->iv_stats.is_tx_frags += fragno-1;
1384
1385	return 1;
1386bad:
1387	/* reclaim fragments but leave original frame for caller to free */
1388	for (m = m0->m_nextpkt; m != NULL; m = next) {
1389		next = m->m_nextpkt;
1390		m->m_nextpkt = NULL;		/* XXX paranoid */
1391		m_freem(m);
1392	}
1393	m0->m_nextpkt = NULL;
1394	return 0;
1395}
1396
1397/*
1398 * Add a supported rates element id to a frame.
1399 */
1400static uint8_t *
1401ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1402{
1403	int nrates;
1404
1405	*frm++ = IEEE80211_ELEMID_RATES;
1406	nrates = rs->rs_nrates;
1407	if (nrates > IEEE80211_RATE_SIZE)
1408		nrates = IEEE80211_RATE_SIZE;
1409	*frm++ = nrates;
1410	memcpy(frm, rs->rs_rates, nrates);
1411	return frm + nrates;
1412}
1413
1414/*
1415 * Add an extended supported rates element id to a frame.
1416 */
1417static uint8_t *
1418ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1419{
1420	/*
1421	 * Add an extended supported rates element if operating in 11g mode.
1422	 */
1423	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1424		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1425		*frm++ = IEEE80211_ELEMID_XRATES;
1426		*frm++ = nrates;
1427		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1428		frm += nrates;
1429	}
1430	return frm;
1431}
1432
1433/*
1434 * Add an ssid element to a frame.
1435 */
1436static uint8_t *
1437ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1438{
1439	*frm++ = IEEE80211_ELEMID_SSID;
1440	*frm++ = len;
1441	memcpy(frm, ssid, len);
1442	return frm + len;
1443}
1444
1445/*
1446 * Add an erp element to a frame.
1447 */
1448static uint8_t *
1449ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1450{
1451	uint8_t erp;
1452
1453	*frm++ = IEEE80211_ELEMID_ERP;
1454	*frm++ = 1;
1455	erp = 0;
1456	if (ic->ic_nonerpsta != 0)
1457		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1458	if (ic->ic_flags & IEEE80211_F_USEPROT)
1459		erp |= IEEE80211_ERP_USE_PROTECTION;
1460	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1461		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1462	*frm++ = erp;
1463	return frm;
1464}
1465
1466/*
1467 * Add a CFParams element to a frame.
1468 */
1469static uint8_t *
1470ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1471{
1472#define	ADDSHORT(frm, v) do {			\
1473	frm[0] = (v) & 0xff;			\
1474	frm[1] = (v) >> 8;			\
1475	frm += 2;				\
1476} while (0)
1477	*frm++ = IEEE80211_ELEMID_CFPARMS;
1478	*frm++ = 6;
1479	*frm++ = 0;		/* CFP count */
1480	*frm++ = 2;		/* CFP period */
1481	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1482	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1483	return frm;
1484#undef ADDSHORT
1485}
1486
1487static __inline uint8_t *
1488add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1489{
1490	memcpy(frm, ie->ie_data, ie->ie_len);
1491	return frm + ie->ie_len;
1492}
1493
1494static __inline uint8_t *
1495add_ie(uint8_t *frm, const uint8_t *ie)
1496{
1497	memcpy(frm, ie, 2 + ie[1]);
1498	return frm + 2 + ie[1];
1499}
1500
1501#define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1502/*
1503 * Add a WME information element to a frame.
1504 */
1505static uint8_t *
1506ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1507{
1508	static const struct ieee80211_wme_info info = {
1509		.wme_id		= IEEE80211_ELEMID_VENDOR,
1510		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1511		.wme_oui	= { WME_OUI_BYTES },
1512		.wme_type	= WME_OUI_TYPE,
1513		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1514		.wme_version	= WME_VERSION,
1515		.wme_info	= 0,
1516	};
1517	memcpy(frm, &info, sizeof(info));
1518	return frm + sizeof(info);
1519}
1520
1521/*
1522 * Add a WME parameters element to a frame.
1523 */
1524static uint8_t *
1525ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1526{
1527#define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1528#define	ADDSHORT(frm, v) do {			\
1529	frm[0] = (v) & 0xff;			\
1530	frm[1] = (v) >> 8;			\
1531	frm += 2;				\
1532} while (0)
1533	/* NB: this works 'cuz a param has an info at the front */
1534	static const struct ieee80211_wme_info param = {
1535		.wme_id		= IEEE80211_ELEMID_VENDOR,
1536		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1537		.wme_oui	= { WME_OUI_BYTES },
1538		.wme_type	= WME_OUI_TYPE,
1539		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1540		.wme_version	= WME_VERSION,
1541	};
1542	int i;
1543
1544	memcpy(frm, &param, sizeof(param));
1545	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1546	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1547	*frm++ = 0;					/* reserved field */
1548	for (i = 0; i < WME_NUM_AC; i++) {
1549		const struct wmeParams *ac =
1550		       &wme->wme_bssChanParams.cap_wmeParams[i];
1551		*frm++ = SM(i, WME_PARAM_ACI)
1552		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1553		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1554		       ;
1555		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1556		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1557		       ;
1558		ADDSHORT(frm, ac->wmep_txopLimit);
1559	}
1560	return frm;
1561#undef SM
1562#undef ADDSHORT
1563}
1564#undef WME_OUI_BYTES
1565
1566#define	ATH_OUI_BYTES		0x00, 0x03, 0x7f
1567/*
1568 * Add a WME information element to a frame.
1569 */
1570static uint8_t *
1571ieee80211_add_ath(uint8_t *frm, uint8_t caps, uint16_t defkeyix)
1572{
1573	static const struct ieee80211_ath_ie info = {
1574		.ath_id		= IEEE80211_ELEMID_VENDOR,
1575		.ath_len	= sizeof(struct ieee80211_ath_ie) - 2,
1576		.ath_oui	= { ATH_OUI_BYTES },
1577		.ath_oui_type	= ATH_OUI_TYPE,
1578		.ath_oui_subtype= ATH_OUI_SUBTYPE,
1579		.ath_version	= ATH_OUI_VERSION,
1580	};
1581	struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm;
1582
1583	memcpy(frm, &info, sizeof(info));
1584	ath->ath_capability = caps;
1585	ath->ath_defkeyix[0] = (defkeyix & 0xff);
1586	ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff);
1587	return frm + sizeof(info);
1588}
1589#undef ATH_OUI_BYTES
1590
1591/*
1592 * Add an 11h Power Constraint element to a frame.
1593 */
1594static uint8_t *
1595ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1596{
1597	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1598	/* XXX per-vap tx power limit? */
1599	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1600
1601	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1602	frm[1] = 1;
1603	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1604	return frm + 3;
1605}
1606
1607/*
1608 * Add an 11h Power Capability element to a frame.
