vfs_subr.c revision 52128
1/*
2 * Copyright (c) 1989, 1993
3 *	The Regents of the University of California.  All rights reserved.
4 * (c) UNIX System Laboratories, Inc.
5 * All or some portions of this file are derived from material licensed
6 * to the University of California by American Telephone and Telegraph
7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
8 * the permission of UNIX System Laboratories, Inc.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 *    must display the following acknowledgement:
20 *	This product includes software developed by the University of
21 *	California, Berkeley and its contributors.
22 * 4. Neither the name of the University nor the names of its contributors
23 *    may be used to endorse or promote products derived from this software
24 *    without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36 * SUCH DAMAGE.
37 *
38 *	@(#)vfs_subr.c	8.31 (Berkeley) 5/26/95
39 * $FreeBSD: head/sys/kern/vfs_subr.c 52128 1999-10-11 15:19:12Z peter $
40 */
41
42/*
43 * External virtual filesystem routines
44 */
45#include "opt_ddb.h"
46
47#include <sys/param.h>
48#include <sys/systm.h>
49#include <sys/fcntl.h>
50#include <sys/kernel.h>
51#include <sys/proc.h>
52#include <sys/kthread.h>
53#include <sys/malloc.h>
54#include <sys/mount.h>
55#include <sys/socket.h>
56#include <sys/vnode.h>
57#include <sys/stat.h>
58#include <sys/buf.h>
59#include <sys/domain.h>
60#include <sys/dirent.h>
61#include <sys/vmmeter.h>
62#include <sys/conf.h>
63
64#include <machine/limits.h>
65
66#include <vm/vm.h>
67#include <vm/vm_prot.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/pmap.h>
71#include <vm/vm_map.h>
72#include <vm/vm_page.h>
73#include <vm/vm_pager.h>
74#include <vm/vnode_pager.h>
75#include <vm/vm_zone.h>
76#include <sys/sysctl.h>
77
78static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");
79
80static void	insmntque __P((struct vnode *vp, struct mount *mp));
81static void	vclean __P((struct vnode *vp, int flags, struct proc *p));
82static void	vfree __P((struct vnode *));
83static void	vgonel __P((struct vnode *vp, struct proc *p));
84static unsigned long	numvnodes;
85SYSCTL_INT(_debug, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");
86
87enum vtype iftovt_tab[16] = {
88	VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
89	VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
90};
91int vttoif_tab[9] = {
92	0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
93	S_IFSOCK, S_IFIFO, S_IFMT,
94};
95
96static TAILQ_HEAD(freelst, vnode) vnode_free_list;	/* vnode free list */
97struct tobefreelist vnode_tobefree_list;	/* vnode free list */
98
99static u_long wantfreevnodes = 25;
100SYSCTL_INT(_debug, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
101static u_long freevnodes = 0;
102SYSCTL_INT(_debug, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");
103
104static int reassignbufcalls;
105SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");
106static int reassignbufloops;
107SYSCTL_INT(_vfs, OID_AUTO, reassignbufloops, CTLFLAG_RW, &reassignbufloops, 0, "");
108static int reassignbufsortgood;
109SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortgood, CTLFLAG_RW, &reassignbufsortgood, 0, "");
110static int reassignbufsortbad;
111SYSCTL_INT(_vfs, OID_AUTO, reassignbufsortbad, CTLFLAG_RW, &reassignbufsortbad, 0, "");
112static int reassignbufmethod = 1;
113SYSCTL_INT(_vfs, OID_AUTO, reassignbufmethod, CTLFLAG_RW, &reassignbufmethod, 0, "");
114
115#ifdef ENABLE_VFS_IOOPT
116int vfs_ioopt = 0;
117SYSCTL_INT(_vfs, OID_AUTO, ioopt, CTLFLAG_RW, &vfs_ioopt, 0, "");
118#endif
119
120struct mntlist mountlist;	/* mounted filesystem list */
121struct simplelock mountlist_slock;
122struct simplelock mntvnode_slock;
123int	nfs_mount_type = -1;
124#ifndef NULL_SIMPLELOCKS
125static struct simplelock mntid_slock;
126static struct simplelock vnode_free_list_slock;
127static struct simplelock spechash_slock;
128#endif
129struct nfs_public nfs_pub;	/* publicly exported FS */
130static vm_zone_t vnode_zone;
131
132/*
133 * The workitem queue.
134 */
135#define SYNCER_MAXDELAY		32
136static int syncer_maxdelay = SYNCER_MAXDELAY;	/* maximum delay time */
137time_t syncdelay = 30;		/* max time to delay syncing data */
138time_t filedelay = 30;		/* time to delay syncing files */
139SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
140time_t dirdelay = 29;		/* time to delay syncing directories */
141SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
142time_t metadelay = 28;		/* time to delay syncing metadata */
143SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
144static int rushjob;			/* number of slots to run ASAP */
145static int stat_rush_requests;	/* number of times I/O speeded up */
146SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");
147
148static int syncer_delayno = 0;
149static long syncer_mask;
150LIST_HEAD(synclist, vnode);
151static struct synclist *syncer_workitem_pending;
152
153int desiredvnodes;
154SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
155    &desiredvnodes, 0, "Maximum number of vnodes");
156
157static void	vfs_free_addrlist __P((struct netexport *nep));
158static int	vfs_free_netcred __P((struct radix_node *rn, void *w));
159static int	vfs_hang_addrlist __P((struct mount *mp, struct netexport *nep,
160				       struct export_args *argp));
161
162/*
163 * Initialize the vnode management data structures.
164 */
165void
166vntblinit()
167{
168
169	desiredvnodes = maxproc + cnt.v_page_count / 4;
170	simple_lock_init(&mntvnode_slock);
171	simple_lock_init(&mntid_slock);
172	simple_lock_init(&spechash_slock);
173	TAILQ_INIT(&vnode_free_list);
174	TAILQ_INIT(&vnode_tobefree_list);
175	simple_lock_init(&vnode_free_list_slock);
176	CIRCLEQ_INIT(&mountlist);
177	vnode_zone = zinit("VNODE", sizeof (struct vnode), 0, 0, 5);
178	/*
179	 * Initialize the filesystem syncer.
180	 */
181	syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
182		&syncer_mask);
183	syncer_maxdelay = syncer_mask + 1;
184}
185
186/*
187 * Mark a mount point as busy. Used to synchronize access and to delay
188 * unmounting. Interlock is not released on failure.
189 */
190int
191vfs_busy(mp, flags, interlkp, p)
192	struct mount *mp;
193	int flags;
194	struct simplelock *interlkp;
195	struct proc *p;
196{
197	int lkflags;
198
199	if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
200		if (flags & LK_NOWAIT)
201			return (ENOENT);
202		mp->mnt_kern_flag |= MNTK_MWAIT;
203		if (interlkp) {
204			simple_unlock(interlkp);
205		}
206		/*
207		 * Since all busy locks are shared except the exclusive
208		 * lock granted when unmounting, the only place that a
209		 * wakeup needs to be done is at the release of the
210		 * exclusive lock at the end of dounmount.
211		 */
212		tsleep((caddr_t)mp, PVFS, "vfs_busy", 0);
213		if (interlkp) {
214			simple_lock(interlkp);
215		}
216		return (ENOENT);
217	}
218	lkflags = LK_SHARED | LK_NOPAUSE;
219	if (interlkp)
220		lkflags |= LK_INTERLOCK;
221	if (lockmgr(&mp->mnt_lock, lkflags, interlkp, p))
222		panic("vfs_busy: unexpected lock failure");
223	return (0);
224}
225
226/*
227 * Free a busy filesystem.
228 */
229void
230vfs_unbusy(mp, p)
231	struct mount *mp;
232	struct proc *p;
233{
234
235	lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, p);
236}
237
238/*
239 * Lookup a filesystem type, and if found allocate and initialize
240 * a mount structure for it.
241 *
242 * Devname is usually updated by mount(8) after booting.
243 */
244int
245vfs_rootmountalloc(fstypename, devname, mpp)
246	char *fstypename;
247	char *devname;
248	struct mount **mpp;
249{
250	struct proc *p = curproc;	/* XXX */
251	struct vfsconf *vfsp;
252	struct mount *mp;
253
254	if (fstypename == NULL)
255		return (ENODEV);
256	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
257		if (!strcmp(vfsp->vfc_name, fstypename))
258			break;
259	if (vfsp == NULL)
260		return (ENODEV);
261	mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
262	bzero((char *)mp, (u_long)sizeof(struct mount));
263	lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, LK_NOPAUSE);
264	(void)vfs_busy(mp, LK_NOWAIT, 0, p);
265	LIST_INIT(&mp->mnt_vnodelist);
266	mp->mnt_vfc = vfsp;
267	mp->mnt_op = vfsp->vfc_vfsops;
268	mp->mnt_flag = MNT_RDONLY;
269	mp->mnt_vnodecovered = NULLVP;
270	vfsp->vfc_refcount++;
271	mp->mnt_iosize_max = DFLTPHYS;
272	mp->mnt_stat.f_type = vfsp->vfc_typenum;
273	mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
274	strncpy(mp->mnt_stat.f_fstypename, vfsp->vfc_name, MFSNAMELEN);
275	mp->mnt_stat.f_mntonname[0] = '/';
276	mp->mnt_stat.f_mntonname[1] = 0;
277	(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
278	*mpp = mp;
279	return (0);
280}
281
282/*
283 * Find an appropriate filesystem to use for the root. If a filesystem
284 * has not been preselected, walk through the list of known filesystems
285 * trying those that have mountroot routines, and try them until one
286 * works or we have tried them all.
287 */
288#ifdef notdef	/* XXX JH */
289int
290lite2_vfs_mountroot()
291{
292	struct vfsconf *vfsp;
293	extern int (*lite2_mountroot) __P((void));
294	int error;
295
296	if (lite2_mountroot != NULL)
297		return ((*lite2_mountroot)());
298	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
299		if (vfsp->vfc_mountroot == NULL)
300			continue;
301		if ((error = (*vfsp->vfc_mountroot)()) == 0)
302			return (0);
303		printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
304	}
305	return (ENODEV);
306}
307#endif
308
309/*
310 * Lookup a mount point by filesystem identifier.
311 */
312struct mount *
313vfs_getvfs(fsid)
314	fsid_t *fsid;
315{
316	register struct mount *mp;
317
318	simple_lock(&mountlist_slock);
319	for (mp = mountlist.cqh_first; mp != (void *)&mountlist;
320	    mp = mp->mnt_list.cqe_next) {
321		if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
322		    mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
323			simple_unlock(&mountlist_slock);
324			return (mp);
325	    }
326	}
327	simple_unlock(&mountlist_slock);
328	return ((struct mount *) 0);
329}
330
331/*
332 * Get a new unique fsid
333 *
334 * Keep in mind that several mounts may be running in parallel,
335 * so always increment mntid_base even if lower numbers are available.
336 */
337
338static u_short mntid_base;
339
340void
341vfs_getnewfsid(mp)
342	struct mount *mp;
343{
344	fsid_t tfsid;
345	int mtype;
346
347	simple_lock(&mntid_slock);
348
349	mtype = mp->mnt_vfc->vfc_typenum;
350	for (;;) {
351		tfsid.val[0] = makeudev(255, mtype + (mntid_base << 16));
352		tfsid.val[1] = mtype;
353		++mntid_base;
354		if (vfs_getvfs(&tfsid) == NULL)
355			break;
356	}
357
358	mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
359	mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
360
361	simple_unlock(&mntid_slock);
362}
363
364/*
365 * Get what should become the root fsid.
366 *
367 * This is somewhat of a hack.  If the rootdev is not known we
368 * assume that vfs_getnewfsid() will be called momentarily to
369 * allocate it, and we return what vfs_getnewfsid() will return.
