vfs_subr.c revision 63788
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_subr.c 63788 2000-07-24 05:28:33Z mckusick $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46#include "opt_ffs.h"
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/buf.h>
52#include <sys/conf.h>
53#include <sys/dirent.h>
54#include <sys/domain.h>
55#include <sys/eventhandler.h>
56#include <sys/fcntl.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/malloc.h>
60#include <sys/mount.h>
61#include <sys/namei.h>
62#include <sys/proc.h>
63#include <sys/reboot.h>
64#include <sys/socket.h>
65#include <sys/stat.h>
66#include <sys/sysctl.h>
67#include <sys/vmmeter.h>
68#include <sys/vnode.h>
69
70#include <machine/limits.h>
71
72#include <vm/vm.h>
73#include <vm/vm_object.h>
74#include <vm/vm_extern.h>
75#include <vm/pmap.h>
76#include <vm/vm_map.h>
77#include <vm/vm_page.h>
78#include <vm/vm_pager.h>
79#include <vm/vnode_pager.h>
80#include <vm/vm_zone.h>
81
82static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
83
84static void	insmntque __P((struct vnode *vp, struct mount *mp));
85static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
86static unsigned long	numvnodes;
87SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
88
89enum vtype iftovt_tab[16] = {
90	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
91	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
92};
93int vttoif_tab[9] = {
94	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
95	S_IFSOCK, S_IFIFO, S_IFMT,
96};
97
98static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
99
100static u_long wantfreevnodes = 25;
101SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
102static u_long freevnodes = 0;
103SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
104
105static int reassignbufcalls;
106SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
107static int reassignbufloops;
108SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
109static int reassignbufsortgood;
110SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
111static int reassignbufsortbad;
112SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
113static int reassignbufmethod = 1;
114SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
115
116#ifdef ENABLE_VFS_IOOPT
117int vfs_ioopt = 0;
118SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
119#endif
120
121struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
122struct simplelock mountlist_slock;
123struct simplelock mntvnode_slock;
124int	nfs_mount_type = -1;
125#ifndef NULL_SIMPLELOCKS
126static struct simplelock mntid_slock;
127static struct simplelock vnode_free_list_slock;
128static struct simplelock spechash_slock;
129#endif
130struct nfs_public nfs_pub;	/* publicly exported FS */
131static vm_zone_t vnode_zone;
132int	prtactive = 0;		/* 1 => print out reclaim of active vnodes */
133
134/*
135 * The workitem queue.
136 */
137#define SYNCER_MAXDELAY		32
138static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
139time_t syncdelay = 30;		/* max time to delay syncing data */
140time_t filedelay = 30;		/* time to delay syncing files */
141SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
142time_t dirdelay = 29;		/* time to delay syncing directories */
143SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
144time_t metadelay = 28;		/* time to delay syncing metadata */
145SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
146static int rushjob;			/* number of slots to run ASAP */
147static int stat_rush_requests;	/* number of times I/O speeded up */
148SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
149
150static int syncer_delayno = 0;
151static long syncer_mask;
152LIST_HEAD(synclist, vnode);
153static struct synclist *syncer_workitem_pending;
154
155int desiredvnodes;
156SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
157    &desiredvnodes, 0, "Maximum number of vnodes");
158
159static void	vfs_free_addrlist __P((struct netexport *nep));
160static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
161static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
162				       struct export_args *argp));
163
164/*
165 * Initialize the vnode management data structures.
166 */
167void
168vntblinit()
169{
170
171	desiredvnodes = maxproc + cnt.v_page_count / 4;
172	simple_lock_init(&mntvnode_slock);
173	simple_lock_init(&mntid_slock);
174	simple_lock_init(&spechash_slock);
175	TAILQ_INIT(&vnode_free_list);
176	simple_lock_init(&vnode_free_list_slock);
177	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
178	/*
179	 * Initialize the filesystem syncer.
180	 */
181	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
182		&syncer_mask);
183	syncer_maxdelay = syncer_mask + 1;
184}
185
186/*
187 * Mark a mount point as busy. Used to synchronize access and to delay
188 * unmounting. Interlock is not released on failure.
189 */
190int
191vfs_busy(mp, flags, interlkp, p)
192	struct mount *mp;
193	int flags;
194	struct simplelock *interlkp;
195	struct proc *p;
196{
197	int lkflags;
198
199	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
200		if (flags & LK_NOWAIT)
201			return (ENOENT);
202		mp->mnt_kern_flag |= MNTK_MWAIT;
203		if (interlkp) {
204			simple_unlock(interlkp);
205		}
206		/*
207		 * Since all busy locks are shared except the exclusive
208		 * lock granted when unmounting, the only place that a
209		 * wakeup needs to be done is at the release of the
210		 * exclusive lock at the end of dounmount.
211		 */
212		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
213		if (interlkp) {
214			simple_lock(interlkp);
215		}
216		return (ENOENT);
217	}
218	lkflags = LK_SHARED | LK_NOPAUSE;
219	if (interlkp)
220		lkflags |= LK_INTERLOCK;
221	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
222		panic("vfs_busy: unexpected lock failure");
223	return (0);
224}
225
226/*
227 * Free a busy filesystem.
228 */
229void
230vfs_unbusy(mp, p)
231	struct mount *mp;
232	struct proc *p;
233{
234
235	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
236}
237
238/*
239 * Lookup a filesystem type, and if found allocate and initialize
240 * a mount structure for it.
241 *
242 * Devname is usually updated by mount(8) after booting.
243 */
244int
245vfs_rootmountalloc(fstypename, devname, mpp)
246	char *fstypename;
247	char *devname;
248	struct mount **mpp;
249{
250	struct proc *p = curproc;	/* XXX */
251	struct vfsconf *vfsp;
252	struct mount *mp;
253
254	if (fstypename == NULL)
255		return (ENODEV);
256	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
257		if (!strcmp(vfsp->vfc_name, fstypename))
258			break;
259	if (vfsp == NULL)
260		return (ENODEV);
261	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
262	bzero((char *)mp, (u_long)sizeof(struct mount));
263	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
264	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
265	LIST_INIT(&mp->mnt_vnodelist);
266	mp->mnt_vfc = vfsp;
267	mp->mnt_op = vfsp->vfc_vfsops;
268	mp->mnt_flag = MNT_RDONLY;
269	mp->mnt_vnodecovered = NULLVP;
270	vfsp->vfc_refcount++;
271	mp->mnt_iosize_max = DFLTPHYS;
272	mp->mnt_stat.f_type = vfsp->vfc_typenum;
273	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
274	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
275	mp->mnt_stat.f_mntonname[0] = '/';
276	mp->mnt_stat.f_mntonname[1] = 0;
277	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
278	*mpp = mp;
279	return (0);
280}
281
282/*
283 * Find an appropriate filesystem to use for the root. If a filesystem
284 * has not been preselected, walk through the list of known filesystems
285 * trying those that have mountroot routines, and try them until one
286 * works or we have tried them all.
287 */
288#ifdef notdef	/* XXX JH */
289int
290lite2_vfs_mountroot()
291{
292	struct vfsconf *vfsp;
293	extern int (*lite2_mountroot) __P((void));
294	int error;
295
296	if (lite2_mountroot != NULL)
297		return ((*lite2_mountroot)());
298	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
299		if (vfsp->vfc_mountroot == NULL)
300			continue;
301		if ((error = (*vfsp->vfc_mountroot)()) == 0)
302			return (0);
303		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
304	}
305	return (ENODEV);
306}
307#endif
308
309/*
310 * Lookup a mount point by filesystem identifier.
311 */
312struct mount *
313vfs_getvfs(fsid)
314	fsid_t *fsid;
315{
316	register struct mount *mp;
317
318	simple_lock(&mountlist_slock);
319	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
320		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
321		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
322			simple_unlock(&mountlist_slock);
323			return (mp);
324	    }
325	}
326	simple_unlock(&mountlist_slock);
327	return ((struct mount *) 0);
328}
329
330/*
331 * Get a new unique fsid.  Try to make its val[0] unique, since this value
332 * will be used to create fake device numbers for stat().  Also try (but
333 * not so hard) make its val[0] unique mod 2^16, since some emulators only
334 * support 16-bit device numbers.  We end up with unique val[0]'s for the
335 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
336 *
337 * Keep in mind that several mounts may be running in parallel.  Starting
338 * the search one past where the previous search terminated is both a
339 * micro-optimization and a defense against returning the same fsid to
340 * different mounts.
341 */
342void
343vfs_getnewfsid(mp)
344	struct mount *mp;
345{
346	static u_int16_t mntid_base;
347	fsid_t tfsid;
348	int mtype;
349
350	simple_lock(&mntid_slock);
351	mtype = mp->mnt_vfc->vfc_typenum;
352	tfsid.val[1] = mtype;
353	mtype = (mtype & 0xFF) << 24;
354	for (;;) {
355		tfsid.val[0] = makeudev(255,
356		    mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
357		mntid_base++;
358		if (vfs_getvfs(&tfsid) == NULL)
359			break;
360	}
361	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
362	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
363	simple_unlock(&mntid_slock);
364}
365
366/*
367 * Knob to control the precision of file timestamps:
368 *
369 *   0 = seconds only; nanoseconds zeroed.
370 *   1 = seconds and nanoseconds, accurate within 1/HZ.
371 *   2 = seconds and nanoseconds, truncated to microseconds.
372 * >=3 = seconds and nanoseconds, maximum precision.
373 */
374enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
375
376static int timestamp_precision = TSP_SEC;
377SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
378    &timestamp_precision, 0, "");
379
380/*
381 * Get a current timestamp.
382 */
383void
384vfs_timestamp(tsp)
385	struct timespec *tsp;
386{
387	struct timeval tv;
388
389	switch (timestamp_precision) {
390	case TSP_SEC:
391		tsp->tv_sec = time_second;
392		tsp->tv_nsec = 0;
393		break;
394	case TSP_HZ:
395		getnanotime(tsp);
396		break;
397	case TSP_USEC:
398		microtime(&tv);
399		TIMEVAL_TO_TIMESPEC(&tv, tsp);
400		break;
401	case TSP_NSEC:
402	default:
403		nanotime(tsp);
404		break;
405	}
406}
407
408/*
409 * Set vnode attributes to VNOVAL
410 */
411void
412vattr_null(vap)
413	register struct vattr *vap;
414{
415
416	vap->va_type = VNON;
417	vap->va_size = VNOVAL;
418	vap->va_bytes = VNOVAL;
419	vap->va_mode = VNOVAL;
420	vap->va_nlink = VNOVAL;
421	vap->va_uid = VNOVAL;
422	vap->va_gid = VNOVAL;
423	vap->va_fsid = VNOVAL;
424	vap->va_fileid = VNOVAL;
425	vap->va_blocksize = VNOVAL;
426	vap->va_rdev = VNOVAL;
427	vap->va_atime.tv_sec = VNOVAL;
428	vap->va_atime.tv_nsec = VNOVAL;
429	vap->va_mtime.tv_sec = VNOVAL;
430	vap->va_mtime.tv_nsec = VNOVAL;
431	vap->va_ctime.tv_sec = VNOVAL;
432	vap->va_ctime.tv_nsec = VNOVAL;
433	vap->va_flags = VNOVAL;
434	vap->va_gen = VNOVAL;
435	vap->va_vaflags = 0;
436}
437
438/*
439 * Routines having to do with the management of the vnode table.
