vfs_subr.c revision 56949
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_subr.c 56949 2000-02-02 07:07:17Z rwatson $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/buf.h>
50#include <sys/conf.h>
51#include <sys/dirent.h>
52#include <sys/domain.h>
53#include <sys/eventhandler.h>
54#include <sys/fcntl.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/malloc.h>
58#include <sys/mount.h>
59#include <sys/namei.h>
60#include <sys/proc.h>
61#include <sys/reboot.h>
62#include <sys/socket.h>
63#include <sys/stat.h>
64#include <sys/sysctl.h>
65#include <sys/vmmeter.h>
66#include <sys/vnode.h>
67
68#include <machine/limits.h>
69
70#include <vm/vm.h>
71#include <vm/vm_object.h>
72#include <vm/vm_extern.h>
73#include <vm/pmap.h>
74#include <vm/vm_map.h>
75#include <vm/vm_page.h>
76#include <vm/vm_pager.h>
77#include <vm/vnode_pager.h>
78#include <vm/vm_zone.h>
79
80static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
81
82static void	insmntque __P((struct vnode *vp, struct mount *mp));
83static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
84static void	vfree __P((struct vnode *));
85static unsigned long	numvnodes;
86SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
87
88enum vtype iftovt_tab[16] = {
89	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
90	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
91};
92int vttoif_tab[9] = {
93	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
94	S_IFSOCK, S_IFIFO, S_IFMT,
95};
96
97static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
98struct tobefreelist vnode_tobefree_list;	/* vnode free list */
99
100static u_long wantfreevnodes = 25;
101SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
102static u_long freevnodes = 0;
103SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
104
105static int reassignbufcalls;
106SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
107static int reassignbufloops;
108SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
109static int reassignbufsortgood;
110SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
111static int reassignbufsortbad;
112SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
113static int reassignbufmethod = 1;
114SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
115
116#ifdef ENABLE_VFS_IOOPT
117int vfs_ioopt = 0;
118SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
119#endif
120
121struct mntlist mountlist = TAILQ_HEAD_INITIALIZER(mountlist); /* mounted fs */
122struct simplelock mountlist_slock;
123struct simplelock mntvnode_slock;
124int	nfs_mount_type = -1;
125#ifndef NULL_SIMPLELOCKS
126static struct simplelock mntid_slock;
127static struct simplelock vnode_free_list_slock;
128static struct simplelock spechash_slock;
129#endif
130struct nfs_public nfs_pub;	/* publicly exported FS */
131static vm_zone_t vnode_zone;
132
133/*
134 * The workitem queue.
135 */
136#define SYNCER_MAXDELAY		32
137static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
138time_t syncdelay = 30;		/* max time to delay syncing data */
139time_t filedelay = 30;		/* time to delay syncing files */
140SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
141time_t dirdelay = 29;		/* time to delay syncing directories */
142SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
143time_t metadelay = 28;		/* time to delay syncing metadata */
144SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
145static int rushjob;			/* number of slots to run ASAP */
146static int stat_rush_requests;	/* number of times I/O speeded up */
147SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
148
149static int syncer_delayno = 0;
150static long syncer_mask;
151LIST_HEAD(synclist, vnode);
152static struct synclist *syncer_workitem_pending;
153
154int desiredvnodes;
155SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
156    &desiredvnodes, 0, "Maximum number of vnodes");
157
158static void	vfs_free_addrlist __P((struct netexport *nep));
159static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
160static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
161				       struct export_args *argp));
162
163/*
164 * Initialize the vnode management data structures.
165 */
166void
167vntblinit()
168{
169
170	desiredvnodes = maxproc + cnt.v_page_count / 4;
171	simple_lock_init(&mntvnode_slock);
172	simple_lock_init(&mntid_slock);
173	simple_lock_init(&spechash_slock);
174	TAILQ_INIT(&vnode_free_list);
175	TAILQ_INIT(&vnode_tobefree_list);
176	simple_lock_init(&vnode_free_list_slock);
177	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
178	/*
179	 * Initialize the filesystem syncer.
180	 */
181	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
182		&syncer_mask);
183	syncer_maxdelay = syncer_mask + 1;
184}
185
186/*
187 * Mark a mount point as busy. Used to synchronize access and to delay
188 * unmounting. Interlock is not released on failure.
189 */
190int
191vfs_busy(mp, flags, interlkp, p)
192	struct mount *mp;
193	int flags;
194	struct simplelock *interlkp;
195	struct proc *p;
196{
197	int lkflags;
198
199	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
200		if (flags & LK_NOWAIT)
201			return (ENOENT);
202		mp->mnt_kern_flag |= MNTK_MWAIT;
203		if (interlkp) {
204			simple_unlock(interlkp);
205		}
206		/*
207		 * Since all busy locks are shared except the exclusive
208		 * lock granted when unmounting, the only place that a
209		 * wakeup needs to be done is at the release of the
210		 * exclusive lock at the end of dounmount.
211		 */
212		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
213		if (interlkp) {
214			simple_lock(interlkp);
215		}
216		return (ENOENT);
217	}
218	lkflags = LK_SHARED | LK_NOPAUSE;
219	if (interlkp)
220		lkflags |= LK_INTERLOCK;
221	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
222		panic("vfs_busy: unexpected lock failure");
223	return (0);
224}
225
226/*
227 * Free a busy filesystem.
228 */
229void
230vfs_unbusy(mp, p)
231	struct mount *mp;
232	struct proc *p;
233{
234
235	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
236}
237
238/*
239 * Lookup a filesystem type, and if found allocate and initialize
240 * a mount structure for it.
241 *
242 * Devname is usually updated by mount(8) after booting.
243 */
244int
245vfs_rootmountalloc(fstypename, devname, mpp)
246	char *fstypename;
247	char *devname;
248	struct mount **mpp;
249{
250	struct proc *p = curproc;	/* XXX */
251	struct vfsconf *vfsp;
252	struct mount *mp;
253
254	if (fstypename == NULL)
255		return (ENODEV);
256	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
257		if (!strcmp(vfsp->vfc_name, fstypename))
258			break;
259	if (vfsp == NULL)
260		return (ENODEV);
261	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
262	bzero((char *)mp, (u_long)sizeof(struct mount));
263	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
264	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
265	LIST_INIT(&mp->mnt_vnodelist);
266	mp->mnt_vfc = vfsp;
267	mp->mnt_op = vfsp->vfc_vfsops;
268	mp->mnt_flag = MNT_RDONLY;
269	mp->mnt_vnodecovered = NULLVP;
270	vfsp->vfc_refcount++;
271	mp->mnt_iosize_max = DFLTPHYS;
272	mp->mnt_stat.f_type = vfsp->vfc_typenum;
273	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
274	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
275	mp->mnt_stat.f_mntonname[0] = '/';
276	mp->mnt_stat.f_mntonname[1] = 0;
277	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
278	*mpp = mp;
279	return (0);
280}
281
282/*
283 * Find an appropriate filesystem to use for the root. If a filesystem
284 * has not been preselected, walk through the list of known filesystems
285 * trying those that have mountroot routines, and try them until one
286 * works or we have tried them all.
287 */
288#ifdef notdef	/* XXX JH */
289int
290lite2_vfs_mountroot()
291{
292	struct vfsconf *vfsp;
293	extern int (*lite2_mountroot) __P((void));
294	int error;
295
296	if (lite2_mountroot != NULL)
297		return ((*lite2_mountroot)());
298	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
299		if (vfsp->vfc_mountroot == NULL)
300			continue;
301		if ((error = (*vfsp->vfc_mountroot)()) == 0)
302			return (0);
303		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
304	}
305	return (ENODEV);
306}
307#endif
308
309/*
310 * Lookup a mount point by filesystem identifier.
311 */
312struct mount *
313vfs_getvfs(fsid)
314	fsid_t *fsid;
315{
316	register struct mount *mp;
317
318	simple_lock(&mountlist_slock);
319	TAILQ_FOREACH(mp, &mountlist, mnt_list) {
320		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
321		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
322			simple_unlock(&mountlist_slock);
323			return (mp);
324	    }
325	}
326	simple_unlock(&mountlist_slock);
327	return ((struct mount *) 0);
328}
329
330/*
331 * Get a new unique fsid
332 *
333 * Keep in mind that several mounts may be running in parallel,
334 * so always increment mntid_base even if lower numbers are available.
335 */
336
337static u_short mntid_base;
338
339void
340vfs_getnewfsid(mp)
341	struct mount *mp;
342{
343	fsid_t tfsid;
344	int mtype;
345
346	simple_lock(&mntid_slock);
347
348	mtype = mp->mnt_vfc->vfc_typenum;
349	for (;;) {
350		tfsid.val[0] = makeudev(255, mtype + (mntid_base << 16));
351		tfsid.val[1] = mtype;
352		++mntid_base;
353		if (vfs_getvfs(&tfsid) == NULL)
354			break;
355	}
356
357	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
358	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
359
360	simple_unlock(&mntid_slock);
361}
362
363/*
364 * Knob to control the precision of file timestamps:
365 *
366 *   0 = seconds only; nanoseconds zeroed.
367 *   1 = seconds and nanoseconds, accurate within 1/HZ.
368 *   2 = seconds and nanoseconds, truncated to microseconds.
369 * >=3 = seconds and nanoseconds, maximum precision.
370 */
371enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
372
373static int timestamp_precision = TSP_SEC;
374SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
375    &timestamp_precision, 0, "");
376
377/*
378 * Get a current timestamp.
379 */
380void
381vfs_timestamp(tsp)
382	struct timespec *tsp;
383{
384	struct timeval tv;
385
386	switch (timestamp_precision) {
387	case TSP_SEC:
388		tsp->tv_sec = time_second;
389		tsp->tv_nsec = 0;
390		break;
391	case TSP_HZ:
392		getnanotime(tsp);
393		break;
394	case TSP_USEC:
395		microtime(&tv);
396		TIMEVAL_TO_TIMESPEC(&tv, tsp);
397		break;
398	case TSP_NSEC:
399	default:
400		nanotime(tsp);
401		break;
402	}
403}
404
405/*
406 * Set vnode attributes to VNOVAL
407 */
408void
409vattr_null(vap)
410	register struct vattr *vap;
411{
412
413	vap->va_type = VNON;
414	vap->va_size = VNOVAL;
415	vap->va_bytes = VNOVAL;
416	vap->va_mode = VNOVAL;
417	vap->va_nlink = VNOVAL;
418	vap->va_uid = VNOVAL;
419	vap->va_gid = VNOVAL;
420	vap->va_fsid = VNOVAL;
421	vap->va_fileid = VNOVAL;
422	vap->va_blocksize = VNOVAL;
423	vap->va_rdev = VNOVAL;
424	vap->va_atime.tv_sec = VNOVAL;
425	vap->va_atime.tv_nsec = VNOVAL;
426	vap->va_mtime.tv_sec = VNOVAL;
427	vap->va_mtime.tv_nsec = VNOVAL;
428	vap->va_ctime.tv_sec = VNOVAL;
429	vap->va_ctime.tv_nsec = VNOVAL;
430	vap->va_flags = VNOVAL;
431	vap->va_gen = VNOVAL;
432	vap->va_vaflags = 0;
433}
434
435/*
436 * Routines having to do with the management of the vnode table.
