bpf_zerocopy.c revision 235745
1/*-
2 * Copyright (c) 2007 Seccuris Inc.
3 * All rights reserved.
4 *
5 * This software was developed by Robert N. M. Watson under contract to
6 * Seccuris Inc.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 *    notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/net/bpf_zerocopy.c 235745 2012-05-21 22:17:29Z melifaro $");
32
33#include "opt_bpf.h"
34
35#include <sys/param.h>
36#include <sys/lock.h>
37#include <sys/malloc.h>
38#include <sys/mbuf.h>
39#include <sys/mutex.h>
40#include <sys/proc.h>
41#include <sys/sf_buf.h>
42#include <sys/socket.h>
43#include <sys/uio.h>
44
45#include <machine/atomic.h>
46
47#include <net/if.h>
48#include <net/bpf.h>
49#include <net/bpf_zerocopy.h>
50#include <net/bpfdesc.h>
51
52#include <vm/vm.h>
53#include <vm/pmap.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56#include <vm/vm_page.h>
57
58/*
59 * Zero-copy buffer scheme for BPF: user space "donates" two buffers, which
60 * are mapped into the kernel address space using sf_bufs and used directly
61 * by BPF.  Memory is wired since page faults cannot be tolerated in the
62 * contexts where the buffers are copied to (locks held, interrupt context,
63 * etc).  Access to shared memory buffers is synchronized using a header on
64 * each buffer, allowing the number of system calls to go to zero as BPF
65 * reaches saturation (buffers filled as fast as they can be drained by the
66 * user process).  Full details of the protocol for communicating between the
67 * user process and BPF may be found in bpf(4).
68 */
69
70/*
71 * Maximum number of pages per buffer.  Since all BPF devices use two, the
72 * maximum per device is 2*BPF_MAX_PAGES.  Resource limits on the number of
73 * sf_bufs may be an issue, so do not set this too high.  On older systems,
74 * kernel address space limits may also be an issue.
75 */
76#define	BPF_MAX_PAGES	512
77
78/*
79 * struct zbuf describes a memory buffer loaned by a user process to the
80 * kernel.  We represent this as a series of pages managed using an array of
81 * sf_bufs.  Even though the memory is contiguous in user space, it may not
82 * be mapped contiguously in the kernel (i.e., a set of physically
83 * non-contiguous pages in the direct map region) so we must implement
84 * scatter-gather copying.  One significant mitigating factor is that on
85 * systems with a direct memory map, we can avoid TLB misses.
86 *
87 * At the front of the shared memory region is a bpf_zbuf_header, which
88 * contains shared control data to allow user space and the kernel to
89 * synchronize; this is included in zb_size, but not bpf_bufsize, so that BPF
90 * knows that the space is not available.
91 */
92struct zbuf {
93	vm_offset_t	 zb_uaddr;	/* User address at time of setup. */
94	size_t		 zb_size;	/* Size of buffer, incl. header. */
95	u_int		 zb_numpages;	/* Number of pages. */
96	int		 zb_flags;	/* Flags on zbuf. */
97	struct sf_buf	**zb_pages;	/* Pages themselves. */
98	struct bpf_zbuf_header	*zb_header;	/* Shared header. */
99};
100
101/*
102 * When a buffer has been assigned to userspace, flag it as such, as the
103 * buffer may remain in the store position as a result of the user process
104 * not yet having acknowledged the buffer in the hold position yet.
105 */
106#define	ZBUF_FLAG_ASSIGNED	0x00000001	/* Set when owned by user. */
107
108/*
109 * Release a page we've previously wired.
110 */
111static void
112zbuf_page_free(vm_page_t pp)
113{
114
115	vm_page_lock(pp);
116	vm_page_unwire(pp, 0);
117	if (pp->wire_count == 0 && pp->object == NULL)
118		vm_page_free(pp);
119	vm_page_unlock(pp);
120}
121
122/*
123 * Free an sf_buf with attached page.
124 */
125static void
126zbuf_sfbuf_free(struct sf_buf *sf)
127{
128	vm_page_t pp;
129
130	pp = sf_buf_page(sf);
131	sf_buf_free(sf);
132	zbuf_page_free(pp);
133}
134
135/*
136 * Free a zbuf, including its page array, sbufs, and pages.  Allow partially
137 * allocated zbufs to be freed so that it may be used even during a zbuf
138 * setup.