440 */
441extern vop_t **dead_vnodeop_p;
442
443/*
444 * Return the next vnode from the free list.
445 */
446int
447getnewvnode(tag, mp, vops, vpp)
448	enum vtagtype tag;
449	struct mount *mp;
450	vop_t **vops;
451	struct vnode **vpp;
452{
453	int s, count;
454	struct proc *p = curproc;	/* XXX */
455	struct vnode *vp = NULL;
456	struct mount *vnmp;
457	vm_object_t object;
458
459	/*
460	 * We take the least recently used vnode from the freelist
461	 * if we can get it and it has no cached pages, and no
462	 * namecache entries are relative to it.
463	 * Otherwise we allocate a new vnode
464	 */
465
466	s = splbio();
467	simple_lock(&vnode_free_list_slock);
468
469	if (wantfreevnodes && freevnodes < wantfreevnodes) {
470		vp = NULL;
471	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
472		/*
473		 * XXX: this is only here to be backwards compatible
474		 */
475		vp = NULL;
476	} else for (count = 0; count < freevnodes; count++) {
477		vp = TAILQ_FIRST(&vnode_free_list);
478		if (vp == NULL || vp->v_usecount)
479			panic("getnewvnode: free vnode isn't");
480		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
481		/*
482		 * Don't recycle if active in the namecache or
483		 * if it still has cached pages or we cannot get
484		 * its interlock.
485		 */
486		object = vp->v_object;
487		if (LIST_FIRST(&vp->v_cache_src) != NULL ||
488		    (object && (object->resident_page_count ||
489		     object->ref_count)) ||
490		    !simple_lock_try(&vp->v_interlock)) {
491			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
492			vp = NULL;
493			continue;
494		}
495		/*
496		 * Skip over it if its filesystem is being suspended.
497		 */
498		if (vn_start_write(vp, &vnmp, V_NOWAIT) == 0)
499			break;
500		simple_unlock(&vp->v_interlock);
501		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
502		vp = NULL;
503	}
504	if (vp) {
505		vp->v_flag |= VDOOMED;
506		freevnodes--;
507		simple_unlock(&vnode_free_list_slock);
508		cache_purge(vp);
509		vp->v_lease = NULL;
510		if (vp->v_type != VBAD) {
511			vgonel(vp, p);
512		} else {
513			simple_unlock(&vp->v_interlock);
514		}
515		vn_finished_write(vnmp);
516
517#ifdef INVARIANTS
518		{
519			int s;
520
521			if (vp->v_data)
522				panic("cleaned vnode isn't");
523			s = splbio();
524			if (vp->v_numoutput)
525				panic("Clean vnode has pending I/O's");
526			splx(s);
527			if (vp->v_writecount != 0)
528				panic("Non-zero write count");
529		}
530#endif
531		vp->v_flag = 0;
532		vp->v_lastw = 0;
533		vp->v_lasta = 0;
534		vp->v_cstart = 0;
535		vp->v_clen = 0;
536		vp->v_socket = 0;
537	} else {
538		simple_unlock(&vnode_free_list_slock);
539		vp = (struct vnode *) zalloc(vnode_zone);
540		bzero((char *) vp, sizeof *vp);
541		simple_lock_init(&vp->v_interlock);
542		vp->v_dd = vp;
543		cache_purge(vp);
544		LIST_INIT(&vp->v_cache_src);
545		TAILQ_INIT(&vp->v_cache_dst);
546		numvnodes++;
547	}
548
549	TAILQ_INIT(&vp->v_cleanblkhd);
550	TAILQ_INIT(&vp->v_dirtyblkhd);
551	vp->v_type = VNON;
552	vp->v_tag = tag;
553	vp->v_op = vops;
554	insmntque(vp, mp);
555	*vpp = vp;
556	vp->v_usecount = 1;
557	vp->v_data = 0;
558	splx(s);
559
560	vfs_object_create(vp, p, p->p_ucred);
561	return (0);
562}
563
564/*
565 * Move a vnode from one mount queue to another.
566 */
567static void
568insmntque(vp, mp)
569	register struct vnode *vp;
570	register struct mount *mp;
571{
572
573	simple_lock(&mntvnode_slock);
574	/*
575	 * Delete from old mount point vnode list, if on one.
576	 */
577	if (vp->v_mount != NULL)
578		LIST_REMOVE(vp, v_mntvnodes);
579	/*
580	 * Insert into list of vnodes for the new mount point, if available.
581	 */
582	if ((vp->v_mount = mp) == NULL) {
583		simple_unlock(&mntvnode_slock);
584		return;
585	}
586	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
587	simple_unlock(&mntvnode_slock);
588}
589
590/*
591 * Update outstanding I/O count and do wakeup if requested.
592 */
593void
594vwakeup(bp)
595	register struct buf *bp;
596{
597	register struct vnode *vp;
598
599	bp->b_flags &= ~B_WRITEINPROG;
600	if ((vp = bp->b_vp)) {
601		vp->v_numoutput--;
602		if (vp->v_numoutput < 0)
603			panic("vwakeup: neg numoutput");
604		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
605			vp->v_flag &= ~VBWAIT;
606			wakeup((caddr_t) &vp->v_numoutput);
607		}
608	}
609}
610
611/*
612 * Flush out and invalidate all buffers associated with a vnode.
613 * Called with the underlying object locked.
614 */
615int
616vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
617	register struct vnode *vp;
618	int flags;
619	struct ucred *cred;
620	struct proc *p;
621	int slpflag, slptimeo;
622{
623	register struct buf *bp;
624	struct buf *nbp, *blist;
625	int s, error;
626	vm_object_t object;
627
628	if (flags & V_SAVE) {
629		s = splbio();
630		while (vp->v_numoutput) {
631			vp->v_flag |= VBWAIT;
632			error = tsleep((caddr_t)&vp->v_numoutput,
633			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
634			if (error) {
635				splx(s);
636				return (error);
637			}
638		}
639		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
640			splx(s);
641			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
642				return (error);
643			s = splbio();
644			if (vp->v_numoutput > 0 ||
645			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
646				panic("vinvalbuf: dirty bufs");
647		}
648		splx(s);
649  	}
650	s = splbio();
651	for (;;) {
652		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
653		if (!blist)
654			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
655		if (!blist)
656			break;
657
658		for (bp = blist; bp; bp = nbp) {
659			nbp = TAILQ_NEXT(bp, b_vnbufs);
660			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
661				error = BUF_TIMELOCK(bp,
662				    LK_EXCLUSIVE | LK_SLEEPFAIL,
663				    "vinvalbuf", slpflag, slptimeo);
664				if (error == ENOLCK)
665					break;
666				splx(s);
667				return (error);
668			}
669			/*
670			 * XXX Since there are no node locks for NFS, I
671			 * believe there is a slight chance that a delayed
672			 * write will occur while sleeping just above, so
673			 * check for it.  Note that vfs_bio_awrite expects
674			 * buffers to reside on a queue, while VOP_BWRITE and
675			 * brelse do not.
676			 */
677			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
678				(flags & V_SAVE)) {
679
680				if (bp->b_vp == vp) {
681					if (bp->b_flags & B_CLUSTEROK) {
682						BUF_UNLOCK(bp);
683						vfs_bio_awrite(bp);
684					} else {
685						bremfree(bp);
686						bp->b_flags |= B_ASYNC;
687						BUF_WRITE(bp);
688					}
689				} else {
690					bremfree(bp);
691					(void) BUF_WRITE(bp);
692				}
693				break;
694			}
695			bremfree(bp);
696			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
697			bp->b_flags &= ~B_ASYNC;
698			brelse(bp);
699		}
700	}
701
702	while (vp->v_numoutput > 0) {
703		vp->v_flag |= VBWAIT;
704		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
705	}
706
707	splx(s);
708
709	/*
710	 * Destroy the copy in the VM cache, too.
711	 */
712	simple_lock(&vp->v_interlock);
713	object = vp->v_object;
714	if (object != NULL) {
715		vm_object_page_remove(object, 0, 0,
716			(flags & V_SAVE) ? TRUE : FALSE);
717	}
718	simple_unlock(&vp->v_interlock);
719
720	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
721		panic("vinvalbuf: flush failed");
722	return (0);
723}
724
725/*
726 * Truncate a file's buffer and pages to a specified length.  This
727 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
728 * sync activity.
729 */
730int
731vtruncbuf(vp, cred, p, length, blksize)
732	register struct vnode *vp;
733	struct ucred *cred;
734	struct proc *p;
735	off_t length;
736	int blksize;
737{
738	register struct buf *bp;
739	struct buf *nbp;
740	int s, anyfreed;
741	int trunclbn;
742
743	/*
744	 * Round up to the *next* lbn.
745	 */
746	trunclbn = (length + blksize - 1) / blksize;
747
748	s = splbio();
749restart:
750	anyfreed = 1;
751	for (;anyfreed;) {
752		anyfreed = 0;
753		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
754			nbp = TAILQ_NEXT(bp, b_vnbufs);
755			if (bp->b_lblkno >= trunclbn) {
756				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
757					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
758					goto restart;
759				} else {
760					bremfree(bp);
761					bp->b_flags |= (B_INVAL | B_RELBUF);
762					bp->b_flags &= ~B_ASYNC;
763					brelse(bp);
764					anyfreed = 1;
765				}
766				if (nbp &&
767				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
768				    (nbp->b_vp != vp) ||
769				    (nbp->b_flags & B_DELWRI))) {
770					goto restart;
771				}
772			}
773		}
774
775		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
776			nbp = TAILQ_NEXT(bp, b_vnbufs);
777			if (bp->b_lblkno >= trunclbn) {
778				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
779					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
780					goto restart;
781				} else {
782					bremfree(bp);
783					bp->b_flags |= (B_INVAL | B_RELBUF);
784					bp->b_flags &= ~B_ASYNC;
785					brelse(bp);
786					anyfreed = 1;
787				}
788				if (nbp &&
789				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
790				    (nbp->b_vp != vp) ||
791				    (nbp->b_flags & B_DELWRI) == 0)) {
792					goto restart;
793				}
794			}
795		}
796	}
797
798	if (length > 0) {
799restartsync:
800		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
801			nbp = TAILQ_NEXT(bp, b_vnbufs);
802			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
803				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
804					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
805					goto restart;
806				} else {
807					bremfree(bp);
808					if (bp->b_vp == vp) {
809						bp->b_flags |= B_ASYNC;
810					} else {
811						bp->b_flags &= ~B_ASYNC;
812					}
813					BUF_WRITE(bp);
814				}
815				goto restartsync;
816			}
817
818		}
819	}
820
821	while (vp->v_numoutput > 0) {
822		vp->v_flag |= VBWAIT;
823		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
824	}
825
826	splx(s);
827
828	vnode_pager_setsize(vp, length);
829
830	return (0);
831}
832
833/*
834 * Associate a buffer with a vnode.