437 */
438extern vop_t **dead_vnodeop_p;
439
440/*
441 * Return the next vnode from the free list.
442 */
443int
444getnewvnode(tag, mp, vops, vpp)
445	enum vtagtype tag;
446	struct mount *mp;
447	vop_t **vops;
448	struct vnode **vpp;
449{
450	int s;
451	struct proc *p = curproc;	/* XXX */
452	struct vnode *vp, *tvp, *nvp;
453	vm_object_t object;
454	TAILQ_HEAD(freelst, vnode) vnode_tmp_list;
455
456	/*
457	 * We take the least recently used vnode from the freelist
458	 * if we can get it and it has no cached pages, and no
459	 * namecache entries are relative to it.
460	 * Otherwise we allocate a new vnode
461	 */
462
463	s = splbio();
464	simple_lock(&vnode_free_list_slock);
465	TAILQ_INIT(&vnode_tmp_list);
466
467	for (vp = TAILQ_FIRST(&vnode_tobefree_list); vp; vp = nvp) {
468		nvp = TAILQ_NEXT(vp, v_freelist);
469		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
470		if (vp->v_flag & VAGE) {
471			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
472		} else {
473			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
474		}
475		vp->v_flag &= ~(VTBFREE|VAGE);
476		vp->v_flag |= VFREE;
477		if (vp->v_usecount)
478			panic("tobe free vnode isn't");
479		freevnodes++;
480	}
481
482	if (wantfreevnodes && freevnodes < wantfreevnodes) {
483		vp = NULL;
484	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
485		/*
486		 * XXX: this is only here to be backwards compatible
487		 */
488		vp = NULL;
489	} else {
490		for (vp = TAILQ_FIRST(&vnode_free_list); vp; vp = nvp) {
491			nvp = TAILQ_NEXT(vp, v_freelist);
492			if (!simple_lock_try(&vp->v_interlock))
493				continue;
494			if (vp->v_usecount)
495				panic("free vnode isn't");
496
497			object = vp->v_object;
498			if (object && (object->resident_page_count || object->ref_count)) {
499				printf("object inconsistant state: RPC: %d, RC: %d\n",
500					object->resident_page_count, object->ref_count);
501				/* Don't recycle if it's caching some pages */
502				TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
503				TAILQ_INSERT_TAIL(&vnode_tmp_list, vp, v_freelist);
504				continue;
505			} else if (LIST_FIRST(&vp->v_cache_src)) {
506				/* Don't recycle if active in the namecache */
507				simple_unlock(&vp->v_interlock);
508				continue;
509			} else {
510				break;
511			}
512		}
513	}
514
515	for (tvp = TAILQ_FIRST(&vnode_tmp_list); tvp; tvp = nvp) {
516		nvp = TAILQ_NEXT(tvp, v_freelist);
517		TAILQ_REMOVE(&vnode_tmp_list, tvp, v_freelist);
518		TAILQ_INSERT_TAIL(&vnode_free_list, tvp, v_freelist);
519		simple_unlock(&tvp->v_interlock);
520	}
521
522	if (vp) {
523		vp->v_flag |= VDOOMED;
524		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
525		freevnodes--;
526		simple_unlock(&vnode_free_list_slock);
527		cache_purge(vp);
528		vp->v_lease = NULL;
529		if (vp->v_type != VBAD) {
530			vgonel(vp, p);
531		} else {
532			simple_unlock(&vp->v_interlock);
533		}
534
535#ifdef INVARIANTS
536		{
537			int s;
538
539			if (vp->v_data)
540				panic("cleaned vnode isn't");
541			s = splbio();
542			if (vp->v_numoutput)
543				panic("Clean vnode has pending I/O's");
544			splx(s);
545		}
546#endif
547		vp->v_flag = 0;
548		vp->v_lastw = 0;
549		vp->v_lasta = 0;
550		vp->v_cstart = 0;
551		vp->v_clen = 0;
552		vp->v_socket = 0;
553		vp->v_writecount = 0;	/* XXX */
554	} else {
555		simple_unlock(&vnode_free_list_slock);
556		vp = (struct vnode *) zalloc(vnode_zone);
557		bzero((char *) vp, sizeof *vp);
558		simple_lock_init(&vp->v_interlock);
559		vp->v_dd = vp;
560		cache_purge(vp);
561		LIST_INIT(&vp->v_cache_src);
562		TAILQ_INIT(&vp->v_cache_dst);
563		numvnodes++;
564	}
565
566	TAILQ_INIT(&vp->v_cleanblkhd);
567	TAILQ_INIT(&vp->v_dirtyblkhd);
568	vp->v_type = VNON;
569	vp->v_tag = tag;
570	vp->v_op = vops;
571	insmntque(vp, mp);
572	*vpp = vp;
573	vp->v_usecount = 1;
574	vp->v_data = 0;
575	splx(s);
576
577	vfs_object_create(vp, p, p->p_ucred);
578	return (0);
579}
580
581/*
582 * Move a vnode from one mount queue to another.
583 */
584static void
585insmntque(vp, mp)
586	register struct vnode *vp;
587	register struct mount *mp;
588{
589
590	simple_lock(&mntvnode_slock);
591	/*
592	 * Delete from old mount point vnode list, if on one.
593	 */
594	if (vp->v_mount != NULL)
595		LIST_REMOVE(vp, v_mntvnodes);
596	/*
597	 * Insert into list of vnodes for the new mount point, if available.
598	 */
599	if ((vp->v_mount = mp) == NULL) {
600		simple_unlock(&mntvnode_slock);
601		return;
602	}
603	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
604	simple_unlock(&mntvnode_slock);
605}
606
607/*
608 * Update outstanding I/O count and do wakeup if requested.
609 */
610void
611vwakeup(bp)
612	register struct buf *bp;
613{
614	register struct vnode *vp;
615
616	bp->b_flags &= ~B_WRITEINPROG;
617	if ((vp = bp->b_vp)) {
618		vp->v_numoutput--;
619		if (vp->v_numoutput < 0)
620			panic("vwakeup: neg numoutput");
621		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
622			vp->v_flag &= ~VBWAIT;
623			wakeup((caddr_t) &vp->v_numoutput);
624		}
625	}
626}
627
628/*
629 * Flush out and invalidate all buffers associated with a vnode.
630 * Called with the underlying object locked.
631 */
632int
633vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
634	register struct vnode *vp;
635	int flags;
636	struct ucred *cred;
637	struct proc *p;
638	int slpflag, slptimeo;
639{
640	register struct buf *bp;
641	struct buf *nbp, *blist;
642	int s, error;
643	vm_object_t object;
644
645	if (flags & V_SAVE) {
646		s = splbio();
647		while (vp->v_numoutput) {
648			vp->v_flag |= VBWAIT;
649			error = tsleep((caddr_t)&vp->v_numoutput,
650			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
651			if (error) {
652				splx(s);
653				return (error);
654			}
655		}
656		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
657			splx(s);
658			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
659				return (error);
660			s = splbio();
661			if (vp->v_numoutput > 0 ||
662			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
663				panic("vinvalbuf: dirty bufs");
664		}
665		splx(s);
666  	}
667	s = splbio();
668	for (;;) {
669		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
670		if (!blist)
671			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
672		if (!blist)
673			break;
674
675		for (bp = blist; bp; bp = nbp) {
676			nbp = TAILQ_NEXT(bp, b_vnbufs);
677			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
678				error = BUF_TIMELOCK(bp,
679				    LK_EXCLUSIVE | LK_SLEEPFAIL,
680				    "vinvalbuf", slpflag, slptimeo);
681				if (error == ENOLCK)
682					break;
683				splx(s);
684				return (error);
685			}
686			/*
687			 * XXX Since there are no node locks for NFS, I
688			 * believe there is a slight chance that a delayed
689			 * write will occur while sleeping just above, so
690			 * check for it.  Note that vfs_bio_awrite expects
691			 * buffers to reside on a queue, while VOP_BWRITE and
692			 * brelse do not.
693			 */
694			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
695				(flags & V_SAVE)) {
696
697				if (bp->b_vp == vp) {
698					if (bp->b_flags & B_CLUSTEROK) {
699						BUF_UNLOCK(bp);
700						vfs_bio_awrite(bp);
701					} else {
702						bremfree(bp);
703						bp->b_flags |= B_ASYNC;
704						VOP_BWRITE(bp->b_vp, bp);
705					}
706				} else {
707					bremfree(bp);
708					(void) VOP_BWRITE(bp->b_vp, bp);
709				}
710				break;
711			}
712			bremfree(bp);
713			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
714			bp->b_flags &= ~B_ASYNC;
715			brelse(bp);
716		}
717	}
718
719	while (vp->v_numoutput > 0) {
720		vp->v_flag |= VBWAIT;
721		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
722	}
723
724	splx(s);
725
726	/*
727	 * Destroy the copy in the VM cache, too.
728	 */
729	simple_lock(&vp->v_interlock);
730	object = vp->v_object;
731	if (object != NULL) {
732		vm_object_page_remove(object, 0, 0,
733			(flags & V_SAVE) ? TRUE : FALSE);
734	}
735	simple_unlock(&vp->v_interlock);
736
737	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
738		panic("vinvalbuf: flush failed");
739	return (0);
740}
741
742/*
743 * Truncate a file's buffer and pages to a specified length.  This
744 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
745 * sync activity.
746 */
747int
748vtruncbuf(vp, cred, p, length, blksize)
749	register struct vnode *vp;
750	struct ucred *cred;
751	struct proc *p;
752	off_t length;
753	int blksize;
754{
755	register struct buf *bp;
756	struct buf *nbp;
757	int s, anyfreed;
758	int trunclbn;
759
760	/*
761	 * Round up to the *next* lbn.