1609 */
1610static uint8_t *
1611ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1612{
1613	frm[0] = IEEE80211_ELEMID_PWRCAP;
1614	frm[1] = 2;
1615	frm[2] = c->ic_minpower;
1616	frm[3] = c->ic_maxpower;
1617	return frm + 4;
1618}
1619
1620/*
1621 * Add an 11h Supported Channels element to a frame.
1622 */
1623static uint8_t *
1624ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1625{
1626	static const int ielen = 26;
1627
1628	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1629	frm[1] = ielen;
1630	/* XXX not correct */
1631	memcpy(frm+2, ic->ic_chan_avail, ielen);
1632	return frm + 2 + ielen;
1633}
1634
1635/*
1636 * Add an 11h Channel Switch Announcement element to a frame.
1637 * Note that we use the per-vap CSA count to adjust the global
1638 * counter so we can use this routine to form probe response
1639 * frames and get the current count.
1640 */
1641static uint8_t *
1642ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1643{
1644	struct ieee80211com *ic = vap->iv_ic;
1645	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1646
1647	csa->csa_ie = IEEE80211_ELEMID_CHANSWITCHANN;
1648	csa->csa_len = 3;
1649	csa->csa_mode = 1;		/* XXX force quiet on channel */
1650	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1651	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1652	return frm + sizeof(*csa);
1653}
1654
1655/*
1656 * Add an 11h country information element to a frame.
1657 */
1658static uint8_t *
1659ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1660{
1661
1662	if (ic->ic_countryie == NULL ||
1663	    ic->ic_countryie_chan != ic->ic_bsschan) {
1664		/*
1665		 * Handle lazy construction of ie.  This is done on
1666		 * first use and after a channel change that requires
1667		 * re-calculation.
1668		 */
1669		if (ic->ic_countryie != NULL)
1670			free(ic->ic_countryie, M_80211_NODE_IE);
1671		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1672		if (ic->ic_countryie == NULL)
1673			return frm;
1674		ic->ic_countryie_chan = ic->ic_bsschan;
1675	}
1676	return add_appie(frm, ic->ic_countryie);
1677}
1678
1679/*
1680 * Send a probe request frame with the specified ssid
1681 * and any optional information element data.
1682 */
1683int
1684ieee80211_send_probereq(struct ieee80211_node *ni,
1685	const uint8_t sa[IEEE80211_ADDR_LEN],
1686	const uint8_t da[IEEE80211_ADDR_LEN],
1687	const uint8_t bssid[IEEE80211_ADDR_LEN],
1688	const uint8_t *ssid, size_t ssidlen)
1689{
1690	struct ieee80211vap *vap = ni->ni_vap;
1691	struct ieee80211com *ic = ni->ni_ic;
1692	const struct ieee80211_txparam *tp;
1693	struct ieee80211_bpf_params params;
1694	struct ieee80211_frame *wh;
1695	const struct ieee80211_rateset *rs;
1696	struct mbuf *m;
1697	uint8_t *frm;
1698
1699	if (vap->iv_state == IEEE80211_S_CAC) {
1700		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1701		    "block %s frame in CAC state", "probe request");
1702		vap->iv_stats.is_tx_badstate++;
1703		return EIO;		/* XXX */
1704	}
1705
1706	/*
1707	 * Hold a reference on the node so it doesn't go away until after
1708	 * the xmit is complete all the way in the driver.  On error we
1709	 * will remove our reference.
1710	 */
1711	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1712		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1713		__func__, __LINE__,
1714		ni, ether_sprintf(ni->ni_macaddr),
1715		ieee80211_node_refcnt(ni)+1);
1716	ieee80211_ref_node(ni);
1717
1718	/*
1719	 * prreq frame format
1720	 *	[tlv] ssid
1721	 *	[tlv] supported rates
1722	 *	[tlv] RSN (optional)
1723	 *	[tlv] extended supported rates
1724	 *	[tlv] WPA (optional)
1725	 *	[tlv] user-specified ie's
1726	 */
1727	m = ieee80211_getmgtframe(&frm,
1728		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1729	       	 2 + IEEE80211_NWID_LEN
1730	       + 2 + IEEE80211_RATE_SIZE
1731	       + sizeof(struct ieee80211_ie_wpa)
1732	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1733	       + sizeof(struct ieee80211_ie_wpa)
1734	       + (vap->iv_appie_probereq != NULL ?
1735		   vap->iv_appie_probereq->ie_len : 0)
1736	);
1737	if (m == NULL) {
1738		vap->iv_stats.is_tx_nobuf++;
1739		ieee80211_free_node(ni);
1740		return ENOMEM;
1741	}
1742
1743	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1744	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1745	frm = ieee80211_add_rates(frm, rs);
1746	if (vap->iv_flags & IEEE80211_F_WPA2) {
1747		if (vap->iv_rsn_ie != NULL)
1748			frm = add_ie(frm, vap->iv_rsn_ie);
1749		/* XXX else complain? */
1750	}
1751	frm = ieee80211_add_xrates(frm, rs);
1752	if (vap->iv_flags & IEEE80211_F_WPA1) {
1753		if (vap->iv_wpa_ie != NULL)
1754			frm = add_ie(frm, vap->iv_wpa_ie);
1755		/* XXX else complain? */
1756	}
1757	if (vap->iv_appie_probereq != NULL)
1758		frm = add_appie(frm, vap->iv_appie_probereq);
1759	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1760
1761	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1762	    ("leading space %zd", M_LEADINGSPACE(m)));
1763	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
1764	if (m == NULL) {
1765		/* NB: cannot happen */
1766		ieee80211_free_node(ni);
1767		return ENOMEM;
1768	}
1769
1770	wh = mtod(m, struct ieee80211_frame *);
1771	ieee80211_send_setup(ni, wh,
1772	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1773	     IEEE80211_NONQOS_TID, sa, da, bssid);
1774	/* XXX power management? */
1775	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1776
1777	M_WME_SETAC(m, WME_AC_BE);
1778
1779	IEEE80211_NODE_STAT(ni, tx_probereq);
1780	IEEE80211_NODE_STAT(ni, tx_mgmt);
1781
1782	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1783	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1784	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1785	    ssidlen, ssid);
1786
1787	memset(&params, 0, sizeof(params));
1788	params.ibp_pri = M_WME_GETAC(m);
1789	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1790	params.ibp_rate0 = tp->mgmtrate;
1791	if (IEEE80211_IS_MULTICAST(da)) {
1792		params.ibp_flags |= IEEE80211_BPF_NOACK;
1793		params.ibp_try0 = 1;
1794	} else
1795		params.ibp_try0 = tp->maxretry;
1796	params.ibp_power = ni->ni_txpower;
1797	return ic->ic_raw_xmit(ni, m, &params);
1798}
1799
1800/*
1801 * Calculate capability information for mgt frames.