370 */
371
372dev_t
373vfs_getrootfsid(struct mount *mp)
374{
375	int mtype;
376
377	mtype = mp->mnt_vfc->vfc_typenum;
378	return(makedev(255, mtype + (mntid_base << 16)));
379}
380
381/*
382 * Knob to control the precision of file timestamps:
383 *
384 *   0 = seconds only; nanoseconds zeroed.
385 *   1 = seconds and nanoseconds, accurate within 1/HZ.
386 *   2 = seconds and nanoseconds, truncated to microseconds.
387 * >=3 = seconds and nanoseconds, maximum precision.
388 */
389enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };
390
391static int timestamp_precision = TSP_SEC;
392SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
393    &timestamp_precision, 0, "");
394
395/*
396 * Get a current timestamp.
397 */
398void
399vfs_timestamp(tsp)
400	struct timespec *tsp;
401{
402	struct timeval tv;
403
404	switch (timestamp_precision) {
405	case TSP_SEC:
406		tsp->tv_sec = time_second;
407		tsp->tv_nsec = 0;
408		break;
409	case TSP_HZ:
410		getnanotime(tsp);
411		break;
412	case TSP_USEC:
413		microtime(&tv);
414		TIMEVAL_TO_TIMESPEC(&tv, tsp);
415		break;
416	case TSP_NSEC:
417	default:
418		nanotime(tsp);
419		break;
420	}
421}
422
423/*
424 * Set vnode attributes to VNOVAL
425 */
426void
427vattr_null(vap)
428	register struct vattr *vap;
429{
430
431	vap->va_type = VNON;
432	vap->va_size = VNOVAL;
433	vap->va_bytes = VNOVAL;
434	vap->va_mode = VNOVAL;
435	vap->va_nlink = VNOVAL;
436	vap->va_uid = VNOVAL;
437	vap->va_gid = VNOVAL;
438	vap->va_fsid = VNOVAL;
439	vap->va_fileid = VNOVAL;
440	vap->va_blocksize = VNOVAL;
441	vap->va_rdev = VNOVAL;
442	vap->va_atime.tv_sec = VNOVAL;
443	vap->va_atime.tv_nsec = VNOVAL;
444	vap->va_mtime.tv_sec = VNOVAL;
445	vap->va_mtime.tv_nsec = VNOVAL;
446	vap->va_ctime.tv_sec = VNOVAL;
447	vap->va_ctime.tv_nsec = VNOVAL;
448	vap->va_flags = VNOVAL;
449	vap->va_gen = VNOVAL;
450	vap->va_vaflags = 0;
451}
452
453/*
454 * Routines having to do with the management of the vnode table.
455 */
456extern vop_t **dead_vnodeop_p;
457
458/*
459 * Return the next vnode from the free list.
460 */
461int
462getnewvnode(tag, mp, vops, vpp)
463	enum vtagtype tag;
464	struct mount *mp;
465	vop_t **vops;
466	struct vnode **vpp;
467{
468	int s;
469	struct proc *p = curproc;	/* XXX */
470	struct vnode *vp, *tvp, *nvp;
471	vm_object_t object;
472	TAILQ_HEAD(freelst, vnode) vnode_tmp_list;
473
474	/*
475	 * We take the least recently used vnode from the freelist
476	 * if we can get it and it has no cached pages, and no
477	 * namecache entries are relative to it.
478	 * Otherwise we allocate a new vnode
479	 */
480
481	s = splbio();
482	simple_lock(&vnode_free_list_slock);
483	TAILQ_INIT(&vnode_tmp_list);
484
485	for (vp = TAILQ_FIRST(&vnode_tobefree_list); vp; vp = nvp) {
486		nvp = TAILQ_NEXT(vp, v_freelist);
487		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
488		if (vp->v_flag & VAGE) {
489			TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
490		} else {
491			TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
492		}
493		vp->v_flag &= ~(VTBFREE|VAGE);
494		vp->v_flag |= VFREE;
495		if (vp->v_usecount)
496			panic("tobe free vnode isn't");
497		freevnodes++;
498	}
499
500	if (wantfreevnodes && freevnodes < wantfreevnodes) {
501		vp = NULL;
502	} else if (!wantfreevnodes && freevnodes <= desiredvnodes) {
503		/*
504		 * XXX: this is only here to be backwards compatible
505		 */
506		vp = NULL;
507	} else {
508		for (vp = TAILQ_FIRST(&vnode_free_list); vp; vp = nvp) {
509			nvp = TAILQ_NEXT(vp, v_freelist);
510			if (!simple_lock_try(&vp->v_interlock))
511				continue;
512			if (vp->v_usecount)
513				panic("free vnode isn't");
514
515			object = vp->v_object;
516			if (object && (object->resident_page_count || object->ref_count)) {
517				printf("object inconsistant state: RPC: %d, RC: %d\n",
518					object->resident_page_count, object->ref_count);
519				/* Don't recycle if it's caching some pages */
520				TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
521				TAILQ_INSERT_TAIL(&vnode_tmp_list, vp, v_freelist);
522				continue;
523			} else if (LIST_FIRST(&vp->v_cache_src)) {
524				/* Don't recycle if active in the namecache */
525				simple_unlock(&vp->v_interlock);
526				continue;
527			} else {
528				break;
529			}
530		}
531	}
532
533	for (tvp = TAILQ_FIRST(&vnode_tmp_list); tvp; tvp = nvp) {
534		nvp = TAILQ_NEXT(tvp, v_freelist);
535		TAILQ_REMOVE(&vnode_tmp_list, tvp, v_freelist);
536		TAILQ_INSERT_TAIL(&vnode_free_list, tvp, v_freelist);
537		simple_unlock(&tvp->v_interlock);
538	}
539
540	if (vp) {
541		vp->v_flag |= VDOOMED;
542		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
543		freevnodes--;
544		simple_unlock(&vnode_free_list_slock);
545		cache_purge(vp);
546		vp->v_lease = NULL;
547		if (vp->v_type != VBAD) {
548			vgonel(vp, p);
549		} else {
550			simple_unlock(&vp->v_interlock);
551		}
552
553#ifdef INVARIANTS
554		{
555			int s;
556
557			if (vp->v_data)
558				panic("cleaned vnode isn't");
559			s = splbio();
560			if (vp->v_numoutput)
561				panic("Clean vnode has pending I/O's");
562			splx(s);
563		}
564#endif
565		vp->v_flag = 0;
566		vp->v_lastw = 0;
567		vp->v_lasta = 0;
568		vp->v_cstart = 0;
569		vp->v_clen = 0;
570		vp->v_socket = 0;
571		vp->v_writecount = 0;	/* XXX */
572	} else {
573		simple_unlock(&vnode_free_list_slock);
574		vp = (struct vnode *) zalloc(vnode_zone);
575		bzero((char *) vp, sizeof *vp);
576		simple_lock_init(&vp->v_interlock);
577		vp->v_dd = vp;
578		cache_purge(vp);
579		LIST_INIT(&vp->v_cache_src);
580		TAILQ_INIT(&vp->v_cache_dst);
581		numvnodes++;
582	}
583
584	TAILQ_INIT(&vp->v_cleanblkhd);
585	TAILQ_INIT(&vp->v_dirtyblkhd);
586	vp->v_type = VNON;
587	vp->v_tag = tag;
588	vp->v_op = vops;
589	insmntque(vp, mp);
590	*vpp = vp;
591	vp->v_usecount = 1;
592	vp->v_data = 0;
593	splx(s);
594
595	vfs_object_create(vp, p, p->p_ucred);
596	return (0);
597}
598
599/*
600 * Move a vnode from one mount queue to another.
601 */
602static void
603insmntque(vp, mp)
604	register struct vnode *vp;
605	register struct mount *mp;
606{
607
608	simple_lock(&mntvnode_slock);
609	/*
610	 * Delete from old mount point vnode list, if on one.
611	 */
612	if (vp->v_mount != NULL)
613		LIST_REMOVE(vp, v_mntvnodes);
614	/*
615	 * Insert into list of vnodes for the new mount point, if available.
616	 */
617	if ((vp->v_mount = mp) == NULL) {
618		simple_unlock(&mntvnode_slock);
619		return;
620	}
621	LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
622	simple_unlock(&mntvnode_slock);
623}
624
625/*
626 * Update outstanding I/O count and do wakeup if requested.
627 */
628void
629vwakeup(bp)
630	register struct buf *bp;
631{
632	register struct vnode *vp;
633
634	bp->b_flags &= ~B_WRITEINPROG;
635	if ((vp = bp->b_vp)) {
636		vp->v_numoutput--;
637		if (vp->v_numoutput < 0)
638			panic("vwakeup: neg numoutput");
639		if ((vp->v_numoutput == 0) && (vp->v_flag & VBWAIT)) {
640			vp->v_flag &= ~VBWAIT;
641			wakeup((caddr_t) &vp->v_numoutput);
642		}
643	}
644}
645
646/*
647 * Flush out and invalidate all buffers associated with a vnode.
648 * Called with the underlying object locked.
649 */
650int
651vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
652	register struct vnode *vp;
653	int flags;
654	struct ucred *cred;
655	struct proc *p;
656	int slpflag, slptimeo;
657{
658	register struct buf *bp;
659	struct buf *nbp, *blist;
660	int s, error;
661	vm_object_t object;
662
663	if (flags & V_SAVE) {
664		s = splbio();
665		while (vp->v_numoutput) {
666			vp->v_flag |= VBWAIT;
667			error = tsleep((caddr_t)&vp->v_numoutput,
668			    slpflag | (PRIBIO + 1), "vinvlbuf", slptimeo);
669			if (error) {
670				splx(s);
671				return (error);
672			}
673		}
674		if (!TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
675			splx(s);
676			if ((error = VOP_FSYNC(vp, cred, MNT_WAIT, p)) != 0)
677				return (error);
678			s = splbio();
679			if (vp->v_numoutput > 0 ||
680			    !TAILQ_EMPTY(&vp->v_dirtyblkhd))
681				panic("vinvalbuf: dirty bufs");
682		}
683		splx(s);
684  	}
685	s = splbio();
686	for (;;) {
687		blist = TAILQ_FIRST(&vp->v_cleanblkhd);
688		if (!blist)
689			blist = TAILQ_FIRST(&vp->v_dirtyblkhd);
690		if (!blist)
691			break;
692
693		for (bp = blist; bp; bp = nbp) {
694			nbp = TAILQ_NEXT(bp, b_vnbufs);
695			if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
696				error = BUF_TIMELOCK(bp,
697				    LK_EXCLUSIVE | LK_SLEEPFAIL,
698				    "vinvalbuf", slpflag, slptimeo);
699				if (error == ENOLCK)
700					break;
701				splx(s);
702				return (error);
703			}
704			/*
705			 * XXX Since there are no node locks for NFS, I
706			 * believe there is a slight chance that a delayed
707			 * write will occur while sleeping just above, so
708			 * check for it.  Note that vfs_bio_awrite expects
709			 * buffers to reside on a queue, while VOP_BWRITE and
710			 * brelse do not.
711			 */
712			if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
713				(flags & V_SAVE)) {
714
715				if (bp->b_vp == vp) {
716					if (bp->b_flags & B_CLUSTEROK) {
717						BUF_UNLOCK(bp);
718						vfs_bio_awrite(bp);
719					} else {
720						bremfree(bp);
721						bp->b_flags |= B_ASYNC;
722						VOP_BWRITE(bp->b_vp, bp);
723					}
724				} else {
725					bremfree(bp);
726					(void) VOP_BWRITE(bp->b_vp, bp);
727				}
728				break;
729			}
730			bremfree(bp);
731			bp->b_flags |= (B_INVAL | B_NOCACHE | B_RELBUF);
732			bp->b_flags &= ~B_ASYNC;
733			brelse(bp);
734		}
735	}
736
737	while (vp->v_numoutput > 0) {
738		vp->v_flag |= VBWAIT;
739		tsleep(&vp->v_numoutput, PVM, "vnvlbv", 0);
740	}
741
742	splx(s);
743
744	/*
745	 * Destroy the copy in the VM cache, too.
