vfs_subr.c revision 60938
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_subr.c 60938 2000-05-26 02:09:24Z jake $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/bio.h>
50#include <sys/buf.h>
51#include <sys/conf.h>
52#include <sys/dirent.h>
53#include <sys/domain.h>
54#include <sys/eventhandler.h>
55#include <sys/fcntl.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/malloc.h>
59#include <sys/mount.h>
60#include <sys/namei.h>
61#include <sys/proc.h>
62#include <sys/reboot.h>
63#include <sys/socket.h>
64#include <sys/stat.h>
65#include <sys/sysctl.h>
66#include <sys/vmmeter.h>
67#include <sys/vnode.h>
68
69#include <machine/limits.h>
70
71#include <vm/vm.h>
72#include <vm/vm_object.h>
73#include <vm/vm_extern.h>
74#include <vm/pmap.h>
75#include <vm/vm_map.h>
76#include <vm/vm_page.h>
77#include <vm/vm_pager.h>
78#include <vm/vnode_pager.h>
79#include <vm/vm_zone.h>
80
81static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
82
83static void	insmntque __P((struct vnode *vp, struct mount *mp));
84static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
85static void	vfree __P((struct vnode *));
86static unsigned long	numvnodes;
87SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
88
89enum vtype iftovt_tab[16] = {
90	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
91	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
92};
93int vttoif_tab[9] = {
94	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
95	S_IFSOCK, S_IFIFO, S_IFMT,
96};
97
98static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
99struct tobefreelist vnode_tobefree_list;	/* vnode free list */
100
101static u_long wantfreevnodes = 25;
102SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
103static u_long freevnodes = 0;
104SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
105
106static int reassignbufcalls;
107SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
108static int reassignbufloops;
109SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
110static int reassignbufsortgood;
111SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
112static int reassignbufsortbad;
113SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
114static int reassignbufmethod = 1;
115SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
116
117#ifdef ENABLE_VFS_IOOPT
118int vfs_ioopt = 0;
119SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
120#endif
121
122struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
123struct simplelock mountlist_slock;
124struct simplelock mntvnode_slock;
125int	nfs_mount_type = -1;
126#ifndef NULL_SIMPLELOCKS
127static struct simplelock mntid_slock;
128static struct simplelock vnode_free_list_slock;
129static struct simplelock spechash_slock;
130#endif
131struct nfs_public nfs_pub;	/* publicly exported FS */
132static vm_zone_t vnode_zone;
133
134/*
135 * The workitem queue.
136 */
137#define SYNCER_MAXDELAY		32
138static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
139time_t syncdelay = 30;		/* max time to delay syncing data */
140time_t filedelay = 30;		/* time to delay syncing files */
141SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
142time_t dirdelay = 29;		/* time to delay syncing directories */
143SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
144time_t metadelay = 28;		/* time to delay syncing metadata */
145SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
146static int rushjob;			/* number of slots to run ASAP */
147static int stat_rush_requests;	/* number of times I/O speeded up */
148SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
149
150static int syncer_delayno = 0;
151static long syncer_mask;
152LIST_HEAD(synclist, vnode);
153static struct synclist *syncer_workitem_pending;
154
155int desiredvnodes;
156SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
157    &desiredvnodes, 0, "Maximum number of vnodes");
158
159static void	vfs_free_addrlist __P((struct netexport *nep));
160static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
161static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
162				       struct export_args *argp));
163
164/*
165 * Initialize the vnode management data structures.
166 */
167void
168vntblinit()
169{
170
171	desiredvnodes = maxproc + cnt.v_page_count / 4;
172	simple_lock_init(&mntvnode_slock);
173	simple_lock_init(&mntid_slock);
174	simple_lock_init(&spechash_slock);
175	TAILQ_INIT(&vnode_free_list);
176	TAILQ_INIT(&vnode_tobefree_list);
177	simple_lock_init(&vnode_free_list_slock);
178	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
179	/*
180	 * Initialize the filesystem syncer.
181	 */
182	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
183		&syncer_mask);
184	syncer_maxdelay = syncer_mask + 1;
185}
186
187/*
188 * Mark a mount point as busy. Used to synchronize access and to delay
189 * unmounting. Interlock is not released on failure.
190 */
191int
192vfs_busy(mp, flags, interlkp, p)
193	struct mount *mp;
194	int flags;
195	struct simplelock *interlkp;
196	struct proc *p;
197{
198	int lkflags;
199
200	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
201		if (flags & LK_NOWAIT)
202			return (ENOENT);
203		mp->mnt_kern_flag |= MNTK_MWAIT;
204		if (interlkp) {
205			simple_unlock(interlkp);
206		}
207		/*
208		 * Since all busy locks are shared except the exclusive
209		 * lock granted when unmounting, the only place that a
210		 * wakeup needs to be done is at the release of the
211		 * exclusive lock at the end of dounmount.
212		 */
213		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
214		if (interlkp) {
215			simple_lock(interlkp);
216		}
217		return (ENOENT);
218	}
219	lkflags = LK_SHARED | LK_NOPAUSE;
220	if (interlkp)
221		lkflags |= LK_INTERLOCK;
222	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
223		panic("vfs_busy: unexpected lock failure");
224	return (0);
225}
226
227/*
228 * Free a busy filesystem.
229 */
230void
231vfs_unbusy(mp, p)
232	struct mount *mp;
233	struct proc *p;
234{
235
236	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
237}
238
239/*
240 * Lookup a filesystem type, and if found allocate and initialize
241 * a mount structure for it.
242 *
243 * Devname is usually updated by mount(8) after booting.
244 */
245int
246vfs_rootmountalloc(fstypename, devname, mpp)
247	char *fstypename;
248	char *devname;
249	struct mount **mpp;
250{
251	struct proc *p = curproc;	/* XXX */
252	struct vfsconf *vfsp;
253	struct mount *mp;
254
255	if (fstypename == NULL)
256		return (ENODEV);
257	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
258		if (!strcmp(vfsp->vfc_name, fstypename))
259			break;
260	if (vfsp == NULL)
261		return (ENODEV);
262	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
263	bzero((char *)mp, (u_long)sizeof(struct mount));
264	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
265	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
266	LIST_INIT(&mp->mnt_vnodelist);
267	mp->mnt_vfc = vfsp;
268	mp->mnt_op = vfsp->vfc_vfsops;
269	mp->mnt_flag = MNT_RDONLY;
270	mp->mnt_vnodecovered = NULLVP;
271	vfsp->vfc_refcount++;
272	mp->mnt_iosize_max = DFLTPHYS;
273	mp->mnt_stat.f_type = vfsp->vfc_typenum;
274	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
275	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
276	mp->mnt_stat.f_mntonname[0] = '/';
277	mp->mnt_stat.f_mntonname[1] = 0;
278	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
279	*mpp = mp;
280	return (0);
281}
282
283/*
284 * Find an appropriate filesystem to use for the root. If a filesystem
285 * has not been preselected, walk through the list of known filesystems
286 * trying those that have mountroot routines, and try them until one
287 * works or we have tried them all.
288 */
289#ifdef notdef	/* XXX JH */
290int
291lite2_vfs_mountroot()
292{
293	struct vfsconf *vfsp;
294	extern int (*lite2_mountroot) __P((void));
295	int error;
296
297	if (lite2_mountroot != NULL)
298		return ((*lite2_mountroot)());
299	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
300		if (vfsp->vfc_mountroot == NULL)
301			continue;
302		if ((error = (*vfsp->vfc_mountroot)()) == 0)
303			return (0);
304		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
305	}
306	return (ENODEV);
307}
308#endif
309
310/*
311 * Lookup a mount point by filesystem identifier.
312 */
313struct mount *
314vfs_getvfs(fsid)
315	fsid_t *fsid;
316{
317	register struct mount *mp;
318
319	simple_lock(&mountlist_slock);
320	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
321		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
322		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
323			simple_unlock(&mountlist_slock);
324			return (mp);
325	    }
326	}
327	simple_unlock(&mountlist_slock);
328	return ((struct mount *) 0);
329}
330
331/*
332 * Get a new unique fsid.  Try to make its val[0] unique, since this value
333 * will be used to create fake device numbers for stat().  Also try (but
334 * not so hard) make its val[0] unique mod 2^16, since some emulators only
335 * support 16-bit device numbers.  We end up with unique val[0]'s for the
336 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
337 *
338 * Keep in mind that several mounts may be running in parallel.  Starting
339 * the search one past where the previous search terminated is both a
340 * micro-optimization and a defense against returning the same fsid to
341 * different mounts.
342 */
343void
344vfs_getnewfsid(mp)
345	struct mount *mp;
346{
347	static u_int16_t mntid_base;
348	fsid_t tfsid;
349	int mtype;
350
351	simple_lock(&mntid_slock);
352	mtype = mp->mnt_vfc->vfc_typenum;
353	tfsid.val[1] = mtype;
354	mtype = (mtype & 0xFF) << 16;
355	for (;;) {
356		tfsid.val[0] = makeudev(255, mtype | mntid_base++);
357		if (vfs_getvfs(&tfsid) == NULL)
358			break;
359	}
360	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
361	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
362	simple_unlock(&mntid_slock);
363}
364
365/*
366 * Knob to control the precision of file timestamps:
367 *
368 *   0 = seconds only; nanoseconds zeroed.
369 *   1 = seconds and nanoseconds, accurate within 1/HZ.
370 *   2 = seconds and nanoseconds, truncated to microseconds.
371 * >=3 = seconds and nanoseconds, maximum precision.
372 */
373enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
374
375static int timestamp_precision = TSP_SEC;
376SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
377    &timestamp_precision, 0, "");
378
379/*
380 * Get a current timestamp.
381 */
382void
383vfs_timestamp(tsp)
384	struct timespec *tsp;
385{
386	struct timeval tv;
387
388	switch (timestamp_precision) {
389	case TSP_SEC:
390		tsp->tv_sec = time_second;
391		tsp->tv_nsec = 0;
392		break;
393	case TSP_HZ:
394		getnanotime(tsp);
395		break;
396	case TSP_USEC:
397		microtime(&tv);
398		TIMEVAL_TO_TIMESPEC(&tv, tsp);
399		break;
400	case TSP_NSEC:
401	default:
402		nanotime(tsp);
403		break;
404	}
405}
406
407/*
408 * Set vnode attributes to VNOVAL
409 */
410void
411vattr_null(vap)
412	register struct vattr *vap;
413{
414
415	vap->va_type = VNON;
416	vap->va_size = VNOVAL;
417	vap->va_bytes = VNOVAL;
418	vap->va_mode = VNOVAL;
419	vap->va_nlink = VNOVAL;
420	vap->va_uid = VNOVAL;
421	vap->va_gid = VNOVAL;
422	vap->va_fsid = VNOVAL;
423	vap->va_fileid = VNOVAL;
424	vap->va_blocksize = VNOVAL;
425	vap->va_rdev = VNOVAL;
426	vap->va_atime.tv_sec = VNOVAL;
427	vap->va_atime.tv_nsec = VNOVAL;
428	vap->va_mtime.tv_sec = VNOVAL;
429	vap->va_mtime.tv_nsec = VNOVAL;
430	vap->va_ctime.tv_sec = VNOVAL;
431	vap->va_ctime.tv_nsec = VNOVAL;
432	vap->va_flags = VNOVAL;
433	vap->va_gen = VNOVAL;
434	vap->va_vaflags = 0;
435}
436
437/*
438 * Routines having to do with the management of the vnode table.