1802 */
1803static uint16_t
1804getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1805{
1806	struct ieee80211com *ic = vap->iv_ic;
1807	uint16_t capinfo;
1808
1809	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1810
1811	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1812		capinfo = IEEE80211_CAPINFO_ESS;
1813	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1814		capinfo = IEEE80211_CAPINFO_IBSS;
1815	else
1816		capinfo = 0;
1817	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1818		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1819	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1820	    IEEE80211_IS_CHAN_2GHZ(chan))
1821		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1822	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1823		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1824	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1825		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1826	return capinfo;
1827}
1828
1829/*
1830 * Send a management frame.  The node is for the destination (or ic_bss
1831 * when in station mode).  Nodes other than ic_bss have their reference
1832 * count bumped to reflect our use for an indeterminant time.
1833 */
1834int
1835ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1836{
1837#define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1838#define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1839	struct ieee80211vap *vap = ni->ni_vap;
1840	struct ieee80211com *ic = ni->ni_ic;
1841	struct ieee80211_node *bss = vap->iv_bss;
1842	struct ieee80211_bpf_params params;
1843	struct mbuf *m;
1844	uint8_t *frm;
1845	uint16_t capinfo;
1846	int has_challenge, is_shared_key, ret, status;
1847
1848	KASSERT(ni != NULL, ("null node"));
1849
1850	/*
1851	 * Hold a reference on the node so it doesn't go away until after
1852	 * the xmit is complete all the way in the driver.  On error we
1853	 * will remove our reference.
1854	 */
1855	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1856		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1857		__func__, __LINE__,
1858		ni, ether_sprintf(ni->ni_macaddr),
1859		ieee80211_node_refcnt(ni)+1);
1860	ieee80211_ref_node(ni);
1861
1862	memset(&params, 0, sizeof(params));
1863	switch (type) {
1864
1865	case IEEE80211_FC0_SUBTYPE_AUTH:
1866		status = arg >> 16;
1867		arg &= 0xffff;
1868		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1869		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1870		    ni->ni_challenge != NULL);
1871
1872		/*
1873		 * Deduce whether we're doing open authentication or
1874		 * shared key authentication.  We do the latter if
1875		 * we're in the middle of a shared key authentication
1876		 * handshake or if we're initiating an authentication
1877		 * request and configured to use shared key.
1878		 */
1879		is_shared_key = has_challenge ||
1880		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1881		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1882		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1883
1884		m = ieee80211_getmgtframe(&frm,
1885			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1886			  3 * sizeof(uint16_t)
1887			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1888				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1889		);
1890		if (m == NULL)
1891			senderr(ENOMEM, is_tx_nobuf);
1892
1893		((uint16_t *)frm)[0] =
1894		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
1895		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
1896		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
1897		((uint16_t *)frm)[2] = htole16(status);/* status */
1898
1899		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
1900			((uint16_t *)frm)[3] =
1901			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
1902			    IEEE80211_ELEMID_CHALLENGE);
1903			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
1904			    IEEE80211_CHALLENGE_LEN);
1905			m->m_pkthdr.len = m->m_len =
1906				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
1907			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
1908				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1909				    "request encrypt frame (%s)", __func__);
1910				/* mark frame for encryption */
1911				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
1912			}
1913		} else
1914			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
1915
1916		/* XXX not right for shared key */
1917		if (status == IEEE80211_STATUS_SUCCESS)
1918			IEEE80211_NODE_STAT(ni, tx_auth);
1919		else
1920			IEEE80211_NODE_STAT(ni, tx_auth_fail);
1921
1922		if (vap->iv_opmode == IEEE80211_M_STA)
1923			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
1924				(void *) vap->iv_state);
1925		break;
1926
1927	case IEEE80211_FC0_SUBTYPE_DEAUTH:
1928		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
1929		    "send station deauthenticate (reason %d)", arg);
1930		m = ieee80211_getmgtframe(&frm,
1931			ic->ic_headroom + sizeof(struct ieee80211_frame),
1932			sizeof(uint16_t));
1933		if (m == NULL)
1934			senderr(ENOMEM, is_tx_nobuf);
1935		*(uint16_t *)frm = htole16(arg);	/* reason */
1936		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
1937
1938		IEEE80211_NODE_STAT(ni, tx_deauth);
1939		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
1940
1941		ieee80211_node_unauthorize(ni);		/* port closed */
1942		break;
1943
1944	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
1945	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
1946		/*
1947		 * asreq frame format
1948		 *	[2] capability information
1949		 *	[2] listen interval
1950		 *	[6*] current AP address (reassoc only)
1951		 *	[tlv] ssid
1952		 *	[tlv] supported rates
1953		 *	[tlv] extended supported rates
1954		 *	[4] power capability (optional)
1955		 *	[28] supported channels (optional)
1956		 *	[tlv] HT capabilities
1957		 *	[tlv] WME (optional)
1958		 *	[tlv] Vendor OUI HT capabilities (optional)
1959		 *	[tlv] Atheros capabilities (if negotiated)
1960		 *	[tlv] AppIE's (optional)
1961		 */
1962		m = ieee80211_getmgtframe(&frm,
1963			 ic->ic_headroom + sizeof(struct ieee80211_frame),
1964			 sizeof(uint16_t)
1965		       + sizeof(uint16_t)
1966		       + IEEE80211_ADDR_LEN
1967		       + 2 + IEEE80211_NWID_LEN
1968		       + 2 + IEEE80211_RATE_SIZE
1969		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1970		       + 4
1971		       + 2 + 26
1972		       + sizeof(struct ieee80211_wme_info)
1973		       + sizeof(struct ieee80211_ie_htcap)
1974		       + 4 + sizeof(struct ieee80211_ie_htcap)
1975		       + sizeof(struct ieee80211_ath_ie)
1976		       + (vap->iv_appie_wpa != NULL ?
1977				vap->iv_appie_wpa->ie_len : 0)
1978		       + (vap->iv_appie_assocreq != NULL ?
1979				vap->iv_appie_assocreq->ie_len : 0)
1980		);
1981		if (m == NULL)
1982			senderr(ENOMEM, is_tx_nobuf);
1983
1984		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
1985		    ("wrong mode %u", vap->iv_opmode));
1986		capinfo = IEEE80211_CAPINFO_ESS;
1987		if (vap->iv_flags & IEEE80211_F_PRIVACY)
1988			capinfo |= IEEE80211_CAPINFO_PRIVACY;
1989		/*
1990		 * NB: Some 11a AP's reject the request when
1991		 *     short premable is set.