139 */
140static void
141zbuf_free(struct zbuf *zb)
142{
143	int i;
144
145	for (i = 0; i < zb->zb_numpages; i++) {
146		if (zb->zb_pages[i] != NULL)
147			zbuf_sfbuf_free(zb->zb_pages[i]);
148	}
149	free(zb->zb_pages, M_BPF);
150	free(zb, M_BPF);
151}
152
153/*
154 * Given a user pointer to a page of user memory, return an sf_buf for the
155 * page.  Because we may be requesting quite a few sf_bufs, prefer failure to
156 * deadlock and use SFB_NOWAIT.
157 */
158static struct sf_buf *
159zbuf_sfbuf_get(struct vm_map *map, vm_offset_t uaddr)
160{
161	struct sf_buf *sf;
162	vm_page_t pp;
163
164	if (vm_fault_quick_hold_pages(map, uaddr, PAGE_SIZE, VM_PROT_READ |
165	    VM_PROT_WRITE, &pp, 1) < 0)
166		return (NULL);
167	vm_page_lock(pp);
168	vm_page_wire(pp);
169	vm_page_unhold(pp);
170	vm_page_unlock(pp);
171	sf = sf_buf_alloc(pp, SFB_NOWAIT);
172	if (sf == NULL) {
173		zbuf_page_free(pp);
174		return (NULL);
175	}
176	return (sf);
177}
178
179/*
180 * Create a zbuf describing a range of user address space memory.  Validate
181 * page alignment, size requirements, etc.
182 */
183static int
184zbuf_setup(struct thread *td, vm_offset_t uaddr, size_t len,
185    struct zbuf **zbp)
186{
187	struct zbuf *zb;
188	struct vm_map *map;
189	int error, i;
190
191	*zbp = NULL;
192
193	/*
194	 * User address must be page-aligned.
195	 */
196	if (uaddr & PAGE_MASK)
197		return (EINVAL);
198
199	/*
200	 * Length must be an integer number of full pages.
201	 */
202	if (len & PAGE_MASK)
203		return (EINVAL);
204
205	/*
206	 * Length must not exceed per-buffer resource limit.
207	 */
208	if ((len / PAGE_SIZE) > BPF_MAX_PAGES)
209		return (EINVAL);
210
211	/*
212	 * Allocate the buffer and set up each page with is own sf_buf.
213	 */
214	error = 0;
215	zb = malloc(sizeof(*zb), M_BPF, M_ZERO | M_WAITOK);
216	zb->zb_uaddr = uaddr;
217	zb->zb_size = len;
218	zb->zb_numpages = len / PAGE_SIZE;
219	zb->zb_pages = malloc(sizeof(struct sf_buf *) *
220	    zb->zb_numpages, M_BPF, M_ZERO | M_WAITOK);
221	map = &td->td_proc->p_vmspace->vm_map;
222	for (i = 0; i < zb->zb_numpages; i++) {
223		zb->zb_pages[i] = zbuf_sfbuf_get(map,
224		    uaddr + (i * PAGE_SIZE));
225		if (zb->zb_pages[i] == NULL) {
226			error = EFAULT;
227			goto error;
228		}
229	}
230	zb->zb_header =
231	    (struct bpf_zbuf_header *)sf_buf_kva(zb->zb_pages[0]);
232	bzero(zb->zb_header, sizeof(*zb->zb_header));
233	*zbp = zb;
234	return (0);
235
236error:
237	zbuf_free(zb);
238	return (error);
239}
240
241/*
242 * Copy bytes from a source into the specified zbuf.  The caller is
243 * responsible for performing bounds checking, etc.