439 */
440extern vop_t **dead_vnodeop_p;
441
442/*
443 * Return the next vnode from the free list.
444 */
445int
446getnewvnode(tag, mp, vops, vpp)
447	enum vtagtype tag;
448	struct mount *mp;
449	vop_t **vops;
450	struct vnode **vpp;
451{
452	int s;
453	struct proc *p = curproc;	/* XXX */
454	struct vnode *vp, *tvp, *nvp;
455	vm_object_t object;
456	TAILQ_HEAD(freelst, vnode) vnode_tmp_list;
457
458	/*
459	 * We take the least recently used vnode from the freelist
460	 * if we can get it and it has no cached pages, and no
461	 * namecache entries are relative to it.
462	 * Otherwise we allocate a new vnode
463	 */
464
465	s = splbio();
466	simple_lock(&vnode_free_list_slock);
467	TAILQ_INIT(&vnode_tmp_list);
468
469	for (vp = TAILQ_FIRST(&vnode_tobefree_list); vp; vp = nvp) {
470		nvp = TAILQ_NEXT(vp, v_freelist);
471		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
472		if (vp->v_flag & VAGE) {
473			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
474		} else {
475			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
476		}
477		vp->v_flag &= ~(VTBFREE|VAGE);
478		vp->v_flag |= VFREE;
479		if (vp->v_usecount)
480			panic("tobe free vnode isn't");
481		freevnodes++;
482	}
483
484	if (wantfreevnodes && freevnodes < wantfreevnodes) {
485		vp = NULL;
486	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
487		/*
488		 * XXX: this is only here to be backwards compatible
489		 */
490		vp = NULL;
491	} else {
492		for (vp = TAILQ_FIRST(&vnode_free_list); vp; vp = nvp) {
493			nvp = TAILQ_NEXT(vp, v_freelist);
494			if (!simple_lock_try(&vp->v_interlock))
495				continue;
496			if (vp->v_usecount)
497				panic("free vnode isn't");
498
499			object = vp->v_object;
500			if (object && (object->resident_page_count || object->ref_count)) {
501				printf("object inconsistant state: RPC: %d, RC: %d\n",
502					object->resident_page_count, object->ref_count);
503				/* Don't recycle if it's caching some pages */
504				TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
505				TAILQ_INSERT_TAIL(&vnode_tmp_list, vp, v_freelist);
506				continue;
507			} else if (LIST_FIRST(&vp->v_cache_src)) {
508				/* Don't recycle if active in the namecache */
509				simple_unlock(&vp->v_interlock);
510				continue;
511			} else {
512				break;
513			}
514		}
515	}
516
517	for (tvp = TAILQ_FIRST(&vnode_tmp_list); tvp; tvp = nvp) {
518		nvp = TAILQ_NEXT(tvp, v_freelist);
519		TAILQ_REMOVE(&vnode_tmp_list, tvp, v_freelist);
520		TAILQ_INSERT_TAIL(&vnode_free_list, tvp, v_freelist);
521		simple_unlock(&tvp->v_interlock);
522	}
523
524	if (vp) {
525		vp->v_flag |= VDOOMED;
526		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
527		freevnodes--;
528		simple_unlock(&vnode_free_list_slock);
529		cache_purge(vp);
530		vp->v_lease = NULL;
531		if (vp->v_type != VBAD) {
532			vgonel(vp, p);
533		} else {
534			simple_unlock(&vp->v_interlock);
535		}
536
537#ifdef INVARIANTS
538		{
539			int s;
540
541			if (vp->v_data)
542				panic("cleaned vnode isn't");
543			s = splbio();
544			if (vp->v_numoutput)
545				panic("Clean vnode has pending I/O's");
546			splx(s);
547		}
548#endif
549		vp->v_flag = 0;
550		vp->v_lastw = 0;
551		vp->v_lasta = 0;
552		vp->v_cstart = 0;
553		vp->v_clen = 0;
554		vp->v_socket = 0;
555		vp->v_writecount = 0;	/* XXX */
556	} else {
557		simple_unlock(&vnode_free_list_slock);
558		vp = (struct vnode *) zalloc(vnode_zone);
559		bzero((char *) vp, sizeof *vp);
560		simple_lock_init(&vp->v_interlock);
561		vp->v_dd = vp;
562		cache_purge(vp);
563		LIST_INIT(&vp->v_cache_src);
564		TAILQ_INIT(&vp->v_cache_dst);
565		numvnodes++;
566	}
567
568	TAILQ_INIT(&vp->v_cleanblkhd);
569	TAILQ_INIT(&vp->v_dirtyblkhd);
570	vp->v_type = VNON;
571	vp->v_tag = tag;
572	vp->v_op = vops;
573	insmntque(vp, mp);
574	*vpp = vp;
575	vp->v_usecount = 1;
576	vp->v_data = 0;
577	splx(s);
578
579	vfs_object_create(vp, p, p->p_ucred);
580	return (0);
581}
582
583/*
584 * Move a vnode from one mount queue to another.
585 */
586static void
587insmntque(vp, mp)
588	register struct vnode *vp;
589	register struct mount *mp;
590{
591
592	simple_lock(&mntvnode_slock);
593	/*
594	 * Delete from old mount point vnode list, if on one.
595	 */
596	if (vp->v_mount != NULL)
597		LIST_REMOVE(vp, v_mntvnodes);
598	/*
599	 * Insert into list of vnodes for the new mount point, if available.
600	 */
601	if ((vp->v_mount = mp) == NULL) {
602		simple_unlock(&mntvnode_slock);
603		return;
604	}
605	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
606	simple_unlock(&mntvnode_slock);
607}
608
609/*
610 * Update outstanding I/O count and do wakeup if requested.
611 */
612void
613vwakeup(bp)
614	register struct buf *bp;
615{
616	register struct vnode *vp;
617
618	bp->b_flags &= ~B_WRITEINPROG;
619	if ((vp = bp->b_vp)) {
620		vp->v_numoutput--;
621		if (vp->v_numoutput < 0)
622			panic("vwakeup: neg numoutput");
623		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
624			vp->v_flag &= ~VBWAIT;
625			wakeup((caddr_t) &vp->v_numoutput);
626		}
627	}
628}
629
630/*
631 * Flush out and invalidate all buffers associated with a vnode.
632 * Called with the underlying object locked.
633 */
634int
635vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
636	register struct vnode *vp;
637	int flags;
638	struct ucred *cred;
639	struct proc *p;
640	int slpflag, slptimeo;
641{
642	register struct buf *bp;
643	struct buf *nbp, *blist;
644	int s, error;
645	vm_object_t object;
646
647	if (flags & V_SAVE) {
648		s = splbio();
649		while (vp->v_numoutput) {
650			vp->v_flag |= VBWAIT;
651			error = tsleep((caddr_t)&vp->v_numoutput,
652			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
653			if (error) {
654				splx(s);
655				return (error);
656			}
657		}
658		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
659			splx(s);
660			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
661				return (error);
662			s = splbio();
663			if (vp->v_numoutput > 0 ||
664			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
665				panic("vinvalbuf: dirty bufs");
666		}
667		splx(s);
668  	}
669	s = splbio();
670	for (;;) {
671		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
672		if (!blist)
673			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
674		if (!blist)
675			break;
676
677		for (bp = blist; bp; bp = nbp) {
678			nbp = TAILQ_NEXT(bp, b_vnbufs);
679			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
680				error = BUF_TIMELOCK(bp,
681				    LK_EXCLUSIVE | LK_SLEEPFAIL,
682				    "vinvalbuf", slpflag, slptimeo);
683				if (error == ENOLCK)
684					break;
685				splx(s);
686				return (error);
687			}
688			/*
689			 * XXX Since there are no node locks for NFS, I
690			 * believe there is a slight chance that a delayed
691			 * write will occur while sleeping just above, so
692			 * check for it.  Note that vfs_bio_awrite expects
693			 * buffers to reside on a queue, while VOP_BWRITE and
694			 * brelse do not.
695			 */
696			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
697				(flags & V_SAVE)) {
698
699				if (bp->b_vp == vp) {
700					if (bp->b_flags & B_CLUSTEROK) {
701						BUF_UNLOCK(bp);
702						vfs_bio_awrite(bp);
703					} else {
704						bremfree(bp);
705						bp->b_flags |= B_ASYNC;
706						BUF_WRITE(bp);
707					}
708				} else {
709					bremfree(bp);
710					(void) BUF_WRITE(bp);
711				}
712				break;
713			}
714			bremfree(bp);
715			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
716			bp->b_flags &= ~B_ASYNC;
717			brelse(bp);
718		}
719	}
720
721	while (vp->v_numoutput > 0) {
722		vp->v_flag |= VBWAIT;
723		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
724	}
725
726	splx(s);
727
728	/*
729	 * Destroy the copy in the VM cache, too.
730	 */
731	simple_lock(&vp->v_interlock);
732	object = vp->v_object;
733	if (object != NULL) {
734		vm_object_page_remove(object, 0, 0,
735			(flags & V_SAVE) ? TRUE : FALSE);
736	}
737	simple_unlock(&vp->v_interlock);
738
739	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
740		panic("vinvalbuf: flush failed");
741	return (0);
742}
743
744/*
745 * Truncate a file's buffer and pages to a specified length.  This
746 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
747 * sync activity.
748 */
749int
750vtruncbuf(vp, cred, p, length, blksize)
751	register struct vnode *vp;
752	struct ucred *cred;
753	struct proc *p;
754	off_t length;
755	int blksize;
756{
757	register struct buf *bp;
758	struct buf *nbp;
759	int s, anyfreed;
760	int trunclbn;
761
762	/*
763	 * Round up to the *next* lbn.