746	 */
747	simple_lock(&vp->v_interlock);
748	object = vp->v_object;
749	if (object != NULL) {
750		vm_object_page_remove(object, 0, 0,
751			(flags & V_SAVE) ? TRUE : FALSE);
752	}
753	simple_unlock(&vp->v_interlock);
754
755	if (!TAILQ_EMPTY(&vp->v_dirtyblkhd) || !TAILQ_EMPTY(&vp->v_cleanblkhd))
756		panic("vinvalbuf: flush failed");
757	return (0);
758}
759
760/*
761 * Truncate a file's buffer and pages to a specified length.  This
762 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
763 * sync activity.
764 */
765int
766vtruncbuf(vp, cred, p, length, blksize)
767	register struct vnode *vp;
768	struct ucred *cred;
769	struct proc *p;
770	off_t length;
771	int blksize;
772{
773	register struct buf *bp;
774	struct buf *nbp;
775	int s, anyfreed;
776	int trunclbn;
777
778	/*
779	 * Round up to the *next* lbn.
780	 */
781	trunclbn = (length + blksize - 1) / blksize;
782
783	s = splbio();
784restart:
785	anyfreed = 1;
786	for (;anyfreed;) {
787		anyfreed = 0;
788		for (bp = TAILQ_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
789			nbp = TAILQ_NEXT(bp, b_vnbufs);
790			if (bp->b_lblkno >= trunclbn) {
791				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
792					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
793					goto restart;
794				} else {
795					bremfree(bp);
796					bp->b_flags |= (B_INVAL | B_RELBUF);
797					bp->b_flags &= ~B_ASYNC;
798					brelse(bp);
799					anyfreed = 1;
800				}
801				if (nbp && (((nbp->b_xflags & B_VNCLEAN) == 0)||
802					 (nbp->b_vp != vp) ||
803					 (nbp->b_flags & B_DELWRI))) {
804					goto restart;
805				}
806			}
807		}
808
809		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
810			nbp = TAILQ_NEXT(bp, b_vnbufs);
811			if (bp->b_lblkno >= trunclbn) {
812				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
813					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
814					goto restart;
815				} else {
816					bremfree(bp);
817					bp->b_flags |= (B_INVAL | B_RELBUF);
818					bp->b_flags &= ~B_ASYNC;
819					brelse(bp);
820					anyfreed = 1;
821				}
822				if (nbp && (((nbp->b_xflags & B_VNDIRTY) == 0)||
823					 (nbp->b_vp != vp) ||
824					 (nbp->b_flags & B_DELWRI) == 0)) {
825					goto restart;
826				}
827			}
828		}
829	}
830
831	if (length > 0) {
832restartsync:
833		for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
834			nbp = TAILQ_NEXT(bp, b_vnbufs);
835			if ((bp->b_flags & B_DELWRI) && (bp->b_lblkno < 0)) {
836				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
837					BUF_LOCK(bp, LK_EXCLUSIVE|LK_SLEEPFAIL);
838					goto restart;
839				} else {
840					bremfree(bp);
841					if (bp->b_vp == vp) {
842						bp->b_flags |= B_ASYNC;
843					} else {
844						bp->b_flags &= ~B_ASYNC;
845					}
846					VOP_BWRITE(bp->b_vp, bp);
847				}
848				goto restartsync;
849			}
850
851		}
852	}
853
854	while (vp->v_numoutput > 0) {
855		vp->v_flag |= VBWAIT;
856		tsleep(&vp->v_numoutput, PVM, "vbtrunc", 0);
857	}
858
859	splx(s);
860
861	vnode_pager_setsize(vp, length);
862
863	return (0);
864}
865
866/*
867 * Associate a buffer with a vnode.
868 */
869void
870bgetvp(vp, bp)
871	register struct vnode *vp;
872	register struct buf *bp;
873{
874	int s;
875
876	KASSERT(bp->b_vp == NULL, ("bgetvp: not free"));
877
878	vhold(vp);
879	bp->b_vp = vp;
880	bp->b_dev = vn_todev(vp);
881	/*
882	 * Insert onto list for new vnode.
883	 */
884	s = splbio();
885	bp->b_xflags |= B_VNCLEAN;
886	bp->b_xflags &= ~B_VNDIRTY;
887	TAILQ_INSERT_TAIL(&vp->v_cleanblkhd, bp, b_vnbufs);
888	splx(s);
889}
890
891/*
892 * Disassociate a buffer from a vnode.
893 */
894void
895brelvp(bp)
896	register struct buf *bp;
897{
898	struct vnode *vp;
899	struct buflists *listheadp;
900	int s;
901
902	KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));
903
904	/*
905	 * Delete from old vnode list, if on one.
906	 */
907	vp = bp->b_vp;
908	s = splbio();
909	if (bp->b_xflags & (B_VNDIRTY|B_VNCLEAN)) {
910		if (bp->b_xflags & B_VNDIRTY)
911			listheadp = &vp->v_dirtyblkhd;
912		else
913			listheadp = &vp->v_cleanblkhd;
914		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
915		bp->b_xflags &= ~(B_VNDIRTY|B_VNCLEAN);
916	}
917	if ((vp->v_flag & VONWORKLST) && TAILQ_EMPTY(&vp->v_dirtyblkhd)) {
918		vp->v_flag &= ~VONWORKLST;
919		LIST_REMOVE(vp, v_synclist);
920	}
921	splx(s);
922	bp->b_vp = (struct vnode *) 0;
923	vdrop(vp);
924}
925
926/*
927 * The workitem queue.
928 *
929 * It is useful to delay writes of file data and filesystem metadata
930 * for tens of seconds so that quickly created and deleted files need
931 * not waste disk bandwidth being created and removed. To realize this,
932 * we append vnodes to a "workitem" queue. When running with a soft
933 * updates implementation, most pending metadata dependencies should
934 * not wait for more than a few seconds. Thus, mounted on block devices
935 * are delayed only about a half the time that file data is delayed.
936 * Similarly, directory updates are more critical, so are only delayed
937 * about a third the time that file data is delayed. Thus, there are
938 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
939 * one each second (driven off the filesystem syncer process). The
940 * syncer_delayno variable indicates the next queue that is to be processed.
941 * Items that need to be processed soon are placed in this queue:
942 *
943 *	syncer_workitem_pending[syncer_delayno]
944 *
945 * A delay of fifteen seconds is done by placing the request fifteen
946 * entries later in the queue:
947 *
948 *	syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
949 *
950 */
951
952/*
953 * Add an item to the syncer work queue.
954 */
955static void
956vn_syncer_add_to_worklist(struct vnode *vp, int delay)
957{
958	int s, slot;
959
960	s = splbio();
961
962	if (vp->v_flag & VONWORKLST) {
963		LIST_REMOVE(vp, v_synclist);
964	}
965
966	if (delay > syncer_maxdelay - 2)
967		delay = syncer_maxdelay - 2;
968	slot = (syncer_delayno + delay) & syncer_mask;
969
970	LIST_INSERT_HEAD(&syncer_workitem_pending[slot], vp, v_synclist);
971	vp->v_flag |= VONWORKLST;
972	splx(s);
973}
974
975struct  proc *updateproc;
976static void sched_sync __P((void));
977static struct kproc_desc up_kp = {
978	"syncer",
979	sched_sync,
980	&updateproc
981};
982SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
983
984/*
985 * System filesystem synchronizer daemon.
986 */
987void
988sched_sync(void)
989{
990	struct synclist *slp;
991	struct vnode *vp;
992	long starttime;
993	int s;
994	struct proc *p = updateproc;
995
996	p->p_flag |= P_BUFEXHAUST;
997
998	for (;;) {
999		starttime = time_second;
1000
1001		/*
1002		 * Push files whose dirty time has expired.  Be careful
1003		 * of interrupt race on slp queue.
1004		 */
1005		s = splbio();
1006		slp = &syncer_workitem_pending[syncer_delayno];
1007		syncer_delayno += 1;
1008		if (syncer_delayno == syncer_maxdelay)
1009			syncer_delayno = 0;
1010		splx(s);
1011
1012		while ((vp = LIST_FIRST(slp)) != NULL) {
1013			if (VOP_ISLOCKED(vp) == 0) {
1014				vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
1015				(void) VOP_FSYNC(vp, p->p_ucred, MNT_LAZY, p);
1016				VOP_UNLOCK(vp, 0, p);
1017			}
1018			s = splbio();
1019			if (LIST_FIRST(slp) == vp) {
1020				/*
1021				 * Note: v_tag VT_VFS vps can remain on the
1022				 * worklist too with no dirty blocks, but
1023				 * since sync_fsync() moves it to a different
1024				 * slot we are safe.
1025				 */
1026				if (TAILQ_EMPTY(&vp->v_dirtyblkhd) &&
1027				    vp->v_type != VBLK)
1028					panic("sched_sync: fsync failed vp %p tag %d", vp, vp->v_tag);
1029				/*
1030				 * Put us back on the worklist.  The worklist
1031				 * routine will remove us from our current
1032				 * position and then add us back in at a later
1033				 * position.
1034				 */
1035				vn_syncer_add_to_worklist(vp, syncdelay);
1036			}
1037			splx(s);
1038		}
1039
1040		/*
1041		 * Do soft update processing.
1042		 */
1043		if (bioops.io_sync)
1044			(*bioops.io_sync)(NULL);
1045
1046		/*
1047		 * The variable rushjob allows the kernel to speed up the
1048		 * processing of the filesystem syncer process. A rushjob
1049		 * value of N tells the filesystem syncer to process the next
1050		 * N seconds worth of work on its queue ASAP. Currently rushjob
1051		 * is used by the soft update code to speed up the filesystem
1052		 * syncer process when the incore state is getting so far
1053		 * ahead of the disk that the kernel memory pool is being
1054		 * threatened with exhaustion.
1055		 */
1056		if (rushjob > 0) {
1057			rushjob -= 1;
1058			continue;
1059		}
1060		/*
1061		 * If it has taken us less than a second to process the
1062		 * current work, then wait. Otherwise start right over
1063		 * again. We can still lose time if any single round
1064		 * takes more than two seconds, but it does not really
1065		 * matter as we are just trying to generally pace the
1066		 * filesystem activity.
1067		 */
1068		if (time_second == starttime)
1069			tsleep(&lbolt, PPAUSE, "syncer", 0);
1070	}
1071}
1072
1073/*
1074 * Request the syncer daemon to speed up its work.
1075 * We never push it to speed up more than half of its
1076 * normal turn time, otherwise it could take over the cpu.
1077 */
1078int
1079speedup_syncer()
1080{
1081	int s;
1082
1083	s = splhigh();
1084	if (updateproc->p_wchan == &lbolt)
1085		setrunnable(updateproc);
1086	splx(s);
1087	if (rushjob < syncdelay / 2) {
1088		rushjob += 1;
1089		stat_rush_requests += 1;
1090		return (1);
1091	}
1092	return(0);
1093}
1094
1095/*
1096 * Associate a p-buffer with a vnode.
1097 *
1098 * Also sets B_PAGING flag to indicate that vnode is not fully associated
1099 * with the buffer.  i.e. the bp has not been linked into the vnode or
1100 * ref-counted.
1101 */
1102void
1103pbgetvp(vp, bp)
1104	register struct vnode *vp;
1105	register struct buf *bp;
1106{
1107
1108	KASSERT(bp->b_vp == NULL, ("pbgetvp: not free"));
1109
1110	bp->b_vp = vp;
1111	bp->b_flags |= B_PAGING;
1112	bp->b_dev = vn_todev(vp);
1113}
1114
1115/*
1116 * Disassociate a p-buffer from a vnode.