835 */
836void
837bgetvp(vp, bp)
838	register struct vnode *vp;
839	register struct buf *bp;
840{
841	int s;
842
843	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
844
845	vhold(vp);
846	bp->b_vp = vp;
847	bp->b_dev = vn_todev(vp);
848	/*
849	 * Insert onto list for new vnode.
850	 */
851	s = splbio();
852	bp->b_xflags |= BX_VNCLEAN;
853	bp->b_xflags &= ~BX_VNDIRTY;
854	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
855	splx(s);
856}
857
858/*
859 * Disassociate a buffer from a vnode.
860 */
861void
862brelvp(bp)
863	register struct buf *bp;
864{
865	struct vnode *vp;
866	struct buflists *listheadp;
867	int s;
868
869	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
870
871	/*
872	 * Delete from old vnode list, if on one.
873	 */
874	vp = bp->b_vp;
875	s = splbio();
876	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
877		if (bp->b_xflags & BX_VNDIRTY)
878			listheadp = &vp->v_dirtyblkhd;
879		else
880			listheadp = &vp->v_cleanblkhd;
881		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
882		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
883	}
884	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
885		vp->v_flag &= ~VONWORKLST;
886		LIST_REMOVE(vp, v_synclist);
887	}
888	splx(s);
889	bp->b_vp = (struct vnode *) 0;
890	vdrop(vp);
891}
892
893/*
894 * The workitem queue.
895 *
896 * It is useful to delay writes of file data and filesystem metadata
897 * for tens of seconds so that quickly created and deleted files need
898 * not waste disk bandwidth being created and removed. To realize this,
899 * we append vnodes to a "workitem" queue. When running with a soft
900 * updates implementation, most pending metadata dependencies should
901 * not wait for more than a few seconds. Thus, mounted on block devices
902 * are delayed only about a half the time that file data is delayed.
903 * Similarly, directory updates are more critical, so are only delayed
904 * about a third the time that file data is delayed. Thus, there are
905 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
906 * one each second (driven off the filesystem syncer process). The
907 * syncer_delayno variable indicates the next queue that is to be processed.
908 * Items that need to be processed soon are placed in this queue:
909 *
910 *	syncer_workitem_pending[syncer_delayno]
911 *
912 * A delay of fifteen seconds is done by placing the request fifteen
913 * entries later in the queue:
914 *
915 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
916 *
917 */
918
919/*
920 * Add an item to the syncer work queue.
921 */
922static void
923vn_syncer_add_to_worklist(struct vnode *vp, int delay)
924{
925	int s, slot;
926
927	s = splbio();
928
929	if (vp->v_flag & VONWORKLST) {
930		LIST_REMOVE(vp, v_synclist);
931	}
932
933	if (delay > syncer_maxdelay - 2)
934		delay = syncer_maxdelay - 2;
935	slot = (syncer_delayno + delay) & syncer_mask;
936
937	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
938	vp->v_flag |= VONWORKLST;
939	splx(s);
940}
941
942struct  proc *updateproc;
943static void sched_sync __P((void));
944static struct kproc_desc up_kp = {
945	"syncer",
946	sched_sync,
947	&updateproc
948};
949SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
950
951/*
952 * System filesystem synchronizer daemon.
953 */
954void
955sched_sync(void)
956{
957	struct synclist *slp;
958	struct vnode *vp;
959	struct mount *mp;
960	long starttime;
961	int s;
962	struct proc *p = updateproc;
963
964	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, p,
965	    SHUTDOWN_PRI_LAST);
966
967	for (;;) {
968		kproc_suspend_loop(p);
969
970		starttime = time_second;
971
972		/*
973		 * Push files whose dirty time has expired.  Be careful
974		 * of interrupt race on slp queue.
975		 */
976		s = splbio();
977		slp = &syncer_workitem_pending[syncer_delayno];
978		syncer_delayno += 1;
979		if (syncer_delayno == syncer_maxdelay)
980			syncer_delayno = 0;
981		splx(s);
982
983		while ((vp = LIST_FIRST(slp)) != NULL) {
984			if (VOP_ISLOCKED(vp, NULL) == 0 &&
985			    vn_start_write(vp, &mp, V_NOWAIT) == 0) {
986				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
987				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
988				VOP_UNLOCK(vp, 0, p);
989				vn_finished_write(mp);
990			}
991			s = splbio();
992			if (LIST_FIRST(slp) == vp) {
993				/*
994				 * Note: v_tag VT_VFS vps can remain on the
995				 * worklist too with no dirty blocks, but
996				 * since sync_fsync() moves it to a different
997				 * slot we are safe.
998				 */
999				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1000				    !vn_isdisk(vp, NULL))
1001					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1002				/*
1003				 * Put us back on the worklist.  The worklist
1004				 * routine will remove us from our current
1005				 * position and then add us back in at a later
1006				 * position.
1007				 */
1008				vn_syncer_add_to_worklist(vp, syncdelay);
1009			}
1010			splx(s);
1011		}
1012
1013		/*
1014		 * Do soft update processing.
1015		 */
1016#ifdef SOFTUPDATES
1017		softdep_process_worklist(NULL);
1018#endif
1019
1020		/*
1021		 * The variable rushjob allows the kernel to speed up the
1022		 * processing of the filesystem syncer process. A rushjob
1023		 * value of N tells the filesystem syncer to process the next
1024		 * N seconds worth of work on its queue ASAP. Currently rushjob
1025		 * is used by the soft update code to speed up the filesystem
1026		 * syncer process when the incore state is getting so far
1027		 * ahead of the disk that the kernel memory pool is being
1028		 * threatened with exhaustion.
1029		 */
1030		if (rushjob > 0) {
1031			rushjob -= 1;
1032			continue;
1033		}
1034		/*
1035		 * If it has taken us less than a second to process the
1036		 * current work, then wait. Otherwise start right over
1037		 * again. We can still lose time if any single round
1038		 * takes more than two seconds, but it does not really
1039		 * matter as we are just trying to generally pace the
1040		 * filesystem activity.
1041		 */
1042		if (time_second == starttime)
1043			tsleep(&lbolt, PPAUSE, "syncer", 0);
1044	}
1045}
1046
1047/*
1048 * Request the syncer daemon to speed up its work.
1049 * We never push it to speed up more than half of its
1050 * normal turn time, otherwise it could take over the cpu.
1051 */
1052int
1053speedup_syncer()
1054{
1055	int s;
1056
1057	s = splhigh();
1058	if (updateproc->p_wchan == &lbolt)
1059		setrunnable(updateproc);
1060	splx(s);
1061	if (rushjob < syncdelay / 2) {
1062		rushjob += 1;
1063		stat_rush_requests += 1;
1064		return (1);
1065	}
1066	return(0);
1067}
1068
1069/*
1070 * Associate a p-buffer with a vnode.
1071 *
1072 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1073 * with the buffer.  i.e. the bp has not been linked into the vnode or
1074 * ref-counted.
1075 */
1076void
1077pbgetvp(vp, bp)
1078	register struct vnode *vp;
1079	register struct buf *bp;
1080{
1081
1082	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1083
1084	bp->b_vp = vp;
1085	bp->b_flags |= B_PAGING;
1086	bp->b_dev = vn_todev(vp);
1087}
1088
1089/*
1090 * Disassociate a p-buffer from a vnode.
1091 */
1092void
1093pbrelvp(bp)
1094	register struct buf *bp;
1095{
1096
1097	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1098
1099	/* XXX REMOVE ME */
1100	if (bp->b_vnbufs.tqe_next != NULL) {
1101		panic(
1102		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1103		    bp,
1104		    (int)bp->b_flags
1105		);
1106	}
1107	bp->b_vp = (struct vnode *) 0;
1108	bp->b_flags &= ~B_PAGING;
1109}
1110
1111void
1112pbreassignbuf(bp, newvp)
1113	struct buf *bp;
1114	struct vnode *newvp;
1115{
1116	if ((bp->b_flags & B_PAGING) == 0) {
1117		panic(
1118		    "pbreassignbuf() on non phys bp %p",
1119		    bp
1120		);
1121	}
1122	bp->b_vp = newvp;
1123}
1124
1125/*
1126 * Reassign a buffer from one vnode to another.
1127 * Used to assign file specific control information
1128 * (indirect blocks) to the vnode to which they belong.
1129 */
1130void
1131reassignbuf(bp, newvp)
1132	register struct buf *bp;
1133	register struct vnode *newvp;
1134{
1135	struct buflists *listheadp;
1136	int delay;
1137	int s;
1138
1139	if (newvp == NULL) {
1140		printf("reassignbuf: NULL");
1141		return;
1142	}
1143	++reassignbufcalls;
1144
1145	/*
1146	 * B_PAGING flagged buffers cannot be reassigned because their vp
1147	 * is not fully linked in.
1148	 */
1149	if (bp->b_flags & B_PAGING)
1150		panic("cannot reassign paging buffer");
1151
1152	s = splbio();
1153	/*
1154	 * Delete from old vnode list, if on one.
1155	 */
1156	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1157		if (bp->b_xflags & BX_VNDIRTY)
1158			listheadp = &bp->b_vp->v_dirtyblkhd;
1159		else
1160			listheadp = &bp->b_vp->v_cleanblkhd;
1161		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1162		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1163		if (bp->b_vp != newvp) {
1164			vdrop(bp->b_vp);
1165			bp->b_vp = NULL;	/* for clarification */
1166		}
1167	}
1168	/*
1169	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1170	 * of clean buffers.