762	 */
763	trunclbn = (length + blksize - 1) / blksize;
764
765	s = splbio();
766restart:
767	anyfreed = 1;
768	for (;anyfreed;) {
769		anyfreed = 0;
770		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
771			nbp = TAILQ_NEXT(bp, b_vnbufs);
772			if (bp->b_lblkno >= trunclbn) {
773				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
774					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
775					goto restart;
776				} else {
777					bremfree(bp);
778					bp->b_flags |= (B_INVAL | B_RELBUF);
779					bp->b_flags &= ~B_ASYNC;
780					brelse(bp);
781					anyfreed = 1;
782				}
783				if (nbp &&
784				    (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
785				    (nbp->b_vp != vp) ||
786				    (nbp->b_flags & B_DELWRI))) {
787					goto restart;
788				}
789			}
790		}
791
792		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
793			nbp = TAILQ_NEXT(bp, b_vnbufs);
794			if (bp->b_lblkno >= trunclbn) {
795				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
796					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
797					goto restart;
798				} else {
799					bremfree(bp);
800					bp->b_flags |= (B_INVAL | B_RELBUF);
801					bp->b_flags &= ~B_ASYNC;
802					brelse(bp);
803					anyfreed = 1;
804				}
805				if (nbp &&
806				    (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
807				    (nbp->b_vp != vp) ||
808				    (nbp->b_flags & B_DELWRI) == 0)) {
809					goto restart;
810				}
811			}
812		}
813	}
814
815	if (length > 0) {
816restartsync:
817		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
818			nbp = TAILQ_NEXT(bp, b_vnbufs);
819			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
820				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
821					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
822					goto restart;
823				} else {
824					bremfree(bp);
825					if (bp->b_vp == vp) {
826						bp->b_flags |= B_ASYNC;
827					} else {
828						bp->b_flags &= ~B_ASYNC;
829					}
830					VOP_BWRITE(bp->b_vp, bp);
831				}
832				goto restartsync;
833			}
834
835		}
836	}
837
838	while (vp->v_numoutput > 0) {
839		vp->v_flag |= VBWAIT;
840		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
841	}
842
843	splx(s);
844
845	vnode_pager_setsize(vp, length);
846
847	return (0);
848}
849
850/*
851 * Associate a buffer with a vnode.
852 */
853void
854bgetvp(vp, bp)
855	register struct vnode *vp;
856	register struct buf *bp;
857{
858	int s;
859
860	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
861
862	vhold(vp);
863	bp->b_vp = vp;
864	bp->b_dev = vn_todev(vp);
865	/*
866	 * Insert onto list for new vnode.
867	 */
868	s = splbio();
869	bp->b_xflags |= BX_VNCLEAN;
870	bp->b_xflags &= ~BX_VNDIRTY;
871	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
872	splx(s);
873}
874
875/*
876 * Disassociate a buffer from a vnode.
877 */
878void
879brelvp(bp)
880	register struct buf *bp;
881{
882	struct vnode *vp;
883	struct buflists *listheadp;
884	int s;
885
886	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
887
888	/*
889	 * Delete from old vnode list, if on one.
890	 */
891	vp = bp->b_vp;
892	s = splbio();
893	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
894		if (bp->b_xflags & BX_VNDIRTY)
895			listheadp = &vp->v_dirtyblkhd;
896		else
897			listheadp = &vp->v_cleanblkhd;
898		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
899		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
900	}
901	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
902		vp->v_flag &= ~VONWORKLST;
903		LIST_REMOVE(vp, v_synclist);
904	}
905	splx(s);
906	bp->b_vp = (struct vnode *) 0;
907	vdrop(vp);
908}
909
910/*
911 * The workitem queue.
912 *
913 * It is useful to delay writes of file data and filesystem metadata
914 * for tens of seconds so that quickly created and deleted files need
915 * not waste disk bandwidth being created and removed. To realize this,
916 * we append vnodes to a "workitem" queue. When running with a soft
917 * updates implementation, most pending metadata dependencies should
918 * not wait for more than a few seconds. Thus, mounted on block devices
919 * are delayed only about a half the time that file data is delayed.
920 * Similarly, directory updates are more critical, so are only delayed
921 * about a third the time that file data is delayed. Thus, there are
922 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
923 * one each second (driven off the filesystem syncer process). The
924 * syncer_delayno variable indicates the next queue that is to be processed.
925 * Items that need to be processed soon are placed in this queue:
926 *
927 *	syncer_workitem_pending[syncer_delayno]
928 *
929 * A delay of fifteen seconds is done by placing the request fifteen
930 * entries later in the queue:
931 *
932 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
933 *
934 */
935
936/*
937 * Add an item to the syncer work queue.
938 */
939static void
940vn_syncer_add_to_worklist(struct vnode *vp, int delay)
941{
942	int s, slot;
943
944	s = splbio();
945
946	if (vp->v_flag & VONWORKLST) {
947		LIST_REMOVE(vp, v_synclist);
948	}
949
950	if (delay > syncer_maxdelay - 2)
951		delay = syncer_maxdelay - 2;
952	slot = (syncer_delayno + delay) & syncer_mask;
953
954	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
955	vp->v_flag |= VONWORKLST;
956	splx(s);
957}
958
959struct  proc *updateproc;
960static void sched_sync __P((void));
961static struct kproc_desc up_kp = {
962	"syncer",
963	sched_sync,
964	&updateproc
965};
966SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
967
968/*
969 * System filesystem synchronizer daemon.
970 */
971void
972sched_sync(void)
973{
974	struct synclist *slp;
975	struct vnode *vp;
976	long starttime;
977	int s;
978	struct proc *p = updateproc;
979
980	EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_kproc, p,
981	    SHUTDOWN_PRI_LAST);
982
983	for (;;) {
984		kproc_suspend_loop(p);
985
986		starttime = time_second;
987
988		/*
989		 * Push files whose dirty time has expired.  Be careful
990		 * of interrupt race on slp queue.
991		 */
992		s = splbio();
993		slp = &syncer_workitem_pending[syncer_delayno];
994		syncer_delayno += 1;
995		if (syncer_delayno == syncer_maxdelay)
996			syncer_delayno = 0;
997		splx(s);
998
999		while ((vp = LIST_FIRST(slp)) != NULL) {
1000			if (VOP_ISLOCKED(vp, NULL) == 0) {
1001				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1002				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
1003				VOP_UNLOCK(vp, 0, p);
1004			}
1005			s = splbio();
1006			if (LIST_FIRST(slp) == vp) {
1007				/*
1008				 * Note: v_tag VT_VFS vps can remain on the
1009				 * worklist too with no dirty blocks, but
1010				 * since sync_fsync() moves it to a different
1011				 * slot we are safe.
1012				 */
1013				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1014				    !vn_isdisk(vp, NULL))
1015					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1016				/*
1017				 * Put us back on the worklist.  The worklist
1018				 * routine will remove us from our current
1019				 * position and then add us back in at a later
1020				 * position.
1021				 */
1022				vn_syncer_add_to_worklist(vp, syncdelay);
1023			}
1024			splx(s);
1025		}
1026
1027		/*
1028		 * Do soft update processing.
1029		 */
1030		if (bioops.io_sync)
1031			(*bioops.io_sync)(NULL);
1032
1033		/*
1034		 * The variable rushjob allows the kernel to speed up the
1035		 * processing of the filesystem syncer process. A rushjob
1036		 * value of N tells the filesystem syncer to process the next
1037		 * N seconds worth of work on its queue ASAP. Currently rushjob
1038		 * is used by the soft update code to speed up the filesystem
1039		 * syncer process when the incore state is getting so far
1040		 * ahead of the disk that the kernel memory pool is being
1041		 * threatened with exhaustion.
1042		 */
1043		if (rushjob > 0) {
1044			rushjob -= 1;
1045			continue;
1046		}
1047		/*
1048		 * If it has taken us less than a second to process the
1049		 * current work, then wait. Otherwise start right over
1050		 * again. We can still lose time if any single round
1051		 * takes more than two seconds, but it does not really
1052		 * matter as we are just trying to generally pace the
1053		 * filesystem activity.
1054		 */
1055		if (time_second == starttime)
1056			tsleep(&lbolt, PPAUSE, "syncer", 0);
1057	}
1058}
1059
1060/*
1061 * Request the syncer daemon to speed up its work.
1062 * We never push it to speed up more than half of its
1063 * normal turn time, otherwise it could take over the cpu.
1064 */
1065int
1066speedup_syncer()
1067{
1068	int s;
1069
1070	s = splhigh();
1071	if (updateproc->p_wchan == &lbolt)
1072		setrunnable(updateproc);
1073	splx(s);
1074	if (rushjob < syncdelay / 2) {
1075		rushjob += 1;
1076		stat_rush_requests += 1;
1077		return (1);
1078	}
1079	return(0);
1080}
1081
1082/*
1083 * Associate a p-buffer with a vnode.
1084 *
1085 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1086 * with the buffer.  i.e. the bp has not been linked into the vnode or
1087 * ref-counted.
1088 */
1089void
1090pbgetvp(vp, bp)
1091	register struct vnode *vp;
1092	register struct buf *bp;
1093{
1094
1095	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1096
1097	bp->b_vp = vp;
1098	bp->b_flags |= B_PAGING;
1099	bp->b_dev = vn_todev(vp);
1100}
1101
1102/*
1103 * Disassociate a p-buffer from a vnode.
1104 */
1105void
1106pbrelvp(bp)
1107	register struct buf *bp;
1108{
1109
1110	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1111
1112#if !defined(MAX_PERF)
1113	/* XXX REMOVE ME */
1114	if (bp->b_vnbufs.tqe_next != NULL) {
1115		panic(
1116		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1117		    bp,
1118		    (int)bp->b_flags
1119		);
1120	}
1121#endif
1122	bp->b_vp = (struct vnode *) 0;
1123	bp->b_flags &= ~B_PAGING;
1124}
1125
1126void
1127pbreassignbuf(bp, newvp)
1128	struct buf *bp;
1129	struct vnode *newvp;
1130{
1131#if !defined(MAX_PERF)
1132	if ((bp->b_flags & B_PAGING) == 0) {
1133		panic(
1134		    "pbreassignbuf() on non phys bp %p",
1135		    bp
1136		);
1137	}
1138#endif
1139	bp->b_vp = newvp;
1140}
1141
1142/*
1143 * Reassign a buffer from one vnode to another.
1144 * Used to assign file specific control information
1145 * (indirect blocks) to the vnode to which they belong.
1146 */
1147void
1148reassignbuf(bp, newvp)
1149	register struct buf *bp;
1150	register struct vnode *newvp;
1151{
1152	struct buflists *listheadp;
1153	int delay;
1154	int s;
1155
1156	if (newvp == NULL) {
1157		printf("reassignbuf: NULL");
1158		return;
1159	}
1160	++reassignbufcalls;
1161
1162#if !defined(MAX_PERF)
1163	/*
1164	 * B_PAGING flagged buffers cannot be reassigned because their vp
1165	 * is not fully linked in.
1166	 */
1167	if (bp->b_flags & B_PAGING)
1168		panic("cannot reassign paging buffer");
1169#endif
1170
1171	s = splbio();
1172	/*
1173	 * Delete from old vnode list, if on one.