1992		 */
1993		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1994		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
1995			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1996		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
1997		    (ic->ic_caps & IEEE80211_C_SHSLOT))
1998			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1999		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2000		    (vap->iv_flags & IEEE80211_F_DOTH))
2001			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2002		*(uint16_t *)frm = htole16(capinfo);
2003		frm += 2;
2004
2005		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2006		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2007						    bss->ni_intval));
2008		frm += 2;
2009
2010		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2011			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2012			frm += IEEE80211_ADDR_LEN;
2013		}
2014
2015		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2016		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2017		if (vap->iv_flags & IEEE80211_F_WPA2) {
2018			if (vap->iv_rsn_ie != NULL)
2019				frm = add_ie(frm, vap->iv_rsn_ie);
2020			/* XXX else complain? */
2021		}
2022		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2023		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2024			frm = ieee80211_add_powercapability(frm,
2025			    ic->ic_curchan);
2026			frm = ieee80211_add_supportedchannels(frm, ic);
2027		}
2028		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2029		    ni->ni_ies.htcap_ie != NULL &&
2030		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2031			frm = ieee80211_add_htcap(frm, ni);
2032		if (vap->iv_flags & IEEE80211_F_WPA1) {
2033			if (vap->iv_wpa_ie != NULL)
2034				frm = add_ie(frm, vap->iv_wpa_ie);
2035			/* XXX else complain */
2036		}
2037		if ((ic->ic_flags & IEEE80211_F_WME) &&
2038		    ni->ni_ies.wme_ie != NULL)
2039			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2040		if ((vap->iv_flags_ext & IEEE80211_FEXT_HT) &&
2041		    ni->ni_ies.htcap_ie != NULL &&
2042		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2043			frm = ieee80211_add_htcap_vendor(frm, ni);
2044		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2045			frm = ieee80211_add_ath(frm,
2046				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2047				(vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2048				ni->ni_authmode != IEEE80211_AUTH_8021X &&
2049				vap->iv_def_txkey != IEEE80211_KEYIX_NONE ?
2050				vap->iv_def_txkey : 0x7fff);
2051		if (vap->iv_appie_assocreq != NULL)
2052			frm = add_appie(frm, vap->iv_appie_assocreq);
2053		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2054
2055		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2056			(void *) vap->iv_state);
2057		break;
2058
2059	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2060	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2061		/*
2062		 * asresp frame format
2063		 *	[2] capability information
2064		 *	[2] status
2065		 *	[2] association ID
2066		 *	[tlv] supported rates
2067		 *	[tlv] extended supported rates
2068		 *	[tlv] HT capabilities (standard, if STA enabled)
2069		 *	[tlv] HT information (standard, if STA enabled)
2070		 *	[tlv] WME (if configured and STA enabled)
2071		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2072		 *	[tlv] HT information (vendor OUI, if STA enabled)
2073		 *	[tlv] Atheros capabilities (if STA enabled)
2074		 *	[tlv] AppIE's (optional)
2075		 */
2076		m = ieee80211_getmgtframe(&frm,
2077			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2078			 sizeof(uint16_t)
2079		       + sizeof(uint16_t)
2080		       + sizeof(uint16_t)
2081		       + 2 + IEEE80211_RATE_SIZE
2082		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2083		       + sizeof(struct ieee80211_ie_htcap) + 4
2084		       + sizeof(struct ieee80211_ie_htinfo) + 4
2085		       + sizeof(struct ieee80211_wme_param)
2086		       + sizeof(struct ieee80211_ath_ie)
2087		       + (vap->iv_appie_assocresp != NULL ?
2088				vap->iv_appie_assocresp->ie_len : 0)
2089		);
2090		if (m == NULL)
2091			senderr(ENOMEM, is_tx_nobuf);
2092
2093		capinfo = getcapinfo(vap, bss->ni_chan);
2094		*(uint16_t *)frm = htole16(capinfo);
2095		frm += 2;
2096
2097		*(uint16_t *)frm = htole16(arg);	/* status */
2098		frm += 2;
2099
2100		if (arg == IEEE80211_STATUS_SUCCESS) {
2101			*(uint16_t *)frm = htole16(ni->ni_associd);
2102			IEEE80211_NODE_STAT(ni, tx_assoc);
2103		} else
2104			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2105		frm += 2;
2106
2107		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2108		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2109		/* NB: respond according to what we received */
2110		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2111			frm = ieee80211_add_htcap(frm, ni);
2112			frm = ieee80211_add_htinfo(frm, ni);
2113		}
2114		if ((vap->iv_flags & IEEE80211_F_WME) &&
2115		    ni->ni_ies.wme_ie != NULL)
2116			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2117		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2118			frm = ieee80211_add_htcap_vendor(frm, ni);
2119			frm = ieee80211_add_htinfo_vendor(frm, ni);
2120		}
2121		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2122			frm = ieee80211_add_ath(frm,
2123				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2124				ni->ni_ath_defkeyix);
2125		if (vap->iv_appie_assocresp != NULL)
2126			frm = add_appie(frm, vap->iv_appie_assocresp);
2127		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2128		break;
2129
2130	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2131		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2132		    "send station disassociate (reason %d)", arg);
2133		m = ieee80211_getmgtframe(&frm,
2134			ic->ic_headroom + sizeof(struct ieee80211_frame),
2135			sizeof(uint16_t));
2136		if (m == NULL)
2137			senderr(ENOMEM, is_tx_nobuf);
2138		*(uint16_t *)frm = htole16(arg);	/* reason */
2139		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2140
2141		IEEE80211_NODE_STAT(ni, tx_disassoc);
2142		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2143		break;
2144
2145	default:
2146		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2147		    "invalid mgmt frame type %u", type);
2148		senderr(EINVAL, is_tx_unknownmgt);
2149		/* NOTREACHED */
2150	}
2151
2152	/* NB: force non-ProbeResp frames to the highest queue */
2153	params.ibp_pri = WME_AC_VO;
2154	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2155	/* NB: we know all frames are unicast */
2156	params.ibp_try0 = bss->ni_txparms->maxretry;
2157	params.ibp_power = bss->ni_txpower;
2158	return ieee80211_mgmt_output(ni, m, type, &params);
2159bad:
2160	ieee80211_free_node(ni);
2161	return ret;
2162#undef senderr
2163#undef HTFLAGS
2164}
2165
2166/*
2167 * Return an mbuf with a probe response frame in it.
2168 * Space is left to prepend and 802.11 header at the
2169 * front but it's left to the caller to fill in.