1171	 */
1172	if (bp->b_flags & B_DELWRI) {
1173		struct buf *tbp;
1174
1175		listheadp = &newvp->v_dirtyblkhd;
1176		if ((newvp->v_flag & VONWORKLST) == 0) {
1177			switch (newvp->v_type) {
1178			case VDIR:
1179				delay = dirdelay;
1180				break;
1181			case VCHR:
1182			case VBLK:
1183				if (newvp->v_specmountpoint != NULL) {
1184					delay = metadelay;
1185					break;
1186				}
1187				/* fall through */
1188			default:
1189				delay = filedelay;
1190			}
1191			vn_syncer_add_to_worklist(newvp, delay);
1192		}
1193		bp->b_xflags |= BX_VNDIRTY;
1194		tbp = TAILQ_FIRST(listheadp);
1195		if (tbp == NULL ||
1196		    bp->b_lblkno == 0 ||
1197		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1198		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1199			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1200			++reassignbufsortgood;
1201		} else if (bp->b_lblkno < 0) {
1202			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1203			++reassignbufsortgood;
1204		} else if (reassignbufmethod == 1) {
1205			/*
1206			 * New sorting algorithm, only handle sequential case,
1207			 * otherwise append to end (but before metadata)
1208			 */
1209			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1210			    (tbp->b_xflags & BX_VNDIRTY)) {
1211				/*
1212				 * Found the best place to insert the buffer
1213				 */
1214				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1215				++reassignbufsortgood;
1216			} else {
1217				/*
1218				 * Missed, append to end, but before meta-data.
1219				 * We know that the head buffer in the list is
1220				 * not meta-data due to prior conditionals.
1221				 *
1222				 * Indirect effects:  NFS second stage write
1223				 * tends to wind up here, giving maximum
1224				 * distance between the unstable write and the
1225				 * commit rpc.
1226				 */
1227				tbp = TAILQ_LAST(listheadp, buflists);
1228				while (tbp && tbp->b_lblkno < 0)
1229					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1230				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1231				++reassignbufsortbad;
1232			}
1233		} else {
1234			/*
1235			 * Old sorting algorithm, scan queue and insert
1236			 */
1237			struct buf *ttbp;
1238			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1239			    (ttbp->b_lblkno < bp->b_lblkno)) {
1240				++reassignbufloops;
1241				tbp = ttbp;
1242			}
1243			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1244		}
1245	} else {
1246		bp->b_xflags |= BX_VNCLEAN;
1247		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1248		if ((newvp->v_flag & VONWORKLST) &&
1249		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1250			newvp->v_flag &= ~VONWORKLST;
1251			LIST_REMOVE(newvp, v_synclist);
1252		}
1253	}
1254	if (bp->b_vp != newvp) {
1255		bp->b_vp = newvp;
1256		vhold(bp->b_vp);
1257	}
1258	splx(s);
1259}
1260
1261/*
1262 * Create a vnode for a block device.
1263 * Used for mounting the root file system.
1264 * XXX: This now changed to a VCHR due to the block/char merging.
1265 */
1266int
1267bdevvp(dev, vpp)
1268	dev_t dev;
1269	struct vnode **vpp;
1270{
1271	register struct vnode *vp;
1272	struct vnode *nvp;
1273	int error;
1274
1275	if (dev == NODEV) {
1276		*vpp = NULLVP;
1277		return (ENXIO);
1278	}
1279	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1280	if (error) {
1281		*vpp = NULLVP;
1282		return (error);
1283	}
1284	vp = nvp;
1285	vp->v_type = VCHR;
1286	addalias(vp, dev);
1287	*vpp = vp;
1288	return (0);
1289}
1290
1291/*
1292 * Add vnode to the alias list hung off the dev_t.
1293 *
1294 * The reason for this gunk is that multiple vnodes can reference
1295 * the same physical device, so checking vp->v_usecount to see
1296 * how many users there are is inadequate; the v_usecount for
1297 * the vnodes need to be accumulated.  vcount() does that.
1298 */
1299struct vnode *
1300addaliasu(nvp, nvp_rdev)
1301	struct vnode *nvp;
1302	udev_t nvp_rdev;
1303{
1304	struct vnode *ovp;
1305	vop_t **ops;
1306	dev_t dev;
1307
1308	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1309		panic("addaliasu on non-special vnode");
1310	dev = udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0);
1311	/*
1312	 * Check to see if we have a bdevvp vnode with no associated
1313	 * filesystem. If so, we want to associate the filesystem of
1314	 * the new newly instigated vnode with the bdevvp vnode and
1315	 * discard the newly created vnode rather than leaving the
1316	 * bdevvp vnode lying around with no associated filesystem.
1317	 */
1318	if (vfinddev(dev, nvp->v_type, &ovp) == 0 || ovp->v_data != NULL) {
1319		addalias(nvp, dev);
1320		return (nvp);
1321	}
1322	/*
1323	 * Discard unneeded vnode, but save its node specific data.
1324	 * Note that if there is a lock, it is carried over in the
1325	 * node specific data to the replacement vnode.
1326	 */
1327	vref(ovp);
1328	ovp->v_data = nvp->v_data;
1329	ovp->v_tag = nvp->v_tag;
1330	nvp->v_data = NULL;
1331	ops = nvp->v_op;
1332	nvp->v_op = ovp->v_op;
1333	ovp->v_op = ops;
1334	insmntque(ovp, nvp->v_mount);
1335	vrele(nvp);
1336	vgone(nvp);
1337	return (ovp);
1338}
1339
1340void
1341addalias(nvp, dev)
1342	struct vnode *nvp;
1343	dev_t dev;
1344{
1345
1346	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1347		panic("addalias on non-special vnode");
1348
1349	nvp->v_rdev = dev;
1350	simple_lock(&spechash_slock);
1351	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1352	simple_unlock(&spechash_slock);
1353}
1354
1355/*
1356 * Grab a particular vnode from the free list, increment its
1357 * reference count and lock it. The vnode lock bit is set if the
1358 * vnode is being eliminated in vgone. The process is awakened
1359 * when the transition is completed, and an error returned to
1360 * indicate that the vnode is no longer usable (possibly having
1361 * been changed to a new file system type).
1362 */
1363int
1364vget(vp, flags, p)
1365	register struct vnode *vp;
1366	int flags;
1367	struct proc *p;
1368{
1369	int error;
1370
1371	/*
1372	 * If the vnode is in the process of being cleaned out for
1373	 * another use, we wait for the cleaning to finish and then
1374	 * return failure. Cleaning is determined by checking that
1375	 * the VXLOCK flag is set.
1376	 */
1377	if ((flags & LK_INTERLOCK) == 0) {
1378		simple_lock(&vp->v_interlock);
1379	}
1380	if (vp->v_flag & VXLOCK) {
1381		vp->v_flag |= VXWANT;
1382		simple_unlock(&vp->v_interlock);
1383		tsleep((caddr_t)vp, PINOD, "vget", 0);
1384		return (ENOENT);
1385	}
1386
1387	vp->v_usecount++;
1388
1389	if (VSHOULDBUSY(vp))
1390		vbusy(vp);
1391	if (flags & LK_TYPE_MASK) {
1392		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1393			/*
1394			 * must expand vrele here because we do not want
1395			 * to call VOP_INACTIVE if the reference count
1396			 * drops back to zero since it was never really
1397			 * active. We must remove it from the free list
1398			 * before sleeping so that multiple processes do
1399			 * not try to recycle it.
1400			 */
1401			simple_lock(&vp->v_interlock);
1402			vp->v_usecount--;
1403			if (VSHOULDFREE(vp))
1404				vfree(vp);
1405			simple_unlock(&vp->v_interlock);
1406		}
1407		return (error);
1408	}
1409	simple_unlock(&vp->v_interlock);
1410	return (0);
1411}
1412
1413void
1414vref(struct vnode *vp)
1415{
1416	simple_lock(&vp->v_interlock);
1417	vp->v_usecount++;
1418	simple_unlock(&vp->v_interlock);
1419}
1420
1421/*
1422 * Vnode put/release.
1423 * If count drops to zero, call inactive routine and return to freelist.
1424 */
1425void
1426vrele(vp)
1427	struct vnode *vp;
1428{
1429	struct proc *p = curproc;	/* XXX */
1430
1431	KASSERT(vp != NULL, ("vrele: null vp"));
1432	KASSERT(vp->v_writecount < vp->v_usecount, ("vrele: missed vn_close"));
1433
1434	simple_lock(&vp->v_interlock);
1435
1436	if (vp->v_usecount > 1) {
1437
1438		vp->v_usecount--;
1439		simple_unlock(&vp->v_interlock);
1440
1441		return;
1442	}
1443
1444	if (vp->v_usecount == 1) {
1445
1446		vp->v_usecount--;
1447		if (VSHOULDFREE(vp))
1448			vfree(vp);
1449	/*
1450	 * If we are doing a vput, the node is already locked, and we must
1451	 * call VOP_INACTIVE with the node locked.  So, in the case of
1452	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1453	 */
1454		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1455			VOP_INACTIVE(vp, p);
1456		}
1457
1458	} else {
1459#ifdef DIAGNOSTIC
1460		vprint("vrele: negative ref count", vp);
1461		simple_unlock(&vp->v_interlock);
1462#endif
1463		panic("vrele: negative ref cnt");
1464	}
1465}
1466
1467void
1468vput(vp)
1469	struct vnode *vp;
1470{
1471	struct proc *p = curproc;	/* XXX */
1472
1473	KASSERT(vp != NULL, ("vput: null vp"));
1474	KASSERT(vp->v_writecount < vp->v_usecount, ("vput: missed vn_close"));
1475
1476	simple_lock(&vp->v_interlock);
1477
1478	if (vp->v_usecount > 1) {
1479
1480		vp->v_usecount--;
1481		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1482		return;
1483
1484	}
1485
1486	if (vp->v_usecount == 1) {
1487
1488		vp->v_usecount--;
1489		if (VSHOULDFREE(vp))
1490			vfree(vp);
1491	/*
1492	 * If we are doing a vput, the node is already locked, and we must
1493	 * call VOP_INACTIVE with the node locked.  So, in the case of
1494	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1495	 */
1496		simple_unlock(&vp->v_interlock);
1497		VOP_INACTIVE(vp, p);
1498
1499	} else {
1500#ifdef DIAGNOSTIC
1501		vprint("vput: negative ref count", vp);
1502#endif
1503		panic("vput: negative ref cnt");
1504	}
1505}
1506
1507/*
1508 * Somebody doesn't want the vnode recycled.
1509 */
1510void
1511vhold(vp)
1512	register struct vnode *vp;
1513{
1514	int s;
1515
1516  	s = splbio();
1517	vp->v_holdcnt++;
1518	if (VSHOULDBUSY(vp))
1519		vbusy(vp);
1520	splx(s);
1521}
1522
1523/*
1524 * One less who cares about this vnode.
1525 */
1526void
1527vdrop(vp)
1528	register struct vnode *vp;
1529{
1530	int s;
1531
1532	s = splbio();
1533	if (vp->v_holdcnt <= 0)
1534		panic("vdrop: holdcnt");
1535	vp->v_holdcnt--;
1536	if (VSHOULDFREE(vp))
1537		vfree(vp);
1538	splx(s);
1539}
1540
1541/*
1542 * Remove any vnodes in the vnode table belonging to mount point mp.