764	 */
765	trunclbn = (length + blksize - 1) / blksize;
766
767	s = splbio();
768restart:
769	anyfreed = 1;
770	for (;anyfreed;) {
771		anyfreed = 0;
772		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
773			nbp = TAILQ_NEXT(bp, b_vnbufs);
774			if (bp->b_lblkno >= trunclbn) {
775				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
776					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
777					goto restart;
778				} else {
779					bremfree(bp);
780					bp->b_flags |= (B_INVAL | B_RELBUF);
781					bp->b_flags &= ~B_ASYNC;
782					brelse(bp);
783					anyfreed = 1;
784				}
785				if (nbp &&
786				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
787				    (nbp->b_vp != vp) ||
788				    (nbp->b_flags & B_DELWRI))) {
789					goto restart;
790				}
791			}
792		}
793
794		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
795			nbp = TAILQ_NEXT(bp, b_vnbufs);
796			if (bp->b_lblkno >= trunclbn) {
797				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
798					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
799					goto restart;
800				} else {
801					bremfree(bp);
802					bp->b_flags |= (B_INVAL | B_RELBUF);
803					bp->b_flags &= ~B_ASYNC;
804					brelse(bp);
805					anyfreed = 1;
806				}
807				if (nbp &&
808				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
809				    (nbp->b_vp != vp) ||
810				    (nbp->b_flags & B_DELWRI) == 0)) {
811					goto restart;
812				}
813			}
814		}
815	}
816
817	if (length > 0) {
818restartsync:
819		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
820			nbp = TAILQ_NEXT(bp, b_vnbufs);
821			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
822				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
823					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
824					goto restart;
825				} else {
826					bremfree(bp);
827					if (bp->b_vp == vp) {
828						bp->b_flags |= B_ASYNC;
829					} else {
830						bp->b_flags &= ~B_ASYNC;
831					}
832					BUF_WRITE(bp);
833				}
834				goto restartsync;
835			}
836
837		}
838	}
839
840	while (vp->v_numoutput > 0) {
841		vp->v_flag |= VBWAIT;
842		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
843	}
844
845	splx(s);
846
847	vnode_pager_setsize(vp, length);
848
849	return (0);
850}
851
852/*
853 * Associate a buffer with a vnode.
854 */
855void
856bgetvp(vp, bp)
857	register struct vnode *vp;
858	register struct buf *bp;
859{
860	int s;
861
862	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
863
864	vhold(vp);
865	bp->b_vp = vp;
866	bp->b_dev = vn_todev(vp);
867	/*
868	 * Insert onto list for new vnode.
869	 */
870	s = splbio();
871	bp->b_xflags |= BX_VNCLEAN;
872	bp->b_xflags &= ~BX_VNDIRTY;
873	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
874	splx(s);
875}
876
877/*
878 * Disassociate a buffer from a vnode.
879 */
880void
881brelvp(bp)
882	register struct buf *bp;
883{
884	struct vnode *vp;
885	struct buflists *listheadp;
886	int s;
887
888	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
889
890	/*
891	 * Delete from old vnode list, if on one.
892	 */
893	vp = bp->b_vp;
894	s = splbio();
895	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
896		if (bp->b_xflags & BX_VNDIRTY)
897			listheadp = &vp->v_dirtyblkhd;
898		else
899			listheadp = &vp->v_cleanblkhd;
900		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
901		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
902	}
903	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
904		vp->v_flag &= ~VONWORKLST;
905		LIST_REMOVE(vp, v_synclist);
906	}
907	splx(s);
908	bp->b_vp = (struct vnode *) 0;
909	vdrop(vp);
910}
911
912/*
913 * The workitem queue.
914 *
915 * It is useful to delay writes of file data and filesystem metadata
916 * for tens of seconds so that quickly created and deleted files need
917 * not waste disk bandwidth being created and removed. To realize this,
918 * we append vnodes to a "workitem" queue. When running with a soft
919 * updates implementation, most pending metadata dependencies should
920 * not wait for more than a few seconds. Thus, mounted on block devices
921 * are delayed only about a half the time that file data is delayed.
922 * Similarly, directory updates are more critical, so are only delayed
923 * about a third the time that file data is delayed. Thus, there are
924 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
925 * one each second (driven off the filesystem syncer process). The
926 * syncer_delayno variable indicates the next queue that is to be processed.
927 * Items that need to be processed soon are placed in this queue:
928 *
929 *	syncer_workitem_pending[syncer_delayno]
930 *
931 * A delay of fifteen seconds is done by placing the request fifteen
932 * entries later in the queue:
933 *
934 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
935 *
936 */
937
938/*
939 * Add an item to the syncer work queue.
940 */
941static void
942vn_syncer_add_to_worklist(struct vnode *vp, int delay)
943{
944	int s, slot;
945
946	s = splbio();
947
948	if (vp->v_flag & VONWORKLST) {
949		LIST_REMOVE(vp, v_synclist);
950	}
951
952	if (delay > syncer_maxdelay - 2)
953		delay = syncer_maxdelay - 2;
954	slot = (syncer_delayno + delay) & syncer_mask;
955
956	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
957	vp->v_flag |= VONWORKLST;
958	splx(s);
959}
960
961struct  proc *updateproc;
962static void sched_sync __P((void));
963static struct kproc_desc up_kp = {
964	"syncer",
965	sched_sync,
966	&updateproc
967};
968SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
969
970/*
971 * System filesystem synchronizer daemon.
972 */
973void
974sched_sync(void)
975{
976	struct synclist *slp;
977	struct vnode *vp;
978	long starttime;
979	int s;
980	struct proc *p = updateproc;
981
982	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, p,
983	    SHUTDOWN_PRI_LAST);
984
985	for (;;) {
986		kproc_suspend_loop(p);
987
988		starttime = time_second;
989
990		/*
991		 * Push files whose dirty time has expired.  Be careful
992		 * of interrupt race on slp queue.
993		 */
994		s = splbio();
995		slp = &syncer_workitem_pending[syncer_delayno];
996		syncer_delayno += 1;
997		if (syncer_delayno == syncer_maxdelay)
998			syncer_delayno = 0;
999		splx(s);
1000
1001		while ((vp = LIST_FIRST(slp)) != NULL) {
1002			if (VOP_ISLOCKED(vp, NULL) == 0) {
1003				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1004				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
1005				VOP_UNLOCK(vp, 0, p);
1006			}
1007			s = splbio();
1008			if (LIST_FIRST(slp) == vp) {
1009				/*
1010				 * Note: v_tag VT_VFS vps can remain on the
1011				 * worklist too with no dirty blocks, but
1012				 * since sync_fsync() moves it to a different
1013				 * slot we are safe.
1014				 */
1015				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1016				    !vn_isdisk(vp, NULL))
1017					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1018				/*
1019				 * Put us back on the worklist.  The worklist
1020				 * routine will remove us from our current
1021				 * position and then add us back in at a later
1022				 * position.
1023				 */
1024				vn_syncer_add_to_worklist(vp, syncdelay);
1025			}
1026			splx(s);
1027		}
1028
1029		/*
1030		 * Do soft update processing.
1031		 */
1032		if (bioops.io_sync)
1033			(*bioops.io_sync)(NULL);
1034
1035		/*
1036		 * The variable rushjob allows the kernel to speed up the
1037		 * processing of the filesystem syncer process. A rushjob
1038		 * value of N tells the filesystem syncer to process the next
1039		 * N seconds worth of work on its queue ASAP. Currently rushjob
1040		 * is used by the soft update code to speed up the filesystem
1041		 * syncer process when the incore state is getting so far
1042		 * ahead of the disk that the kernel memory pool is being
1043		 * threatened with exhaustion.
1044		 */
1045		if (rushjob > 0) {
1046			rushjob -= 1;
1047			continue;
1048		}
1049		/*
1050		 * If it has taken us less than a second to process the
1051		 * current work, then wait. Otherwise start right over
1052		 * again. We can still lose time if any single round
1053		 * takes more than two seconds, but it does not really
1054		 * matter as we are just trying to generally pace the
1055		 * filesystem activity.
1056		 */
1057		if (time_second == starttime)
1058			tsleep(&lbolt, PPAUSE, "syncer", 0);
1059	}
1060}
1061
1062/*
1063 * Request the syncer daemon to speed up its work.
1064 * We never push it to speed up more than half of its
1065 * normal turn time, otherwise it could take over the cpu.
1066 */
1067int
1068speedup_syncer()
1069{
1070	int s;
1071
1072	s = splhigh();
1073	if (updateproc->p_wchan == &lbolt)
1074		setrunnable(updateproc);
1075	splx(s);
1076	if (rushjob < syncdelay / 2) {
1077		rushjob += 1;
1078		stat_rush_requests += 1;
1079		return (1);
1080	}
1081	return(0);
1082}
1083
1084/*
1085 * Associate a p-buffer with a vnode.
1086 *
1087 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1088 * with the buffer.  i.e. the bp has not been linked into the vnode or
1089 * ref-counted.
1090 */
1091void
1092pbgetvp(vp, bp)
1093	register struct vnode *vp;
1094	register struct buf *bp;
1095{
1096
1097	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1098
1099	bp->b_vp = vp;
1100	bp->b_flags |= B_PAGING;
1101	bp->b_dev = vn_todev(vp);
1102}
1103
1104/*
1105 * Disassociate a p-buffer from a vnode.
1106 */
1107void
1108pbrelvp(bp)
1109	register struct buf *bp;
1110{
1111
1112	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1113
1114	/* XXX REMOVE ME */
1115	if (bp->b_vnbufs.tqe_next != NULL) {
1116		panic(
1117		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1118		    bp,
1119		    (int)bp->b_flags
1120		);
1121	}
1122	bp->b_vp = (struct vnode *) 0;
1123	bp->b_flags &= ~B_PAGING;
1124}
1125
1126void
1127pbreassignbuf(bp, newvp)
1128	struct buf *bp;
1129	struct vnode *newvp;
1130{
1131	if ((bp->b_flags & B_PAGING) == 0) {
1132		panic(
1133		    "pbreassignbuf() on non phys bp %p",
1134		    bp
1135		);
1136	}
1137	bp->b_vp = newvp;
1138}
1139
1140/*
1141 * Reassign a buffer from one vnode to another.
1142 * Used to assign file specific control information
1143 * (indirect blocks) to the vnode to which they belong.
1144 */
1145void
1146reassignbuf(bp, newvp)
1147	register struct buf *bp;
1148	register struct vnode *newvp;
1149{
1150	struct buflists *listheadp;
1151	int delay;
1152	int s;
1153
1154	if (newvp == NULL) {
1155		printf("reassignbuf: NULL");
1156		return;
1157	}
1158	++reassignbufcalls;
1159
1160	/*
1161	 * B_PAGING flagged buffers cannot be reassigned because their vp
1162	 * is not fully linked in.