1174	 */
1175	if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN)) {
1176		if (bp->b_xflags & BX_VNDIRTY)
1177			listheadp = &bp->b_vp->v_dirtyblkhd;
1178		else
1179			listheadp = &bp->b_vp->v_cleanblkhd;
1180		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1181		bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
1182		if (bp->b_vp != newvp) {
1183			vdrop(bp->b_vp);
1184			bp->b_vp = NULL;	/* for clarification */
1185		}
1186	}
1187	/*
1188	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1189	 * of clean buffers.
1190	 */
1191	if (bp->b_flags & B_DELWRI) {
1192		struct buf *tbp;
1193
1194		listheadp = &newvp->v_dirtyblkhd;
1195		if ((newvp->v_flag & VONWORKLST) == 0) {
1196			switch (newvp->v_type) {
1197			case VDIR:
1198				delay = dirdelay;
1199				break;
1200			case VCHR:
1201			case VBLK:
1202				if (newvp->v_specmountpoint != NULL) {
1203					delay = metadelay;
1204					break;
1205				}
1206				/* fall through */
1207			default:
1208				delay = filedelay;
1209			}
1210			vn_syncer_add_to_worklist(newvp, delay);
1211		}
1212		bp->b_xflags |= BX_VNDIRTY;
1213		tbp = TAILQ_FIRST(listheadp);
1214		if (tbp == NULL ||
1215		    bp->b_lblkno == 0 ||
1216		    (bp->b_lblkno > 0 && tbp->b_lblkno < 0) ||
1217		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1218			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1219			++reassignbufsortgood;
1220		} else if (bp->b_lblkno < 0) {
1221			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1222			++reassignbufsortgood;
1223		} else if (reassignbufmethod == 1) {
1224			/*
1225			 * New sorting algorithm, only handle sequential case,
1226			 * otherwise append to end (but before metadata)
1227			 */
1228			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1229			    (tbp->b_xflags & BX_VNDIRTY)) {
1230				/*
1231				 * Found the best place to insert the buffer
1232				 */
1233				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1234				++reassignbufsortgood;
1235			} else {
1236				/*
1237				 * Missed, append to end, but before meta-data.
1238				 * We know that the head buffer in the list is
1239				 * not meta-data due to prior conditionals.
1240				 *
1241				 * Indirect effects:  NFS second stage write
1242				 * tends to wind up here, giving maximum
1243				 * distance between the unstable write and the
1244				 * commit rpc.
1245				 */
1246				tbp = TAILQ_LAST(listheadp, buflists);
1247				while (tbp && tbp->b_lblkno < 0)
1248					tbp = TAILQ_PREV(tbp, buflists, b_vnbufs);
1249				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1250				++reassignbufsortbad;
1251			}
1252		} else {
1253			/*
1254			 * Old sorting algorithm, scan queue and insert
1255			 */
1256			struct buf *ttbp;
1257			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1258			    (ttbp->b_lblkno < bp->b_lblkno)) {
1259				++reassignbufloops;
1260				tbp = ttbp;
1261			}
1262			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1263		}
1264	} else {
1265		bp->b_xflags |= BX_VNCLEAN;
1266		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1267		if ((newvp->v_flag & VONWORKLST) &&
1268		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1269			newvp->v_flag &= ~VONWORKLST;
1270			LIST_REMOVE(newvp, v_synclist);
1271		}
1272	}
1273	if (bp->b_vp != newvp) {
1274		bp->b_vp = newvp;
1275		vhold(bp->b_vp);
1276	}
1277	splx(s);
1278}
1279
1280/*
1281 * Create a vnode for a block device.
1282 * Used for mounting the root file system.
1283 */
1284int
1285bdevvp(dev, vpp)
1286	dev_t dev;
1287	struct vnode **vpp;
1288{
1289	register struct vnode *vp;
1290	struct vnode *nvp;
1291	int error;
1292
1293	if (dev == NODEV) {
1294		*vpp = NULLVP;
1295		return (ENXIO);
1296	}
1297	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1298	if (error) {
1299		*vpp = NULLVP;
1300		return (error);
1301	}
1302	vp = nvp;
1303	vp->v_type = VBLK;
1304	addalias(vp, dev);
1305	*vpp = vp;
1306	return (0);
1307}
1308
1309/*
1310 * Add vnode to the alias list hung off the dev_t.
1311 *
1312 * The reason for this gunk is that multiple vnodes can reference
1313 * the same physical device, so checking vp->v_usecount to see
1314 * how many users there are is inadequate; the v_usecount for
1315 * the vnodes need to be accumulated.  vcount() does that.
1316 */
1317void
1318addaliasu(nvp, nvp_rdev)
1319	struct vnode *nvp;
1320	udev_t nvp_rdev;
1321{
1322
1323	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1324		panic("addaliasu on non-special vnode");
1325	addalias(nvp, udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0));
1326}
1327
1328void
1329addalias(nvp, dev)
1330	struct vnode *nvp;
1331	dev_t dev;
1332{
1333
1334	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1335		panic("addalias on non-special vnode");
1336
1337	nvp->v_rdev = dev;
1338	simple_lock(&spechash_slock);
1339	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1340	simple_unlock(&spechash_slock);
1341}
1342
1343/*
1344 * Grab a particular vnode from the free list, increment its
1345 * reference count and lock it. The vnode lock bit is set if the
1346 * vnode is being eliminated in vgone. The process is awakened
1347 * when the transition is completed, and an error returned to
1348 * indicate that the vnode is no longer usable (possibly having
1349 * been changed to a new file system type).
1350 */
1351int
1352vget(vp, flags, p)
1353	register struct vnode *vp;
1354	int flags;
1355	struct proc *p;
1356{
1357	int error;
1358
1359	/*
1360	 * If the vnode is in the process of being cleaned out for
1361	 * another use, we wait for the cleaning to finish and then
1362	 * return failure. Cleaning is determined by checking that
1363	 * the VXLOCK flag is set.
1364	 */
1365	if ((flags & LK_INTERLOCK) == 0) {
1366		simple_lock(&vp->v_interlock);
1367	}
1368	if (vp->v_flag & VXLOCK) {
1369		vp->v_flag |= VXWANT;
1370		simple_unlock(&vp->v_interlock);
1371		tsleep((caddr_t)vp, PINOD, "vget", 0);
1372		return (ENOENT);
1373	}
1374
1375	vp->v_usecount++;
1376
1377	if (VSHOULDBUSY(vp))
1378		vbusy(vp);
1379	if (flags & LK_TYPE_MASK) {
1380		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1381			/*
1382			 * must expand vrele here because we do not want
1383			 * to call VOP_INACTIVE if the reference count
1384			 * drops back to zero since it was never really
1385			 * active. We must remove it from the free list
1386			 * before sleeping so that multiple processes do
1387			 * not try to recycle it.
1388			 */
1389			simple_lock(&vp->v_interlock);
1390			vp->v_usecount--;
1391			if (VSHOULDFREE(vp))
1392				vfree(vp);
1393			simple_unlock(&vp->v_interlock);
1394		}
1395		return (error);
1396	}
1397	simple_unlock(&vp->v_interlock);
1398	return (0);
1399}
1400
1401void
1402vref(struct vnode *vp)
1403{
1404	simple_lock(&vp->v_interlock);
1405	vp->v_usecount++;
1406	simple_unlock(&vp->v_interlock);
1407}
1408
1409/*
1410 * Vnode put/release.
1411 * If count drops to zero, call inactive routine and return to freelist.
1412 */
1413void
1414vrele(vp)
1415	struct vnode *vp;
1416{
1417	struct proc *p = curproc;	/* XXX */
1418
1419	KASSERT(vp != NULL, ("vrele: null vp"));
1420
1421	simple_lock(&vp->v_interlock);
1422
1423	if (vp->v_usecount > 1) {
1424
1425		vp->v_usecount--;
1426		simple_unlock(&vp->v_interlock);
1427
1428		return;
1429	}
1430
1431	if (vp->v_usecount == 1) {
1432
1433		vp->v_usecount--;
1434		if (VSHOULDFREE(vp))
1435			vfree(vp);
1436	/*
1437	 * If we are doing a vput, the node is already locked, and we must
1438	 * call VOP_INACTIVE with the node locked.  So, in the case of
1439	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1440	 */
1441		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1442			VOP_INACTIVE(vp, p);
1443		}
1444
1445	} else {
1446#ifdef DIAGNOSTIC
1447		vprint("vrele: negative ref count", vp);
1448		simple_unlock(&vp->v_interlock);
1449#endif
1450		panic("vrele: negative ref cnt");
1451	}
1452}
1453
1454void
1455vput(vp)
1456	struct vnode *vp;
1457{
1458	struct proc *p = curproc;	/* XXX */
1459
1460	KASSERT(vp != NULL, ("vput: null vp"));
1461
1462	simple_lock(&vp->v_interlock);
1463
1464	if (vp->v_usecount > 1) {
1465
1466		vp->v_usecount--;
1467		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1468		return;
1469
1470	}
1471
1472	if (vp->v_usecount == 1) {
1473
1474		vp->v_usecount--;
1475		if (VSHOULDFREE(vp))
1476			vfree(vp);
1477	/*
1478	 * If we are doing a vput, the node is already locked, and we must
1479	 * call VOP_INACTIVE with the node locked.  So, in the case of
1480	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1481	 */
1482		simple_unlock(&vp->v_interlock);
1483		VOP_INACTIVE(vp, p);
1484
1485	} else {
1486#ifdef DIAGNOSTIC
1487		vprint("vput: negative ref count", vp);
1488#endif
1489		panic("vput: negative ref cnt");
1490	}
1491}
1492
1493/*
1494 * Somebody doesn't want the vnode recycled.
1495 */
1496void
1497vhold(vp)
1498	register struct vnode *vp;
1499{
1500	int s;
1501
1502  	s = splbio();
1503	vp->v_holdcnt++;
1504	if (VSHOULDBUSY(vp))
1505		vbusy(vp);
1506	splx(s);
1507}
1508
1509/*
1510 * One less who cares about this vnode.
1511 */
1512void
1513vdrop(vp)
1514	register struct vnode *vp;
1515{
1516	int s;
1517
1518	s = splbio();
1519	if (vp->v_holdcnt <= 0)
1520		panic("vdrop: holdcnt");
1521	vp->v_holdcnt--;
1522	if (VSHOULDFREE(vp))
1523		vfree(vp);
1524	splx(s);
1525}
1526
1527/*
1528 * Remove any vnodes in the vnode table belonging to mount point mp.
1529 *
1530 * If MNT_NOFORCE is specified, there should not be any active ones,
1531 * return error if any are found (nb: this is a user error, not a
1532 * system error). If MNT_FORCE is specified, detach any active vnodes
1533 * that are found.