1543 *
1544 * If MNT_NOFORCE is specified, there should not be any active ones,
1545 * return error if any are found (nb: this is a user error, not a
1546 * system error). If MNT_FORCE is specified, detach any active vnodes
1547 * that are found.
1548 */
1549#ifdef DIAGNOSTIC
1550static int busyprt = 0;		/* print out busy vnodes */
1551SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1552#endif
1553
1554int
1555vflush(mp, skipvp, flags)
1556	struct mount *mp;
1557	struct vnode *skipvp;
1558	int flags;
1559{
1560	struct proc *p = curproc;	/* XXX */
1561	struct vnode *vp, *nvp;
1562	int busy = 0;
1563
1564	simple_lock(&mntvnode_slock);
1565loop:
1566	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1567		/*
1568		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1569		 * Start over if it has (it won't be on the list anymore).
1570		 */
1571		if (vp->v_mount != mp)
1572			goto loop;
1573		nvp = LIST_NEXT(vp, v_mntvnodes);
1574		/*
1575		 * Skip over a selected vnode.
1576		 */
1577		if (vp == skipvp)
1578			continue;
1579
1580		simple_lock(&vp->v_interlock);
1581		/*
1582		 * Skip over a vnodes marked VSYSTEM.
1583		 */
1584		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1585			simple_unlock(&vp->v_interlock);
1586			continue;
1587		}
1588		/*
1589		 * If WRITECLOSE is set, only flush out regular file vnodes
1590		 * open for writing.
1591		 */
1592		if ((flags & WRITECLOSE) &&
1593		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1594			simple_unlock(&vp->v_interlock);
1595			continue;
1596		}
1597
1598		/*
1599		 * With v_usecount == 0, all we need to do is clear out the
1600		 * vnode data structures and we are done.
1601		 */
1602		if (vp->v_usecount == 0) {
1603			simple_unlock(&mntvnode_slock);
1604			vgonel(vp, p);
1605			simple_lock(&mntvnode_slock);
1606			continue;
1607		}
1608
1609		/*
1610		 * If FORCECLOSE is set, forcibly close the vnode. For block
1611		 * or character devices, revert to an anonymous device. For
1612		 * all other files, just kill them.
1613		 */
1614		if (flags & FORCECLOSE) {
1615			simple_unlock(&mntvnode_slock);
1616			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1617				vgonel(vp, p);
1618			} else {
1619				vclean(vp, 0, p);
1620				vp->v_op = spec_vnodeop_p;
1621				insmntque(vp, (struct mount *) 0);
1622			}
1623			simple_lock(&mntvnode_slock);
1624			continue;
1625		}
1626#ifdef DIAGNOSTIC
1627		if (busyprt)
1628			vprint("vflush: busy vnode", vp);
1629#endif
1630		simple_unlock(&vp->v_interlock);
1631		busy++;
1632	}
1633	simple_unlock(&mntvnode_slock);
1634	if (busy)
1635		return (EBUSY);
1636	return (0);
1637}
1638
1639/*
1640 * Disassociate the underlying file system from a vnode.
1641 */
1642static void
1643vclean(vp, flags, p)
1644	struct vnode *vp;
1645	int flags;
1646	struct proc *p;
1647{
1648	int active;
1649	vm_object_t obj;
1650
1651	/*
1652	 * Check to see if the vnode is in use. If so we have to reference it
1653	 * before we clean it out so that its count cannot fall to zero and
1654	 * generate a race against ourselves to recycle it.
1655	 */
1656	if ((active = vp->v_usecount))
1657		vp->v_usecount++;
1658
1659	/*
1660	 * Prevent the vnode from being recycled or brought into use while we
1661	 * clean it out.
1662	 */
1663	if (vp->v_flag & VXLOCK)
1664		panic("vclean: deadlock");
1665	vp->v_flag |= VXLOCK;
1666	/*
1667	 * Even if the count is zero, the VOP_INACTIVE routine may still
1668	 * have the object locked while it cleans it out. The VOP_LOCK
1669	 * ensures that the VOP_INACTIVE routine is done with its work.
1670	 * For active vnodes, it ensures that no other activity can
1671	 * occur while the underlying object is being cleaned out.
1672	 */
1673	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1674
1675	/*
1676	 * Clean out any buffers associated with the vnode.
1677	 * If the flush fails, just toss the buffers.
1678	 */
1679	if (flags & DOCLOSE) {
1680		if (TAILQ_FIRST(&vp->v_dirtyblkhd) != NULL)
1681			(void) vn_write_suspend_wait(vp, NULL, V_WAIT);
1682		if (vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0) != 0)
1683			vinvalbuf(vp, 0, NOCRED, p, 0, 0);
1684	}
1685
1686	if ((obj = vp->v_object) != NULL) {
1687		if (obj->ref_count == 0) {
1688			/*
1689			 * vclean() may be called twice. The first time
1690			 * removes the primary reference to the object,
1691			 * the second time goes one further and is a
1692			 * special-case to terminate the object.
1693			 */
1694			vm_object_terminate(obj);
1695		} else {
1696			/*
1697			 * Woe to the process that tries to page now :-).
1698			 */
1699			vm_pager_deallocate(obj);
1700		}
1701	}
1702
1703	/*
1704	 * If purging an active vnode, it must be closed and
1705	 * deactivated before being reclaimed. Note that the
1706	 * VOP_INACTIVE will unlock the vnode.
1707	 */
1708	if (active) {
1709		if (flags & DOCLOSE)
1710			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1711		VOP_INACTIVE(vp, p);
1712	} else {
1713		/*
1714		 * Any other processes trying to obtain this lock must first
1715		 * wait for VXLOCK to clear, then call the new lock operation.
1716		 */
1717		VOP_UNLOCK(vp, 0, p);
1718	}
1719	/*
1720	 * Reclaim the vnode.
1721	 */
1722	if (VOP_RECLAIM(vp, p))
1723		panic("vclean: cannot reclaim");
1724
1725	if (active) {
1726		/*
1727		 * Inline copy of vrele() since VOP_INACTIVE
1728		 * has already been called.
1729		 */
1730		simple_lock(&vp->v_interlock);
1731		if (--vp->v_usecount <= 0) {
1732#ifdef DIAGNOSTIC
1733			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1734				vprint("vclean: bad ref count", vp);
1735				panic("vclean: ref cnt");
1736			}
1737#endif
1738			vfree(vp);
1739		}
1740		simple_unlock(&vp->v_interlock);
1741	}
1742
1743	cache_purge(vp);
1744	if (vp->v_vnlock) {
1745		FREE(vp->v_vnlock, M_VNODE);
1746		vp->v_vnlock = NULL;
1747	}
1748
1749	if (VSHOULDFREE(vp))
1750		vfree(vp);
1751
1752	/*
1753	 * Done with purge, notify sleepers of the grim news.
1754	 */
1755	vp->v_op = dead_vnodeop_p;
1756	vn_pollgone(vp);
1757	vp->v_tag = VT_NON;
1758	vp->v_flag &= ~VXLOCK;
1759	if (vp->v_flag & VXWANT) {
1760		vp->v_flag &= ~VXWANT;
1761		wakeup((caddr_t) vp);
1762	}
1763}
1764
1765/*
1766 * Eliminate all activity associated with the requested vnode
1767 * and with all vnodes aliased to the requested vnode.
1768 */
1769int
1770vop_revoke(ap)
1771	struct vop_revoke_args /* {
1772		struct vnode *a_vp;
1773		int a_flags;
1774	} */ *ap;
1775{
1776	struct vnode *vp, *vq;
1777	dev_t dev;
1778
1779	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1780
1781	vp = ap->a_vp;
1782	/*
1783	 * If a vgone (or vclean) is already in progress,
1784	 * wait until it is done and return.
1785	 */
1786	if (vp->v_flag & VXLOCK) {
1787		vp->v_flag |= VXWANT;
1788		simple_unlock(&vp->v_interlock);
1789		tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1790		return (0);
1791	}
1792	dev = vp->v_rdev;
1793	for (;;) {
1794		simple_lock(&spechash_slock);
1795		vq = SLIST_FIRST(&dev->si_hlist);
1796		simple_unlock(&spechash_slock);
1797		if (!vq)
1798			break;
1799		vgone(vq);
1800	}
1801	return (0);
1802}
1803
1804/*
1805 * Recycle an unused vnode to the front of the free list.
1806 * Release the passed interlock if the vnode will be recycled.
1807 */
1808int
1809vrecycle(vp, inter_lkp, p)
1810	struct vnode *vp;
1811	struct simplelock *inter_lkp;
1812	struct proc *p;
1813{
1814
1815	simple_lock(&vp->v_interlock);
1816	if (vp->v_usecount == 0) {
1817		if (inter_lkp) {
1818			simple_unlock(inter_lkp);
1819		}
1820		vgonel(vp, p);
1821		return (1);
1822	}
1823	simple_unlock(&vp->v_interlock);
1824	return (0);
1825}
1826
1827/*
1828 * Eliminate all activity associated with a vnode
1829 * in preparation for reuse.
1830 */
1831void
1832vgone(vp)
1833	register struct vnode *vp;
1834{
1835	struct proc *p = curproc;	/* XXX */
1836
1837	simple_lock(&vp->v_interlock);
1838	vgonel(vp, p);
1839}
1840
1841/*
1842 * vgone, with the vp interlock held.
1843 */
1844void
1845vgonel(vp, p)
1846	struct vnode *vp;
1847	struct proc *p;
1848{
1849	int s;
1850
1851	/*
1852	 * If a vgone (or vclean) is already in progress,
1853	 * wait until it is done and return.
1854	 */
1855	if (vp->v_flag & VXLOCK) {
1856		vp->v_flag |= VXWANT;
1857		simple_unlock(&vp->v_interlock);
1858		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1859		return;
1860	}
1861
1862	/*
1863	 * Clean out the filesystem specific data.
1864	 */
1865	vclean(vp, DOCLOSE, p);
1866	simple_lock(&vp->v_interlock);
1867
1868	/*
1869	 * Delete from old mount point vnode list, if on one.
1870	 */
1871	if (vp->v_mount != NULL)
1872		insmntque(vp, (struct mount *)0);
1873	/*
1874	 * If special device, remove it from special device alias list
1875	 * if it is on one.
1876	 */
1877	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1878		simple_lock(&spechash_slock);
1879		SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
1880		freedev(vp->v_rdev);
1881		simple_unlock(&spechash_slock);
1882		vp->v_rdev = NULL;
1883	}
1884
1885	/*
1886	 * If it is on the freelist and not already at the head,
1887	 * move it to the head of the list. The test of the
1888	 * VDOOMED flag and the reference count of zero is because
1889	 * it will be removed from the free list by getnewvnode,
1890	 * but will not have its reference count incremented until
1891	 * after calling vgone. If the reference count were
1892	 * incremented first, vgone would (incorrectly) try to
1893	 * close the previous instance of the underlying object.