2170 */
2171struct mbuf *
2172ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2173{
2174	struct ieee80211vap *vap = bss->ni_vap;
2175	struct ieee80211com *ic = bss->ni_ic;
2176	const struct ieee80211_rateset *rs;
2177	struct mbuf *m;
2178	uint16_t capinfo;
2179	uint8_t *frm;
2180
2181	/*
2182	 * probe response frame format
2183	 *	[8] time stamp
2184	 *	[2] beacon interval
2185	 *	[2] cabability information
2186	 *	[tlv] ssid
2187	 *	[tlv] supported rates
2188	 *	[tlv] parameter set (FH/DS)
2189	 *	[tlv] parameter set (IBSS)
2190	 *	[tlv] country (optional)
2191	 *	[3] power control (optional)
2192	 *	[5] channel switch announcement (CSA) (optional)
2193	 *	[tlv] extended rate phy (ERP)
2194	 *	[tlv] extended supported rates
2195	 *	[tlv] RSN (optional)
2196	 *	[tlv] HT capabilities
2197	 *	[tlv] HT information
2198	 *	[tlv] WPA (optional)
2199	 *	[tlv] WME (optional)
2200	 *	[tlv] Vendor OUI HT capabilities (optional)
2201	 *	[tlv] Vendor OUI HT information (optional)
2202	 *	[tlv] Atheros capabilities
2203	 *	[tlv] AppIE's (optional)
2204	 */
2205	m = ieee80211_getmgtframe(&frm,
2206		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2207		 8
2208	       + sizeof(uint16_t)
2209	       + sizeof(uint16_t)
2210	       + 2 + IEEE80211_NWID_LEN
2211	       + 2 + IEEE80211_RATE_SIZE
2212	       + 7	/* max(7,3) */
2213	       + IEEE80211_COUNTRY_MAX_SIZE
2214	       + 3
2215	       + sizeof(struct ieee80211_csa_ie)
2216	       + 3
2217	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2218	       + sizeof(struct ieee80211_ie_wpa)
2219	       + sizeof(struct ieee80211_ie_htcap)
2220	       + sizeof(struct ieee80211_ie_htinfo)
2221	       + sizeof(struct ieee80211_ie_wpa)
2222	       + sizeof(struct ieee80211_wme_param)
2223	       + 4 + sizeof(struct ieee80211_ie_htcap)
2224	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2225	       + sizeof(struct ieee80211_ath_ie)
2226	       + (vap->iv_appie_proberesp != NULL ?
2227			vap->iv_appie_proberesp->ie_len : 0)
2228	);
2229	if (m == NULL) {
2230		vap->iv_stats.is_tx_nobuf++;
2231		return NULL;
2232	}
2233
2234	memset(frm, 0, 8);	/* timestamp should be filled later */
2235	frm += 8;
2236	*(uint16_t *)frm = htole16(bss->ni_intval);
2237	frm += 2;
2238	capinfo = getcapinfo(vap, bss->ni_chan);
2239	*(uint16_t *)frm = htole16(capinfo);
2240	frm += 2;
2241
2242	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2243	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2244	frm = ieee80211_add_rates(frm, rs);
2245
2246	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2247		*frm++ = IEEE80211_ELEMID_FHPARMS;
2248		*frm++ = 5;
2249		*frm++ = bss->ni_fhdwell & 0x00ff;
2250		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2251		*frm++ = IEEE80211_FH_CHANSET(
2252		    ieee80211_chan2ieee(ic, bss->ni_chan));
2253		*frm++ = IEEE80211_FH_CHANPAT(
2254		    ieee80211_chan2ieee(ic, bss->ni_chan));
2255		*frm++ = bss->ni_fhindex;
2256	} else {
2257		*frm++ = IEEE80211_ELEMID_DSPARMS;
2258		*frm++ = 1;
2259		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2260	}
2261
2262	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2263		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2264		*frm++ = 2;
2265		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2266	}
2267	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2268	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2269		frm = ieee80211_add_countryie(frm, ic);
2270	if (vap->iv_flags & IEEE80211_F_DOTH) {
2271		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2272			frm = ieee80211_add_powerconstraint(frm, vap);
2273		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2274			frm = ieee80211_add_csa(frm, vap);
2275	}
2276	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2277		frm = ieee80211_add_erp(frm, ic);
2278	frm = ieee80211_add_xrates(frm, rs);
2279	if (vap->iv_flags & IEEE80211_F_WPA2) {
2280		if (vap->iv_rsn_ie != NULL)
2281			frm = add_ie(frm, vap->iv_rsn_ie);
2282		/* XXX else complain? */
2283	}
2284	/*
2285	 * NB: legacy 11b clients do not get certain ie's.
2286	 *     The caller identifies such clients by passing
2287	 *     a token in legacy to us.  Could expand this to be
2288	 *     any legacy client for stuff like HT ie's.
2289	 */
2290	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2291	    legacy != IEEE80211_SEND_LEGACY_11B) {
2292		frm = ieee80211_add_htcap(frm, bss);
2293		frm = ieee80211_add_htinfo(frm, bss);
2294	}
2295	if (vap->iv_flags & IEEE80211_F_WPA1) {
2296		if (vap->iv_wpa_ie != NULL)
2297			frm = add_ie(frm, vap->iv_wpa_ie);
2298		/* XXX else complain? */
2299	}
2300	if (vap->iv_flags & IEEE80211_F_WME)
2301		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2302	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2303	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT) &&
2304	    legacy != IEEE80211_SEND_LEGACY_11B) {
2305		frm = ieee80211_add_htcap_vendor(frm, bss);
2306		frm = ieee80211_add_htinfo_vendor(frm, bss);
2307	}
2308	if (bss->ni_ies.ath_ie != NULL && legacy != IEEE80211_SEND_LEGACY_11B)
2309		frm = ieee80211_add_ath(frm, bss->ni_ath_flags,
2310			bss->ni_ath_defkeyix);
2311	if (vap->iv_appie_proberesp != NULL)
2312		frm = add_appie(frm, vap->iv_appie_proberesp);
2313	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2314
2315	return m;
2316}
2317
2318/*
2319 * Send a probe response frame to the specified mac address.
2320 * This does not go through the normal mgt frame api so we
2321 * can specify the destination address and re-use the bss node
2322 * for the sta reference.
2323 */
2324int
2325ieee80211_send_proberesp(struct ieee80211vap *vap,
2326	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2327{
2328	struct ieee80211_node *bss = vap->iv_bss;
2329	struct ieee80211com *ic = vap->iv_ic;
2330	struct ieee80211_frame *wh;
2331	struct mbuf *m;
2332
2333	if (vap->iv_state == IEEE80211_S_CAC) {
2334		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2335		    "block %s frame in CAC state", "probe response");
2336		vap->iv_stats.is_tx_badstate++;
2337		return EIO;		/* XXX */
2338	}
2339
2340	/*
2341	 * Hold a reference on the node so it doesn't go away until after
2342	 * the xmit is complete all the way in the driver.  On error we
2343	 * will remove our reference.
2344	 */
2345	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2346	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2347	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2348	    ieee80211_node_refcnt(bss)+1);
2349	ieee80211_ref_node(bss);
2350
2351	m = ieee80211_alloc_proberesp(bss, legacy);
2352	if (m == NULL) {
2353		ieee80211_free_node(bss);
2354		return ENOMEM;
2355	}
2356
2357	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2358	KASSERT(m != NULL, ("no room for header"));
2359
2360	wh = mtod(m, struct ieee80211_frame *);
2361	ieee80211_send_setup(bss, wh,
2362	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2363	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2364	/* XXX power management? */
2365	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2366
2367	M_WME_SETAC(m, WME_AC_BE);
2368
2369	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2370	    "send probe resp on channel %u to %s%s\n",
2371	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2372	    legacy ? " <legacy>" : "");
2373	IEEE80211_NODE_STAT(bss, tx_mgmt);
2374
2375	return ic->ic_raw_xmit(bss, m, NULL);
2376}
2377
2378/*
2379 * Allocate and build a RTS (Request To Send) control frame.