1534 */
1535#ifdef DIAGNOSTIC
1536static int busyprt = 0;		/* print out busy vnodes */
1537SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1538#endif
1539
1540int
1541vflush(mp, skipvp, flags)
1542	struct mount *mp;
1543	struct vnode *skipvp;
1544	int flags;
1545{
1546	struct proc *p = curproc;	/* XXX */
1547	struct vnode *vp, *nvp;
1548	int busy = 0;
1549
1550	simple_lock(&mntvnode_slock);
1551loop:
1552	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
1553		/*
1554		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1555		 * Start over if it has (it won't be on the list anymore).
1556		 */
1557		if (vp->v_mount != mp)
1558			goto loop;
1559		nvp = LIST_NEXT(vp, v_mntvnodes);
1560		/*
1561		 * Skip over a selected vnode.
1562		 */
1563		if (vp == skipvp)
1564			continue;
1565
1566		simple_lock(&vp->v_interlock);
1567		/*
1568		 * Skip over a vnodes marked VSYSTEM.
1569		 */
1570		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1571			simple_unlock(&vp->v_interlock);
1572			continue;
1573		}
1574		/*
1575		 * If WRITECLOSE is set, only flush out regular file vnodes
1576		 * open for writing.
1577		 */
1578		if ((flags & WRITECLOSE) &&
1579		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1580			simple_unlock(&vp->v_interlock);
1581			continue;
1582		}
1583
1584		/*
1585		 * With v_usecount == 0, all we need to do is clear out the
1586		 * vnode data structures and we are done.
1587		 */
1588		if (vp->v_usecount == 0) {
1589			simple_unlock(&mntvnode_slock);
1590			vgonel(vp, p);
1591			simple_lock(&mntvnode_slock);
1592			continue;
1593		}
1594
1595		/*
1596		 * If FORCECLOSE is set, forcibly close the vnode. For block
1597		 * or character devices, revert to an anonymous device. For
1598		 * all other files, just kill them.
1599		 */
1600		if (flags & FORCECLOSE) {
1601			simple_unlock(&mntvnode_slock);
1602			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1603				vgonel(vp, p);
1604			} else {
1605				vclean(vp, 0, p);
1606				vp->v_op = spec_vnodeop_p;
1607				insmntque(vp, (struct mount *) 0);
1608			}
1609			simple_lock(&mntvnode_slock);
1610			continue;
1611		}
1612#ifdef DIAGNOSTIC
1613		if (busyprt)
1614			vprint("vflush: busy vnode", vp);
1615#endif
1616		simple_unlock(&vp->v_interlock);
1617		busy++;
1618	}
1619	simple_unlock(&mntvnode_slock);
1620	if (busy)
1621		return (EBUSY);
1622	return (0);
1623}
1624
1625/*
1626 * Disassociate the underlying file system from a vnode.
1627 */
1628static void
1629vclean(vp, flags, p)
1630	struct vnode *vp;
1631	int flags;
1632	struct proc *p;
1633{
1634	int active;
1635	vm_object_t obj;
1636
1637	/*
1638	 * Check to see if the vnode is in use. If so we have to reference it
1639	 * before we clean it out so that its count cannot fall to zero and
1640	 * generate a race against ourselves to recycle it.
1641	 */
1642	if ((active = vp->v_usecount))
1643		vp->v_usecount++;
1644
1645	/*
1646	 * Prevent the vnode from being recycled or brought into use while we
1647	 * clean it out.
1648	 */
1649	if (vp->v_flag & VXLOCK)
1650		panic("vclean: deadlock");
1651	vp->v_flag |= VXLOCK;
1652	/*
1653	 * Even if the count is zero, the VOP_INACTIVE routine may still
1654	 * have the object locked while it cleans it out. The VOP_LOCK
1655	 * ensures that the VOP_INACTIVE routine is done with its work.
1656	 * For active vnodes, it ensures that no other activity can
1657	 * occur while the underlying object is being cleaned out.
1658	 */
1659	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1660
1661	/*
1662	 * Clean out any buffers associated with the vnode.
1663	 */
1664	vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0);
1665	if ((obj = vp->v_object) != NULL) {
1666		if (obj->ref_count == 0) {
1667			/*
1668			 * vclean() may be called twice.  The first time removes the
1669			 * primary reference to the object, the second time goes
1670			 * one further and is a special-case to terminate the object.
1671			 */
1672			vm_object_terminate(obj);
1673		} else {
1674			/*
1675			 * Woe to the process that tries to page now :-).
1676			 */
1677			vm_pager_deallocate(obj);
1678		}
1679	}
1680
1681	/*
1682	 * If purging an active vnode, it must be closed and
1683	 * deactivated before being reclaimed. Note that the
1684	 * VOP_INACTIVE will unlock the vnode.
1685	 */
1686	if (active) {
1687		if (flags & DOCLOSE)
1688			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1689		VOP_INACTIVE(vp, p);
1690	} else {
1691		/*
1692		 * Any other processes trying to obtain this lock must first
1693		 * wait for VXLOCK to clear, then call the new lock operation.
1694		 */
1695		VOP_UNLOCK(vp, 0, p);
1696	}
1697	/*
1698	 * Reclaim the vnode.
1699	 */
1700	if (VOP_RECLAIM(vp, p))
1701		panic("vclean: cannot reclaim");
1702
1703	if (active) {
1704		/*
1705		 * Inline copy of vrele() since VOP_INACTIVE
1706		 * has already been called.
1707		 */
1708		simple_lock(&vp->v_interlock);
1709		if (--vp->v_usecount <= 0) {
1710#ifdef DIAGNOSTIC
1711			if (vp->v_usecount < 0 || vp->v_writecount != 0) {
1712				vprint("vclean: bad ref count", vp);
1713				panic("vclean: ref cnt");
1714			}
1715#endif
1716			vfree(vp);
1717		}
1718		simple_unlock(&vp->v_interlock);
1719	}
1720
1721	cache_purge(vp);
1722	if (vp->v_vnlock) {
1723		FREE(vp->v_vnlock, M_VNODE);
1724		vp->v_vnlock = NULL;
1725	}
1726
1727	if (VSHOULDFREE(vp))
1728		vfree(vp);
1729
1730	/*
1731	 * Done with purge, notify sleepers of the grim news.
1732	 */
1733	vp->v_op = dead_vnodeop_p;
1734	vn_pollgone(vp);
1735	vp->v_tag = VT_NON;
1736	vp->v_flag &= ~VXLOCK;
1737	if (vp->v_flag & VXWANT) {
1738		vp->v_flag &= ~VXWANT;
1739		wakeup((caddr_t) vp);
1740	}
1741}
1742
1743/*
1744 * Eliminate all activity associated with the requested vnode
1745 * and with all vnodes aliased to the requested vnode.
1746 */
1747int
1748vop_revoke(ap)
1749	struct vop_revoke_args /* {
1750		struct vnode *a_vp;
1751		int a_flags;
1752	} */ *ap;
1753{
1754	struct vnode *vp, *vq;
1755	dev_t dev;
1756
1757	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1758
1759	vp = ap->a_vp;
1760	/*
1761	 * If a vgone (or vclean) is already in progress,
1762	 * wait until it is done and return.
1763	 */
1764	if (vp->v_flag & VXLOCK) {
1765		vp->v_flag |= VXWANT;
1766		simple_unlock(&vp->v_interlock);
1767		tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1768		return (0);
1769	}
1770	dev = vp->v_rdev;
1771	for (;;) {
1772		simple_lock(&spechash_slock);
1773		vq = SLIST_FIRST(&dev->si_hlist);
1774		simple_unlock(&spechash_slock);
1775		if (!vq)
1776			break;
1777		vgone(vq);
1778	}
1779	return (0);
1780}
1781
1782/*
1783 * Recycle an unused vnode to the front of the free list.
1784 * Release the passed interlock if the vnode will be recycled.
1785 */
1786int
1787vrecycle(vp, inter_lkp, p)
1788	struct vnode *vp;
1789	struct simplelock *inter_lkp;
1790	struct proc *p;
1791{
1792
1793	simple_lock(&vp->v_interlock);
1794	if (vp->v_usecount == 0) {
1795		if (inter_lkp) {
1796			simple_unlock(inter_lkp);
1797		}
1798		vgonel(vp, p);
1799		return (1);
1800	}
1801	simple_unlock(&vp->v_interlock);
1802	return (0);
1803}
1804
1805/*
1806 * Eliminate all activity associated with a vnode
1807 * in preparation for reuse.
1808 */
1809void
1810vgone(vp)
1811	register struct vnode *vp;
1812{
1813	struct proc *p = curproc;	/* XXX */
1814
1815	simple_lock(&vp->v_interlock);
1816	vgonel(vp, p);
1817}
1818
1819/*
1820 * vgone, with the vp interlock held.
1821 */
1822void
1823vgonel(vp, p)
1824	struct vnode *vp;
1825	struct proc *p;
1826{
1827	int s;
1828
1829	/*
1830	 * If a vgone (or vclean) is already in progress,
1831	 * wait until it is done and return.
1832	 */
1833	if (vp->v_flag & VXLOCK) {
1834		vp->v_flag |= VXWANT;
1835		simple_unlock(&vp->v_interlock);
1836		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1837		return;
1838	}
1839
1840	/*
1841	 * Clean out the filesystem specific data.
1842	 */
1843	vclean(vp, DOCLOSE, p);
1844	simple_lock(&vp->v_interlock);
1845
1846	/*
1847	 * Delete from old mount point vnode list, if on one.
1848	 */
1849	if (vp->v_mount != NULL)
1850		insmntque(vp, (struct mount *)0);
1851	/*
1852	 * If special device, remove it from special device alias list
1853	 * if it is on one.
1854	 */
1855	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1856		simple_lock(&spechash_slock);
1857		SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
1858		freedev(vp->v_rdev);
1859		simple_unlock(&spechash_slock);
1860		vp->v_rdev = NULL;
1861	}
1862
1863	/*
1864	 * If it is on the freelist and not already at the head,
1865	 * move it to the head of the list. The test of the back
1866	 * pointer and the reference count of zero is because
1867	 * it will be removed from the free list by getnewvnode,
1868	 * but will not have its reference count incremented until
1869	 * after calling vgone. If the reference count were
1870	 * incremented first, vgone would (incorrectly) try to
1871	 * close the previous instance of the underlying object.
1872	 */
1873	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1874		s = splbio();
1875		simple_lock(&vnode_free_list_slock);
1876		if (vp->v_flag & VFREE) {
1877			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1878		} else if (vp->v_flag & VTBFREE) {
1879			TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
1880			vp->v_flag &= ~VTBFREE;
1881			freevnodes++;
1882		} else
1883			freevnodes++;
1884		vp->v_flag |= VFREE;
1885		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1886		simple_unlock(&vnode_free_list_slock);
1887		splx(s);
1888	}
1889
1890	vp->v_type = VBAD;
1891	simple_unlock(&vp->v_interlock);
1892}
1893
1894/*
1895 * Lookup a vnode by device number.