1894	 */
1895	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1896		s = splbio();
1897		simple_lock(&vnode_free_list_slock);
1898		if (vp->v_flag & VFREE)
1899			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1900		else
1901			freevnodes++;
1902		vp->v_flag |= VFREE;
1903		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1904		simple_unlock(&vnode_free_list_slock);
1905		splx(s);
1906	}
1907
1908	vp->v_type = VBAD;
1909	simple_unlock(&vp->v_interlock);
1910}
1911
1912/*
1913 * Lookup a vnode by device number.
1914 */
1915int
1916vfinddev(dev, type, vpp)
1917	dev_t dev;
1918	enum vtype type;
1919	struct vnode **vpp;
1920{
1921	struct vnode *vp;
1922
1923	simple_lock(&spechash_slock);
1924	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1925		if (type == vp->v_type) {
1926			*vpp = vp;
1927			simple_unlock(&spechash_slock);
1928			return (1);
1929		}
1930	}
1931	simple_unlock(&spechash_slock);
1932	return (0);
1933}
1934
1935/*
1936 * Calculate the total number of references to a special device.
1937 */
1938int
1939vcount(vp)
1940	struct vnode *vp;
1941{
1942	struct vnode *vq;
1943	int count;
1944
1945	count = 0;
1946	simple_lock(&spechash_slock);
1947	SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
1948		count += vq->v_usecount;
1949	simple_unlock(&spechash_slock);
1950	return (count);
1951}
1952
1953/*
1954 * Same as above, but using the dev_t as argument
1955 */
1956
1957int
1958count_dev(dev)
1959	dev_t dev;
1960{
1961	struct vnode *vp;
1962
1963	vp = SLIST_FIRST(&dev->si_hlist);
1964	if (vp == NULL)
1965		return (0);
1966	return(vcount(vp));
1967}
1968
1969/*
1970 * Print out a description of a vnode.
1971 */
1972static char *typename[] =
1973{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1974
1975void
1976vprint(label, vp)
1977	char *label;
1978	struct vnode *vp;
1979{
1980	char buf[96];
1981
1982	if (label != NULL)
1983		printf("%s: %p: ", label, (void *)vp);
1984	else
1985		printf("%p: ", (void *)vp);
1986	printf("type %s, usecount %d, writecount %d, refcount %d,",
1987	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1988	    vp->v_holdcnt);
1989	buf[0] = '\0';
1990	if (vp->v_flag & VROOT)
1991		strcat(buf, "|VROOT");
1992	if (vp->v_flag & VTEXT)
1993		strcat(buf, "|VTEXT");
1994	if (vp->v_flag & VSYSTEM)
1995		strcat(buf, "|VSYSTEM");
1996	if (vp->v_flag & VXLOCK)
1997		strcat(buf, "|VXLOCK");
1998	if (vp->v_flag & VXWANT)
1999		strcat(buf, "|VXWANT");
2000	if (vp->v_flag & VBWAIT)
2001		strcat(buf, "|VBWAIT");
2002	if (vp->v_flag & VDOOMED)
2003		strcat(buf, "|VDOOMED");
2004	if (vp->v_flag & VFREE)
2005		strcat(buf, "|VFREE");
2006	if (vp->v_flag & VOBJBUF)
2007		strcat(buf, "|VOBJBUF");
2008	if (buf[0] != '\0')
2009		printf(" flags (%s)", &buf[1]);
2010	if (vp->v_data == NULL) {
2011		printf("\n");
2012	} else {
2013		printf("\n\t");
2014		VOP_PRINT(vp);
2015	}
2016}
2017
2018#ifdef DDB
2019#include <ddb/ddb.h>
2020/*
2021 * List all of the locked vnodes in the system.
2022 * Called when debugging the kernel.
2023 */
2024DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2025{
2026	struct proc *p = curproc;	/* XXX */
2027	struct mount *mp, *nmp;
2028	struct vnode *vp;
2029
2030	printf("Locked vnodes\n");
2031	simple_lock(&mountlist_slock);
2032	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2033		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2034			nmp = TAILQ_NEXT(mp, mnt_list);
2035			continue;
2036		}
2037		LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2038			if (VOP_ISLOCKED(vp, NULL))
2039				vprint((char *)0, vp);
2040		}
2041		simple_lock(&mountlist_slock);
2042		nmp = TAILQ_NEXT(mp, mnt_list);
2043		vfs_unbusy(mp, p);
2044	}
2045	simple_unlock(&mountlist_slock);
2046}
2047#endif
2048
2049/*
2050 * Top level filesystem related information gathering.
2051 */
2052static int	sysctl_ovfs_conf __P((SYSCTL_HANDLER_ARGS));
2053
2054static int
2055vfs_sysctl(SYSCTL_HANDLER_ARGS)
2056{
2057	int *name = (int *)arg1 - 1;	/* XXX */
2058	u_int namelen = arg2 + 1;	/* XXX */
2059	struct vfsconf *vfsp;
2060
2061#if 1 || defined(COMPAT_PRELITE2)
2062	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2063	if (namelen == 1)
2064		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2065#endif
2066
2067#ifdef notyet
2068	/* all sysctl names at this level are at least name and field */
2069	if (namelen < 2)
2070		return (ENOTDIR);		/* overloaded */
2071	if (name[0] != VFS_GENERIC) {
2072		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2073			if (vfsp->vfc_typenum == name[0])
2074				break;
2075		if (vfsp == NULL)
2076			return (EOPNOTSUPP);
2077		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2078		    oldp, oldlenp, newp, newlen, p));
2079	}
2080#endif
2081	switch (name[1]) {
2082	case VFS_MAXTYPENUM:
2083		if (namelen != 2)
2084			return (ENOTDIR);
2085		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2086	case VFS_CONF:
2087		if (namelen != 3)
2088			return (ENOTDIR);	/* overloaded */
2089		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2090			if (vfsp->vfc_typenum == name[2])
2091				break;
2092		if (vfsp == NULL)
2093			return (EOPNOTSUPP);
2094		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2095	}
2096	return (EOPNOTSUPP);
2097}
2098
2099SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2100	"Generic filesystem");
2101
2102#if 1 || defined(COMPAT_PRELITE2)
2103
2104static int
2105sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
2106{
2107	int error;
2108	struct vfsconf *vfsp;
2109	struct ovfsconf ovfs;
2110
2111	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2112		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2113		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2114		ovfs.vfc_index = vfsp->vfc_typenum;
2115		ovfs.vfc_refcount = vfsp->vfc_refcount;
2116		ovfs.vfc_flags = vfsp->vfc_flags;
2117		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2118		if (error)
2119			return error;
2120	}
2121	return 0;
2122}
2123
2124#endif /* 1 || COMPAT_PRELITE2 */
2125
2126#if 0
2127#define KINFO_VNODESLOP	10
2128/*
2129 * Dump vnode list (via sysctl).
2130 * Copyout address of vnode followed by vnode.
2131 */
2132/* ARGSUSED */
2133static int
2134sysctl_vnode(SYSCTL_HANDLER_ARGS)
2135{
2136	struct proc *p = curproc;	/* XXX */
2137	struct mount *mp, *nmp;
2138	struct vnode *nvp, *vp;
2139	int error;
2140
2141#define VPTRSZ	sizeof (struct vnode *)
2142#define VNODESZ	sizeof (struct vnode)
2143
2144	req->lock = 0;
2145	if (!req->oldptr) /* Make an estimate */
2146		return (SYSCTL_OUT(req, 0,
2147			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2148
2149	simple_lock(&mountlist_slock);
2150	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2151		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2152			nmp = TAILQ_NEXT(mp, mnt_list);
2153			continue;
2154		}
2155again:
2156		simple_lock(&mntvnode_slock);
2157		for (vp = LIST_FIRST(&mp->mnt_vnodelist);
2158		     vp != NULL;
2159		     vp = nvp) {
2160			/*
2161			 * Check that the vp is still associated with
2162			 * this filesystem.  RACE: could have been
2163			 * recycled onto the same filesystem.
2164			 */
2165			if (vp->v_mount != mp) {
2166				simple_unlock(&mntvnode_slock);
2167				goto again;
2168			}
2169			nvp = LIST_NEXT(vp, v_mntvnodes);
2170			simple_unlock(&mntvnode_slock);
2171			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2172			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2173				return (error);
2174			simple_lock(&mntvnode_slock);
2175		}
2176		simple_unlock(&mntvnode_slock);
2177		simple_lock(&mountlist_slock);
2178		nmp = TAILQ_NEXT(mp, mnt_list);
2179		vfs_unbusy(mp, p);
2180	}
2181	simple_unlock(&mountlist_slock);
2182
2183	return (0);
2184}
2185#endif
2186
2187/*
2188 * XXX
2189 * Exporting the vnode list on large systems causes them to crash.
2190 * Exporting the vnode list on medium systems causes sysctl to coredump.
2191 */
2192#if 0
2193SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2194	0, 0, sysctl_vnode, "S,vnode", "");
2195#endif
2196
2197/*
2198 * Check to see if a filesystem is mounted on a block device.
2199 */
2200int
2201vfs_mountedon(vp)
2202	struct vnode *vp;
2203{
2204
2205	if (vp->v_specmountpoint != NULL)
2206		return (EBUSY);
2207	return (0);
2208}
2209
2210/*
2211 * Unmount all filesystems. The list is traversed in reverse order
2212 * of mounting to avoid dependencies.
2213 */
2214void
2215vfs_unmountall()
2216{
2217	struct mount *mp;
2218	struct proc *p;
2219	int error;
2220
2221	if (curproc != NULL)
2222		p = curproc;
2223	else
2224		p = initproc;	/* XXX XXX should this be proc0? */
2225	/*
2226	 * Since this only runs when rebooting, it is not interlocked.
2227	 */
2228	while(!TAILQ_EMPTY(&mountlist)) {
2229		mp = TAILQ_LAST(&mountlist, mntlist);
2230		error = dounmount(mp, MNT_FORCE, p);
2231		if (error) {
2232			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2233			printf("unmount of %s failed (",
2234			    mp->mnt_stat.f_mntonname);
2235			if (error == EBUSY)
2236				printf("BUSY)\n");
2237			else
2238				printf("%d)\n", error);
2239		} else {
2240			/* The unmount has removed mp from the mountlist */
2241		}
2242	}
2243}
2244
2245/*
2246 * Build hash lists of net addresses and hang them off the mount point.
2247 * Called by ufs_mount() to set up the lists of export addresses.