244 */
245void
246bpf_zerocopy_append_bytes(struct bpf_d *d, caddr_t buf, u_int offset,
247    void *src, u_int len)
248{
249	u_int count, page, poffset;
250	u_char *src_bytes;
251	struct zbuf *zb;
252
253	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
254	    ("bpf_zerocopy_append_bytes: not in zbuf mode"));
255	KASSERT(buf != NULL, ("bpf_zerocopy_append_bytes: NULL buf"));
256
257	src_bytes = (u_char *)src;
258	zb = (struct zbuf *)buf;
259
260	KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
261	    ("bpf_zerocopy_append_bytes: ZBUF_FLAG_ASSIGNED"));
262
263	/*
264	 * Scatter-gather copy to user pages mapped into kernel address space
265	 * using sf_bufs: copy up to a page at a time.
266	 */
267	offset += sizeof(struct bpf_zbuf_header);
268	page = offset / PAGE_SIZE;
269	poffset = offset % PAGE_SIZE;
270	while (len > 0) {
271		KASSERT(page < zb->zb_numpages, ("bpf_zerocopy_append_bytes:"
272		   " page overflow (%d p %d np)\n", page, zb->zb_numpages));
273
274		count = min(len, PAGE_SIZE - poffset);
275		bcopy(src_bytes, ((u_char *)sf_buf_kva(zb->zb_pages[page])) +
276		    poffset, count);
277		poffset += count;
278		if (poffset == PAGE_SIZE) {
279			poffset = 0;
280			page++;
281		}
282		KASSERT(poffset < PAGE_SIZE,
283		    ("bpf_zerocopy_append_bytes: page offset overflow (%d)",
284		    poffset));
285		len -= count;
286		src_bytes += count;
287	}
288}
289
290/*
291 * Copy bytes from an mbuf chain to the specified zbuf: copying will be
292 * scatter-gather both from mbufs, which may be fragmented over memory, and
293 * to pages, which may not be contiguously mapped in kernel address space.
294 * As with bpf_zerocopy_append_bytes(), the caller is responsible for
295 * checking that this will not exceed the buffer limit.
296 */
297void
298bpf_zerocopy_append_mbuf(struct bpf_d *d, caddr_t buf, u_int offset,
299    void *src, u_int len)
300{
301	u_int count, moffset, page, poffset;
302	const struct mbuf *m;
303	struct zbuf *zb;
304
305	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
306	    ("bpf_zerocopy_append_mbuf not in zbuf mode"));
307	KASSERT(buf != NULL, ("bpf_zerocopy_append_mbuf: NULL buf"));
308
309	m = (struct mbuf *)src;
310	zb = (struct zbuf *)buf;
311
312	KASSERT((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0,
313	    ("bpf_zerocopy_append_mbuf: ZBUF_FLAG_ASSIGNED"));
314
315	/*
316	 * Scatter gather both from an mbuf chain and to a user page set
317	 * mapped into kernel address space using sf_bufs.  If we're lucky,
318	 * each mbuf requires one copy operation, but if page alignment and
319	 * mbuf alignment work out less well, we'll be doing two copies per
320	 * mbuf.
321	 */
322	offset += sizeof(struct bpf_zbuf_header);
323	page = offset / PAGE_SIZE;
324	poffset = offset % PAGE_SIZE;
325	moffset = 0;
326	while (len > 0) {
327		KASSERT(page < zb->zb_numpages,
328		    ("bpf_zerocopy_append_mbuf: page overflow (%d p %d "
329		    "np)\n", page, zb->zb_numpages));
330		KASSERT(m != NULL,
331		    ("bpf_zerocopy_append_mbuf: end of mbuf chain"));
332
333		count = min(m->m_len - moffset, len);
334		count = min(count, PAGE_SIZE - poffset);
335		bcopy(mtod(m, u_char *) + moffset,
336		    ((u_char *)sf_buf_kva(zb->zb_pages[page])) + poffset,
337		    count);
338		poffset += count;
339		if (poffset == PAGE_SIZE) {
340			poffset = 0;
341			page++;
342		}
343		KASSERT(poffset < PAGE_SIZE,
344		    ("bpf_zerocopy_append_mbuf: page offset overflow (%d)",
345		    poffset));
346		moffset += count;
347		if (moffset == m->m_len) {
348			m = m->m_next;
349			moffset = 0;
350		}
351		len -= count;
352	}
353}
354
355/*
356 * Notification from the BPF framework that a buffer in the store position is
357 * rejecting packets and may be considered full.  We mark the buffer as
358 * immutable and assign to userspace so that it is immediately available for
359 * the user process to access.