1163	 */
1164	if (bp->b_flags & B_PAGING)
1165		panic("cannot reassign paging buffer");
1166
1167	s = splbio();
1168	/*
1169	 * Delete from old vnode list, if on one.
1170	 */
1171	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1172		if (bp->b_xflags & BX_VNDIRTY)
1173			listheadp = &bp->b_vp->v_dirtyblkhd;
1174		else
1175			listheadp = &bp->b_vp->v_cleanblkhd;
1176		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1177		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1178		if (bp->b_vp != newvp) {
1179			vdrop(bp->b_vp);
1180			bp->b_vp = NULL;	/* for clarification */
1181		}
1182	}
1183	/*
1184	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1185	 * of clean buffers.
1186	 */
1187	if (bp->b_flags & B_DELWRI) {
1188		struct buf *tbp;
1189
1190		listheadp = &newvp->v_dirtyblkhd;
1191		if ((newvp->v_flag & VONWORKLST) == 0) {
1192			switch (newvp->v_type) {
1193			case VDIR:
1194				delay = dirdelay;
1195				break;
1196			case VCHR:
1197			case VBLK:
1198				if (newvp->v_specmountpoint != NULL) {
1199					delay = metadelay;
1200					break;
1201				}
1202				/* fall through */
1203			default:
1204				delay = filedelay;
1205			}
1206			vn_syncer_add_to_worklist(newvp, delay);
1207		}
1208		bp->b_xflags |= BX_VNDIRTY;
1209		tbp = TAILQ_FIRST(listheadp);
1210		if (tbp == NULL ||
1211		    bp->b_lblkno == 0 ||
1212		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1213		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1214			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1215			++reassignbufsortgood;
1216		} else if (bp->b_lblkno < 0) {
1217			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1218			++reassignbufsortgood;
1219		} else if (reassignbufmethod == 1) {
1220			/*
1221			 * New sorting algorithm, only handle sequential case,
1222			 * otherwise append to end (but before metadata)
1223			 */
1224			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1225			    (tbp->b_xflags & BX_VNDIRTY)) {
1226				/*
1227				 * Found the best place to insert the buffer
1228				 */
1229				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1230				++reassignbufsortgood;
1231			} else {
1232				/*
1233				 * Missed, append to end, but before meta-data.
1234				 * We know that the head buffer in the list is
1235				 * not meta-data due to prior conditionals.
1236				 *
1237				 * Indirect effects:  NFS second stage write
1238				 * tends to wind up here, giving maximum
1239				 * distance between the unstable write and the
1240				 * commit rpc.
1241				 */
1242				tbp = TAILQ_LAST(listheadp, buflists);
1243				while (tbp && tbp->b_lblkno < 0)
1244					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1245				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1246				++reassignbufsortbad;
1247			}
1248		} else {
1249			/*
1250			 * Old sorting algorithm, scan queue and insert
1251			 */
1252			struct buf *ttbp;
1253			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1254			    (ttbp->b_lblkno < bp->b_lblkno)) {
1255				++reassignbufloops;
1256				tbp = ttbp;
1257			}
1258			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1259		}
1260	} else {
1261		bp->b_xflags |= BX_VNCLEAN;
1262		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1263		if ((newvp->v_flag & VONWORKLST) &&
1264		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1265			newvp->v_flag &= ~VONWORKLST;
1266			LIST_REMOVE(newvp, v_synclist);
1267		}
1268	}
1269	if (bp->b_vp != newvp) {
1270		bp->b_vp = newvp;
1271		vhold(bp->b_vp);
1272	}
1273	splx(s);
1274}
1275
1276/*
1277 * Create a vnode for a block device.
1278 * Used for mounting the root file system.
1279 * XXX: This now changed to a VCHR due to the block/char merging.
1280 */
1281int
1282bdevvp(dev, vpp)
1283	dev_t dev;
1284	struct vnode **vpp;
1285{
1286	register struct vnode *vp;
1287	struct vnode *nvp;
1288	int error;
1289
1290	if (dev == NODEV) {
1291		*vpp = NULLVP;
1292		return (ENXIO);
1293	}
1294	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1295	if (error) {
1296		*vpp = NULLVP;
1297		return (error);
1298	}
1299	vp = nvp;
1300	vp->v_type = VCHR;
1301	addalias(vp, dev);
1302	*vpp = vp;
1303	return (0);
1304}
1305
1306/*
1307 * Add vnode to the alias list hung off the dev_t.
1308 *
1309 * The reason for this gunk is that multiple vnodes can reference
1310 * the same physical device, so checking vp->v_usecount to see
1311 * how many users there are is inadequate; the v_usecount for
1312 * the vnodes need to be accumulated.  vcount() does that.
1313 */
1314void
1315addaliasu(nvp, nvp_rdev)
1316	struct vnode *nvp;
1317	udev_t nvp_rdev;
1318{
1319
1320	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1321		panic("addaliasu on non-special vnode");
1322	addalias(nvp, udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0));
1323}
1324
1325void
1326addalias(nvp, dev)
1327	struct vnode *nvp;
1328	dev_t dev;
1329{
1330
1331	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1332		panic("addalias on non-special vnode");
1333
1334	nvp->v_rdev = dev;
1335	simple_lock(&spechash_slock);
1336	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1337	simple_unlock(&spechash_slock);
1338}
1339
1340/*
1341 * Grab a particular vnode from the free list, increment its
1342 * reference count and lock it. The vnode lock bit is set if the
1343 * vnode is being eliminated in vgone. The process is awakened
1344 * when the transition is completed, and an error returned to
1345 * indicate that the vnode is no longer usable (possibly having
1346 * been changed to a new file system type).
1347 */
1348int
1349vget(vp, flags, p)
1350	register struct vnode *vp;
1351	int flags;
1352	struct proc *p;
1353{
1354	int error;
1355
1356	/*
1357	 * If the vnode is in the process of being cleaned out for
1358	 * another use, we wait for the cleaning to finish and then
1359	 * return failure. Cleaning is determined by checking that
1360	 * the VXLOCK flag is set.
1361	 */
1362	if ((flags & LK_INTERLOCK) == 0) {
1363		simple_lock(&vp->v_interlock);
1364	}
1365	if (vp->v_flag & VXLOCK) {
1366		vp->v_flag |= VXWANT;
1367		simple_unlock(&vp->v_interlock);
1368		tsleep((caddr_t)vp, PINOD, "vget", 0);
1369		return (ENOENT);
1370	}
1371
1372	vp->v_usecount++;
1373
1374	if (VSHOULDBUSY(vp))
1375		vbusy(vp);
1376	if (flags & LK_TYPE_MASK) {
1377		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1378			/*
1379			 * must expand vrele here because we do not want
1380			 * to call VOP_INACTIVE if the reference count
1381			 * drops back to zero since it was never really
1382			 * active. We must remove it from the free list
1383			 * before sleeping so that multiple processes do
1384			 * not try to recycle it.
1385			 */
1386			simple_lock(&vp->v_interlock);
1387			vp->v_usecount--;
1388			if (VSHOULDFREE(vp))
1389				vfree(vp);
1390			simple_unlock(&vp->v_interlock);
1391		}
1392		return (error);
1393	}
1394	simple_unlock(&vp->v_interlock);
1395	return (0);
1396}
1397
1398void
1399vref(struct vnode *vp)
1400{
1401	simple_lock(&vp->v_interlock);
1402	vp->v_usecount++;
1403	simple_unlock(&vp->v_interlock);
1404}
1405
1406/*
1407 * Vnode put/release.
1408 * If count drops to zero, call inactive routine and return to freelist.
1409 */
1410void
1411vrele(vp)
1412	struct vnode *vp;
1413{
1414	struct proc *p = curproc;	/* XXX */
1415
1416	KASSERT(vp != NULL, ("vrele: null vp"));
1417
1418	simple_lock(&vp->v_interlock);
1419
1420	if (vp->v_usecount > 1) {
1421
1422		vp->v_usecount--;
1423		simple_unlock(&vp->v_interlock);
1424
1425		return;
1426	}
1427
1428	if (vp->v_usecount == 1) {
1429
1430		vp->v_usecount--;
1431		if (VSHOULDFREE(vp))
1432			vfree(vp);
1433	/*
1434	 * If we are doing a vput, the node is already locked, and we must
1435	 * call VOP_INACTIVE with the node locked.  So, in the case of
1436	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1437	 */
1438		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1439			VOP_INACTIVE(vp, p);
1440		}
1441
1442	} else {
1443#ifdef DIAGNOSTIC
1444		vprint("vrele: negative ref count", vp);
1445		simple_unlock(&vp->v_interlock);
1446#endif
1447		panic("vrele: negative ref cnt");
1448	}
1449}
1450
1451void
1452vput(vp)
1453	struct vnode *vp;
1454{
1455	struct proc *p = curproc;	/* XXX */
1456
1457	KASSERT(vp != NULL, ("vput: null vp"));
1458
1459	simple_lock(&vp->v_interlock);
1460
1461	if (vp->v_usecount > 1) {
1462
1463		vp->v_usecount--;
1464		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1465		return;
1466
1467	}
1468
1469	if (vp->v_usecount == 1) {
1470
1471		vp->v_usecount--;
1472		if (VSHOULDFREE(vp))
1473			vfree(vp);
1474	/*
1475	 * If we are doing a vput, the node is already locked, and we must
1476	 * call VOP_INACTIVE with the node locked.  So, in the case of
1477	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1478	 */
1479		simple_unlock(&vp->v_interlock);
1480		VOP_INACTIVE(vp, p);
1481
1482	} else {
1483#ifdef DIAGNOSTIC
1484		vprint("vput: negative ref count", vp);
1485#endif
1486		panic("vput: negative ref cnt");
1487	}
1488}
1489
1490/*
1491 * Somebody doesn't want the vnode recycled.
1492 */
1493void
1494vhold(vp)
1495	register struct vnode *vp;
1496{
1497	int s;
1498
1499  	s = splbio();
1500	vp->v_holdcnt++;
1501	if (VSHOULDBUSY(vp))
1502		vbusy(vp);
1503	splx(s);
1504}
1505
1506/*
1507 * One less who cares about this vnode.
1508 */
1509void
1510vdrop(vp)
1511	register struct vnode *vp;
1512{
1513	int s;
1514
1515	s = splbio();
1516	if (vp->v_holdcnt <= 0)
1517		panic("vdrop: holdcnt");
1518	vp->v_holdcnt--;
1519	if (VSHOULDFREE(vp))
1520		vfree(vp);
1521	splx(s);
1522}
1523
1524/*
1525 * Remove any vnodes in the vnode table belonging to mount point mp.