2248 */
2249static int
2250vfs_hang_addrlist(mp, nep, argp)
2251	struct mount *mp;
2252	struct netexport *nep;
2253	struct export_args *argp;
2254{
2255	register struct netcred *np;
2256	register struct radix_node_head *rnh;
2257	register int i;
2258	struct radix_node *rn;
2259	struct sockaddr *saddr, *smask = 0;
2260	struct domain *dom;
2261	int error;
2262
2263	if (argp->ex_addrlen == 0) {
2264		if (mp->mnt_flag & MNT_DEFEXPORTED)
2265			return (EPERM);
2266		np = &nep->ne_defexported;
2267		np->netc_exflags = argp->ex_flags;
2268		np->netc_anon = argp->ex_anon;
2269		np->netc_anon.cr_ref = 1;
2270		mp->mnt_flag |= MNT_DEFEXPORTED;
2271		return (0);
2272	}
2273	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2274	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2275	bzero((caddr_t) np, i);
2276	saddr = (struct sockaddr *) (np + 1);
2277	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2278		goto out;
2279	if (saddr->sa_len > argp->ex_addrlen)
2280		saddr->sa_len = argp->ex_addrlen;
2281	if (argp->ex_masklen) {
2282		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2283		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2284		if (error)
2285			goto out;
2286		if (smask->sa_len > argp->ex_masklen)
2287			smask->sa_len = argp->ex_masklen;
2288	}
2289	i = saddr->sa_family;
2290	if ((rnh = nep->ne_rtable[i]) == 0) {
2291		/*
2292		 * Seems silly to initialize every AF when most are not used,
2293		 * do so on demand here
2294		 */
2295		for (dom = domains; dom; dom = dom->dom_next)
2296			if (dom->dom_family == i && dom->dom_rtattach) {
2297				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2298				    dom->dom_rtoffset);
2299				break;
2300			}
2301		if ((rnh = nep->ne_rtable[i]) == 0) {
2302			error = ENOBUFS;
2303			goto out;
2304		}
2305	}
2306	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2307	    np->netc_rnodes);
2308	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2309		error = EPERM;
2310		goto out;
2311	}
2312	np->netc_exflags = argp->ex_flags;
2313	np->netc_anon = argp->ex_anon;
2314	np->netc_anon.cr_ref = 1;
2315	return (0);
2316out:
2317	free(np, M_NETADDR);
2318	return (error);
2319}
2320
2321/* ARGSUSED */
2322static int
2323vfs_free_netcred(rn, w)
2324	struct radix_node *rn;
2325	void *w;
2326{
2327	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2328
2329	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2330	free((caddr_t) rn, M_NETADDR);
2331	return (0);
2332}
2333
2334/*
2335 * Free the net address hash lists that are hanging off the mount points.
2336 */
2337static void
2338vfs_free_addrlist(nep)
2339	struct netexport *nep;
2340{
2341	register int i;
2342	register struct radix_node_head *rnh;
2343
2344	for (i = 0; i <= AF_MAX; i++)
2345		if ((rnh = nep->ne_rtable[i])) {
2346			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2347			    (caddr_t) rnh);
2348			free((caddr_t) rnh, M_RTABLE);
2349			nep->ne_rtable[i] = 0;
2350		}
2351}
2352
2353int
2354vfs_export(mp, nep, argp)
2355	struct mount *mp;
2356	struct netexport *nep;
2357	struct export_args *argp;
2358{
2359	int error;
2360
2361	if (argp->ex_flags & MNT_DELEXPORT) {
2362		if (mp->mnt_flag & MNT_EXPUBLIC) {
2363			vfs_setpublicfs(NULL, NULL, NULL);
2364			mp->mnt_flag &= ~MNT_EXPUBLIC;
2365		}
2366		vfs_free_addrlist(nep);
2367		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2368	}
2369	if (argp->ex_flags & MNT_EXPORTED) {
2370		if (argp->ex_flags & MNT_EXPUBLIC) {
2371			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2372				return (error);
2373			mp->mnt_flag |= MNT_EXPUBLIC;
2374		}
2375		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2376			return (error);
2377		mp->mnt_flag |= MNT_EXPORTED;
2378	}
2379	return (0);
2380}
2381
2382
2383/*
2384 * Set the publicly exported filesystem (WebNFS). Currently, only
2385 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2386 */
2387int
2388vfs_setpublicfs(mp, nep, argp)
2389	struct mount *mp;
2390	struct netexport *nep;
2391	struct export_args *argp;
2392{
2393	int error;
2394	struct vnode *rvp;
2395	char *cp;
2396
2397	/*
2398	 * mp == NULL -> invalidate the current info, the FS is
2399	 * no longer exported. May be called from either vfs_export
2400	 * or unmount, so check if it hasn't already been done.
2401	 */
2402	if (mp == NULL) {
2403		if (nfs_pub.np_valid) {
2404			nfs_pub.np_valid = 0;
2405			if (nfs_pub.np_index != NULL) {
2406				FREE(nfs_pub.np_index, M_TEMP);
2407				nfs_pub.np_index = NULL;
2408			}
2409		}
2410		return (0);
2411	}
2412
2413	/*
2414	 * Only one allowed at a time.
2415	 */
2416	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2417		return (EBUSY);
2418
2419	/*
2420	 * Get real filehandle for root of exported FS.
2421	 */
2422	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2423	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2424
2425	if ((error = VFS_ROOT(mp, &rvp)))
2426		return (error);
2427
2428	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2429		return (error);
2430
2431	vput(rvp);
2432
2433	/*
2434	 * If an indexfile was specified, pull it in.
2435	 */
2436	if (argp->ex_indexfile != NULL) {
2437		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2438		    M_WAITOK);
2439		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2440		    MAXNAMLEN, (size_t *)0);
2441		if (!error) {
2442			/*
2443			 * Check for illegal filenames.
2444			 */
2445			for (cp = nfs_pub.np_index; *cp; cp++) {
2446				if (*cp == '/') {
2447					error = EINVAL;
2448					break;
2449				}
2450			}
2451		}
2452		if (error) {
2453			FREE(nfs_pub.np_index, M_TEMP);
2454			return (error);
2455		}
2456	}
2457
2458	nfs_pub.np_mount = mp;
2459	nfs_pub.np_valid = 1;
2460	return (0);
2461}
2462
2463struct netcred *
2464vfs_export_lookup(mp, nep, nam)
2465	register struct mount *mp;
2466	struct netexport *nep;
2467	struct sockaddr *nam;
2468{
2469	register struct netcred *np;
2470	register struct radix_node_head *rnh;
2471	struct sockaddr *saddr;
2472
2473	np = NULL;
2474	if (mp->mnt_flag & MNT_EXPORTED) {
2475		/*
2476		 * Lookup in the export list first.
2477		 */
2478		if (nam != NULL) {
2479			saddr = nam;
2480			rnh = nep->ne_rtable[saddr->sa_family];
2481			if (rnh != NULL) {
2482				np = (struct netcred *)
2483					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2484							      rnh);
2485				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2486					np = NULL;
2487			}
2488		}
2489		/*
2490		 * If no address match, use the default if it exists.
2491		 */
2492		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2493			np = &nep->ne_defexported;
2494	}
2495	return (np);
2496}
2497
2498/*
2499 * perform msync on all vnodes under a mount point
2500 * the mount point must be locked.
2501 */
2502void
2503vfs_msync(struct mount *mp, int flags) {
2504	struct vnode *vp, *nvp;
2505	struct vm_object *obj;
2506	int anyio, tries;
2507
2508	tries = 5;
2509loop:
2510	anyio = 0;
2511	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) {
2512
2513		nvp = LIST_NEXT(vp, v_mntvnodes);
2514
2515		if (vp->v_mount != mp) {
2516			goto loop;
2517		}
2518
2519		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2520			continue;
2521
2522		if (flags != MNT_WAIT) {
2523			obj = vp->v_object;
2524			if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2525				continue;
2526			if (VOP_ISLOCKED(vp, NULL))
2527				continue;
2528		}
2529
2530		simple_lock(&vp->v_interlock);
2531		if (vp->v_object &&
2532		   (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
2533			if (!vget(vp,
2534				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2535				if (vp->v_object) {
2536					vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2537					anyio = 1;
2538				}
2539				vput(vp);
2540			}
2541		} else {
2542			simple_unlock(&vp->v_interlock);
2543		}
2544	}
2545	if (anyio && (--tries > 0))
2546		goto loop;
2547}
2548
2549/*
2550 * Create the VM object needed for VMIO and mmap support.  This
2551 * is done for all VREG files in the system.  Some filesystems might
2552 * afford the additional metadata buffering capability of the
2553 * VMIO code by making the device node be VMIO mode also.
2554 *
2555 * vp must be locked when vfs_object_create is called.
2556 */
2557int
2558vfs_object_create(vp, p, cred)
2559	struct vnode *vp;
2560	struct proc *p;
2561	struct ucred *cred;
2562{
2563	struct vattr vat;
2564	vm_object_t object;
2565	int error = 0;
2566
2567	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
2568		return 0;
2569
2570retry:
2571	if ((object = vp->v_object) == NULL) {
2572		if (vp->v_type == VREG || vp->v_type == VDIR) {
2573			if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
2574				goto retn;
2575			object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
2576		} else if (devsw(vp->v_rdev) != NULL) {
2577			/*
2578			 * This simply allocates the biggest object possible
2579			 * for a disk vnode.  This should be fixed, but doesn't
2580			 * cause any problems (yet).
2581			 */
2582			object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
2583		} else {
2584			goto retn;
2585		}
2586		/*
2587		 * Dereference the reference we just created.  This assumes
2588		 * that the object is associated with the vp.
2589		 */
2590		object->ref_count--;
2591		vp->v_usecount--;
2592	} else {
2593		if (object->flags & OBJ_DEAD) {
2594			VOP_UNLOCK(vp, 0, p);
2595			tsleep(object, PVM, "vodead", 0);
2596			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
2597			goto retry;
2598		}
2599	}
2600
2601	KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
2602	vp->v_flag |= VOBJBUF;
2603
2604retn:
2605	return error;
2606}
2607
2608void
2609vfree(vp)
2610	struct vnode *vp;
2611{
2612	int s;
2613
2614	s = splbio();
2615	simple_lock(&vnode_free_list_slock);
2616	KASSERT((vp->v_flag & VFREE) == 0, ("vnode already free"));
2617	if (vp->v_flag & VAGE) {
2618		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2619	} else {
2620		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2621	}
2622	freevnodes++;
2623	simple_unlock(&vnode_free_list_slock);
2624	vp->v_flag &= ~VAGE;
2625	vp->v_flag |= VFREE;
2626	splx(s);
2627}
2628
2629void
2630vbusy(vp)
2631	struct vnode *vp;
2632{
2633	int s;
2634
2635	s = splbio();
2636	simple_lock(&vnode_free_list_slock);
2637	KASSERT((vp->v_flag & VFREE) != 0, ("vnode not free"));
2638	TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2639	freevnodes--;
2640	simple_unlock(&vnode_free_list_slock);
2641	vp->v_flag &= ~(VFREE|VAGE);
2642	splx(s);
2643}
2644
2645/*
2646 * Record a process's interest in events which might happen to
2647 * a vnode.  Because poll uses the historic select-style interface
2648 * internally, this routine serves as both the ``check for any
2649 * pending events'' and the ``record my interest in future events''
2650 * functions.  (These are done together, while the lock is held,
2651 * to avoid race conditions.)