1896 */
1897int
1898vfinddev(dev, type, vpp)
1899	dev_t dev;
1900	enum vtype type;
1901	struct vnode **vpp;
1902{
1903	struct vnode *vp;
1904
1905	simple_lock(&spechash_slock);
1906	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1907		if (type == vp->v_type) {
1908			*vpp = vp;
1909			simple_unlock(&spechash_slock);
1910			return (1);
1911		}
1912	}
1913	simple_unlock(&spechash_slock);
1914	return (0);
1915}
1916
1917/*
1918 * Calculate the total number of references to a special device.
1919 */
1920int
1921vcount(vp)
1922	struct vnode *vp;
1923{
1924	struct vnode *vq;
1925	int count;
1926
1927	count = 0;
1928	simple_lock(&spechash_slock);
1929	SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
1930		count += vq->v_usecount;
1931	simple_unlock(&spechash_slock);
1932	return (count);
1933}
1934
1935/*
1936 * Print out a description of a vnode.
1937 */
1938static char *typename[] =
1939{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1940
1941void
1942vprint(label, vp)
1943	char *label;
1944	struct vnode *vp;
1945{
1946	char buf[96];
1947
1948	if (label != NULL)
1949		printf("%s: %p: ", label, (void *)vp);
1950	else
1951		printf("%p: ", (void *)vp);
1952	printf("type %s, usecount %d, writecount %d, refcount %d,",
1953	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1954	    vp->v_holdcnt);
1955	buf[0] = '\0';
1956	if (vp->v_flag & VROOT)
1957		strcat(buf, "|VROOT");
1958	if (vp->v_flag & VTEXT)
1959		strcat(buf, "|VTEXT");
1960	if (vp->v_flag & VSYSTEM)
1961		strcat(buf, "|VSYSTEM");
1962	if (vp->v_flag & VXLOCK)
1963		strcat(buf, "|VXLOCK");
1964	if (vp->v_flag & VXWANT)
1965		strcat(buf, "|VXWANT");
1966	if (vp->v_flag & VBWAIT)
1967		strcat(buf, "|VBWAIT");
1968	if (vp->v_flag & VDOOMED)
1969		strcat(buf, "|VDOOMED");
1970	if (vp->v_flag & VFREE)
1971		strcat(buf, "|VFREE");
1972	if (vp->v_flag & VOBJBUF)
1973		strcat(buf, "|VOBJBUF");
1974	if (buf[0] != '\0')
1975		printf(" flags (%s)", &buf[1]);
1976	if (vp->v_data == NULL) {
1977		printf("\n");
1978	} else {
1979		printf("\n\t");
1980		VOP_PRINT(vp);
1981	}
1982}
1983
1984#ifdef DDB
1985#include <ddb/ddb.h>
1986/*
1987 * List all of the locked vnodes in the system.
1988 * Called when debugging the kernel.
1989 */
1990DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1991{
1992	struct proc *p = curproc;	/* XXX */
1993	struct mount *mp, *nmp;
1994	struct vnode *vp;
1995
1996	printf("Locked vnodes\n");
1997	simple_lock(&mountlist_slock);
1998	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
1999		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2000			nmp = TAILQ_NEXT(mp, mnt_list);
2001			continue;
2002		}
2003		LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
2004			if (VOP_ISLOCKED(vp, NULL))
2005				vprint((char *)0, vp);
2006		}
2007		simple_lock(&mountlist_slock);
2008		nmp = TAILQ_NEXT(mp, mnt_list);
2009		vfs_unbusy(mp, p);
2010	}
2011	simple_unlock(&mountlist_slock);
2012}
2013#endif
2014
2015/*
2016 * Top level filesystem related information gathering.
2017 */
2018static int	sysctl_ovfs_conf __P(SYSCTL_HANDLER_ARGS);
2019
2020static int
2021vfs_sysctl SYSCTL_HANDLER_ARGS
2022{
2023	int *name = (int *)arg1 - 1;	/* XXX */
2024	u_int namelen = arg2 + 1;	/* XXX */
2025	struct vfsconf *vfsp;
2026
2027#if 1 || defined(COMPAT_PRELITE2)
2028	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2029	if (namelen == 1)
2030		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2031#endif
2032
2033#ifdef notyet
2034	/* all sysctl names at this level are at least name and field */
2035	if (namelen < 2)
2036		return (ENOTDIR);		/* overloaded */
2037	if (name[0] != VFS_GENERIC) {
2038		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2039			if (vfsp->vfc_typenum == name[0])
2040				break;
2041		if (vfsp == NULL)
2042			return (EOPNOTSUPP);
2043		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2044		    oldp, oldlenp, newp, newlen, p));
2045	}
2046#endif
2047	switch (name[1]) {
2048	case VFS_MAXTYPENUM:
2049		if (namelen != 2)
2050			return (ENOTDIR);
2051		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2052	case VFS_CONF:
2053		if (namelen != 3)
2054			return (ENOTDIR);	/* overloaded */
2055		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2056			if (vfsp->vfc_typenum == name[2])
2057				break;
2058		if (vfsp == NULL)
2059			return (EOPNOTSUPP);
2060		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2061	}
2062	return (EOPNOTSUPP);
2063}
2064
2065SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2066	"Generic filesystem");
2067
2068#if 1 || defined(COMPAT_PRELITE2)
2069
2070static int
2071sysctl_ovfs_conf SYSCTL_HANDLER_ARGS
2072{
2073	int error;
2074	struct vfsconf *vfsp;
2075	struct ovfsconf ovfs;
2076
2077	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2078		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2079		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2080		ovfs.vfc_index = vfsp->vfc_typenum;
2081		ovfs.vfc_refcount = vfsp->vfc_refcount;
2082		ovfs.vfc_flags = vfsp->vfc_flags;
2083		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2084		if (error)
2085			return error;
2086	}
2087	return 0;
2088}
2089
2090#endif /* 1 || COMPAT_PRELITE2 */
2091
2092#if 0
2093#define KINFO_VNODESLOP	10
2094/*
2095 * Dump vnode list (via sysctl).
2096 * Copyout address of vnode followed by vnode.
2097 */
2098/* ARGSUSED */
2099static int
2100sysctl_vnode SYSCTL_HANDLER_ARGS
2101{
2102	struct proc *p = curproc;	/* XXX */
2103	struct mount *mp, *nmp;
2104	struct vnode *nvp, *vp;
2105	int error;
2106
2107#define VPTRSZ	sizeof (struct vnode *)
2108#define VNODESZ	sizeof (struct vnode)
2109
2110	req->lock = 0;
2111	if (!req->oldptr) /* Make an estimate */
2112		return (SYSCTL_OUT(req, 0,
2113			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2114
2115	simple_lock(&mountlist_slock);
2116	for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
2117		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2118			nmp = TAILQ_NEXT(mp, mnt_list);
2119			continue;
2120		}
2121again:
2122		simple_lock(&mntvnode_slock);
2123		for (vp = LIST_FIRST(&mp->mnt_vnodelist);
2124		     vp != NULL;
2125		     vp = nvp) {
2126			/*
2127			 * Check that the vp is still associated with
2128			 * this filesystem.  RACE: could have been
2129			 * recycled onto the same filesystem.
2130			 */
2131			if (vp->v_mount != mp) {
2132				simple_unlock(&mntvnode_slock);
2133				goto again;
2134			}
2135			nvp = LIST_NEXT(vp, v_mntvnodes);
2136			simple_unlock(&mntvnode_slock);
2137			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2138			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2139				return (error);
2140			simple_lock(&mntvnode_slock);
2141		}
2142		simple_unlock(&mntvnode_slock);
2143		simple_lock(&mountlist_slock);
2144		nmp = TAILQ_NEXT(mp, mnt_list);
2145		vfs_unbusy(mp, p);
2146	}
2147	simple_unlock(&mountlist_slock);
2148
2149	return (0);
2150}
2151#endif
2152
2153/*
2154 * XXX
2155 * Exporting the vnode list on large systems causes them to crash.
2156 * Exporting the vnode list on medium systems causes sysctl to coredump.
2157 */
2158#if 0
2159SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2160	0, 0, sysctl_vnode, "S,vnode", "");
2161#endif
2162
2163/*
2164 * Check to see if a filesystem is mounted on a block device.
2165 */
2166int
2167vfs_mountedon(vp)
2168	struct vnode *vp;
2169{
2170
2171	if (vp->v_specmountpoint != NULL)
2172		return (EBUSY);
2173	return (0);
2174}
2175
2176/*
2177 * Unmount all filesystems. The list is traversed in reverse order
2178 * of mounting to avoid dependencies.
2179 */
2180void
2181vfs_unmountall()
2182{
2183	struct mount *mp;
2184	struct proc *p;
2185	int error;
2186
2187	if (curproc != NULL)
2188		p = curproc;
2189	else
2190		p = initproc;	/* XXX XXX should this be proc0? */
2191	/*
2192	 * Since this only runs when rebooting, it is not interlocked.
2193	 */
2194	while(!TAILQ_EMPTY(&mountlist)) {
2195		mp = TAILQ_LAST(&mountlist, mntlist);
2196		error = dounmount(mp, MNT_FORCE, p);
2197		if (error) {
2198			TAILQ_REMOVE(&mountlist, mp, mnt_list);
2199			printf("unmount of %s failed (",
2200			    mp->mnt_stat.f_mntonname);
2201			if (error == EBUSY)
2202				printf("BUSY)\n");
2203			else
2204				printf("%d)\n", error);
2205		} else {
2206			/* The unmount has removed mp from the mountlist */
2207		}
2208	}
2209}
2210
2211/*
2212 * Build hash lists of net addresses and hang them off the mount point.
2213 * Called by ufs_mount() to set up the lists of export addresses.