360 */
361void
362bpf_zerocopy_buffull(struct bpf_d *d)
363{
364	struct zbuf *zb;
365
366	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
367	    ("bpf_zerocopy_buffull: not in zbuf mode"));
368
369	zb = (struct zbuf *)d->bd_sbuf;
370	KASSERT(zb != NULL, ("bpf_zerocopy_buffull: zb == NULL"));
371
372	if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
373		zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
374		zb->zb_header->bzh_kernel_len = d->bd_slen;
375		atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
376	}
377}
378
379/*
380 * Notification from the BPF framework that a buffer has moved into the held
381 * slot on a descriptor.  Zero-copy BPF will update the shared page to let
382 * the user process know and flag the buffer as assigned if it hasn't already
383 * been marked assigned due to filling while it was in the store position.
384 *
385 * Note: identical logic as in bpf_zerocopy_buffull(), except that we operate
386 * on bd_hbuf and bd_hlen.
387 */
388void
389bpf_zerocopy_bufheld(struct bpf_d *d)
390{
391	struct zbuf *zb;
392
393	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
394	    ("bpf_zerocopy_bufheld: not in zbuf mode"));
395
396	zb = (struct zbuf *)d->bd_hbuf;
397	KASSERT(zb != NULL, ("bpf_zerocopy_bufheld: zb == NULL"));
398
399	if ((zb->zb_flags & ZBUF_FLAG_ASSIGNED) == 0) {
400		zb->zb_flags |= ZBUF_FLAG_ASSIGNED;
401		zb->zb_header->bzh_kernel_len = d->bd_hlen;
402		atomic_add_rel_int(&zb->zb_header->bzh_kernel_gen, 1);
403	}
404}
405
406/*
407 * Notification from the BPF framework that the free buffer has been been
408 * rotated out of the held position to the free position.  This happens when
409 * the user acknowledges the held buffer.
410 */
411void
412bpf_zerocopy_buf_reclaimed(struct bpf_d *d)
413{
414	struct zbuf *zb;
415
416	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
417	    ("bpf_zerocopy_reclaim_buf: not in zbuf mode"));
418
419	KASSERT(d->bd_fbuf != NULL,
420	    ("bpf_zerocopy_buf_reclaimed: NULL free buf"));
421	zb = (struct zbuf *)d->bd_fbuf;
422	zb->zb_flags &= ~ZBUF_FLAG_ASSIGNED;
423}
424
425/*
426 * Query from the BPF framework regarding whether the buffer currently in the
427 * held position can be moved to the free position, which can be indicated by
428 * the user process making their generation number equal to the kernel
429 * generation number.
430 */
431int
432bpf_zerocopy_canfreebuf(struct bpf_d *d)
433{
434	struct zbuf *zb;
435
436	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
437	    ("bpf_zerocopy_canfreebuf: not in zbuf mode"));
438
439	zb = (struct zbuf *)d->bd_hbuf;
440	if (zb == NULL)
441		return (0);
442	if (zb->zb_header->bzh_kernel_gen ==
443	    atomic_load_acq_int(&zb->zb_header->bzh_user_gen))
444		return (1);
445	return (0);
446}
447
448/*
449 * Query from the BPF framework as to whether or not the buffer current in
450 * the store position can actually be written to.  This may return false if
451 * the store buffer is assigned to userspace before the hold buffer is
452 * acknowledged.
453 */
454int
455bpf_zerocopy_canwritebuf(struct bpf_d *d)
456{
457	struct zbuf *zb;
458
459	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
460	    ("bpf_zerocopy_canwritebuf: not in zbuf mode"));
461
462	zb = (struct zbuf *)d->bd_sbuf;
463	KASSERT(zb != NULL, ("bpf_zerocopy_canwritebuf: bd_sbuf NULL"));
464
465	if (zb->zb_flags & ZBUF_FLAG_ASSIGNED)
466		return (0);
467	return (1);
468}
469
470/*
471 * Free zero copy buffers at request of descriptor.