1117 */
1118void
1119pbrelvp(bp)
1120	register struct buf *bp;
1121{
1122
1123	KASSERT(bp->b_vp != NULL, ("pbrelvp: NULL"));
1124
1125#if !defined(MAX_PERF)
1126	/* XXX REMOVE ME */
1127	if (bp->b_vnbufs.tqe_next != NULL) {
1128		panic(
1129		    "relpbuf(): b_vp was probably reassignbuf()d %p %x",
1130		    bp,
1131		    (int)bp->b_flags
1132		);
1133	}
1134#endif
1135	bp->b_vp = (struct vnode *) 0;
1136	bp->b_flags &= ~B_PAGING;
1137}
1138
1139void
1140pbreassignbuf(bp, newvp)
1141	struct buf *bp;
1142	struct vnode *newvp;
1143{
1144#if !defined(MAX_PERF)
1145	if ((bp->b_flags & B_PAGING) == 0) {
1146		panic(
1147		    "pbreassignbuf() on non phys bp %p",
1148		    bp
1149		);
1150	}
1151#endif
1152	bp->b_vp = newvp;
1153}
1154
1155/*
1156 * Reassign a buffer from one vnode to another.
1157 * Used to assign file specific control information
1158 * (indirect blocks) to the vnode to which they belong.
1159 */
1160void
1161reassignbuf(bp, newvp)
1162	register struct buf *bp;
1163	register struct vnode *newvp;
1164{
1165	struct buflists *listheadp;
1166	int delay;
1167	int s;
1168
1169	if (newvp == NULL) {
1170		printf("reassignbuf: NULL");
1171		return;
1172	}
1173	++reassignbufcalls;
1174
1175#if !defined(MAX_PERF)
1176	/*
1177	 * B_PAGING flagged buffers cannot be reassigned because their vp
1178	 * is not fully linked in.
1179	 */
1180	if (bp->b_flags & B_PAGING)
1181		panic("cannot reassign paging buffer");
1182#endif
1183
1184	s = splbio();
1185	/*
1186	 * Delete from old vnode list, if on one.
1187	 */
1188	if (bp->b_xflags & (B_VNDIRTY|B_VNCLEAN)) {
1189		if (bp->b_xflags & B_VNDIRTY)
1190			listheadp = &bp->b_vp->v_dirtyblkhd;
1191		else
1192			listheadp = &bp->b_vp->v_cleanblkhd;
1193		TAILQ_REMOVE(listheadp, bp, b_vnbufs);
1194		bp->b_xflags &= ~(B_VNDIRTY|B_VNCLEAN);
1195		if (bp->b_vp != newvp) {
1196			vdrop(bp->b_vp);
1197			bp->b_vp = NULL;	/* for clarification */
1198		}
1199	}
1200	/*
1201	 * If dirty, put on list of dirty buffers; otherwise insert onto list
1202	 * of clean buffers.
1203	 */
1204	if (bp->b_flags & B_DELWRI) {
1205		struct buf *tbp;
1206
1207		listheadp = &newvp->v_dirtyblkhd;
1208		if ((newvp->v_flag & VONWORKLST) == 0) {
1209			switch (newvp->v_type) {
1210			case VDIR:
1211				delay = dirdelay;
1212				break;
1213			case VBLK:
1214				if (newvp->v_specmountpoint != NULL) {
1215					delay = metadelay;
1216					break;
1217				}
1218				/* fall through */
1219			default:
1220				delay = filedelay;
1221			}
1222			vn_syncer_add_to_worklist(newvp, delay);
1223		}
1224		bp->b_xflags |= B_VNDIRTY;
1225		tbp = TAILQ_FIRST(listheadp);
1226		if (tbp == NULL ||
1227		    bp->b_lblkno == 0 ||
1228		    (bp->b_lblkno > 0 && bp->b_lblkno < tbp->b_lblkno)) {
1229			TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1230			++reassignbufsortgood;
1231		} else if (bp->b_lblkno < 0) {
1232			TAILQ_INSERT_TAIL(listheadp, bp, b_vnbufs);
1233			++reassignbufsortgood;
1234		} else if (reassignbufmethod == 1) {
1235			/*
1236			 * New sorting algorithm, only handle sequential case,
1237			 * otherwise guess.
1238			 */
1239			if ((tbp = gbincore(newvp, bp->b_lblkno - 1)) != NULL &&
1240			    (tbp->b_xflags & B_VNDIRTY)) {
1241				TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1242				++reassignbufsortgood;
1243			} else {
1244				TAILQ_INSERT_HEAD(listheadp, bp, b_vnbufs);
1245				++reassignbufsortbad;
1246			}
1247		} else {
1248			/*
1249			 * Old sorting algorithm, scan queue and insert
1250			 */
1251			struct buf *ttbp;
1252			while ((ttbp = TAILQ_NEXT(tbp, b_vnbufs)) &&
1253			    (ttbp->b_lblkno < bp->b_lblkno)) {
1254				++reassignbufloops;
1255				tbp = ttbp;
1256			}
1257			TAILQ_INSERT_AFTER(listheadp, tbp, bp, b_vnbufs);
1258		}
1259	} else {
1260		bp->b_xflags |= B_VNCLEAN;
1261		TAILQ_INSERT_TAIL(&newvp->v_cleanblkhd, bp, b_vnbufs);
1262		if ((newvp->v_flag & VONWORKLST) &&
1263		    TAILQ_EMPTY(&newvp->v_dirtyblkhd)) {
1264			newvp->v_flag &= ~VONWORKLST;
1265			LIST_REMOVE(newvp, v_synclist);
1266		}
1267	}
1268	if (bp->b_vp != newvp) {
1269		bp->b_vp = newvp;
1270		vhold(bp->b_vp);
1271	}
1272	splx(s);
1273}
1274
1275/*
1276 * Create a vnode for a block device.
1277 * Used for mounting the root file system.
1278 */
1279int
1280bdevvp(dev, vpp)
1281	dev_t dev;
1282	struct vnode **vpp;
1283{
1284	register struct vnode *vp;
1285	struct vnode *nvp;
1286	int error;
1287
1288	if (dev == NODEV) {
1289		*vpp = NULLVP;
1290		return (ENXIO);
1291	}
1292	error = getnewvnode(VT_NON, (struct mount *)0, spec_vnodeop_p, &nvp);
1293	if (error) {
1294		*vpp = NULLVP;
1295		return (error);
1296	}
1297	vp = nvp;
1298	vp->v_type = VBLK;
1299	addalias(vp, dev);
1300	*vpp = vp;
1301	return (0);
1302}
1303
1304/*
1305 * Add vnode to the alias list hung off the dev_t.
1306 *
1307 * The reason for this gunk is that multiple vnodes can reference
1308 * the same physical device, so checking vp->v_usecount to see
1309 * how many users there are is inadequate; the v_usecount for
1310 * the vnodes need to be accumulated.  vcount() does that.
1311 */
1312void
1313addaliasu(nvp, nvp_rdev)
1314	struct vnode *nvp;
1315	udev_t nvp_rdev;
1316{
1317
1318	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1319		panic("addaliasu on non-special vnode");
1320	addalias(nvp, udev2dev(nvp_rdev, nvp->v_type == VBLK ? 1 : 0));
1321}
1322
1323void
1324addalias(nvp, dev)
1325	struct vnode *nvp;
1326	dev_t dev;
1327{
1328
1329	if (nvp->v_type != VBLK && nvp->v_type != VCHR)
1330		panic("addalias on non-special vnode");
1331
1332	nvp->v_rdev = dev;
1333	simple_lock(&spechash_slock);
1334	SLIST_INSERT_HEAD(&dev->si_hlist, nvp, v_specnext);
1335	simple_unlock(&spechash_slock);
1336}
1337
1338/*
1339 * Grab a particular vnode from the free list, increment its
1340 * reference count and lock it. The vnode lock bit is set if the
1341 * vnode is being eliminated in vgone. The process is awakened
1342 * when the transition is completed, and an error returned to
1343 * indicate that the vnode is no longer usable (possibly having
1344 * been changed to a new file system type).
1345 */
1346int
1347vget(vp, flags, p)
1348	register struct vnode *vp;
1349	int flags;
1350	struct proc *p;
1351{
1352	int error;
1353
1354	/*
1355	 * If the vnode is in the process of being cleaned out for
1356	 * another use, we wait for the cleaning to finish and then
1357	 * return failure. Cleaning is determined by checking that
1358	 * the VXLOCK flag is set.
1359	 */
1360	if ((flags & LK_INTERLOCK) == 0) {
1361		simple_lock(&vp->v_interlock);
1362	}
1363	if (vp->v_flag & VXLOCK) {
1364		vp->v_flag |= VXWANT;
1365		simple_unlock(&vp->v_interlock);
1366		tsleep((caddr_t)vp, PINOD, "vget", 0);
1367		return (ENOENT);
1368	}
1369
1370	vp->v_usecount++;
1371
1372	if (VSHOULDBUSY(vp))
1373		vbusy(vp);
1374	if (flags & LK_TYPE_MASK) {
1375		if ((error = vn_lock(vp, flags | LK_INTERLOCK, p)) != 0) {
1376			/*
1377			 * must expand vrele here because we do not want
1378			 * to call VOP_INACTIVE if the reference count
1379			 * drops back to zero since it was never really
1380			 * active. We must remove it from the free list
1381			 * before sleeping so that multiple processes do
1382			 * not try to recycle it.
1383			 */
1384			simple_lock(&vp->v_interlock);
1385			vp->v_usecount--;
1386			if (VSHOULDFREE(vp))
1387				vfree(vp);
1388			simple_unlock(&vp->v_interlock);
1389		}
1390		return (error);
1391	}
1392	simple_unlock(&vp->v_interlock);
1393	return (0);
1394}
1395
1396void
1397vref(struct vnode *vp)
1398{
1399	simple_lock(&vp->v_interlock);
1400	vp->v_usecount++;
1401	simple_unlock(&vp->v_interlock);
1402}
1403
1404/*
1405 * Vnode put/release.
1406 * If count drops to zero, call inactive routine and return to freelist.
1407 */
1408void
1409vrele(vp)
1410	struct vnode *vp;
1411{
1412	struct proc *p = curproc;	/* XXX */
1413
1414	KASSERT(vp != NULL, ("vrele: null vp"));
1415
1416	simple_lock(&vp->v_interlock);
1417
1418	if (vp->v_usecount > 1) {
1419
1420		vp->v_usecount--;
1421		simple_unlock(&vp->v_interlock);
1422
1423		return;
1424	}
1425
1426	if (vp->v_usecount == 1) {
1427
1428		vp->v_usecount--;
1429		if (VSHOULDFREE(vp))
1430			vfree(vp);
1431	/*
1432	 * If we are doing a vput, the node is already locked, and we must
1433	 * call VOP_INACTIVE with the node locked.  So, in the case of
1434	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1435	 */
1436		if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, p) == 0) {
1437			VOP_INACTIVE(vp, p);
1438		}
1439
1440	} else {
1441#ifdef DIAGNOSTIC
1442		vprint("vrele: negative ref count", vp);
1443		simple_unlock(&vp->v_interlock);
1444#endif
1445		panic("vrele: negative ref cnt");
1446	}
1447}
1448
1449void
1450vput(vp)
1451	struct vnode *vp;
1452{
1453	struct proc *p = curproc;	/* XXX */
1454
1455	KASSERT(vp != NULL, ("vput: null vp"));
1456
1457	simple_lock(&vp->v_interlock);
1458
1459	if (vp->v_usecount > 1) {
1460
1461		vp->v_usecount--;
1462		VOP_UNLOCK(vp, LK_INTERLOCK, p);
1463		return;
1464
1465	}
1466
1467	if (vp->v_usecount == 1) {
1468
1469		vp->v_usecount--;
1470		if (VSHOULDFREE(vp))
1471			vfree(vp);
1472	/*
1473	 * If we are doing a vput, the node is already locked, and we must
1474	 * call VOP_INACTIVE with the node locked.  So, in the case of
1475	 * vrele, we explicitly lock the vnode before calling VOP_INACTIVE.