2214 */
2215static int
2216vfs_hang_addrlist(mp, nep, argp)
2217	struct mount *mp;
2218	struct netexport *nep;
2219	struct export_args *argp;
2220{
2221	register struct netcred *np;
2222	register struct radix_node_head *rnh;
2223	register int i;
2224	struct radix_node *rn;
2225	struct sockaddr *saddr, *smask = 0;
2226	struct domain *dom;
2227	int error;
2228
2229	if (argp->ex_addrlen == 0) {
2230		if (mp->mnt_flag & MNT_DEFEXPORTED)
2231			return (EPERM);
2232		np = &nep->ne_defexported;
2233		np->netc_exflags = argp->ex_flags;
2234		np->netc_anon = argp->ex_anon;
2235		np->netc_anon.cr_ref = 1;
2236		mp->mnt_flag |= MNT_DEFEXPORTED;
2237		return (0);
2238	}
2239	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2240	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2241	bzero((caddr_t) np, i);
2242	saddr = (struct sockaddr *) (np + 1);
2243	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2244		goto out;
2245	if (saddr->sa_len > argp->ex_addrlen)
2246		saddr->sa_len = argp->ex_addrlen;
2247	if (argp->ex_masklen) {
2248		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2249		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2250		if (error)
2251			goto out;
2252		if (smask->sa_len > argp->ex_masklen)
2253			smask->sa_len = argp->ex_masklen;
2254	}
2255	i = saddr->sa_family;
2256	if ((rnh = nep->ne_rtable[i]) == 0) {
2257		/*
2258		 * Seems silly to initialize every AF when most are not used,
2259		 * do so on demand here
2260		 */
2261		for (dom = domains; dom; dom = dom->dom_next)
2262			if (dom->dom_family == i && dom->dom_rtattach) {
2263				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2264				    dom->dom_rtoffset);
2265				break;
2266			}
2267		if ((rnh = nep->ne_rtable[i]) == 0) {
2268			error = ENOBUFS;
2269			goto out;
2270		}
2271	}
2272	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2273	    np->netc_rnodes);
2274	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2275		error = EPERM;
2276		goto out;
2277	}
2278	np->netc_exflags = argp->ex_flags;
2279	np->netc_anon = argp->ex_anon;
2280	np->netc_anon.cr_ref = 1;
2281	return (0);
2282out:
2283	free(np, M_NETADDR);
2284	return (error);
2285}
2286
2287/* ARGSUSED */
2288static int
2289vfs_free_netcred(rn, w)
2290	struct radix_node *rn;
2291	void *w;
2292{
2293	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2294
2295	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2296	free((caddr_t) rn, M_NETADDR);
2297	return (0);
2298}
2299
2300/*
2301 * Free the net address hash lists that are hanging off the mount points.
2302 */
2303static void
2304vfs_free_addrlist(nep)
2305	struct netexport *nep;
2306{
2307	register int i;
2308	register struct radix_node_head *rnh;
2309
2310	for (i = 0; i <= AF_MAX; i++)
2311		if ((rnh = nep->ne_rtable[i])) {
2312			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2313			    (caddr_t) rnh);
2314			free((caddr_t) rnh, M_RTABLE);
2315			nep->ne_rtable[i] = 0;
2316		}
2317}
2318
2319int
2320vfs_export(mp, nep, argp)
2321	struct mount *mp;
2322	struct netexport *nep;
2323	struct export_args *argp;
2324{
2325	int error;
2326
2327	if (argp->ex_flags & MNT_DELEXPORT) {
2328		if (mp->mnt_flag & MNT_EXPUBLIC) {
2329			vfs_setpublicfs(NULL, NULL, NULL);
2330			mp->mnt_flag &= ~MNT_EXPUBLIC;
2331		}
2332		vfs_free_addrlist(nep);
2333		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2334	}
2335	if (argp->ex_flags & MNT_EXPORTED) {
2336		if (argp->ex_flags & MNT_EXPUBLIC) {
2337			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2338				return (error);
2339			mp->mnt_flag |= MNT_EXPUBLIC;
2340		}
2341		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2342			return (error);
2343		mp->mnt_flag |= MNT_EXPORTED;
2344	}
2345	return (0);
2346}
2347
2348
2349/*
2350 * Set the publicly exported filesystem (WebNFS). Currently, only
2351 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2352 */
2353int
2354vfs_setpublicfs(mp, nep, argp)
2355	struct mount *mp;
2356	struct netexport *nep;
2357	struct export_args *argp;
2358{
2359	int error;
2360	struct vnode *rvp;
2361	char *cp;
2362
2363	/*
2364	 * mp == NULL -> invalidate the current info, the FS is
2365	 * no longer exported. May be called from either vfs_export
2366	 * or unmount, so check if it hasn't already been done.
2367	 */
2368	if (mp == NULL) {
2369		if (nfs_pub.np_valid) {
2370			nfs_pub.np_valid = 0;
2371			if (nfs_pub.np_index != NULL) {
2372				FREE(nfs_pub.np_index, M_TEMP);
2373				nfs_pub.np_index = NULL;
2374			}
2375		}
2376		return (0);
2377	}
2378
2379	/*
2380	 * Only one allowed at a time.
2381	 */
2382	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2383		return (EBUSY);
2384
2385	/*
2386	 * Get real filehandle for root of exported FS.
2387	 */
2388	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2389	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2390
2391	if ((error = VFS_ROOT(mp, &rvp)))
2392		return (error);
2393
2394	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2395		return (error);
2396
2397	vput(rvp);
2398
2399	/*
2400	 * If an indexfile was specified, pull it in.
2401	 */
2402	if (argp->ex_indexfile != NULL) {
2403		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2404		    M_WAITOK);
2405		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2406		    MAXNAMLEN, (size_t *)0);
2407		if (!error) {
2408			/*
2409			 * Check for illegal filenames.
2410			 */
2411			for (cp = nfs_pub.np_index; *cp; cp++) {
2412				if (*cp == '/') {
2413					error = EINVAL;
2414					break;
2415				}
2416			}
2417		}
2418		if (error) {
2419			FREE(nfs_pub.np_index, M_TEMP);
2420			return (error);
2421		}
2422	}
2423
2424	nfs_pub.np_mount = mp;
2425	nfs_pub.np_valid = 1;
2426	return (0);
2427}
2428
2429struct netcred *
2430vfs_export_lookup(mp, nep, nam)
2431	register struct mount *mp;
2432	struct netexport *nep;
2433	struct sockaddr *nam;
2434{
2435	register struct netcred *np;
2436	register struct radix_node_head *rnh;
2437	struct sockaddr *saddr;
2438
2439	np = NULL;
2440	if (mp->mnt_flag & MNT_EXPORTED) {
2441		/*
2442		 * Lookup in the export list first.
2443		 */
2444		if (nam != NULL) {
2445			saddr = nam;
2446			rnh = nep->ne_rtable[saddr->sa_family];
2447			if (rnh != NULL) {
2448				np = (struct netcred *)
2449					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2450							      rnh);
2451				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2452					np = NULL;
2453			}
2454		}
2455		/*
2456		 * If no address match, use the default if it exists.
2457		 */
2458		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2459			np = &nep->ne_defexported;
2460	}
2461	return (np);
2462}
2463
2464/*
2465 * perform msync on all vnodes under a mount point
2466 * the mount point must be locked.
2467 */
2468void
2469vfs_msync(struct mount *mp, int flags) {
2470	struct vnode *vp, *nvp;
2471	struct vm_object *obj;
2472	int anyio, tries;
2473
2474	tries = 5;
2475loop:
2476	anyio = 0;
2477	for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp != NULL; vp = nvp) {
2478
2479		nvp = LIST_NEXT(vp, v_mntvnodes);
2480
2481		if (vp->v_mount != mp) {
2482			goto loop;
2483		}
2484
2485		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2486			continue;
2487
2488		if (flags != MNT_WAIT) {
2489			obj = vp->v_object;
2490			if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2491				continue;
2492			if (VOP_ISLOCKED(vp, NULL))
2493				continue;
2494		}
2495
2496		simple_lock(&vp->v_interlock);
2497		if (vp->v_object &&
2498		   (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
2499			if (!vget(vp,
2500				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2501				if (vp->v_object) {
2502					vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : OBJPC_NOSYNC);
2503					anyio = 1;
2504				}
2505				vput(vp);
2506			}
2507		} else {
2508			simple_unlock(&vp->v_interlock);
2509		}
2510	}
2511	if (anyio && (--tries > 0))
2512		goto loop;
2513}
2514
2515/*
2516 * Create the VM object needed for VMIO and mmap support.  This
2517 * is done for all VREG files in the system.  Some filesystems might
2518 * afford the additional metadata buffering capability of the
2519 * VMIO code by making the device node be VMIO mode also.
2520 *
2521 * vp must be locked when vfs_object_create is called.
2522 */
2523int
2524vfs_object_create(vp, p, cred)
2525	struct vnode *vp;
2526	struct proc *p;
2527	struct ucred *cred;
2528{
2529	struct vattr vat;
2530	vm_object_t object;
2531	int error = 0;
2532
2533	if (!vn_isdisk(vp, NULL) && vn_canvmio(vp) == FALSE)
2534		return 0;
2535
2536retry:
2537	if ((object = vp->v_object) == NULL) {
2538		if (vp->v_type == VREG || vp->v_type == VDIR) {
2539			if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
2540				goto retn;
2541			object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
2542		} else if (devsw(vp->v_rdev) != NULL) {
2543			/*
2544			 * This simply allocates the biggest object possible
2545			 * for a disk vnode.  This should be fixed, but doesn't
2546			 * cause any problems (yet).
2547			 */
2548			object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
2549		} else {
2550			goto retn;
2551		}
2552		/*
2553		 * Dereference the reference we just created.  This assumes
2554		 * that the object is associated with the vp.
2555		 */
2556		object->ref_count--;
2557		vp->v_usecount--;
2558	} else {
2559		if (object->flags & OBJ_DEAD) {
2560			VOP_UNLOCK(vp, 0, p);
2561			tsleep(object, PVM, "vodead", 0);
2562			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
2563			goto retry;
2564		}
2565	}
2566
2567	KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
2568	vp->v_flag |= VOBJBUF;
2569
2570retn:
2571	return error;
2572}
2573
2574static void
2575vfree(vp)
2576	struct vnode *vp;
2577{
2578	int s;
2579
2580	s = splbio();
2581	simple_lock(&vnode_free_list_slock);
2582	if (vp->v_flag & VTBFREE) {
2583		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2584		vp->v_flag &= ~VTBFREE;
2585	}
2586	if (vp->v_flag & VAGE) {
2587		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2588	} else {
2589		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2590	}
2591	freevnodes++;
2592	simple_unlock(&vnode_free_list_slock);
2593	vp->v_flag &= ~VAGE;
2594	vp->v_flag |= VFREE;
2595	splx(s);
2596}
2597
2598void
2599vbusy(vp)
2600	struct vnode *vp;
2601{
2602	int s;
2603
2604	s = splbio();
2605	simple_lock(&vnode_free_list_slock);
2606	if (vp->v_flag & VTBFREE) {
2607		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2608		vp->v_flag &= ~VTBFREE;
2609	} else {
2610		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2611		freevnodes--;
2612	}
2613	simple_unlock(&vnode_free_list_slock);
2614	vp->v_flag &= ~(VFREE|VAGE);
2615	splx(s);
2616}
2617
2618/*
2619 * Record a process's interest in events which might happen to
2620 * a vnode.  Because poll uses the historic select-style interface
2621 * internally, this routine serves as both the ``check for any
2622 * pending events'' and the ``record my interest in future events''
2623 * functions.  (These are done together, while the lock is held,
2624 * to avoid race conditions.)