2380 */
2381struct mbuf *
2382ieee80211_alloc_rts(struct ieee80211com *ic,
2383	const uint8_t ra[IEEE80211_ADDR_LEN],
2384	const uint8_t ta[IEEE80211_ADDR_LEN],
2385	uint16_t dur)
2386{
2387	struct ieee80211_frame_rts *rts;
2388	struct mbuf *m;
2389
2390	/* XXX honor ic_headroom */
2391	m = m_gethdr(M_DONTWAIT, MT_DATA);
2392	if (m != NULL) {
2393		rts = mtod(m, struct ieee80211_frame_rts *);
2394		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2395			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2396		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2397		*(u_int16_t *)rts->i_dur = htole16(dur);
2398		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2399		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2400
2401		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2402	}
2403	return m;
2404}
2405
2406/*
2407 * Allocate and build a CTS (Clear To Send) control frame.
2408 */
2409struct mbuf *
2410ieee80211_alloc_cts(struct ieee80211com *ic,
2411	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2412{
2413	struct ieee80211_frame_cts *cts;
2414	struct mbuf *m;
2415
2416	/* XXX honor ic_headroom */
2417	m = m_gethdr(M_DONTWAIT, MT_DATA);
2418	if (m != NULL) {
2419		cts = mtod(m, struct ieee80211_frame_cts *);
2420		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2421			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2422		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2423		*(u_int16_t *)cts->i_dur = htole16(dur);
2424		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2425
2426		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2427	}
2428	return m;
2429}
2430
2431static void
2432ieee80211_tx_mgt_timeout(void *arg)
2433{
2434	struct ieee80211_node *ni = arg;
2435	struct ieee80211vap *vap = ni->ni_vap;
2436
2437	if (vap->iv_state != IEEE80211_S_INIT &&
2438	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2439		/*
2440		 * NB: it's safe to specify a timeout as the reason here;
2441		 *     it'll only be used in the right state.
2442		 */
2443		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2444			IEEE80211_SCAN_FAIL_TIMEOUT);
2445	}
2446}
2447
2448static void
2449ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2450{
2451	struct ieee80211vap *vap = ni->ni_vap;
2452	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2453
2454	/*
2455	 * Frame transmit completed; arrange timer callback.  If
2456	 * transmit was successfuly we wait for response.  Otherwise
2457	 * we arrange an immediate callback instead of doing the
2458	 * callback directly since we don't know what state the driver
2459	 * is in (e.g. what locks it is holding).  This work should
2460	 * not be too time-critical and not happen too often so the
2461	 * added overhead is acceptable.
2462	 *
2463	 * XXX what happens if !acked but response shows up before callback?
2464	 */
2465	if (vap->iv_state == ostate)
2466		callout_reset(&vap->iv_mgtsend,
2467			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2468			ieee80211_tx_mgt_timeout, ni);
2469}
2470
2471static void
2472ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2473	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2474{
2475	struct ieee80211vap *vap = ni->ni_vap;
2476	struct ieee80211com *ic = ni->ni_ic;
2477	struct ieee80211_rateset *rs = &ni->ni_rates;
2478	uint16_t capinfo;
2479
2480	/*
2481	 * beacon frame format
2482	 *	[8] time stamp
2483	 *	[2] beacon interval
2484	 *	[2] cabability information
2485	 *	[tlv] ssid
2486	 *	[tlv] supported rates
2487	 *	[3] parameter set (DS)
2488	 *	[8] CF parameter set (optional)
2489	 *	[tlv] parameter set (IBSS/TIM)
2490	 *	[tlv] country (optional)
2491	 *	[3] power control (optional)
2492	 *	[5] channel switch announcement (CSA) (optional)
2493	 *	[tlv] extended rate phy (ERP)
2494	 *	[tlv] extended supported rates
2495	 *	[tlv] RSN parameters
2496	 *	[tlv] HT capabilities
2497	 *	[tlv] HT information
2498	 * XXX Vendor-specific OIDs (e.g. Atheros)
2499	 *	[tlv] WPA parameters
2500	 *	[tlv] WME parameters
2501	 *	[tlv] Vendor OUI HT capabilities (optional)
2502	 *	[tlv] Vendor OUI HT information (optional)
2503	 *	[tlv] application data (optional)
2504	 */
2505
2506	memset(bo, 0, sizeof(*bo));
2507
2508	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2509	frm += 8;
2510	*(uint16_t *)frm = htole16(ni->ni_intval);
2511	frm += 2;
2512	capinfo = getcapinfo(vap, ni->ni_chan);
2513	bo->bo_caps = (uint16_t *)frm;
2514	*(uint16_t *)frm = htole16(capinfo);
2515	frm += 2;
2516	*frm++ = IEEE80211_ELEMID_SSID;
2517	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2518		*frm++ = ni->ni_esslen;
2519		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2520		frm += ni->ni_esslen;
2521	} else
2522		*frm++ = 0;
2523	frm = ieee80211_add_rates(frm, rs);
2524	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2525		*frm++ = IEEE80211_ELEMID_DSPARMS;
2526		*frm++ = 1;
2527		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2528	}
2529	if (ic->ic_flags & IEEE80211_F_PCF) {
2530		bo->bo_cfp = frm;
2531		frm = ieee80211_add_cfparms(frm, ic);
2532	}
2533	bo->bo_tim = frm;
2534	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2535		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2536		*frm++ = 2;
2537		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2538		bo->bo_tim_len = 0;
2539	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
2540		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2541
2542		tie->tim_ie = IEEE80211_ELEMID_TIM;
2543		tie->tim_len = 4;	/* length */
2544		tie->tim_count = 0;	/* DTIM count */
2545		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2546		tie->tim_bitctl = 0;	/* bitmap control */
2547		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2548		frm += sizeof(struct ieee80211_tim_ie);
2549		bo->bo_tim_len = 1;
2550	}
2551	bo->bo_tim_trailer = frm;
2552	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2553	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2554		frm = ieee80211_add_countryie(frm, ic);
2555	if (vap->iv_flags & IEEE80211_F_DOTH) {
2556		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2557			frm = ieee80211_add_powerconstraint(frm, vap);
2558		bo->bo_csa = frm;
2559		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2560			frm = ieee80211_add_csa(frm, vap);
2561	} else
2562		bo->bo_csa = frm;
2563	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2564		bo->bo_erp = frm;
2565		frm = ieee80211_add_erp(frm, ic);
2566	}
2567	frm = ieee80211_add_xrates(frm, rs);
2568	if (vap->iv_flags & IEEE80211_F_WPA2) {
2569		if (vap->iv_rsn_ie != NULL)
2570			frm = add_ie(frm, vap->iv_rsn_ie);
2571		/* XXX else complain */
2572	}
2573	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2574		frm = ieee80211_add_htcap(frm, ni);
2575		bo->bo_htinfo = frm;
2576		frm = ieee80211_add_htinfo(frm, ni);
2577	}
2578	if (vap->iv_flags & IEEE80211_F_WPA1) {
2579		if (vap->iv_wpa_ie != NULL)
2580			frm = add_ie(frm, vap->iv_wpa_ie);
2581		/* XXX else complain */
2582	}
2583	if (vap->iv_flags & IEEE80211_F_WME) {
2584		bo->bo_wme = frm;
2585		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2586	}
2587	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2588	    (vap->iv_flags_ext & IEEE80211_FEXT_HTCOMPAT)) {
2589		frm = ieee80211_add_htcap_vendor(frm, ni);
2590		frm = ieee80211_add_htinfo_vendor(frm, ni);
2591	}
2592	if (vap->iv_appie_beacon != NULL) {
2593		bo->bo_appie = frm;
2594		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2595		frm = add_appie(frm, vap->iv_appie_beacon);
2596	}
2597	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2598	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2599	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2600}
2601
2602/*
2603 * Allocate a beacon frame and fillin the appropriate bits.