1526 *
1527 * If MNT_NOFORCE is specified, there should not be any active ones,
1528 * return error if any are found (nb: this is a user error, not a
1529 * system error). If MNT_FORCE is specified, detach any active vnodes
1530 * that are found.
1531 */
1532#ifdef DIAGNOSTIC
1533static int busyprt = 0;		/* print out busy vnodes */
1534SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1535#endif
1536
1537int
1538vflush(mp, skipvp, flags)
1539	struct mount *mp;
1540	struct vnode *skipvp;
1541	int flags;
1542{
1543	struct proc *p = curproc;	/* XXX */
1544	struct vnode *vp, *nvp;
1545	int busy = 0;
1546
1547	simple_lock(&mntvnode_slock);
1548loop:
1549	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1550		/*
1551		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1552		 * Start over if it has (it won't be on the list anymore).
1553		 */
1554		if (vp->v_mount != mp)
1555			goto loop;
1556		nvp = LIST_NEXT(vp, v_mntvnodes);
1557		/*
1558		 * Skip over a selected vnode.
1559		 */
1560		if (vp == skipvp)
1561			continue;
1562
1563		simple_lock(&vp->v_interlock);
1564		/*
1565		 * Skip over a vnodes marked VSYSTEM.
1566		 */
1567		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1568			simple_unlock(&vp->v_interlock);
1569			continue;
1570		}
1571		/*
1572		 * If WRITECLOSE is set, only flush out regular file vnodes
1573		 * open for writing.
1574		 */
1575		if ((flags & WRITECLOSE) &&
1576		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1577			simple_unlock(&vp->v_interlock);
1578			continue;
1579		}
1580
1581		/*
1582		 * With v_usecount == 0, all we need to do is clear out the
1583		 * vnode data structures and we are done.
1584		 */
1585		if (vp->v_usecount == 0) {
1586			simple_unlock(&mntvnode_slock);
1587			vgonel(vp, p);
1588			simple_lock(&mntvnode_slock);
1589			continue;
1590		}
1591
1592		/*
1593		 * If FORCECLOSE is set, forcibly close the vnode. For block
1594		 * or character devices, revert to an anonymous device. For
1595		 * all other files, just kill them.
1596		 */
1597		if (flags & FORCECLOSE) {
1598			simple_unlock(&mntvnode_slock);
1599			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1600				vgonel(vp, p);
1601			} else {
1602				vclean(vp, 0, p);
1603				vp->v_op = spec_vnodeop_p;
1604				insmntque(vp, (struct mount *) 0);
1605			}
1606			simple_lock(&mntvnode_slock);
1607			continue;
1608		}
1609#ifdef DIAGNOSTIC
1610		if (busyprt)
1611			vprint("vflush: busy vnode", vp);
1612#endif
1613		simple_unlock(&vp->v_interlock);
1614		busy++;
1615	}
1616	simple_unlock(&mntvnode_slock);
1617	if (busy)
1618		return (EBUSY);
1619	return (0);
1620}
1621
1622/*
1623 * Disassociate the underlying file system from a vnode.
1624 */
1625static void
1626vclean(vp, flags, p)
1627	struct vnode *vp;
1628	int flags;
1629	struct proc *p;
1630{
1631	int active;
1632	vm_object_t obj;
1633
1634	/*
1635	 * Check to see if the vnode is in use. If so we have to reference it
1636	 * before we clean it out so that its count cannot fall to zero and
1637	 * generate a race against ourselves to recycle it.
1638	 */
1639	if ((active = vp->v_usecount))
1640		vp->v_usecount++;
1641
1642	/*
1643	 * Prevent the vnode from being recycled or brought into use while we
1644	 * clean it out.
1645	 */
1646	if (vp->v_flag & VXLOCK)
1647		panic("vclean: deadlock");
1648	vp->v_flag |= VXLOCK;
1649	/*
1650	 * Even if the count is zero, the VOP_INACTIVE routine may still
1651	 * have the object locked while it cleans it out. The VOP_LOCK
1652	 * ensures that the VOP_INACTIVE routine is done with its work.
1653	 * For active vnodes, it ensures that no other activity can
1654	 * occur while the underlying object is being cleaned out.
1655	 */
1656	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1657
1658	/*
1659	 * Clean out any buffers associated with the vnode.
1660	 */
1661	vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0);
1662	if ((obj = vp->v_object) != NULL) {
1663		if (obj->ref_count == 0) {
1664			/*
1665			 * vclean() may be called twice.  The first time removes the
1666			 * primary reference to the object, the second time goes
1667			 * one further and is a special-case to terminate the object.
1668			 */
1669			vm_object_terminate(obj);
1670		} else {
1671			/*
1672			 * Woe to the process that tries to page now :-).
1673			 */
1674			vm_pager_deallocate(obj);
1675		}
1676	}
1677
1678	/*
1679	 * If purging an active vnode, it must be closed and
1680	 * deactivated before being reclaimed. Note that the
1681	 * VOP_INACTIVE will unlock the vnode.
1682	 */
1683	if (active) {
1684		if (flags & DOCLOSE)
1685			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1686		VOP_INACTIVE(vp, p);
1687	} else {
1688		/*
1689		 * Any other processes trying to obtain this lock must first
1690		 * wait for VXLOCK to clear, then call the new lock operation.
1691		 */
1692		VOP_UNLOCK(vp, 0, p);
1693	}
1694	/*
1695	 * Reclaim the vnode.
1696	 */
1697	if (VOP_RECLAIM(vp, p))
1698		panic("vclean: cannot reclaim");
1699
1700	if (active) {
1701		/*
1702		 * Inline copy of vrele() since VOP_INACTIVE
1703		 * has already been called.
1704		 */
1705		simple_lock(&vp->v_interlock);
1706		if (--vp->v_usecount <= 0) {
1707#ifdef DIAGNOSTIC
1708			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1709				vprint("vclean: bad ref count", vp);
1710				panic("vclean: ref cnt");
1711			}
1712#endif
1713			vfree(vp);
1714		}
1715		simple_unlock(&vp->v_interlock);
1716	}
1717
1718	cache_purge(vp);
1719	if (vp->v_vnlock) {
1720		FREE(vp->v_vnlock, M_VNODE);
1721		vp->v_vnlock = NULL;
1722	}
1723
1724	if (VSHOULDFREE(vp))
1725		vfree(vp);
1726
1727	/*
1728	 * Done with purge, notify sleepers of the grim news.
1729	 */
1730	vp->v_op = dead_vnodeop_p;
1731	vn_pollgone(vp);
1732	vp->v_tag = VT_NON;
1733	vp->v_flag &= ~VXLOCK;
1734	if (vp->v_flag & VXWANT) {
1735		vp->v_flag &= ~VXWANT;
1736		wakeup((caddr_t) vp);
1737	}
1738}
1739
1740/*
1741 * Eliminate all activity associated with the requested vnode
1742 * and with all vnodes aliased to the requested vnode.
1743 */
1744int
1745vop_revoke(ap)
1746	struct vop_revoke_args /* {
1747		struct vnode *a_vp;
1748		int a_flags;
1749	} */ *ap;
1750{
1751	struct vnode *vp, *vq;
1752	dev_t dev;
1753
1754	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1755
1756	vp = ap->a_vp;
1757	/*
1758	 * If a vgone (or vclean) is already in progress,
1759	 * wait until it is done and return.
1760	 */
1761	if (vp->v_flag & VXLOCK) {
1762		vp->v_flag |= VXWANT;
1763		simple_unlock(&vp->v_interlock);
1764		tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1765		return (0);
1766	}
1767	dev = vp->v_rdev;
1768	for (;;) {
1769		simple_lock(&spechash_slock);
1770		vq = SLIST_FIRST(&dev->si_hlist);
1771		simple_unlock(&spechash_slock);
1772		if (!vq)
1773			break;
1774		vgone(vq);
1775	}
1776	return (0);
1777}
1778
1779/*
1780 * Recycle an unused vnode to the front of the free list.
1781 * Release the passed interlock if the vnode will be recycled.
1782 */
1783int
1784vrecycle(vp, inter_lkp, p)
1785	struct vnode *vp;
1786	struct simplelock *inter_lkp;
1787	struct proc *p;
1788{
1789
1790	simple_lock(&vp->v_interlock);
1791	if (vp->v_usecount == 0) {
1792		if (inter_lkp) {
1793			simple_unlock(inter_lkp);
1794		}
1795		vgonel(vp, p);
1796		return (1);
1797	}
1798	simple_unlock(&vp->v_interlock);
1799	return (0);
1800}
1801
1802/*
1803 * Eliminate all activity associated with a vnode
1804 * in preparation for reuse.
1805 */
1806void
1807vgone(vp)
1808	register struct vnode *vp;
1809{
1810	struct proc *p = curproc;	/* XXX */
1811
1812	simple_lock(&vp->v_interlock);
1813	vgonel(vp, p);
1814}
1815
1816/*
1817 * vgone, with the vp interlock held.
1818 */
1819void
1820vgonel(vp, p)
1821	struct vnode *vp;
1822	struct proc *p;
1823{
1824	int s;
1825
1826	/*
1827	 * If a vgone (or vclean) is already in progress,
1828	 * wait until it is done and return.
1829	 */
1830	if (vp->v_flag & VXLOCK) {
1831		vp->v_flag |= VXWANT;
1832		simple_unlock(&vp->v_interlock);
1833		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1834		return;
1835	}
1836
1837	/*
1838	 * Clean out the filesystem specific data.
1839	 */
1840	vclean(vp, DOCLOSE, p);
1841	simple_lock(&vp->v_interlock);
1842
1843	/*
1844	 * Delete from old mount point vnode list, if on one.
1845	 */
1846	if (vp->v_mount != NULL)
1847		insmntque(vp, (struct mount *)0);
1848	/*
1849	 * If special device, remove it from special device alias list
1850	 * if it is on one.
1851	 */
1852	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1853		simple_lock(&spechash_slock);
1854		SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
1855		freedev(vp->v_rdev);
1856		simple_unlock(&spechash_slock);
1857		vp->v_rdev = NULL;
1858	}
1859
1860	/*
1861	 * If it is on the freelist and not already at the head,
1862	 * move it to the head of the list. The test of the back
1863	 * pointer and the reference count of zero is because
1864	 * it will be removed from the free list by getnewvnode,
1865	 * but will not have its reference count incremented until
1866	 * after calling vgone. If the reference count were
1867	 * incremented first, vgone would (incorrectly) try to
1868	 * close the previous instance of the underlying object.