2625 */
2626int
2627vn_pollrecord(vp, p, events)
2628	struct vnode *vp;
2629	struct proc *p;
2630	short events;
2631{
2632	simple_lock(&vp->v_pollinfo.vpi_lock);
2633	if (vp->v_pollinfo.vpi_revents & events) {
2634		/*
2635		 * This leaves events we are not interested
2636		 * in available for the other process which
2637		 * which presumably had requested them
2638		 * (otherwise they would never have been
2639		 * recorded).
2640		 */
2641		events &= vp->v_pollinfo.vpi_revents;
2642		vp->v_pollinfo.vpi_revents &= ~events;
2643
2644		simple_unlock(&vp->v_pollinfo.vpi_lock);
2645		return events;
2646	}
2647	vp->v_pollinfo.vpi_events |= events;
2648	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2649	simple_unlock(&vp->v_pollinfo.vpi_lock);
2650	return 0;
2651}
2652
2653/*
2654 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2655 * it is possible for us to miss an event due to race conditions, but
2656 * that condition is expected to be rare, so for the moment it is the
2657 * preferred interface.
2658 */
2659void
2660vn_pollevent(vp, events)
2661	struct vnode *vp;
2662	short events;
2663{
2664	simple_lock(&vp->v_pollinfo.vpi_lock);
2665	if (vp->v_pollinfo.vpi_events & events) {
2666		/*
2667		 * We clear vpi_events so that we don't
2668		 * call selwakeup() twice if two events are
2669		 * posted before the polling process(es) is
2670		 * awakened.  This also ensures that we take at
2671		 * most one selwakeup() if the polling process
2672		 * is no longer interested.  However, it does
2673		 * mean that only one event can be noticed at
2674		 * a time.  (Perhaps we should only clear those
2675		 * event bits which we note?) XXX
2676		 */
2677		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2678		vp->v_pollinfo.vpi_revents |= events;
2679		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2680	}
2681	simple_unlock(&vp->v_pollinfo.vpi_lock);
2682}
2683
2684/*
2685 * Wake up anyone polling on vp because it is being revoked.
2686 * This depends on dead_poll() returning POLLHUP for correct
2687 * behavior.
2688 */
2689void
2690vn_pollgone(vp)
2691	struct vnode *vp;
2692{
2693	simple_lock(&vp->v_pollinfo.vpi_lock);
2694	if (vp->v_pollinfo.vpi_events) {
2695		vp->v_pollinfo.vpi_events = 0;
2696		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2697	}
2698	simple_unlock(&vp->v_pollinfo.vpi_lock);
2699}
2700
2701
2702
2703/*
2704 * Routine to create and manage a filesystem syncer vnode.
2705 */
2706#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2707static int	sync_fsync __P((struct  vop_fsync_args *));
2708static int	sync_inactive __P((struct  vop_inactive_args *));
2709static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2710#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2711#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2712static int	sync_print __P((struct vop_print_args *));
2713#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2714
2715static vop_t **sync_vnodeop_p;
2716static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2717	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2718	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2719	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2720	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2721	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2722	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2723	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2724	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2725	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2726	{ NULL, NULL }
2727};
2728static struct vnodeopv_desc sync_vnodeop_opv_desc =
2729	{ &sync_vnodeop_p, sync_vnodeop_entries };
2730
2731VNODEOP_SET(sync_vnodeop_opv_desc);
2732
2733/*
2734 * Create a new filesystem syncer vnode for the specified mount point.
2735 */
2736int
2737vfs_allocate_syncvnode(mp)
2738	struct mount *mp;
2739{
2740	struct vnode *vp;
2741	static long start, incr, next;
2742	int error;
2743
2744	/* Allocate a new vnode */
2745	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2746		mp->mnt_syncer = NULL;
2747		return (error);
2748	}
2749	vp->v_type = VNON;
2750	/*
2751	 * Place the vnode onto the syncer worklist. We attempt to
2752	 * scatter them about on the list so that they will go off
2753	 * at evenly distributed times even if all the filesystems
2754	 * are mounted at once.
2755	 */
2756	next += incr;
2757	if (next == 0 || next > syncer_maxdelay) {
2758		start /= 2;
2759		incr /= 2;
2760		if (start == 0) {
2761			start = syncer_maxdelay / 2;
2762			incr = syncer_maxdelay;
2763		}
2764		next = start;
2765	}
2766	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2767	mp->mnt_syncer = vp;
2768	return (0);
2769}
2770
2771/*
2772 * Do a lazy sync of the filesystem.
2773 */
2774static int
2775sync_fsync(ap)
2776	struct vop_fsync_args /* {
2777		struct vnode *a_vp;
2778		struct ucred *a_cred;
2779		int a_waitfor;
2780		struct proc *a_p;
2781	} */ *ap;
2782{
2783	struct vnode *syncvp = ap->a_vp;
2784	struct mount *mp = syncvp->v_mount;
2785	struct proc *p = ap->a_p;
2786	int asyncflag;
2787
2788	/*
2789	 * We only need to do something if this is a lazy evaluation.
2790	 */
2791	if (ap->a_waitfor != MNT_LAZY)
2792		return (0);
2793
2794	/*
2795	 * Move ourselves to the back of the sync list.
2796	 */
2797	vn_syncer_add_to_worklist(syncvp, syncdelay);
2798
2799	/*
2800	 * Walk the list of vnodes pushing all that are dirty and
2801	 * not already on the sync list.
2802	 */
2803	simple_lock(&mountlist_slock);
2804	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2805		simple_unlock(&mountlist_slock);
2806		return (0);
2807	}
2808	asyncflag = mp->mnt_flag & MNT_ASYNC;
2809	mp->mnt_flag &= ~MNT_ASYNC;
2810	vfs_msync(mp, MNT_NOWAIT);
2811	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2812	if (asyncflag)
2813		mp->mnt_flag |= MNT_ASYNC;
2814	vfs_unbusy(mp, p);
2815	return (0);
2816}
2817
2818/*
2819 * The syncer vnode is no referenced.
2820 */
2821static int
2822sync_inactive(ap)
2823	struct vop_inactive_args /* {
2824		struct vnode *a_vp;
2825		struct proc *a_p;
2826	} */ *ap;
2827{
2828
2829	vgone(ap->a_vp);
2830	return (0);
2831}
2832
2833/*
2834 * The syncer vnode is no longer needed and is being decommissioned.
2835 *
2836 * Modifications to the worklist must be protected at splbio().
2837 */
2838static int
2839sync_reclaim(ap)
2840	struct vop_reclaim_args /* {
2841		struct vnode *a_vp;
2842	} */ *ap;
2843{
2844	struct vnode *vp = ap->a_vp;
2845	int s;
2846
2847	s = splbio();
2848	vp->v_mount->mnt_syncer = NULL;
2849	if (vp->v_flag & VONWORKLST) {
2850		LIST_REMOVE(vp, v_synclist);
2851		vp->v_flag &= ~VONWORKLST;
2852	}
2853	splx(s);
2854
2855	return (0);
2856}
2857
2858/*
2859 * Print out a syncer vnode.
2860 */
2861static int
2862sync_print(ap)
2863	struct vop_print_args /* {
2864		struct vnode *a_vp;
2865	} */ *ap;
2866{
2867	struct vnode *vp = ap->a_vp;
2868
2869	printf("syncer vnode");
2870	if (vp->v_vnlock != NULL)
2871		lockmgr_printinfo(vp->v_vnlock);
2872	printf("\n");
2873	return (0);
2874}
2875
2876/*
2877 * extract the dev_t from a VBLK or VCHR
2878 */
2879dev_t
2880vn_todev(vp)
2881	struct vnode *vp;
2882{
2883	if (vp->v_type != VBLK && vp->v_type != VCHR)
2884		return (NODEV);
2885	return (vp->v_rdev);
2886}
2887
2888/*
2889 * Check if vnode represents a disk device
2890 */
2891int
2892vn_isdisk(vp, errp)
2893	struct vnode *vp;
2894	int *errp;
2895{
2896	if (vp->v_type != VBLK && vp->v_type != VCHR) {
2897		if (errp != NULL)
2898			*errp = ENOTBLK;
2899		return (0);
2900	}
2901	if (!devsw(vp->v_rdev)) {
2902		if (errp != NULL)
2903			*errp = ENXIO;
2904		return (0);
2905	}
2906	if (!(devsw(vp->v_rdev)->d_flags & D_DISK)) {
2907		if (errp != NULL)
2908			*errp = ENOTBLK;
2909		return (0);
2910	}
2911	if (errp != NULL)
2912		*errp = 0;
2913	return (1);
2914}
2915
2916void
2917NDFREE(ndp, flags)
2918     struct nameidata *ndp;
2919     const uint flags;
2920{
2921	if (!(flags & NDF_NO_FREE_PNBUF) &&
2922	    (ndp->ni_cnd.cn_flags & HASBUF)) {
2923		zfree(namei_zone, ndp->ni_cnd.cn_pnbuf);
2924		ndp->ni_cnd.cn_flags &= ~HASBUF;
2925	}
2926	if (!(flags & NDF_NO_DVP_UNLOCK) &&
2927	    (ndp->ni_cnd.cn_flags & LOCKPARENT) &&
2928	    ndp->ni_dvp != ndp->ni_vp)
2929		VOP_UNLOCK(ndp->ni_dvp, 0, ndp->ni_cnd.cn_proc);
2930	if (!(flags & NDF_NO_DVP_RELE) &&
2931	    (ndp->ni_cnd.cn_flags & (LOCKPARENT|WANTPARENT))) {
2932		vrele(ndp->ni_dvp);
2933		ndp->ni_dvp = NULL;
2934	}
2935	if (!(flags & NDF_NO_VP_UNLOCK) &&
2936	    (ndp->ni_cnd.cn_flags & LOCKLEAF) && ndp->ni_vp)
2937		VOP_UNLOCK(ndp->ni_vp, 0, ndp->ni_cnd.cn_proc);
2938	if (!(flags & NDF_NO_VP_RELE) &&
2939	    ndp->ni_vp) {
2940		vrele(ndp->ni_vp);
2941		ndp->ni_vp = NULL;
2942	}
2943	if (!(flags & NDF_NO_STARTDIR_RELE) &&
2944	    (ndp->ni_cnd.cn_flags & SAVESTART)) {
2945		vrele(ndp->ni_startdir);
2946		ndp->ni_startdir = NULL;
2947	}
2948}
2949