1476	 */
1477		simple_unlock(&vp->v_interlock);
1478		VOP_INACTIVE(vp, p);
1479
1480	} else {
1481#ifdef DIAGNOSTIC
1482		vprint("vput: negative ref count", vp);
1483#endif
1484		panic("vput: negative ref cnt");
1485	}
1486}
1487
1488/*
1489 * Somebody doesn't want the vnode recycled.
1490 */
1491void
1492vhold(vp)
1493	register struct vnode *vp;
1494{
1495	int s;
1496
1497  	s = splbio();
1498	vp->v_holdcnt++;
1499	if (VSHOULDBUSY(vp))
1500		vbusy(vp);
1501	splx(s);
1502}
1503
1504/*
1505 * One less who cares about this vnode.
1506 */
1507void
1508vdrop(vp)
1509	register struct vnode *vp;
1510{
1511	int s;
1512
1513	s = splbio();
1514	if (vp->v_holdcnt <= 0)
1515		panic("vdrop: holdcnt");
1516	vp->v_holdcnt--;
1517	if (VSHOULDFREE(vp))
1518		vfree(vp);
1519	splx(s);
1520}
1521
1522/*
1523 * Remove any vnodes in the vnode table belonging to mount point mp.
1524 *
1525 * If MNT_NOFORCE is specified, there should not be any active ones,
1526 * return error if any are found (nb: this is a user error, not a
1527 * system error). If MNT_FORCE is specified, detach any active vnodes
1528 * that are found.
1529 */
1530#ifdef DIAGNOSTIC
1531static int busyprt = 0;		/* print out busy vnodes */
1532SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
1533#endif
1534
1535int
1536vflush(mp, skipvp, flags)
1537	struct mount *mp;
1538	struct vnode *skipvp;
1539	int flags;
1540{
1541	struct proc *p = curproc;	/* XXX */
1542	struct vnode *vp, *nvp;
1543	int busy = 0;
1544
1545	simple_lock(&mntvnode_slock);
1546loop:
1547	for (vp = mp->mnt_vnodelist.lh_first; vp; vp = nvp) {
1548		/*
1549		 * Make sure this vnode wasn't reclaimed in getnewvnode().
1550		 * Start over if it has (it won't be on the list anymore).
1551		 */
1552		if (vp->v_mount != mp)
1553			goto loop;
1554		nvp = vp->v_mntvnodes.le_next;
1555		/*
1556		 * Skip over a selected vnode.
1557		 */
1558		if (vp == skipvp)
1559			continue;
1560
1561		simple_lock(&vp->v_interlock);
1562		/*
1563		 * Skip over a vnodes marked VSYSTEM.
1564		 */
1565		if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
1566			simple_unlock(&vp->v_interlock);
1567			continue;
1568		}
1569		/*
1570		 * If WRITECLOSE is set, only flush out regular file vnodes
1571		 * open for writing.
1572		 */
1573		if ((flags & WRITECLOSE) &&
1574		    (vp->v_writecount == 0 || vp->v_type != VREG)) {
1575			simple_unlock(&vp->v_interlock);
1576			continue;
1577		}
1578
1579		/*
1580		 * With v_usecount == 0, all we need to do is clear out the
1581		 * vnode data structures and we are done.
1582		 */
1583		if (vp->v_usecount == 0) {
1584			simple_unlock(&mntvnode_slock);
1585			vgonel(vp, p);
1586			simple_lock(&mntvnode_slock);
1587			continue;
1588		}
1589
1590		/*
1591		 * If FORCECLOSE is set, forcibly close the vnode. For block
1592		 * or character devices, revert to an anonymous device. For
1593		 * all other files, just kill them.
1594		 */
1595		if (flags & FORCECLOSE) {
1596			simple_unlock(&mntvnode_slock);
1597			if (vp->v_type != VBLK && vp->v_type != VCHR) {
1598				vgonel(vp, p);
1599			} else {
1600				vclean(vp, 0, p);
1601				vp->v_op = spec_vnodeop_p;
1602				insmntque(vp, (struct mount *) 0);
1603			}
1604			simple_lock(&mntvnode_slock);
1605			continue;
1606		}
1607#ifdef DIAGNOSTIC
1608		if (busyprt)
1609			vprint("vflush: busy vnode", vp);
1610#endif
1611		simple_unlock(&vp->v_interlock);
1612		busy++;
1613	}
1614	simple_unlock(&mntvnode_slock);
1615	if (busy)
1616		return (EBUSY);
1617	return (0);
1618}
1619
1620/*
1621 * Disassociate the underlying file system from a vnode.
1622 */
1623static void
1624vclean(vp, flags, p)
1625	struct vnode *vp;
1626	int flags;
1627	struct proc *p;
1628{
1629	int active;
1630	vm_object_t obj;
1631
1632	/*
1633	 * Check to see if the vnode is in use. If so we have to reference it
1634	 * before we clean it out so that its count cannot fall to zero and
1635	 * generate a race against ourselves to recycle it.
1636	 */
1637	if ((active = vp->v_usecount))
1638		vp->v_usecount++;
1639
1640	/*
1641	 * Prevent the vnode from being recycled or brought into use while we
1642	 * clean it out.
1643	 */
1644	if (vp->v_flag & VXLOCK)
1645		panic("vclean: deadlock");
1646	vp->v_flag |= VXLOCK;
1647	/*
1648	 * Even if the count is zero, the VOP_INACTIVE routine may still
1649	 * have the object locked while it cleans it out. The VOP_LOCK
1650	 * ensures that the VOP_INACTIVE routine is done with its work.
1651	 * For active vnodes, it ensures that no other activity can
1652	 * occur while the underlying object is being cleaned out.
1653	 */
1654	VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, p);
1655
1656	/*
1657	 * Clean out any buffers associated with the vnode.
1658	 */
1659	vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0);
1660	if ((obj = vp->v_object) != NULL) {
1661		if (obj->ref_count == 0) {
1662			/*
1663			 * vclean() may be called twice.  The first time removes the
1664			 * primary reference to the object, the second time goes
1665			 * one further and is a special-case to terminate the object.
1666			 */
1667			vm_object_terminate(obj);
1668		} else {
1669			/*
1670			 * Woe to the process that tries to page now :-).
1671			 */
1672			vm_pager_deallocate(obj);
1673		}
1674	}
1675
1676	/*
1677	 * If purging an active vnode, it must be closed and
1678	 * deactivated before being reclaimed. Note that the
1679	 * VOP_INACTIVE will unlock the vnode.
1680	 */
1681	if (active) {
1682		if (flags & DOCLOSE)
1683			VOP_CLOSE(vp, FNONBLOCK, NOCRED, p);
1684		VOP_INACTIVE(vp, p);
1685	} else {
1686		/*
1687		 * Any other processes trying to obtain this lock must first
1688		 * wait for VXLOCK to clear, then call the new lock operation.
1689		 */
1690		VOP_UNLOCK(vp, 0, p);
1691	}
1692	/*
1693	 * Reclaim the vnode.
1694	 */
1695	if (VOP_RECLAIM(vp, p))
1696		panic("vclean: cannot reclaim");
1697
1698	if (active)
1699		vrele(vp);
1700
1701	cache_purge(vp);
1702	if (vp->v_vnlock) {
1703		FREE(vp->v_vnlock, M_VNODE);
1704		vp->v_vnlock = NULL;
1705	}
1706
1707	if (VSHOULDFREE(vp))
1708		vfree(vp);
1709
1710	/*
1711	 * Done with purge, notify sleepers of the grim news.
1712	 */
1713	vp->v_op = dead_vnodeop_p;
1714	vn_pollgone(vp);
1715	vp->v_tag = VT_NON;
1716	vp->v_flag &= ~VXLOCK;
1717	if (vp->v_flag & VXWANT) {
1718		vp->v_flag &= ~VXWANT;
1719		wakeup((caddr_t) vp);
1720	}
1721}
1722
1723/*
1724 * Eliminate all activity associated with the requested vnode
1725 * and with all vnodes aliased to the requested vnode.
1726 */
1727int
1728vop_revoke(ap)
1729	struct vop_revoke_args /* {
1730		struct vnode *a_vp;
1731		int a_flags;
1732	} */ *ap;
1733{
1734	struct vnode *vp, *vq;
1735	dev_t dev;
1736
1737	KASSERT((ap->a_flags & REVOKEALL) != 0, ("vop_revoke"));
1738
1739	vp = ap->a_vp;
1740	/*
1741	 * If a vgone (or vclean) is already in progress,
1742	 * wait until it is done and return.
1743	 */
1744	if (vp->v_flag & VXLOCK) {
1745		vp->v_flag |= VXWANT;
1746		simple_unlock(&vp->v_interlock);
1747		tsleep((caddr_t)vp, PINOD, "vop_revokeall", 0);
1748		return (0);
1749	}
1750	dev = vp->v_rdev;
1751	for (;;) {
1752		simple_lock(&spechash_slock);
1753		vq = SLIST_FIRST(&dev->si_hlist);
1754		simple_unlock(&spechash_slock);
1755		if (!vq)
1756			break;
1757		vgone(vq);
1758	}
1759	return (0);
1760}
1761
1762/*
1763 * Recycle an unused vnode to the front of the free list.
1764 * Release the passed interlock if the vnode will be recycled.
1765 */
1766int
1767vrecycle(vp, inter_lkp, p)
1768	struct vnode *vp;
1769	struct simplelock *inter_lkp;
1770	struct proc *p;
1771{
1772
1773	simple_lock(&vp->v_interlock);
1774	if (vp->v_usecount == 0) {
1775		if (inter_lkp) {
1776			simple_unlock(inter_lkp);
1777		}
1778		vgonel(vp, p);
1779		return (1);
1780	}
1781	simple_unlock(&vp->v_interlock);
1782	return (0);
1783}
1784
1785/*
1786 * Eliminate all activity associated with a vnode
1787 * in preparation for reuse.
1788 */
1789void
1790vgone(vp)
1791	register struct vnode *vp;
1792{
1793	struct proc *p = curproc;	/* XXX */
1794
1795	simple_lock(&vp->v_interlock);
1796	vgonel(vp, p);
1797}
1798
1799/*
1800 * vgone, with the vp interlock held.
1801 */
1802static void
1803vgonel(vp, p)
1804	struct vnode *vp;
1805	struct proc *p;
1806{
1807	int s;
1808
1809	/*
1810	 * If a vgone (or vclean) is already in progress,
1811	 * wait until it is done and return.
1812	 */
1813	if (vp->v_flag & VXLOCK) {
1814		vp->v_flag |= VXWANT;
1815		simple_unlock(&vp->v_interlock);
1816		tsleep((caddr_t)vp, PINOD, "vgone", 0);
1817		return;
1818	}
1819
1820	/*
1821	 * Clean out the filesystem specific data.
1822	 */
1823	vclean(vp, DOCLOSE, p);
1824	simple_lock(&vp->v_interlock);
1825
1826	/*
1827	 * Delete from old mount point vnode list, if on one.
1828	 */
1829	if (vp->v_mount != NULL)
1830		insmntque(vp, (struct mount *)0);
1831	/*
1832	 * If special device, remove it from special device alias list
1833	 * if it is on one.