2604 */
2605struct mbuf *
2606ieee80211_beacon_alloc(struct ieee80211_node *ni,
2607	struct ieee80211_beacon_offsets *bo)
2608{
2609	struct ieee80211vap *vap = ni->ni_vap;
2610	struct ieee80211com *ic = ni->ni_ic;
2611	struct ifnet *ifp = vap->iv_ifp;
2612	struct ieee80211_frame *wh;
2613	struct mbuf *m;
2614	int pktlen;
2615	uint8_t *frm;
2616
2617	/*
2618	 * beacon frame format
2619	 *	[8] time stamp
2620	 *	[2] beacon interval
2621	 *	[2] cabability information
2622	 *	[tlv] ssid
2623	 *	[tlv] supported rates
2624	 *	[3] parameter set (DS)
2625	 *	[8] CF parameter set (optional)
2626	 *	[tlv] parameter set (IBSS/TIM)
2627	 *	[tlv] country (optional)
2628	 *	[3] power control (optional)
2629	 *	[5] channel switch announcement (CSA) (optional)
2630	 *	[tlv] extended rate phy (ERP)
2631	 *	[tlv] extended supported rates
2632	 *	[tlv] RSN parameters
2633	 *	[tlv] HT capabilities
2634	 *	[tlv] HT information
2635	 *	[tlv] Vendor OUI HT capabilities (optional)
2636	 *	[tlv] Vendor OUI HT information (optional)
2637	 * XXX Vendor-specific OIDs (e.g. Atheros)
2638	 *	[tlv] WPA parameters
2639	 *	[tlv] WME parameters
2640	 *	[tlv] application data (optional)
2641	 * NB: we allocate the max space required for the TIM bitmap.
2642	 * XXX how big is this?
2643	 */
2644	pktlen =   8					/* time stamp */
2645		 + sizeof(uint16_t)			/* beacon interval */
2646		 + sizeof(uint16_t)			/* capabilities */
2647		 + 2 + ni->ni_esslen			/* ssid */
2648	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2649	         + 2 + 1				/* DS parameters */
2650		 + 2 + 6				/* CF parameters */
2651		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2652		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2653		 + 2 + 1				/* power control */
2654	         + sizeof(struct ieee80211_csa_ie)	/* CSA */
2655		 + 2 + 1				/* ERP */
2656	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2657		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2658			2*sizeof(struct ieee80211_ie_wpa) : 0)
2659		 /* XXX conditional? */
2660		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2661		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2662		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2663			sizeof(struct ieee80211_wme_param) : 0)
2664		 + IEEE80211_MAX_APPIE
2665		 ;
2666	m = ieee80211_getmgtframe(&frm,
2667		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2668	if (m == NULL) {
2669		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2670			"%s: cannot get buf; size %u\n", __func__, pktlen);
2671		vap->iv_stats.is_tx_nobuf++;
2672		return NULL;
2673	}
2674	ieee80211_beacon_construct(m, frm, bo, ni);
2675
2676	M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT);
2677	KASSERT(m != NULL, ("no space for 802.11 header?"));
2678	wh = mtod(m, struct ieee80211_frame *);
2679	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2680	    IEEE80211_FC0_SUBTYPE_BEACON;
2681	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2682	*(uint16_t *)wh->i_dur = 0;
2683	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2684	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2685	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2686	*(uint16_t *)wh->i_seq = 0;
2687
2688	return m;
2689}
2690
2691/*
2692 * Update the dynamic parts of a beacon frame based on the current state.
2693 */
2694int
2695ieee80211_beacon_update(struct ieee80211_node *ni,
2696	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2697{
2698	struct ieee80211vap *vap = ni->ni_vap;
2699	struct ieee80211com *ic = ni->ni_ic;
2700	int len_changed = 0;
2701	uint16_t capinfo;
2702
2703	IEEE80211_LOCK(ic);
2704	/*
2705	 * Handle 11h channel change when we've reached the count.
2706	 * We must recalculate the beacon frame contents to account
2707	 * for the new channel.  Note we do this only for the first
2708	 * vap that reaches this point; subsequent vaps just update
2709	 * their beacon state to reflect the recalculated channel.
2710	 */
2711	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2712	    vap->iv_csa_count == ic->ic_csa_count) {
2713		vap->iv_csa_count = 0;
2714		/*
2715		 * Effect channel change before reconstructing the beacon
2716		 * frame contents as many places reference ni_chan.
2717		 */
2718		if (ic->ic_csa_newchan != NULL)
2719			ieee80211_csa_completeswitch(ic);
2720		/*
2721		 * NB: ieee80211_beacon_construct clears all pending
2722		 * updates in bo_flags so we don't need to explicitly
2723		 * clear IEEE80211_BEACON_CSA.
2724		 */
2725		ieee80211_beacon_construct(m,
2726		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2727
2728		/* XXX do WME aggressive mode processing? */
2729		IEEE80211_UNLOCK(ic);
2730		return 1;		/* just assume length changed */
2731	}
2732
2733	/* XXX faster to recalculate entirely or just changes? */
2734	capinfo = getcapinfo(vap, ni->ni_chan);
2735	*bo->bo_caps = htole16(capinfo);
2736
2737	if (vap->iv_flags & IEEE80211_F_WME) {
2738		struct ieee80211_wme_state *wme = &ic->ic_wme;
2739
2740		/*
2741		 * Check for agressive mode change.  When there is
2742		 * significant high priority traffic in the BSS
2743		 * throttle back BE traffic by using conservative
2744		 * parameters.  Otherwise BE uses agressive params
2745		 * to optimize performance of legacy/non-QoS traffic.