1869	 */
1870	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1871		s = splbio();
1872		simple_lock(&vnode_free_list_slock);
1873		if (vp->v_flag & VFREE) {
1874			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1875		} else if (vp->v_flag & VTBFREE) {
1876			TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
1877			vp->v_flag &= ~VTBFREE;
1878			freevnodes++;
1879		} else
1880			freevnodes++;
1881		vp->v_flag |= VFREE;
1882		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1883		simple_unlock(&vnode_free_list_slock);
1884		splx(s);
1885	}
1886
1887	vp->v_type = VBAD;
1888	simple_unlock(&vp->v_interlock);
1889}
1890
1891/*
1892 * Lookup a vnode by device number.
1893 */
1894int
1895vfinddev(dev, type, vpp)
1896	dev_t dev;
1897	enum vtype type;
1898	struct vnode **vpp;
1899{
1900	struct vnode *vp;
1901
1902	simple_lock(&spechash_slock);
1903	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1904		if (type == vp->v_type) {
1905			*vpp = vp;
1906			simple_unlock(&spechash_slock);
1907			return (1);
1908		}
1909	}
1910	simple_unlock(&spechash_slock);
1911	return (0);
1912}
1913
1914/*
1915 * Calculate the total number of references to a special device.
1916 */
1917int
1918vcount(vp)
1919	struct vnode *vp;
1920{
1921	struct vnode *vq;
1922	int count;
1923
1924	count = 0;
1925	simple_lock(&spechash_slock);
1926	SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
1927		count += vq->v_usecount;
1928	simple_unlock(&spechash_slock);
1929	return (count);
1930}
1931
1932/*
1933 * Same as above, but using the dev_t as argument
1934 */
1935
1936int
1937count_dev(dev)
1938	dev_t dev;
1939{
1940	struct vnode *vp;
1941
1942	vp = SLIST_FIRST(&dev->si_hlist);
1943	if (vp == NULL)
1944		return (0);
1945	return(vcount(vp));
1946}
1947
1948/*
1949 * Print out a description of a vnode.
1950 */
1951static char *typename[] =
1952{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1953
1954void
1955vprint(label, vp)
1956	char *label;
1957	struct vnode *vp;
1958{
1959	char buf[96];
1960
1961	if (label != NULL)
1962		printf("%s: %p: ", label, (void *)vp);
1963	else
1964		printf("%p: ", (void *)vp);
1965	printf("type %s, usecount %d, writecount %d, refcount %d,",
1966	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1967	    vp->v_holdcnt);
1968	buf[0] = '\0';
1969	if (vp->v_flag & VROOT)
1970		strcat(buf, "|VROOT");
1971	if (vp->v_flag & VTEXT)
1972		strcat(buf, "|VTEXT");
1973	if (vp->v_flag & VSYSTEM)
1974		strcat(buf, "|VSYSTEM");
1975	if (vp->v_flag & VXLOCK)
1976		strcat(buf, "|VXLOCK");
1977	if (vp->v_flag & VXWANT)
1978		strcat(buf, "|VXWANT");
1979	if (vp->v_flag & VBWAIT)
1980		strcat(buf, "|VBWAIT");
1981	if (vp->v_flag & VDOOMED)
1982		strcat(buf, "|VDOOMED");
1983	if (vp->v_flag & VFREE)
1984		strcat(buf, "|VFREE");
1985	if (vp->v_flag & VOBJBUF)
1986		strcat(buf, "|VOBJBUF");
1987	if (buf[0] != '\0')
1988		printf(" flags (%s)", &buf[1]);
1989	if (vp->v_data == NULL) {
1990		printf("\n");
1991	} else {
1992		printf("\n\t");
1993		VOP_PRINT(vp);
1994	}
1995}
1996
1997#ifdef DDB
1998#include <ddb/ddb.h>
1999/*
2000 * List all of the locked vnodes in the system.
2001 * Called when debugging the kernel.
2002 */
2003DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
2004{
2005	struct proc *p = curproc;	/* XXX */
2006	struct mount *mp, *nmp;
2007	struct vnode *vp;
2008
2009	printf("Locked vnodes\n");
2010	simple_lock(&mountlist_slock);
2011	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2012		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2013			nmp = TAILQ_NEXT(mp, mnt_list);
2014			continue;
2015		}
2016		LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2017			if (VOP_ISLOCKED(vp, NULL))
2018				vprint((char *)0, vp);
2019		}
2020		simple_lock(&mountlist_slock);
2021		nmp = TAILQ_NEXT(mp, mnt_list);
2022		vfs_unbusy(mp, p);
2023	}
2024	simple_unlock(&mountlist_slock);
2025}
2026#endif
2027
2028/*
2029 * Top level filesystem related information gathering.
2030 */
2031static int	sysctl_ovfs_conf __P(SYSCTL_HANDLER_ARGS);
2032
2033static int
2034vfs_sysctl SYSCTL_HANDLER_ARGS
2035{
2036	int *name = (int *)arg1 - 1;	/* XXX */
2037	u_int namelen = arg2 + 1;	/* XXX */
2038	struct vfsconf *vfsp;
2039
2040#if 1 || defined(COMPAT_PRELITE2)
2041	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2042	if (namelen == 1)
2043		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2044#endif
2045
2046#ifdef notyet
2047	/* all sysctl names at this level are at least name and field */
2048	if (namelen < 2)
2049		return (ENOTDIR);		/* overloaded */
2050	if (name[0] != VFS_GENERIC) {
2051		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2052			if (vfsp->vfc_typenum == name[0])
2053				break;
2054		if (vfsp == NULL)
2055			return (EOPNOTSUPP);
2056		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2057		    oldp, oldlenp, newp, newlen, p));
2058	}
2059#endif
2060	switch (name[1]) {
2061	case VFS_MAXTYPENUM:
2062		if (namelen != 2)
2063			return (ENOTDIR);
2064		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2065	case VFS_CONF:
2066		if (namelen != 3)
2067			return (ENOTDIR);	/* overloaded */
2068		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2069			if (vfsp->vfc_typenum == name[2])
2070				break;
2071		if (vfsp == NULL)
2072			return (EOPNOTSUPP);
2073		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2074	}
2075	return (EOPNOTSUPP);
2076}
2077
2078SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2079	"Generic filesystem");
2080
2081#if 1 || defined(COMPAT_PRELITE2)
2082
2083static int
2084sysctl_ovfs_conf SYSCTL_HANDLER_ARGS
2085{
2086	int error;
2087	struct vfsconf *vfsp;
2088	struct ovfsconf ovfs;
2089
2090	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2091		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2092		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2093		ovfs.vfc_index = vfsp->vfc_typenum;
2094		ovfs.vfc_refcount = vfsp->vfc_refcount;
2095		ovfs.vfc_flags = vfsp->vfc_flags;
2096		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2097		if (error)
2098			return error;
2099	}
2100	return 0;
2101}
2102
2103#endif /* 1 || COMPAT_PRELITE2 */
2104
2105#if 0
2106#define KINFO_VNODESLOP	10
2107/*
2108 * Dump vnode list (via sysctl).
2109 * Copyout address of vnode followed by vnode.
2110 */
2111/* ARGSUSED */
2112static int
2113sysctl_vnode SYSCTL_HANDLER_ARGS
2114{
2115	struct proc *p = curproc;	/* XXX */
2116	struct mount *mp, *nmp;
2117	struct vnode *nvp, *vp;
2118	int error;
2119
2120#define VPTRSZ	sizeof (struct vnode *)
2121#define VNODESZ	sizeof (struct vnode)
2122
2123	req->lock = 0;
2124	if (!req->oldptr) /* Make an estimate */
2125		return (SYSCTL_OUT(req, 0,
2126			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2127
2128	simple_lock(&mountlist_slock);
2129	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2130		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2131			nmp = TAILQ_NEXT(mp, mnt_list);
2132			continue;
2133		}
2134again:
2135		simple_lock(&mntvnode_slock);
2136		for (vp = LIST_FIRST(&mp->mnt_vnodelist);
2137		     vp != NULL;
2138		     vp = nvp) {
2139			/*
2140			 * Check that the vp is still associated with
2141			 * this filesystem.  RACE: could have been
2142			 * recycled onto the same filesystem.
2143			 */
2144			if (vp->v_mount != mp) {
2145				simple_unlock(&mntvnode_slock);
2146				goto again;
2147			}
2148			nvp = LIST_NEXT(vp, v_mntvnodes);
2149			simple_unlock(&mntvnode_slock);
2150			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2151			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2152				return (error);
2153			simple_lock(&mntvnode_slock);
2154		}
2155		simple_unlock(&mntvnode_slock);
2156		simple_lock(&mountlist_slock);
2157		nmp = TAILQ_NEXT(mp, mnt_list);
2158		vfs_unbusy(mp, p);
2159	}
2160	simple_unlock(&mountlist_slock);
2161
2162	return (0);
2163}
2164#endif
2165
2166/*
2167 * XXX
2168 * Exporting the vnode list on large systems causes them to crash.
2169 * Exporting the vnode list on medium systems causes sysctl to coredump.
2170 */
2171#if 0
2172SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2173	0, 0, sysctl_vnode, "S,vnode", "");
2174#endif
2175
2176/*
2177 * Check to see if a filesystem is mounted on a block device.
2178 */
2179int
2180vfs_mountedon(vp)
2181	struct vnode *vp;
2182{
2183
2184	if (vp->v_specmountpoint != NULL)
2185		return (EBUSY);
2186	return (0);
2187}
2188
2189/*
2190 * Unmount all filesystems. The list is traversed in reverse order
2191 * of mounting to avoid dependencies.
2192 */
2193void
2194vfs_unmountall()
2195{
2196	struct mount *mp;
2197	struct proc *p;
2198	int error;
2199
2200	if (curproc != NULL)
2201		p = curproc;
2202	else
2203		p = initproc;	/* XXX XXX should this be proc0? */
2204	/*
2205	 * Since this only runs when rebooting, it is not interlocked.
2206	 */
2207	while(!TAILQ_EMPTY(&mountlist)) {
2208		mp = TAILQ_LAST(&mountlist, mntlist);
2209		error = dounmount(mp, MNT_FORCE, p);
2210		if (error) {
2211			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2212			printf("unmount of %s failed (",
2213			    mp->mnt_stat.f_mntonname);
2214			if (error == EBUSY)
2215				printf("BUSY)\n");
2216			else
2217				printf("%d)\n", error);
2218		} else {
2219			/* The unmount has removed mp from the mountlist */
2220		}
2221	}
2222}
2223
2224/*
2225 * Build hash lists of net addresses and hang them off the mount point.
2226 * Called by ufs_mount() to set up the lists of export addresses.