2652 */
2653int
2654vn_pollrecord(vp, p, events)
2655	struct vnode *vp;
2656	struct proc *p;
2657	short events;
2658{
2659	simple_lock(&vp->v_pollinfo.vpi_lock);
2660	if (vp->v_pollinfo.vpi_revents & events) {
2661		/*
2662		 * This leaves events we are not interested
2663		 * in available for the other process which
2664		 * which presumably had requested them
2665		 * (otherwise they would never have been
2666		 * recorded).
2667		 */
2668		events &= vp->v_pollinfo.vpi_revents;
2669		vp->v_pollinfo.vpi_revents &= ~events;
2670
2671		simple_unlock(&vp->v_pollinfo.vpi_lock);
2672		return events;
2673	}
2674	vp->v_pollinfo.vpi_events |= events;
2675	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2676	simple_unlock(&vp->v_pollinfo.vpi_lock);
2677	return 0;
2678}
2679
2680/*
2681 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2682 * it is possible for us to miss an event due to race conditions, but
2683 * that condition is expected to be rare, so for the moment it is the
2684 * preferred interface.
2685 */
2686void
2687vn_pollevent(vp, events)
2688	struct vnode *vp;
2689	short events;
2690{
2691	simple_lock(&vp->v_pollinfo.vpi_lock);
2692	if (vp->v_pollinfo.vpi_events & events) {
2693		/*
2694		 * We clear vpi_events so that we don't
2695		 * call selwakeup() twice if two events are
2696		 * posted before the polling process(es) is
2697		 * awakened.  This also ensures that we take at
2698		 * most one selwakeup() if the polling process
2699		 * is no longer interested.  However, it does
2700		 * mean that only one event can be noticed at
2701		 * a time.  (Perhaps we should only clear those
2702		 * event bits which we note?) XXX
2703		 */
2704		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2705		vp->v_pollinfo.vpi_revents |= events;
2706		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2707	}
2708	simple_unlock(&vp->v_pollinfo.vpi_lock);
2709}
2710
2711/*
2712 * Wake up anyone polling on vp because it is being revoked.
2713 * This depends on dead_poll() returning POLLHUP for correct
2714 * behavior.
2715 */
2716void
2717vn_pollgone(vp)
2718	struct vnode *vp;
2719{
2720	simple_lock(&vp->v_pollinfo.vpi_lock);
2721	if (vp->v_pollinfo.vpi_events) {
2722		vp->v_pollinfo.vpi_events = 0;
2723		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2724	}
2725	simple_unlock(&vp->v_pollinfo.vpi_lock);
2726}
2727
2728
2729
2730/*
2731 * Routine to create and manage a filesystem syncer vnode.
2732 */
2733#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2734static int	sync_fsync __P((struct  vop_fsync_args *));
2735static int	sync_inactive __P((struct  vop_inactive_args *));
2736static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2737#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2738#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2739static int	sync_print __P((struct vop_print_args *));
2740#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2741
2742static vop_t **sync_vnodeop_p;
2743static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2744	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2745	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2746	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2747	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2748	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2749	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2750	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2751	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2752	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2753	{ NULL, NULL }
2754};
2755static struct vnodeopv_desc sync_vnodeop_opv_desc =
2756	{ &sync_vnodeop_p, sync_vnodeop_entries };
2757
2758VNODEOP_SET(sync_vnodeop_opv_desc);
2759
2760/*
2761 * Create a new filesystem syncer vnode for the specified mount point.
2762 */
2763int
2764vfs_allocate_syncvnode(mp)
2765	struct mount *mp;
2766{
2767	struct vnode *vp;
2768	static long start, incr, next;
2769	int error;
2770
2771	/* Allocate a new vnode */
2772	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2773		mp->mnt_syncer = NULL;
2774		return (error);
2775	}
2776	vp->v_type = VNON;
2777	/*
2778	 * Place the vnode onto the syncer worklist. We attempt to
2779	 * scatter them about on the list so that they will go off
2780	 * at evenly distributed times even if all the filesystems
2781	 * are mounted at once.
2782	 */
2783	next += incr;
2784	if (next == 0 || next > syncer_maxdelay) {
2785		start /= 2;
2786		incr /= 2;
2787		if (start == 0) {
2788			start = syncer_maxdelay / 2;
2789			incr = syncer_maxdelay;
2790		}
2791		next = start;
2792	}
2793	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2794	mp->mnt_syncer = vp;
2795	return (0);
2796}
2797
2798/*
2799 * Do a lazy sync of the filesystem.
2800 */
2801static int
2802sync_fsync(ap)
2803	struct vop_fsync_args /* {
2804		struct vnode *a_vp;
2805		struct ucred *a_cred;
2806		int a_waitfor;
2807		struct proc *a_p;
2808	} */ *ap;
2809{
2810	struct vnode *syncvp = ap->a_vp;
2811	struct mount *mp = syncvp->v_mount;
2812	struct proc *p = ap->a_p;
2813	int asyncflag;
2814
2815	/*
2816	 * We only need to do something if this is a lazy evaluation.
2817	 */
2818	if (ap->a_waitfor != MNT_LAZY)
2819		return (0);
2820
2821	/*
2822	 * Move ourselves to the back of the sync list.
2823	 */
2824	vn_syncer_add_to_worklist(syncvp, syncdelay);
2825
2826	/*
2827	 * Walk the list of vnodes pushing all that are dirty and
2828	 * not already on the sync list.
2829	 */
2830	simple_lock(&mountlist_slock);
2831	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2832		simple_unlock(&mountlist_slock);
2833		return (0);
2834	}
2835	if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
2836		vfs_unbusy(mp, p);
2837		simple_unlock(&mountlist_slock);
2838		return (0);
2839	}
2840	asyncflag = mp->mnt_flag & MNT_ASYNC;
2841	mp->mnt_flag &= ~MNT_ASYNC;
2842	vfs_msync(mp, MNT_NOWAIT);
2843	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2844	if (asyncflag)
2845		mp->mnt_flag |= MNT_ASYNC;
2846	vn_finished_write(mp);
2847	vfs_unbusy(mp, p);
2848	return (0);
2849}
2850
2851/*
2852 * The syncer vnode is no referenced.
2853 */
2854static int
2855sync_inactive(ap)
2856	struct vop_inactive_args /* {
2857		struct vnode *a_vp;
2858		struct proc *a_p;
2859	} */ *ap;
2860{
2861
2862	vgone(ap->a_vp);
2863	return (0);
2864}
2865
2866/*
2867 * The syncer vnode is no longer needed and is being decommissioned.
2868 *
2869 * Modifications to the worklist must be protected at splbio().
2870 */
2871static int
2872sync_reclaim(ap)
2873	struct vop_reclaim_args /* {
2874		struct vnode *a_vp;
2875	} */ *ap;
2876{
2877	struct vnode *vp = ap->a_vp;
2878	int s;
2879
2880	s = splbio();
2881	vp->v_mount->mnt_syncer = NULL;
2882	if (vp->v_flag & VONWORKLST) {
2883		LIST_REMOVE(vp, v_synclist);
2884		vp->v_flag &= ~VONWORKLST;
2885	}
2886	splx(s);
2887
2888	return (0);
2889}
2890
2891/*
2892 * Print out a syncer vnode.
2893 */
2894static int
2895sync_print(ap)
2896	struct vop_print_args /* {
2897		struct vnode *a_vp;
2898	} */ *ap;
2899{
2900	struct vnode *vp = ap->a_vp;
2901
2902	printf("syncer vnode");
2903	if (vp->v_vnlock != NULL)
2904		lockmgr_printinfo(vp->v_vnlock);
2905	printf("\n");
2906	return (0);
2907}
2908
2909/*
2910 * extract the dev_t from a VBLK or VCHR
2911 */
2912dev_t
2913vn_todev(vp)
2914	struct vnode *vp;
2915{
2916	if (vp->v_type != VBLK && vp->v_type != VCHR)
2917		return (NODEV);
2918	return (vp->v_rdev);
2919}
2920
2921/*
2922 * Check if vnode represents a disk device
2923 */
2924int
2925vn_isdisk(vp, errp)
2926	struct vnode *vp;
2927	int *errp;
2928{
2929	if (vp->v_type != VBLK && vp->v_type != VCHR) {
2930		if (errp != NULL)
2931			*errp = ENOTBLK;
2932		return (0);
2933	}
2934	if (vp->v_rdev == NULL) {
2935		if (errp != NULL)
2936			*errp = ENXIO;
2937		return (0);
2938	}
2939	if (!devsw(vp->v_rdev)) {
2940		if (errp != NULL)
2941			*errp = ENXIO;
2942		return (0);
2943	}
2944	if (!(devsw(vp->v_rdev)->d_flags & D_DISK)) {
2945		if (errp != NULL)
2946			*errp = ENOTBLK;
2947		return (0);
2948	}
2949	if (errp != NULL)
2950		*errp = 0;
2951	return (1);
2952}
2953
2954void
2955NDFREE(ndp, flags)
2956     struct nameidata *ndp;
2957     const uint flags;
2958{
2959	if (!(flags & NDF_NO_FREE_PNBUF) &&
2960	    (ndp->ni_cnd.cn_flags & HASBUF)) {
2961		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2962		ndp->ni_cnd.cn_flags &= ~HASBUF;
2963	}
2964	if (!(flags & NDF_NO_DVP_UNLOCK) &&
2965	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
2966	    ndp->ni_dvp != ndp->ni_vp)
2967		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc);
2968	if (!(flags & NDF_NO_DVP_RELE) &&
2969	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
2970		vrele(ndp->ni_dvp);
2971		ndp->ni_dvp = NULL;
2972	}
2973	if (!(flags & NDF_NO_VP_UNLOCK) &&
2974	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
2975		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc);
2976	if (!(flags & NDF_NO_VP_RELE) &&
2977	    ndp->ni_vp) {
2978		vrele(ndp->ni_vp);
2979		ndp->ni_vp = NULL;
2980	}
2981	if (!(flags & NDF_NO_STARTDIR_RELE) &&
2982	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
2983		vrele(ndp->ni_startdir);
2984		ndp->ni_startdir = NULL;
2985	}
2986}
2987