2746		 */
2747		if (wme->wme_flags & WME_F_AGGRMODE) {
2748			if (wme->wme_hipri_traffic >
2749			    wme->wme_hipri_switch_thresh) {
2750				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2751				    "%s: traffic %u, disable aggressive mode\n",
2752				    __func__, wme->wme_hipri_traffic);
2753				wme->wme_flags &= ~WME_F_AGGRMODE;
2754				ieee80211_wme_updateparams_locked(vap);
2755				wme->wme_hipri_traffic =
2756					wme->wme_hipri_switch_hysteresis;
2757			} else
2758				wme->wme_hipri_traffic = 0;
2759		} else {
2760			if (wme->wme_hipri_traffic <=
2761			    wme->wme_hipri_switch_thresh) {
2762				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2763				    "%s: traffic %u, enable aggressive mode\n",
2764				    __func__, wme->wme_hipri_traffic);
2765				wme->wme_flags |= WME_F_AGGRMODE;
2766				ieee80211_wme_updateparams_locked(vap);
2767				wme->wme_hipri_traffic = 0;
2768			} else
2769				wme->wme_hipri_traffic =
2770					wme->wme_hipri_switch_hysteresis;
2771		}
2772		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2773			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2774			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2775		}
2776	}
2777
2778	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2779		ieee80211_ht_update_beacon(vap, bo);
2780		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2781	}
2782
2783	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* NB: no IBSS support*/
2784		struct ieee80211_tim_ie *tie =
2785			(struct ieee80211_tim_ie *) bo->bo_tim;
2786		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
2787			u_int timlen, timoff, i;
2788			/*
2789			 * ATIM/DTIM needs updating.  If it fits in the
2790			 * current space allocated then just copy in the
2791			 * new bits.  Otherwise we need to move any trailing
2792			 * data to make room.  Note that we know there is
2793			 * contiguous space because ieee80211_beacon_allocate
2794			 * insures there is space in the mbuf to write a
2795			 * maximal-size virtual bitmap (based on iv_max_aid).
2796			 */
2797			/*
2798			 * Calculate the bitmap size and offset, copy any
2799			 * trailer out of the way, and then copy in the
2800			 * new bitmap and update the information element.
2801			 * Note that the tim bitmap must contain at least
2802			 * one byte and any offset must be even.
2803			 */
2804			if (vap->iv_ps_pending != 0) {
2805				timoff = 128;		/* impossibly large */
2806				for (i = 0; i < vap->iv_tim_len; i++)
2807					if (vap->iv_tim_bitmap[i]) {
2808						timoff = i &~ 1;
2809						break;
2810					}
2811				KASSERT(timoff != 128, ("tim bitmap empty!"));
2812				for (i = vap->iv_tim_len-1; i >= timoff; i--)
2813					if (vap->iv_tim_bitmap[i])
2814						break;
2815				timlen = 1 + (i - timoff);
2816			} else {
2817				timoff = 0;
2818				timlen = 1;
2819			}
2820			if (timlen != bo->bo_tim_len) {
2821				/* copy up/down trailer */
2822				int adjust = tie->tim_bitmap+timlen
2823					   - bo->bo_tim_trailer;
2824				ovbcopy(bo->bo_tim_trailer,
2825				    bo->bo_tim_trailer+adjust,
2826				    bo->bo_tim_trailer_len);
2827				bo->bo_tim_trailer += adjust;
2828				bo->bo_erp += adjust;
2829				bo->bo_htinfo += adjust;
2830				bo->bo_appie += adjust;
2831				bo->bo_wme += adjust;
2832				bo->bo_csa += adjust;
2833				bo->bo_tim_len = timlen;
2834
2835				/* update information element */
2836				tie->tim_len = 3 + timlen;
2837				tie->tim_bitctl = timoff;
2838				len_changed = 1;
2839			}
2840			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
2841				bo->bo_tim_len);
2842
2843			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
2844
2845			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
2846				"%s: TIM updated, pending %u, off %u, len %u\n",
2847				__func__, vap->iv_ps_pending, timoff, timlen);
2848		}
2849		/* count down DTIM period */
2850		if (tie->tim_count == 0)
2851			tie->tim_count = tie->tim_period - 1;
2852		else
2853			tie->tim_count--;
2854		/* update state for buffered multicast frames on DTIM */
2855		if (mcast && tie->tim_count == 0)
2856			tie->tim_bitctl |= 1;
2857		else
2858			tie->tim_bitctl &= ~1;
2859		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
2860			struct ieee80211_csa_ie *csa =
2861			    (struct ieee80211_csa_ie *) bo->bo_csa;
2862
2863			/*
2864			 * Insert or update CSA ie.  If we're just starting
2865			 * to count down to the channel switch then we need
2866			 * to insert the CSA ie.  Otherwise we just need to
2867			 * drop the count.  The actual change happens above
2868			 * when the vap's count reaches the target count.
2869			 */
2870			if (vap->iv_csa_count == 0) {
2871				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
2872				bo->bo_erp += sizeof(*csa);
2873				bo->bo_wme += sizeof(*csa);
2874				bo->bo_appie += sizeof(*csa);
2875				bo->bo_csa_trailer_len += sizeof(*csa);
2876				bo->bo_tim_trailer_len += sizeof(*csa);
2877				m->m_len += sizeof(*csa);
2878				m->m_pkthdr.len += sizeof(*csa);
2879
2880				ieee80211_add_csa(bo->bo_csa, vap);
2881			} else
2882				csa->csa_count--;
2883			vap->iv_csa_count++;
2884			/* NB: don't clear IEEE80211_BEACON_CSA */
2885		}
2886		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
2887			/*
2888			 * ERP element needs updating.
2889			 */
2890			(void) ieee80211_add_erp(bo->bo_erp, ic);
2891			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
2892		}
2893	}
2894	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
2895		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
2896		int aielen;
2897		uint8_t *frm;
2898
2899		aielen = 0;
2900		if (aie != NULL)
2901			aielen += aie->ie_len;
2902		if (aielen != bo->bo_appie_len) {
2903			/* copy up/down trailer */
2904			int adjust = aielen - bo->bo_appie_len;
2905			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
2906				bo->bo_tim_trailer_len);
2907			bo->bo_tim_trailer += adjust;
2908			bo->bo_appie += adjust;
2909			bo->bo_appie_len = aielen;
2910
2911			len_changed = 1;
2912		}
2913		frm = bo->bo_appie;
2914		if (aie != NULL)
2915			frm  = add_appie(frm, aie);
2916		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
2917	}
2918	IEEE80211_UNLOCK(ic);
2919
2920	return len_changed;
2921}
2922