2227 */
2228static int
2229vfs_hang_addrlist(mp, nep, argp)
2230	struct mount *mp;
2231	struct netexport *nep;
2232	struct export_args *argp;
2233{
2234	register struct netcred *np;
2235	register struct radix_node_head *rnh;
2236	register int i;
2237	struct radix_node *rn;
2238	struct sockaddr *saddr, *smask = 0;
2239	struct domain *dom;
2240	int error;
2241
2242	if (argp->ex_addrlen == 0) {
2243		if (mp->mnt_flag & MNT_DEFEXPORTED)
2244			return (EPERM);
2245		np = &nep->ne_defexported;
2246		np->netc_exflags = argp->ex_flags;
2247		np->netc_anon = argp->ex_anon;
2248		np->netc_anon.cr_ref = 1;
2249		mp->mnt_flag |= MNT_DEFEXPORTED;
2250		return (0);
2251	}
2252	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2253	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2254	bzero((caddr_t) np, i);
2255	saddr = (struct sockaddr *) (np + 1);
2256	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2257		goto out;
2258	if (saddr->sa_len > argp->ex_addrlen)
2259		saddr->sa_len = argp->ex_addrlen;
2260	if (argp->ex_masklen) {
2261		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2262		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2263		if (error)
2264			goto out;
2265		if (smask->sa_len > argp->ex_masklen)
2266			smask->sa_len = argp->ex_masklen;
2267	}
2268	i = saddr->sa_family;
2269	if ((rnh = nep->ne_rtable[i]) == 0) {
2270		/*
2271		 * Seems silly to initialize every AF when most are not used,
2272		 * do so on demand here
2273		 */
2274		for (dom = domains; dom; dom = dom->dom_next)
2275			if (dom->dom_family == i && dom->dom_rtattach) {
2276				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2277				    dom->dom_rtoffset);
2278				break;
2279			}
2280		if ((rnh = nep->ne_rtable[i]) == 0) {
2281			error = ENOBUFS;
2282			goto out;
2283		}
2284	}
2285	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2286	    np->netc_rnodes);
2287	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2288		error = EPERM;
2289		goto out;
2290	}
2291	np->netc_exflags = argp->ex_flags;
2292	np->netc_anon = argp->ex_anon;
2293	np->netc_anon.cr_ref = 1;
2294	return (0);
2295out:
2296	free(np, M_NETADDR);
2297	return (error);
2298}
2299
2300/* ARGSUSED */
2301static int
2302vfs_free_netcred(rn, w)
2303	struct radix_node *rn;
2304	void *w;
2305{
2306	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2307
2308	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2309	free((caddr_t) rn, M_NETADDR);
2310	return (0);
2311}
2312
2313/*
2314 * Free the net address hash lists that are hanging off the mount points.
2315 */
2316static void
2317vfs_free_addrlist(nep)
2318	struct netexport *nep;
2319{
2320	register int i;
2321	register struct radix_node_head *rnh;
2322
2323	for (i = 0; i <= AF_MAX; i++)
2324		if ((rnh = nep->ne_rtable[i])) {
2325			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2326			    (caddr_t) rnh);
2327			free((caddr_t) rnh, M_RTABLE);
2328			nep->ne_rtable[i] = 0;
2329		}
2330}
2331
2332int
2333vfs_export(mp, nep, argp)
2334	struct mount *mp;
2335	struct netexport *nep;
2336	struct export_args *argp;
2337{
2338	int error;
2339
2340	if (argp->ex_flags & MNT_DELEXPORT) {
2341		if (mp->mnt_flag & MNT_EXPUBLIC) {
2342			vfs_setpublicfs(NULL, NULL, NULL);
2343			mp->mnt_flag &= ~MNT_EXPUBLIC;
2344		}
2345		vfs_free_addrlist(nep);
2346		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2347	}
2348	if (argp->ex_flags & MNT_EXPORTED) {
2349		if (argp->ex_flags & MNT_EXPUBLIC) {
2350			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2351				return (error);
2352			mp->mnt_flag |= MNT_EXPUBLIC;
2353		}
2354		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2355			return (error);
2356		mp->mnt_flag |= MNT_EXPORTED;
2357	}
2358	return (0);
2359}
2360
2361
2362/*
2363 * Set the publicly exported filesystem (WebNFS). Currently, only
2364 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2365 */
2366int
2367vfs_setpublicfs(mp, nep, argp)
2368	struct mount *mp;
2369	struct netexport *nep;
2370	struct export_args *argp;
2371{
2372	int error;
2373	struct vnode *rvp;
2374	char *cp;
2375
2376	/*
2377	 * mp == NULL -> invalidate the current info, the FS is
2378	 * no longer exported. May be called from either vfs_export
2379	 * or unmount, so check if it hasn't already been done.
2380	 */
2381	if (mp == NULL) {
2382		if (nfs_pub.np_valid) {
2383			nfs_pub.np_valid = 0;
2384			if (nfs_pub.np_index != NULL) {
2385				FREE(nfs_pub.np_index, M_TEMP);
2386				nfs_pub.np_index = NULL;
2387			}
2388		}
2389		return (0);
2390	}
2391
2392	/*
2393	 * Only one allowed at a time.
2394	 */
2395	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2396		return (EBUSY);
2397
2398	/*
2399	 * Get real filehandle for root of exported FS.
2400	 */
2401	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2402	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2403
2404	if ((error = VFS_ROOT(mp, &rvp)))
2405		return (error);
2406
2407	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2408		return (error);
2409
2410	vput(rvp);
2411
2412	/*
2413	 * If an indexfile was specified, pull it in.
2414	 */
2415	if (argp->ex_indexfile != NULL) {
2416		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2417		    M_WAITOK);
2418		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2419		    MAXNAMLEN, (size_t *)0);
2420		if (!error) {
2421			/*
2422			 * Check for illegal filenames.
2423			 */
2424			for (cp = nfs_pub.np_index; *cp; cp++) {
2425				if (*cp == '/') {
2426					error = EINVAL;
2427					break;
2428				}
2429			}
2430		}
2431		if (error) {
2432			FREE(nfs_pub.np_index, M_TEMP);
2433			return (error);
2434		}
2435	}
2436
2437	nfs_pub.np_mount = mp;
2438	nfs_pub.np_valid = 1;
2439	return (0);
2440}
2441
2442struct netcred *
2443vfs_export_lookup(mp, nep, nam)
2444	register struct mount *mp;
2445	struct netexport *nep;
2446	struct sockaddr *nam;
2447{
2448	register struct netcred *np;
2449	register struct radix_node_head *rnh;
2450	struct sockaddr *saddr;
2451
2452	np = NULL;
2453	if (mp->mnt_flag & MNT_EXPORTED) {
2454		/*
2455		 * Lookup in the export list first.
2456		 */
2457		if (nam != NULL) {
2458			saddr = nam;
2459			rnh = nep->ne_rtable[saddr->sa_family];
2460			if (rnh != NULL) {
2461				np = (struct netcred *)
2462					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2463							      rnh);
2464				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2465					np = NULL;
2466			}
2467		}
2468		/*
2469		 * If no address match, use the default if it exists.
2470		 */
2471		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2472			np = &nep->ne_defexported;
2473	}
2474	return (np);
2475}
2476
2477/*
2478 * perform msync on all vnodes under a mount point
2479 * the mount point must be locked.
2480 */
2481void
2482vfs_msync(struct mount *mp, int flags) {
2483	struct vnode *vp, *nvp;
2484	struct vm_object *obj;
2485	int anyio, tries;
2486
2487	tries = 5;
2488loop:
2489	anyio = 0;
2490	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) {
2491
2492		nvp = LIST_NEXT(vp, v_mntvnodes);
2493
2494		if (vp->v_mount != mp) {
2495			goto loop;
2496		}
2497
2498		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2499			continue;
2500
2501		if (flags != MNT_WAIT) {
2502			obj = vp->v_object;
2503			if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2504				continue;
2505			if (VOP_ISLOCKED(vp, NULL))
2506				continue;
2507		}
2508
2509		simple_lock(&vp->v_interlock);
2510		if (vp->v_object &&
2511		   (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
2512			if (!vget(vp,
2513				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2514				if (vp->v_object) {
2515					vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2516					anyio = 1;
2517				}
2518				vput(vp);
2519			}
2520		} else {
2521			simple_unlock(&vp->v_interlock);
2522		}
2523	}
2524	if (anyio && (--tries > 0))
2525		goto loop;
2526}
2527
2528/*
2529 * Create the VM object needed for VMIO and mmap support.  This
2530 * is done for all VREG files in the system.  Some filesystems might
2531 * afford the additional metadata buffering capability of the
2532 * VMIO code by making the device node be VMIO mode also.
2533 *
2534 * vp must be locked when vfs_object_create is called.
2535 */
2536int
2537vfs_object_create(vp, p, cred)
2538	struct vnode *vp;
2539	struct proc *p;
2540	struct ucred *cred;
2541{
2542	struct vattr vat;
2543	vm_object_t object;
2544	int error = 0;
2545
2546	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
2547		return 0;
2548
2549retry:
2550	if ((object = vp->v_object) == NULL) {
2551		if (vp->v_type == VREG || vp->v_type == VDIR) {
2552			if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
2553				goto retn;
2554			object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
2555		} else if (devsw(vp->v_rdev) != NULL) {
2556			/*
2557			 * This simply allocates the biggest object possible
2558			 * for a disk vnode.  This should be fixed, but doesn't
2559			 * cause any problems (yet).
2560			 */
2561			object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
2562		} else {
2563			goto retn;
2564		}
2565		/*
2566		 * Dereference the reference we just created.  This assumes
2567		 * that the object is associated with the vp.
2568		 */
2569		object->ref_count--;
2570		vp->v_usecount--;
2571	} else {
2572		if (object->flags & OBJ_DEAD) {
2573			VOP_UNLOCK(vp, 0, p);
2574			tsleep(object, PVM, "vodead", 0);
2575			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
2576			goto retry;
2577		}
2578	}
2579
2580	KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
2581	vp->v_flag |= VOBJBUF;
2582
2583retn:
2584	return error;
2585}
2586
2587static void
2588vfree(vp)
2589	struct vnode *vp;
2590{
2591	int s;
2592
2593	s = splbio();
2594	simple_lock(&vnode_free_list_slock);
2595	if (vp->v_flag & VTBFREE) {
2596		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2597		vp->v_flag &= ~VTBFREE;
2598	}
2599	if (vp->v_flag & VAGE) {
2600		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2601	} else {
2602		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2603	}
2604	freevnodes++;
2605	simple_unlock(&vnode_free_list_slock);
2606	vp->v_flag &= ~VAGE;
2607	vp->v_flag |= VFREE;
2608	splx(s);
2609}
2610
2611void
2612vbusy(vp)
2613	struct vnode *vp;
2614{
2615	int s;
2616
2617	s = splbio();
2618	simple_lock(&vnode_free_list_slock);
2619	if (vp->v_flag & VTBFREE) {
2620		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2621		vp->v_flag &= ~VTBFREE;
2622	} else {
2623		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2624		freevnodes--;
2625	}
2626	simple_unlock(&vnode_free_list_slock);
2627	vp->v_flag &= ~(VFREE|VAGE);
2628	splx(s);
2629}
2630
2631/*
2632 * Record a process's interest in events which might happen to
2633 * a vnode.  Because poll uses the historic select-style interface
2634 * internally, this routine serves as both the ``check for any
2635 * pending events'' and the ``record my interest in future events''
2636 * functions.  (These are done together, while the lock is held,
2637 * to avoid race conditions.)