1834	 */
1835	if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_rdev != NULL) {
1836		simple_lock(&spechash_slock);
1837		SLIST_REMOVE(&vp->v_hashchain, vp, vnode, v_specnext);
1838		freedev(vp->v_rdev);
1839		simple_unlock(&spechash_slock);
1840		vp->v_rdev = NULL;
1841	}
1842
1843	/*
1844	 * If it is on the freelist and not already at the head,
1845	 * move it to the head of the list. The test of the back
1846	 * pointer and the reference count of zero is because
1847	 * it will be removed from the free list by getnewvnode,
1848	 * but will not have its reference count incremented until
1849	 * after calling vgone. If the reference count were
1850	 * incremented first, vgone would (incorrectly) try to
1851	 * close the previous instance of the underlying object.
1852	 */
1853	if (vp->v_usecount == 0 && !(vp->v_flag & VDOOMED)) {
1854		s = splbio();
1855		simple_lock(&vnode_free_list_slock);
1856		if (vp->v_flag & VFREE) {
1857			TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
1858		} else if (vp->v_flag & VTBFREE) {
1859			TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
1860			vp->v_flag &= ~VTBFREE;
1861			freevnodes++;
1862		} else
1863			freevnodes++;
1864		vp->v_flag |= VFREE;
1865		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1866		simple_unlock(&vnode_free_list_slock);
1867		splx(s);
1868	}
1869
1870	vp->v_type = VBAD;
1871	simple_unlock(&vp->v_interlock);
1872}
1873
1874/*
1875 * Lookup a vnode by device number.
1876 */
1877int
1878vfinddev(dev, type, vpp)
1879	dev_t dev;
1880	enum vtype type;
1881	struct vnode **vpp;
1882{
1883	struct vnode *vp;
1884
1885	simple_lock(&spechash_slock);
1886	SLIST_FOREACH(vp, &dev->si_hlist, v_specnext) {
1887		if (type == vp->v_type) {
1888			*vpp = vp;
1889			simple_unlock(&spechash_slock);
1890			return (1);
1891		}
1892	}
1893	simple_unlock(&spechash_slock);
1894	return (0);
1895}
1896
1897/*
1898 * Calculate the total number of references to a special device.
1899 */
1900int
1901vcount(vp)
1902	struct vnode *vp;
1903{
1904	struct vnode *vq;
1905	int count;
1906
1907	count = 0;
1908	simple_lock(&spechash_slock);
1909	SLIST_FOREACH(vq, &vp->v_hashchain, v_specnext)
1910		count += vq->v_usecount;
1911	simple_unlock(&spechash_slock);
1912	return (count);
1913}
1914
1915/*
1916 * Print out a description of a vnode.
1917 */
1918static char *typename[] =
1919{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD"};
1920
1921void
1922vprint(label, vp)
1923	char *label;
1924	struct vnode *vp;
1925{
1926	char buf[96];
1927
1928	if (label != NULL)
1929		printf("%s: %p: ", label, (void *)vp);
1930	else
1931		printf("%p: ", (void *)vp);
1932	printf("type %s, usecount %d, writecount %d, refcount %d,",
1933	    typename[vp->v_type], vp->v_usecount, vp->v_writecount,
1934	    vp->v_holdcnt);
1935	buf[0] = '\0';
1936	if (vp->v_flag & VROOT)
1937		strcat(buf, "|VROOT");
1938	if (vp->v_flag & VTEXT)
1939		strcat(buf, "|VTEXT");
1940	if (vp->v_flag & VSYSTEM)
1941		strcat(buf, "|VSYSTEM");
1942	if (vp->v_flag & VXLOCK)
1943		strcat(buf, "|VXLOCK");
1944	if (vp->v_flag & VXWANT)
1945		strcat(buf, "|VXWANT");
1946	if (vp->v_flag & VBWAIT)
1947		strcat(buf, "|VBWAIT");
1948	if (vp->v_flag & VDOOMED)
1949		strcat(buf, "|VDOOMED");
1950	if (vp->v_flag & VFREE)
1951		strcat(buf, "|VFREE");
1952	if (vp->v_flag & VOBJBUF)
1953		strcat(buf, "|VOBJBUF");
1954	if (buf[0] != '\0')
1955		printf(" flags (%s)", &buf[1]);
1956	if (vp->v_data == NULL) {
1957		printf("\n");
1958	} else {
1959		printf("\n\t");
1960		VOP_PRINT(vp);
1961	}
1962}
1963
1964#ifdef DDB
1965#include <ddb/ddb.h>
1966/*
1967 * List all of the locked vnodes in the system.
1968 * Called when debugging the kernel.
1969 */
1970DB_SHOW_COMMAND(lockedvnodes, lockedvnodes)
1971{
1972	struct proc *p = curproc;	/* XXX */
1973	struct mount *mp, *nmp;
1974	struct vnode *vp;
1975
1976	printf("Locked vnodes\n");
1977	simple_lock(&mountlist_slock);
1978	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
1979		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
1980			nmp = mp->mnt_list.cqe_next;
1981			continue;
1982		}
1983		for (vp = mp->mnt_vnodelist.lh_first;
1984		     vp != NULL;
1985		     vp = vp->v_mntvnodes.le_next) {
1986			if (VOP_ISLOCKED(vp))
1987				vprint((char *)0, vp);
1988		}
1989		simple_lock(&mountlist_slock);
1990		nmp = mp->mnt_list.cqe_next;
1991		vfs_unbusy(mp, p);
1992	}
1993	simple_unlock(&mountlist_slock);
1994}
1995#endif
1996
1997/*
1998 * Top level filesystem related information gathering.
1999 */
2000static int	sysctl_ovfs_conf __P(SYSCTL_HANDLER_ARGS);
2001
2002static int
2003vfs_sysctl SYSCTL_HANDLER_ARGS
2004{
2005	int *name = (int *)arg1 - 1;	/* XXX */
2006	u_int namelen = arg2 + 1;	/* XXX */
2007	struct vfsconf *vfsp;
2008
2009#if 1 || defined(COMPAT_PRELITE2)
2010	/* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
2011	if (namelen == 1)
2012		return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
2013#endif
2014
2015#ifdef notyet
2016	/* all sysctl names at this level are at least name and field */
2017	if (namelen < 2)
2018		return (ENOTDIR);		/* overloaded */
2019	if (name[0] != VFS_GENERIC) {
2020		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2021			if (vfsp->vfc_typenum == name[0])
2022				break;
2023		if (vfsp == NULL)
2024			return (EOPNOTSUPP);
2025		return ((*vfsp->vfc_vfsops->vfs_sysctl)(&name[1], namelen - 1,
2026		    oldp, oldlenp, newp, newlen, p));
2027	}
2028#endif
2029	switch (name[1]) {
2030	case VFS_MAXTYPENUM:
2031		if (namelen != 2)
2032			return (ENOTDIR);
2033		return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
2034	case VFS_CONF:
2035		if (namelen != 3)
2036			return (ENOTDIR);	/* overloaded */
2037		for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2038			if (vfsp->vfc_typenum == name[2])
2039				break;
2040		if (vfsp == NULL)
2041			return (EOPNOTSUPP);
2042		return (SYSCTL_OUT(req, vfsp, sizeof *vfsp));
2043	}
2044	return (EOPNOTSUPP);
2045}
2046
2047SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD, vfs_sysctl,
2048	"Generic filesystem");
2049
2050#if 1 || defined(COMPAT_PRELITE2)
2051
2052static int
2053sysctl_ovfs_conf SYSCTL_HANDLER_ARGS
2054{
2055	int error;
2056	struct vfsconf *vfsp;
2057	struct ovfsconf ovfs;
2058
2059	for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
2060		ovfs.vfc_vfsops = vfsp->vfc_vfsops;	/* XXX used as flag */
2061		strcpy(ovfs.vfc_name, vfsp->vfc_name);
2062		ovfs.vfc_index = vfsp->vfc_typenum;
2063		ovfs.vfc_refcount = vfsp->vfc_refcount;
2064		ovfs.vfc_flags = vfsp->vfc_flags;
2065		error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
2066		if (error)
2067			return error;
2068	}
2069	return 0;
2070}
2071
2072#endif /* 1 || COMPAT_PRELITE2 */
2073
2074#if 0
2075#define KINFO_VNODESLOP	10
2076/*
2077 * Dump vnode list (via sysctl).
2078 * Copyout address of vnode followed by vnode.
2079 */
2080/* ARGSUSED */
2081static int
2082sysctl_vnode SYSCTL_HANDLER_ARGS
2083{
2084	struct proc *p = curproc;	/* XXX */
2085	struct mount *mp, *nmp;
2086	struct vnode *nvp, *vp;
2087	int error;
2088
2089#define VPTRSZ	sizeof (struct vnode *)
2090#define VNODESZ	sizeof (struct vnode)
2091
2092	req->lock = 0;
2093	if (!req->oldptr) /* Make an estimate */
2094		return (SYSCTL_OUT(req, 0,
2095			(numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ)));
2096
2097	simple_lock(&mountlist_slock);
2098	for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
2099		if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock, p)) {
2100			nmp = mp->mnt_list.cqe_next;
2101			continue;
2102		}
2103again:
2104		simple_lock(&mntvnode_slock);
2105		for (vp = mp->mnt_vnodelist.lh_first;
2106		     vp != NULL;
2107		     vp = nvp) {
2108			/*
2109			 * Check that the vp is still associated with
2110			 * this filesystem.  RACE: could have been
2111			 * recycled onto the same filesystem.
2112			 */
2113			if (vp->v_mount != mp) {
2114				simple_unlock(&mntvnode_slock);
2115				goto again;
2116			}
2117			nvp = vp->v_mntvnodes.le_next;
2118			simple_unlock(&mntvnode_slock);
2119			if ((error = SYSCTL_OUT(req, &vp, VPTRSZ)) ||
2120			    (error = SYSCTL_OUT(req, vp, VNODESZ)))
2121				return (error);
2122			simple_lock(&mntvnode_slock);
2123		}
2124		simple_unlock(&mntvnode_slock);
2125		simple_lock(&mountlist_slock);
2126		nmp = mp->mnt_list.cqe_next;
2127		vfs_unbusy(mp, p);
2128	}
2129	simple_unlock(&mountlist_slock);
2130
2131	return (0);
2132}
2133#endif
2134
2135/*
2136 * XXX
2137 * Exporting the vnode list on large systems causes them to crash.
2138 * Exporting the vnode list on medium systems causes sysctl to coredump.
2139 */
2140#if 0
2141SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
2142	0, 0, sysctl_vnode, "S,vnode", "");
2143#endif
2144
2145/*
2146 * Check to see if a filesystem is mounted on a block device.
2147 */
2148int
2149vfs_mountedon(vp)
2150	struct vnode *vp;
2151{
2152
2153	if (vp->v_specmountpoint != NULL)
2154		return (EBUSY);
2155	return (0);
2156}
2157
2158/*
2159 * Unmount all filesystems. The list is traversed in reverse order
2160 * of mounting to avoid dependencies.
2161 */
2162void
2163vfs_unmountall()
2164{
2165	struct mount *mp, *nmp;
2166	struct proc *p;
2167	int error;
2168
2169	if (curproc != NULL)
2170		p = curproc;
2171	else
2172		p = initproc;	/* XXX XXX should this be proc0? */
2173	/*
2174	 * Since this only runs when rebooting, it is not interlocked.
2175	 */
2176	for (mp = mountlist.cqh_last; mp != (void *)&mountlist; mp = nmp) {
2177		nmp = mp->mnt_list.cqe_prev;
2178		error = dounmount(mp, MNT_FORCE, p);
2179		if (error) {
2180			printf("unmount of %s failed (",
2181			    mp->mnt_stat.f_mntonname);
2182			if (error == EBUSY)
2183				printf("BUSY)\n");
2184			else
2185				printf("%d)\n", error);
2186		}
2187	}
2188}
2189
2190/*
2191 * Build hash lists of net addresses and hang them off the mount point.
2192 * Called by ufs_mount() to set up the lists of export addresses.