472 */
473void
474bpf_zerocopy_free(struct bpf_d *d)
475{
476	struct zbuf *zb;
477
478	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
479	    ("bpf_zerocopy_free: not in zbuf mode"));
480
481	zb = (struct zbuf *)d->bd_sbuf;
482	if (zb != NULL)
483		zbuf_free(zb);
484	zb = (struct zbuf *)d->bd_hbuf;
485	if (zb != NULL)
486		zbuf_free(zb);
487	zb = (struct zbuf *)d->bd_fbuf;
488	if (zb != NULL)
489		zbuf_free(zb);
490}
491
492/*
493 * Ioctl to return the maximum buffer size.
494 */
495int
496bpf_zerocopy_ioctl_getzmax(struct thread *td, struct bpf_d *d, size_t *i)
497{
498
499	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
500	    ("bpf_zerocopy_ioctl_getzmax: not in zbuf mode"));
501
502	*i = BPF_MAX_PAGES * PAGE_SIZE;
503	return (0);
504}
505
506/*
507 * Ioctl to force rotation of the two buffers, if there's any data available.
508 * This can be used by user space to implement timeouts when waiting for a
509 * buffer to fill.
510 */
511int
512bpf_zerocopy_ioctl_rotzbuf(struct thread *td, struct bpf_d *d,
513    struct bpf_zbuf *bz)
514{
515	struct zbuf *bzh;
516
517	bzero(bz, sizeof(*bz));
518	BPFD_LOCK(d);
519	if (d->bd_hbuf == NULL && d->bd_slen != 0) {
520		ROTATE_BUFFERS(d);
521		bzh = (struct zbuf *)d->bd_hbuf;
522		bz->bz_bufa = (void *)bzh->zb_uaddr;
523		bz->bz_buflen = d->bd_hlen;
524	}
525	BPFD_UNLOCK(d);
526	return (0);
527}
528
529/*
530 * Ioctl to configure zero-copy buffers -- may be done only once.
531 */
532int
533bpf_zerocopy_ioctl_setzbuf(struct thread *td, struct bpf_d *d,
534    struct bpf_zbuf *bz)
535{
536	struct zbuf *zba, *zbb;
537	int error;
538
539	KASSERT(d->bd_bufmode == BPF_BUFMODE_ZBUF,
540	    ("bpf_zerocopy_ioctl_setzbuf: not in zbuf mode"));
541
542	/*
543	 * Must set both buffers.  Cannot clear them.
544	 */
545	if (bz->bz_bufa == NULL || bz->bz_bufb == NULL)
546		return (EINVAL);
547
548	/*
549	 * Buffers must have a size greater than 0.  Alignment and other size
550	 * validity checking is done in zbuf_setup().
551	 */
552	if (bz->bz_buflen == 0)
553		return (EINVAL);
554
555	/*
556	 * Allocate new buffers.
557	 */
558	error = zbuf_setup(td, (vm_offset_t)bz->bz_bufa, bz->bz_buflen,
559	    &zba);
560	if (error)
561		return (error);
562	error = zbuf_setup(td, (vm_offset_t)bz->bz_bufb, bz->bz_buflen,
563	    &zbb);
564	if (error) {
565		zbuf_free(zba);
566		return (error);
567	}
568
569	/*
570	 * We only allow buffers to be installed once, so atomically check
571	 * that no buffers are currently installed and install new buffers.
572	 */
573	BPFD_LOCK(d);
574	if (d->bd_hbuf != NULL || d->bd_sbuf != NULL || d->bd_fbuf != NULL ||
575	    d->bd_bif != NULL) {
576		BPFD_UNLOCK(d);
577		zbuf_free(zba);
578		zbuf_free(zbb);
579		return (EINVAL);
580	}
581
582	/*
583	 * Point BPF descriptor at buffers; initialize sbuf as zba so that
584	 * it is always filled first in the sequence, per bpf(4).
585	 */
586	d->bd_fbuf = (caddr_t)zbb;
587	d->bd_sbuf = (caddr_t)zba;
588	d->bd_slen = 0;
589	d->bd_hlen = 0;
590
591	/*
592	 * We expose only the space left in the buffer after the size of the
593	 * shared management region.
594	 */
595	d->bd_bufsize = bz->bz_buflen - sizeof(struct bpf_zbuf_header);
596	BPFD_UNLOCK(d);
597	return (0);
598}
599