2638 */
2639int
2640vn_pollrecord(vp, p, events)
2641	struct vnode *vp;
2642	struct proc *p;
2643	short events;
2644{
2645	simple_lock(&vp->v_pollinfo.vpi_lock);
2646	if (vp->v_pollinfo.vpi_revents & events) {
2647		/*
2648		 * This leaves events we are not interested
2649		 * in available for the other process which
2650		 * which presumably had requested them
2651		 * (otherwise they would never have been
2652		 * recorded).
2653		 */
2654		events &= vp->v_pollinfo.vpi_revents;
2655		vp->v_pollinfo.vpi_revents &= ~events;
2656
2657		simple_unlock(&vp->v_pollinfo.vpi_lock);
2658		return events;
2659	}
2660	vp->v_pollinfo.vpi_events |= events;
2661	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2662	simple_unlock(&vp->v_pollinfo.vpi_lock);
2663	return 0;
2664}
2665
2666/*
2667 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2668 * it is possible for us to miss an event due to race conditions, but
2669 * that condition is expected to be rare, so for the moment it is the
2670 * preferred interface.
2671 */
2672void
2673vn_pollevent(vp, events)
2674	struct vnode *vp;
2675	short events;
2676{
2677	simple_lock(&vp->v_pollinfo.vpi_lock);
2678	if (vp->v_pollinfo.vpi_events & events) {
2679		/*
2680		 * We clear vpi_events so that we don't
2681		 * call selwakeup() twice if two events are
2682		 * posted before the polling process(es) is
2683		 * awakened.  This also ensures that we take at
2684		 * most one selwakeup() if the polling process
2685		 * is no longer interested.  However, it does
2686		 * mean that only one event can be noticed at
2687		 * a time.  (Perhaps we should only clear those
2688		 * event bits which we note?) XXX
2689		 */
2690		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2691		vp->v_pollinfo.vpi_revents |= events;
2692		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2693	}
2694	simple_unlock(&vp->v_pollinfo.vpi_lock);
2695}
2696
2697/*
2698 * Wake up anyone polling on vp because it is being revoked.
2699 * This depends on dead_poll() returning POLLHUP for correct
2700 * behavior.
2701 */
2702void
2703vn_pollgone(vp)
2704	struct vnode *vp;
2705{
2706	simple_lock(&vp->v_pollinfo.vpi_lock);
2707	if (vp->v_pollinfo.vpi_events) {
2708		vp->v_pollinfo.vpi_events = 0;
2709		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2710	}
2711	simple_unlock(&vp->v_pollinfo.vpi_lock);
2712}
2713
2714
2715
2716/*
2717 * Routine to create and manage a filesystem syncer vnode.
2718 */
2719#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2720static int	sync_fsync __P((struct  vop_fsync_args *));
2721static int	sync_inactive __P((struct  vop_inactive_args *));
2722static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2723#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2724#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2725static int	sync_print __P((struct vop_print_args *));
2726#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2727
2728static vop_t **sync_vnodeop_p;
2729static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2730	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2731	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2732	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2733	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2734	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2735	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2736	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2737	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2738	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2739	{ NULL, NULL }
2740};
2741static struct vnodeopv_desc sync_vnodeop_opv_desc =
2742	{ &sync_vnodeop_p, sync_vnodeop_entries };
2743
2744VNODEOP_SET(sync_vnodeop_opv_desc);
2745
2746/*
2747 * Create a new filesystem syncer vnode for the specified mount point.
2748 */
2749int
2750vfs_allocate_syncvnode(mp)
2751	struct mount *mp;
2752{
2753	struct vnode *vp;
2754	static long start, incr, next;
2755	int error;
2756
2757	/* Allocate a new vnode */
2758	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2759		mp->mnt_syncer = NULL;
2760		return (error);
2761	}
2762	vp->v_type = VNON;
2763	/*
2764	 * Place the vnode onto the syncer worklist. We attempt to
2765	 * scatter them about on the list so that they will go off
2766	 * at evenly distributed times even if all the filesystems
2767	 * are mounted at once.
2768	 */
2769	next += incr;
2770	if (next == 0 || next > syncer_maxdelay) {
2771		start /= 2;
2772		incr /= 2;
2773		if (start == 0) {
2774			start = syncer_maxdelay / 2;
2775			incr = syncer_maxdelay;
2776		}
2777		next = start;
2778	}
2779	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2780	mp->mnt_syncer = vp;
2781	return (0);
2782}
2783
2784/*
2785 * Do a lazy sync of the filesystem.
2786 */
2787static int
2788sync_fsync(ap)
2789	struct vop_fsync_args /* {
2790		struct vnode *a_vp;
2791		struct ucred *a_cred;
2792		int a_waitfor;
2793		struct proc *a_p;
2794	} */ *ap;
2795{
2796	struct vnode *syncvp = ap->a_vp;
2797	struct mount *mp = syncvp->v_mount;
2798	struct proc *p = ap->a_p;
2799	int asyncflag;
2800
2801	/*
2802	 * We only need to do something if this is a lazy evaluation.
2803	 */
2804	if (ap->a_waitfor != MNT_LAZY)
2805		return (0);
2806
2807	/*
2808	 * Move ourselves to the back of the sync list.
2809	 */
2810	vn_syncer_add_to_worklist(syncvp, syncdelay);
2811
2812	/*
2813	 * Walk the list of vnodes pushing all that are dirty and
2814	 * not already on the sync list.
2815	 */
2816	simple_lock(&mountlist_slock);
2817	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2818		simple_unlock(&mountlist_slock);
2819		return (0);
2820	}
2821	asyncflag = mp->mnt_flag & MNT_ASYNC;
2822	mp->mnt_flag &= ~MNT_ASYNC;
2823	vfs_msync(mp, MNT_NOWAIT);
2824	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2825	if (asyncflag)
2826		mp->mnt_flag |= MNT_ASYNC;
2827	vfs_unbusy(mp, p);
2828	return (0);
2829}
2830
2831/*
2832 * The syncer vnode is no referenced.
2833 */
2834static int
2835sync_inactive(ap)
2836	struct vop_inactive_args /* {
2837		struct vnode *a_vp;
2838		struct proc *a_p;
2839	} */ *ap;
2840{
2841
2842	vgone(ap->a_vp);
2843	return (0);
2844}
2845
2846/*
2847 * The syncer vnode is no longer needed and is being decommissioned.
2848 *
2849 * Modifications to the worklist must be protected at splbio().
2850 */
2851static int
2852sync_reclaim(ap)
2853	struct vop_reclaim_args /* {
2854		struct vnode *a_vp;
2855	} */ *ap;
2856{
2857	struct vnode *vp = ap->a_vp;
2858	int s;
2859
2860	s = splbio();
2861	vp->v_mount->mnt_syncer = NULL;
2862	if (vp->v_flag & VONWORKLST) {
2863		LIST_REMOVE(vp, v_synclist);
2864		vp->v_flag &= ~VONWORKLST;
2865	}
2866	splx(s);
2867
2868	return (0);
2869}
2870
2871/*
2872 * Print out a syncer vnode.
2873 */
2874static int
2875sync_print(ap)
2876	struct vop_print_args /* {
2877		struct vnode *a_vp;
2878	} */ *ap;
2879{
2880	struct vnode *vp = ap->a_vp;
2881
2882	printf("syncer vnode");
2883	if (vp->v_vnlock != NULL)
2884		lockmgr_printinfo(vp->v_vnlock);
2885	printf("\n");
2886	return (0);
2887}
2888
2889/*
2890 * extract the dev_t from a VBLK or VCHR
2891 */
2892dev_t
2893vn_todev(vp)
2894	struct vnode *vp;
2895{
2896	if (vp->v_type != VBLK && vp->v_type != VCHR)
2897		return (NODEV);
2898	return (vp->v_rdev);
2899}
2900
2901/*
2902 * Check if vnode represents a disk device
2903 */
2904int
2905vn_isdisk(vp, errp)
2906	struct vnode *vp;
2907	int *errp;
2908{
2909	if (vp->v_type != VBLK && vp->v_type != VCHR) {
2910		if (errp != NULL)
2911			*errp = ENOTBLK;
2912		return (0);
2913	}
2914	if (vp->v_rdev == NULL) {
2915		if (errp != NULL)
2916			*errp = ENXIO;
2917		return (0);
2918	}
2919	if (!devsw(vp->v_rdev)) {
2920		if (errp != NULL)
2921			*errp = ENXIO;
2922		return (0);
2923	}
2924	if (!(devsw(vp->v_rdev)->d_flags & D_DISK)) {
2925		if (errp != NULL)
2926			*errp = ENOTBLK;
2927		return (0);
2928	}
2929	if (errp != NULL)
2930		*errp = 0;
2931	return (1);
2932}
2933
2934void
2935NDFREE(ndp, flags)
2936     struct nameidata *ndp;
2937     const uint flags;
2938{
2939	if (!(flags & NDF_NO_FREE_PNBUF) &&
2940	    (ndp->ni_cnd.cn_flags & HASBUF)) {
2941		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2942		ndp->ni_cnd.cn_flags &= ~HASBUF;
2943	}
2944	if (!(flags & NDF_NO_DVP_UNLOCK) &&
2945	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
2946	    ndp->ni_dvp != ndp->ni_vp)
2947		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc);
2948	if (!(flags & NDF_NO_DVP_RELE) &&
2949	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
2950		vrele(ndp->ni_dvp);
2951		ndp->ni_dvp = NULL;
2952	}
2953	if (!(flags & NDF_NO_VP_UNLOCK) &&
2954	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
2955		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc);
2956	if (!(flags & NDF_NO_VP_RELE) &&
2957	    ndp->ni_vp) {
2958		vrele(ndp->ni_vp);
2959		ndp->ni_vp = NULL;
2960	}
2961	if (!(flags & NDF_NO_STARTDIR_RELE) &&
2962	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
2963		vrele(ndp->ni_startdir);
2964		ndp->ni_startdir = NULL;
2965	}
2966}
2967