2193 */
2194static int
2195vfs_hang_addrlist(mp, nep, argp)
2196	struct mount *mp;
2197	struct netexport *nep;
2198	struct export_args *argp;
2199{
2200	register struct netcred *np;
2201	register struct radix_node_head *rnh;
2202	register int i;
2203	struct radix_node *rn;
2204	struct sockaddr *saddr, *smask = 0;
2205	struct domain *dom;
2206	int error;
2207
2208	if (argp->ex_addrlen == 0) {
2209		if (mp->mnt_flag & MNT_DEFEXPORTED)
2210			return (EPERM);
2211		np = &nep->ne_defexported;
2212		np->netc_exflags = argp->ex_flags;
2213		np->netc_anon = argp->ex_anon;
2214		np->netc_anon.cr_ref = 1;
2215		mp->mnt_flag |= MNT_DEFEXPORTED;
2216		return (0);
2217	}
2218	i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
2219	np = (struct netcred *) malloc(i, M_NETADDR, M_WAITOK);
2220	bzero((caddr_t) np, i);
2221	saddr = (struct sockaddr *) (np + 1);
2222	if ((error = copyin(argp->ex_addr, (caddr_t) saddr, argp->ex_addrlen)))
2223		goto out;
2224	if (saddr->sa_len > argp->ex_addrlen)
2225		saddr->sa_len = argp->ex_addrlen;
2226	if (argp->ex_masklen) {
2227		smask = (struct sockaddr *) ((caddr_t) saddr + argp->ex_addrlen);
2228		error = copyin(argp->ex_mask, (caddr_t) smask, argp->ex_masklen);
2229		if (error)
2230			goto out;
2231		if (smask->sa_len > argp->ex_masklen)
2232			smask->sa_len = argp->ex_masklen;
2233	}
2234	i = saddr->sa_family;
2235	if ((rnh = nep->ne_rtable[i]) == 0) {
2236		/*
2237		 * Seems silly to initialize every AF when most are not used,
2238		 * do so on demand here
2239		 */
2240		for (dom = domains; dom; dom = dom->dom_next)
2241			if (dom->dom_family == i && dom->dom_rtattach) {
2242				dom->dom_rtattach((void **) &nep->ne_rtable[i],
2243				    dom->dom_rtoffset);
2244				break;
2245			}
2246		if ((rnh = nep->ne_rtable[i]) == 0) {
2247			error = ENOBUFS;
2248			goto out;
2249		}
2250	}
2251	rn = (*rnh->rnh_addaddr) ((caddr_t) saddr, (caddr_t) smask, rnh,
2252	    np->netc_rnodes);
2253	if (rn == 0 || np != (struct netcred *) rn) {	/* already exists */
2254		error = EPERM;
2255		goto out;
2256	}
2257	np->netc_exflags = argp->ex_flags;
2258	np->netc_anon = argp->ex_anon;
2259	np->netc_anon.cr_ref = 1;
2260	return (0);
2261out:
2262	free(np, M_NETADDR);
2263	return (error);
2264}
2265
2266/* ARGSUSED */
2267static int
2268vfs_free_netcred(rn, w)
2269	struct radix_node *rn;
2270	void *w;
2271{
2272	register struct radix_node_head *rnh = (struct radix_node_head *) w;
2273
2274	(*rnh->rnh_deladdr) (rn->rn_key, rn->rn_mask, rnh);
2275	free((caddr_t) rn, M_NETADDR);
2276	return (0);
2277}
2278
2279/*
2280 * Free the net address hash lists that are hanging off the mount points.
2281 */
2282static void
2283vfs_free_addrlist(nep)
2284	struct netexport *nep;
2285{
2286	register int i;
2287	register struct radix_node_head *rnh;
2288
2289	for (i = 0; i <= AF_MAX; i++)
2290		if ((rnh = nep->ne_rtable[i])) {
2291			(*rnh->rnh_walktree) (rnh, vfs_free_netcred,
2292			    (caddr_t) rnh);
2293			free((caddr_t) rnh, M_RTABLE);
2294			nep->ne_rtable[i] = 0;
2295		}
2296}
2297
2298int
2299vfs_export(mp, nep, argp)
2300	struct mount *mp;
2301	struct netexport *nep;
2302	struct export_args *argp;
2303{
2304	int error;
2305
2306	if (argp->ex_flags & MNT_DELEXPORT) {
2307		if (mp->mnt_flag & MNT_EXPUBLIC) {
2308			vfs_setpublicfs(NULL, NULL, NULL);
2309			mp->mnt_flag &= ~MNT_EXPUBLIC;
2310		}
2311		vfs_free_addrlist(nep);
2312		mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
2313	}
2314	if (argp->ex_flags & MNT_EXPORTED) {
2315		if (argp->ex_flags & MNT_EXPUBLIC) {
2316			if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
2317				return (error);
2318			mp->mnt_flag |= MNT_EXPUBLIC;
2319		}
2320		if ((error = vfs_hang_addrlist(mp, nep, argp)))
2321			return (error);
2322		mp->mnt_flag |= MNT_EXPORTED;
2323	}
2324	return (0);
2325}
2326
2327
2328/*
2329 * Set the publicly exported filesystem (WebNFS). Currently, only
2330 * one public filesystem is possible in the spec (RFC 2054 and 2055)
2331 */
2332int
2333vfs_setpublicfs(mp, nep, argp)
2334	struct mount *mp;
2335	struct netexport *nep;
2336	struct export_args *argp;
2337{
2338	int error;
2339	struct vnode *rvp;
2340	char *cp;
2341
2342	/*
2343	 * mp == NULL -> invalidate the current info, the FS is
2344	 * no longer exported. May be called from either vfs_export
2345	 * or unmount, so check if it hasn't already been done.
2346	 */
2347	if (mp == NULL) {
2348		if (nfs_pub.np_valid) {
2349			nfs_pub.np_valid = 0;
2350			if (nfs_pub.np_index != NULL) {
2351				FREE(nfs_pub.np_index, M_TEMP);
2352				nfs_pub.np_index = NULL;
2353			}
2354		}
2355		return (0);
2356	}
2357
2358	/*
2359	 * Only one allowed at a time.
2360	 */
2361	if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
2362		return (EBUSY);
2363
2364	/*
2365	 * Get real filehandle for root of exported FS.
2366	 */
2367	bzero((caddr_t)&nfs_pub.np_handle, sizeof(nfs_pub.np_handle));
2368	nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsid;
2369
2370	if ((error = VFS_ROOT(mp, &rvp)))
2371		return (error);
2372
2373	if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
2374		return (error);
2375
2376	vput(rvp);
2377
2378	/*
2379	 * If an indexfile was specified, pull it in.
2380	 */
2381	if (argp->ex_indexfile != NULL) {
2382		MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
2383		    M_WAITOK);
2384		error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
2385		    MAXNAMLEN, (size_t *)0);
2386		if (!error) {
2387			/*
2388			 * Check for illegal filenames.
2389			 */
2390			for (cp = nfs_pub.np_index; *cp; cp++) {
2391				if (*cp == '/') {
2392					error = EINVAL;
2393					break;
2394				}
2395			}
2396		}
2397		if (error) {
2398			FREE(nfs_pub.np_index, M_TEMP);
2399			return (error);
2400		}
2401	}
2402
2403	nfs_pub.np_mount = mp;
2404	nfs_pub.np_valid = 1;
2405	return (0);
2406}
2407
2408struct netcred *
2409vfs_export_lookup(mp, nep, nam)
2410	register struct mount *mp;
2411	struct netexport *nep;
2412	struct sockaddr *nam;
2413{
2414	register struct netcred *np;
2415	register struct radix_node_head *rnh;
2416	struct sockaddr *saddr;
2417
2418	np = NULL;
2419	if (mp->mnt_flag & MNT_EXPORTED) {
2420		/*
2421		 * Lookup in the export list first.
2422		 */
2423		if (nam != NULL) {
2424			saddr = nam;
2425			rnh = nep->ne_rtable[saddr->sa_family];
2426			if (rnh != NULL) {
2427				np = (struct netcred *)
2428					(*rnh->rnh_matchaddr)((caddr_t)saddr,
2429							      rnh);
2430				if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
2431					np = NULL;
2432			}
2433		}
2434		/*
2435		 * If no address match, use the default if it exists.
2436		 */
2437		if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
2438			np = &nep->ne_defexported;
2439	}
2440	return (np);
2441}
2442
2443/*
2444 * perform msync on all vnodes under a mount point
2445 * the mount point must be locked.
2446 */
2447void
2448vfs_msync(struct mount *mp, int flags) {
2449	struct vnode *vp, *nvp;
2450	struct vm_object *obj;
2451	int anyio, tries;
2452
2453	tries = 5;
2454loop:
2455	anyio = 0;
2456	for (vp = mp->mnt_vnodelist.lh_first; vp != NULL; vp = nvp) {
2457
2458		nvp = vp->v_mntvnodes.le_next;
2459
2460		if (vp->v_mount != mp) {
2461			goto loop;
2462		}
2463
2464		if (vp->v_flag & VXLOCK)	/* XXX: what if MNT_WAIT? */
2465			continue;
2466
2467		if (flags != MNT_WAIT) {
2468			obj = vp->v_object;
2469			if (obj == NULL || (obj->flags & OBJ_MIGHTBEDIRTY) == 0)
2470				continue;
2471			if (VOP_ISLOCKED(vp))
2472				continue;
2473		}
2474
2475		simple_lock(&vp->v_interlock);
2476		if (vp->v_object &&
2477		   (vp->v_object->flags & OBJ_MIGHTBEDIRTY)) {
2478			if (!vget(vp,
2479				LK_INTERLOCK | LK_EXCLUSIVE | LK_RETRY | LK_NOOBJ, curproc)) {
2480				if (vp->v_object) {
2481					vm_object_page_clean(vp->v_object, 0, 0, flags == MNT_WAIT ? OBJPC_SYNC : 0);
2482					anyio = 1;
2483				}
2484				vput(vp);
2485			}
2486		} else {
2487			simple_unlock(&vp->v_interlock);
2488		}
2489	}
2490	if (anyio && (--tries > 0))
2491		goto loop;
2492}
2493
2494/*
2495 * Create the VM object needed for VMIO and mmap support.  This
2496 * is done for all VREG files in the system.  Some filesystems might
2497 * afford the additional metadata buffering capability of the
2498 * VMIO code by making the device node be VMIO mode also.
2499 *
2500 * vp must be locked when vfs_object_create is called.
2501 */
2502int
2503vfs_object_create(vp, p, cred)
2504	struct vnode *vp;
2505	struct proc *p;
2506	struct ucred *cred;
2507{
2508	struct vattr vat;
2509	vm_object_t object;
2510	int error = 0;
2511
2512	if (vp->v_type != VBLK && vn_canvmio(vp) == FALSE)
2513		return 0;
2514
2515retry:
2516	if ((object = vp->v_object) == NULL) {
2517		if (vp->v_type == VREG || vp->v_type == VDIR) {
2518			if ((error = VOP_GETATTR(vp, &vat, cred, p)) != 0)
2519				goto retn;
2520			object = vnode_pager_alloc(vp, vat.va_size, 0, 0);
2521		} else if (devsw(vp->v_rdev) != NULL) {
2522			/*
2523			 * This simply allocates the biggest object possible
2524			 * for a VBLK vnode.  This should be fixed, but doesn't
2525			 * cause any problems (yet).
2526			 */
2527			object = vnode_pager_alloc(vp, IDX_TO_OFF(INT_MAX), 0, 0);
2528		} else {
2529			goto retn;
2530		}
2531		/*
2532		 * Dereference the reference we just created.  This assumes
2533		 * that the object is associated with the vp.
2534		 */
2535		object->ref_count--;
2536		vp->v_usecount--;
2537	} else {
2538		if (object->flags & OBJ_DEAD) {
2539			VOP_UNLOCK(vp, 0, p);
2540			tsleep(object, PVM, "vodead", 0);
2541			vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
2542			goto retry;
2543		}
2544	}
2545
2546	KASSERT(vp->v_object != NULL, ("vfs_object_create: NULL object"));
2547	vp->v_flag |= VOBJBUF;
2548
2549retn:
2550	return error;
2551}
2552
2553static void
2554vfree(vp)
2555	struct vnode *vp;
2556{
2557	int s;
2558
2559	s = splbio();
2560	simple_lock(&vnode_free_list_slock);
2561	if (vp->v_flag & VTBFREE) {
2562		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2563		vp->v_flag &= ~VTBFREE;
2564	}
2565	if (vp->v_flag & VAGE) {
2566		TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
2567	} else {
2568		TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
2569	}
2570	freevnodes++;
2571	simple_unlock(&vnode_free_list_slock);
2572	vp->v_flag &= ~VAGE;
2573	vp->v_flag |= VFREE;
2574	splx(s);
2575}
2576
2577void
2578vbusy(vp)
2579	struct vnode *vp;
2580{
2581	int s;
2582
2583	s = splbio();
2584	simple_lock(&vnode_free_list_slock);
2585	if (vp->v_flag & VTBFREE) {
2586		TAILQ_REMOVE(&vnode_tobefree_list, vp, v_freelist);
2587		vp->v_flag &= ~VTBFREE;
2588	} else {
2589		TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
2590		freevnodes--;
2591	}
2592	simple_unlock(&vnode_free_list_slock);
2593	vp->v_flag &= ~(VFREE|VAGE);
2594	splx(s);
2595}
2596
2597/*
2598 * Record a process's interest in events which might happen to
2599 * a vnode.  Because poll uses the historic select-style interface
2600 * internally, this routine serves as both the ``check for any
2601 * pending events'' and the ``record my interest in future events''
2602 * functions.  (These are done together, while the lock is held,
2603 * to avoid race conditions.)
2604 */
2605int
2606vn_pollrecord(vp, p, events)
2607	struct vnode *vp;
2608	struct proc *p;
2609	short events;
2610{
2611	simple_lock(&vp->v_pollinfo.vpi_lock);
2612	if (vp->v_pollinfo.vpi_revents & events) {
2613		/*
2614		 * This leaves events we are not interested
2615		 * in available for the other process which
2616		 * which presumably had requested them
2617		 * (otherwise they would never have been
2618		 * recorded).
2619		 */
2620		events &= vp->v_pollinfo.vpi_revents;
2621		vp->v_pollinfo.vpi_revents &= ~events;
2622
2623		simple_unlock(&vp->v_pollinfo.vpi_lock);
2624		return events;
2625	}
2626	vp->v_pollinfo.vpi_events |= events;
2627	selrecord(p, &vp->v_pollinfo.vpi_selinfo);
2628	simple_unlock(&vp->v_pollinfo.vpi_lock);
2629	return 0;
2630}
2631
2632/*
2633 * Note the occurrence of an event.  If the VN_POLLEVENT macro is used,
2634 * it is possible for us to miss an event due to race conditions, but
2635 * that condition is expected to be rare, so for the moment it is the
2636 * preferred interface.
2637 */
2638void
2639vn_pollevent(vp, events)
2640	struct vnode *vp;
2641	short events;
2642{
2643	simple_lock(&vp->v_pollinfo.vpi_lock);
2644	if (vp->v_pollinfo.vpi_events & events) {
2645		/*
2646		 * We clear vpi_events so that we don't
2647		 * call selwakeup() twice if two events are
2648		 * posted before the polling process(es) is
2649		 * awakened.  This also ensures that we take at
2650		 * most one selwakeup() if the polling process
2651		 * is no longer interested.  However, it does
2652		 * mean that only one event can be noticed at
2653		 * a time.  (Perhaps we should only clear those
2654		 * event bits which we note?) XXX
2655		 */
2656		vp->v_pollinfo.vpi_events = 0;	/* &= ~events ??? */
2657		vp->v_pollinfo.vpi_revents |= events;
2658		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2659	}
2660	simple_unlock(&vp->v_pollinfo.vpi_lock);
2661}
2662
2663/*
2664 * Wake up anyone polling on vp because it is being revoked.
2665 * This depends on dead_poll() returning POLLHUP for correct
2666 * behavior.
2667 */
2668void
2669vn_pollgone(vp)
2670	struct vnode *vp;
2671{
2672	simple_lock(&vp->v_pollinfo.vpi_lock);
2673	if (vp->v_pollinfo.vpi_events) {
2674		vp->v_pollinfo.vpi_events = 0;
2675		selwakeup(&vp->v_pollinfo.vpi_selinfo);
2676	}
2677	simple_unlock(&vp->v_pollinfo.vpi_lock);
2678}
2679
2680
2681
2682/*
2683 * Routine to create and manage a filesystem syncer vnode.
2684 */
2685#define sync_close ((int (*) __P((struct  vop_close_args *)))nullop)
2686static int	sync_fsync __P((struct  vop_fsync_args *));
2687static int	sync_inactive __P((struct  vop_inactive_args *));
2688static int	sync_reclaim  __P((struct  vop_reclaim_args *));
2689#define sync_lock ((int (*) __P((struct  vop_lock_args *)))vop_nolock)
2690#define sync_unlock ((int (*) __P((struct  vop_unlock_args *)))vop_nounlock)
2691static int	sync_print __P((struct vop_print_args *));
2692#define sync_islocked ((int(*) __P((struct vop_islocked_args *)))vop_noislocked)
2693
2694static vop_t **sync_vnodeop_p;
2695static struct vnodeopv_entry_desc sync_vnodeop_entries[] = {
2696	{ &vop_default_desc,	(vop_t *) vop_eopnotsupp },
2697	{ &vop_close_desc,	(vop_t *) sync_close },		/* close */
2698	{ &vop_fsync_desc,	(vop_t *) sync_fsync },		/* fsync */
2699	{ &vop_inactive_desc,	(vop_t *) sync_inactive },	/* inactive */
2700	{ &vop_reclaim_desc,	(vop_t *) sync_reclaim },	/* reclaim */
2701	{ &vop_lock_desc,	(vop_t *) sync_lock },		/* lock */
2702	{ &vop_unlock_desc,	(vop_t *) sync_unlock },	/* unlock */
2703	{ &vop_print_desc,	(vop_t *) sync_print },		/* print */
2704	{ &vop_islocked_desc,	(vop_t *) sync_islocked },	/* islocked */
2705	{ NULL, NULL }
2706};
2707static struct vnodeopv_desc sync_vnodeop_opv_desc =
2708	{ &sync_vnodeop_p, sync_vnodeop_entries };
2709
2710VNODEOP_SET(sync_vnodeop_opv_desc);
2711
2712/*
2713 * Create a new filesystem syncer vnode for the specified mount point.
2714 */
2715int
2716vfs_allocate_syncvnode(mp)
2717	struct mount *mp;
2718{
2719	struct vnode *vp;
2720	static long start, incr, next;
2721	int error;
2722
2723	/* Allocate a new vnode */
2724	if ((error = getnewvnode(VT_VFS, mp, sync_vnodeop_p, &vp)) != 0) {
2725		mp->mnt_syncer = NULL;
2726		return (error);
2727	}
2728	vp->v_type = VNON;
2729	/*
2730	 * Place the vnode onto the syncer worklist. We attempt to
2731	 * scatter them about on the list so that they will go off
2732	 * at evenly distributed times even if all the filesystems
2733	 * are mounted at once.
2734	 */
2735	next += incr;
2736	if (next == 0 || next > syncer_maxdelay) {
2737		start /= 2;
2738		incr /= 2;
2739		if (start == 0) {
2740			start = syncer_maxdelay / 2;
2741			incr = syncer_maxdelay;
2742		}
2743		next = start;
2744	}
2745	vn_syncer_add_to_worklist(vp, syncdelay > 0 ? next % syncdelay : 0);
2746	mp->mnt_syncer = vp;
2747	return (0);
2748}
2749
2750/*
2751 * Do a lazy sync of the filesystem.
2752 */
2753static int
2754sync_fsync(ap)
2755	struct vop_fsync_args /* {
2756		struct vnode *a_vp;
2757		struct ucred *a_cred;
2758		int a_waitfor;
2759		struct proc *a_p;
2760	} */ *ap;
2761{
2762	struct vnode *syncvp = ap->a_vp;
2763	struct mount *mp = syncvp->v_mount;
2764	struct proc *p = ap->a_p;
2765	int asyncflag;
2766
2767	/*
2768	 * We only need to do something if this is a lazy evaluation.
2769	 */
2770	if (ap->a_waitfor != MNT_LAZY)
2771		return (0);
2772
2773	/*
2774	 * Move ourselves to the back of the sync list.
2775	 */
2776	vn_syncer_add_to_worklist(syncvp, syncdelay);
2777
2778	/*
2779	 * Walk the list of vnodes pushing all that are dirty and
2780	 * not already on the sync list.
2781	 */
2782	simple_lock(&mountlist_slock);
2783	if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_slock, p) != 0) {
2784		simple_unlock(&mountlist_slock);
2785		return (0);
2786	}
2787	asyncflag = mp->mnt_flag & MNT_ASYNC;
2788	mp->mnt_flag &= ~MNT_ASYNC;
2789	vfs_msync(mp, MNT_NOWAIT);
2790	VFS_SYNC(mp, MNT_LAZY, ap->a_cred, p);
2791	if (asyncflag)
2792		mp->mnt_flag |= MNT_ASYNC;
2793	vfs_unbusy(mp, p);
2794	return (0);
2795}
2796
2797/*
2798 * The syncer vnode is no referenced.
2799 */
2800static int
2801sync_inactive(ap)
2802	struct vop_inactive_args /* {
2803		struct vnode *a_vp;
2804		struct proc *a_p;
2805	} */ *ap;
2806{
2807
2808	vgone(ap->a_vp);
2809	return (0);
2810}
2811
2812/*
2813 * The syncer vnode is no longer needed and is being decommissioned.
2814 *
2815 * Modifications to the worklist must be protected at splbio().
2816 */
2817static int
2818sync_reclaim(ap)
2819	struct vop_reclaim_args /* {
2820		struct vnode *a_vp;
2821	} */ *ap;
2822{
2823	struct vnode *vp = ap->a_vp;
2824	int s;
2825
2826	s = splbio();
2827	vp->v_mount->mnt_syncer = NULL;
2828	if (vp->v_flag & VONWORKLST) {
2829		LIST_REMOVE(vp, v_synclist);
2830		vp->v_flag &= ~VONWORKLST;
2831	}
2832	splx(s);
2833
2834	return (0);
2835}
2836
2837/*
2838 * Print out a syncer vnode.
2839 */
2840static int
2841sync_print(ap)
2842	struct vop_print_args /* {
2843		struct vnode *a_vp;
2844	} */ *ap;
2845{
2846	struct vnode *vp = ap->a_vp;
2847
2848	printf("syncer vnode");
2849	if (vp->v_vnlock != NULL)
2850		lockmgr_printinfo(vp->v_vnlock);
2851	printf("\n");
2852	return (0);
2853}
2854
2855/*
2856 * extract the dev_t from a VBLK or VCHR
2857 */
2858dev_t
2859vn_todev(vp)
2860	struct vnode *vp;
2861{
2862	if (vp->v_type != VBLK && vp->v_type != VCHR)
2863		return (NODEV);
2864	return (vp->v_rdev);
2865}
2866
2867/*
2868 * Check if vnode represents a disk device
2869 */
2870int
2871vn_isdisk(vp)
2872	struct vnode *vp;
2873{
2874	if (vp->v_type != VBLK)
2875		return (0);
2876	if (!devsw(vp->v_rdev))
2877		return (0);
2878	if (!(devsw(vp->v_rdev)->d_flags & D_DISK))
2879		return (0);
2880	return (1);
2881}
2882
2883